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SOME GENERALIZATIONS OF AN IDENTITY 
OF SUBHANKULOV 

BY 
D. S U R Y A N A R A Y A N A * A N D D A V I D T. W A L K E R 

ABSTRACT. In 1957, M. A. Subhankulov established the follow­
ing identity 

(n.r) \dl 6 r = l Jlin d I (n, r) 

where r = rxr\, (ru r2)=
: 1; JA is the Môbius function and J2 is the 

Jordan totient function of order 2. Since the Ramanujan 
trigonometrical sum C(ny r) = £ d | (n, r) dii(rld), we rewrite the above 
identity using C(n, r). 

In this paper, we give a generalization of Ramanujan's sum, which 
generalizes some of the earlier generalizations mainly due to E. 
Cohen, and prove a theorem from which we deduce some generali­
zations of the above identity. 

§1. Introduction. In 1957, M. A. Subhankulov [10] established the following 
curious identity (in a slightly different form and notation): 

(1) 
r = l JlKH d\(n,r) U* / O 

where r- rxrl, (rl9 r2)= 1; ^ is the well-known Môbius function and J2 is the 
Jordan totient function of order 2. The identity (1) may also be found in a 
subsequent paper of Subankulov written jointly with S. N. Muhatarov (cf. [11], 
eq. (3)). 

Since it is known (cf. [8], Theorem 271) that 

(2) C(n,r)= X dfiU) 
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and £(2) = 7r2/6, where £(s) is the Riemann Zeta function defined for s > 1 by 
£(s) = En=irc~s and C(n,r) is the Ramanujan trigonometrical sum (cf. [8], 
§5.6) defined by 

(3) C(n, r)= Y, exp(27n"jcn/r), 
x (mod r) 
( x , r ) = l 

we can rewrite the identity (1) as follows: 

(4) I^^C(n,r)=S(nU(2). 
r = l J2V) 

In this paper, we establish some identities as generalizations of the identity 
(4). For example, we prove that for fc > 1, 

(5) t rt'irff Cfc(n, r) = q2k(n)a2k), 

where r = rtrl, (rl9 r2) = 1; Jk(r) is the Jordan totient function of order k (cf. [7], 
p. 147; also cf. [2] and [3]) which has the arithmetic evaluation 

Mr)=ZdkJ^) = rkl\(l-p-k), 
d\r \dl p l r 

(6) 
P l r 

p a prime, <&(/•)= 1 or 0 according as reQk or r^ Qk, Qk being the set of all 
fc-free integers (a positive integer r is called fc-free, if r is not divisible by pk 

for any prime p) and Ck(n, r) is E. Cohen's [1] generalized Ramanujan sum 
defined by 

(7) Cfc(n,r)= X exp(27rixn/rk), 
x(mod rfc) 
( x , r k ) k = l 

the summation being extended over all x modulo rk, whose greatest common 
fcth power divisor with rk is 1. E. Cohen (cf. [1], eq. (2.5)) also established the 
following arithmetic evaluation of Ck(n, r): 

(8) Ck(n,r)=l d V ( £ ) . 

In fact, we first prove a general result, from which we deduce some 
generalizations of the identity (4) (for example, see Remark 2 and (16) of §3), 
in the following: 
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THEOREM. If a and j3 are integers each >2 ; if fc, u, and nu . . . , nu are integers 
each ^ 1 ; and if vp(n) is the non-negative integer such that pVp(n) is the highest 
power of the prime p that divides n, where n = (nu . . . , nu), then 

(9) 

= £(<*) EI i 1 - - ^ ^ : ) El (l—^r=far+
na-o-i)k« 

P \ F / P \ F F •' 
k < U p ( n ) < ( 3 - l ) k (0 - l )k<t ; p (n )<3k 

T-r / 1 _ 1 1 \ 
X 1 1 \ 1 a - k u + « - ( 0 - l ) k u « - 3 k u I» 

p \ F F F / P 
VpOl)>0k 

where r-rxr^ (^i, r 2 ) = l , and each product is extended over all primes p 
subject to the restrictions on vp(n) mentioned under each product. 

In the above Theorem C k
u ) (n i , . . . , nu, r) is a generalization of Ramanujan's 

sum defined as follows: 

(10) C^\nu ...,nu,r)= £ exp(27ri(n1x1 + • • • + nuxu)lr
k\ 

(XiXmod rk) 
((Xi),rk)k = l 

where the summation is extended over all xt modulo rfc, for Ï = 1 , . . . , fe, such 
that the greatest common fcth power divisor of ( x l 5 . . . , xu) and rk is 1. 
Following the method adopted by M. Sugunamma (cf. [12]), Theorem 1) and 
E. Cohen (cf. [5], Lemma 2 and cf. [6], p. 30), we get the following arithmetic 
evaluation: 

(11) C f c
u ) (n 1 , . . . ,n u , r )= X dkuJ^-\ 

dk 

d \r 

where n = {nu . . . , nu). 

REMARK 1. We note here that (10) gives a generalization of some of the 
known generalizations of Ramanujan's sum. For example, when rti = • • • = 
nu = n, (10) reduces to Cfcu)(rc, r), which is due to M. Sugunamma [12]; when 
u = 1, n1 = n, (10) reduces to Ck(n, r) which is due to E. Cohen [1]; when k = 1, 

Ul - . . . = nu = n? (io) reduces to C{u)(n, r) which is again due to E. Cohen [4]; 
and finally when k = 1, (10) reduces to C(u\nu . . . , nu, r) which is once again 
due to E. Cohen (cf. [5] and [6]). 

§2. Proof of the Theorem. Since the general term in the series (9) is a 
multiplicative function of r and the series is absolutely convergent, it can be 
expanded into an infinite product of Euler type (cf. [8],Theorem 286). Hence 
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by (6) and (11), we have 

M r i ' 2 ) r 2 C{«\uu ..., nu, r) 
h Ja(r)~ 

y i 4(P) /a(p
p) i •Up) W ) 

P ^ F ^ P 
t)p(n)<fc k<up(n)<(3-i)fc 

p « - _ l p<*-"««\ / p - » _ i p ^ " ~ p 

V \ p"-i p a - w V \ p a - i 
=£uP(n)<{3k up(n)s=/3k 

n(^) n i^p) n 
!n)< 

n 

j3ku _ (0 l)ku 

P - - l 
(0- l)k<uP(n)<0k up(n)>/3k 

/ t x / l - p - a + f c M \ n ^ i - . p -«+ fc«+p-«+<0- i>*«* 

k<up(n)<(/3-l)k 

1 — p-ct + ku _^_ - a + ( 0 - l ) k u _ - « + £ku 

P v- -p"°7 P V l - p " a / P V 1 - p 
up(n)<k k<«p(n)<03-l)k «3-l)k<up(n)<3fc 

1 —̂« 
" P 

op(n)>3k 

n(r-T-) n (>-^) n ( > - ^ + 7 ^ ) 
P 

fc<up(n)<(j3-l)fc (3-l)fc<up(n)<3fc 

n '- ' ' oc — ku a —(j3 —l)ku a~{Sku J' 

p \ P P P / 
Up(n)s=/3k 

Now, applying Euler's result that £(<*) = I I p ( l - p ~ a ) , (cf. [8], Theorem 280), 
the Theorem follows, 

§3. Some special cases. Taking /3 = 2 in (9), we have the following result: For 
a > 2 , fc>l and H > 1 , 

(12) 
^(rir2)/?wMw .. , _ w ^ n / , 1 \ 

^ — T V — Q \nu • • • , ^u, r)= £(a) H i ~ — ^ , 
r=l ^ a W 2k / n\ P / 

where r = rxr\, (ru r2) = 1 and n = (nu . . . , nM). 
If n e 02k5 then the right side of (12) becomes f (a). On the other hand, if 

n^Q2k and a = 2fcw, then the right side of (12) becomes zero. Hence from 
(12), we obtain the following: 

r=i Ja(r) I 0, if n c 0 2 k and a^=2ku. 

Taking a~2ku in (13), we have 

(14) I ^ ~ ^ C£\nl9..., nu, r) = q2k(n)a2ku). 
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As a particular case of (14), taking n1 = - - - = nu = n, we have the identity 

Jlku 
(15) £ ^ l 1 ^ 2 Ci"\n, r) = q2k{n)t(2ku). 

REMARK 2. Now, taking u = 1 in (15), we have the identity (5). Also, taking 
k = 1 in (15), we have the following identity, which is a generalization of (4), 
different from (5): 

(16) l H ^ ± C^(n, r) = n2(n)t;(2u). 

Taking a = 2k(u + 1) in (12), we get the following identity: 

( 1 7 ) l i i i ^ M ^ ^ ^ ...,„„, r ) = aik{u +1)) ^ ^ , 
r - 1 J2k(u + l)V) H 

where <$k(n) is Klee's [9] generalized Euler totient function <p(n)5 which has 
the arithmetic evaluation 

(18) ®k(n)= £ n(d)(n/dk)=n R (l~p~k). 
<1" i n P I n 

As it is clear from (6) and (18) that <&k(n ) = Jk(n), we obtain, from (17), the 
following identity: 

(19) £ M^)rf f c ( u + 1 )
 c < u , ( n f ; _ n 2 f c > r ) = a2k{u + 1 ) } £*&«) 

Taking nx = • • • = nu = n in (19), we have 

(20) £ V - ^ ^ T Ct\n*k, r) = £(2fc(« + 1)) ̂ # 

As a particular case of (20), taking fc = 1 and M = 1, we have 

(21) A"^wrc(,l'r)""9ôl"V"J 
REMARK 3. We can deduce some results from the Theorem in case 0 > 3 

also. For example, in this case, if a = ku and k<vp(n)<((3- l)fe for some 
prime divisor p of n = ( / t i , . . . , n u )> 1, then the sum of the series in (9) 
becomes zero. 
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