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Abstract In answer to Jarchow’s 1981 text, we recently characterized when Cc(X) is a df -space,
finding along the way attractive analytic characterizations of when the Tychonov space X is pseudo-
compact. Analogues now reveal how exquisitely Warner boundedness lies between these two notions. To
illustrate, X is pseudocompact, X is Warner bounded or Cc(X) is a df -space if and only if for each
sequence (µn)n ⊂ Cc(X)′ there exists a sequence (εn)n ⊂ (0, 1] such that (εnµn)n is weakly bounded, is
strongly bounded or is equicontinuous, respectively. Our characterizations and proofs add to and simplify
Warner’s.

Keywords: Warner bounded; pseudocompact; docile locally convex space (LCS);
compact–open topology

2000 Mathematics subject classification: Primary 46A08; 46A30; 54C35

1. Introduction

Let E be a Hausdorff locally convex space (LCS) over the reals R. One may consult [10]
and [4] for standard terminology and results. By E′

β and E′
σ we denote the strong and

weak duals of E, and Cc(X) is the space C(X) of continuous real-valued functions on
the Tychonov (completely regular Hausdorff) space X endowed with the compact–open
topology. To denote the subspace of bounded functions in C(X), we write Cb(X), and
Cb

u (X) indicates Cb(X) endowed with the uniform Banach topology having unit ball
[X, 1] = {f ∈ C(X) : |f(x)| � 1 for all x ∈ X}. The Tychonov space X is pseudocompact
if C(X) = Cb(X), i.e. if [X, 1] is absorbing in C(X), and hence a barrel in Cc(X).

An LCS E is docile [6–9] if every infinite-dimensional subspace of E contains an
infinite-dimensional bounded set. This is weaker than the Fréchet–Urysohn property [6,
Theorem 4.1], itself weaker than metrizability. Recall that E is Fréchet–Urysohn if for
every subset A of E, each x in the closure of A is the limit of a sequence from A. Trivially,
E is docile if each sequence (un)n ⊂ E is boundable, i.e. admits (εn)n ⊂ (0, 1] such that
(εnun)n is bounded in E. We prove the converse for E = Cc(X)′

σ; for arbitrary E we do
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not know the answer. In [8] and [9] we showed that the bounding cardinal b (see [12]) is
the largest cardinal such that the product space R

κ is docile when κ < b, and gave proof
for the following.

Theorem 1.1. The following assertions about a Tychonov space X are equivalent.

(a) X is pseudocompact.

(b) Cc(X)′
σ is docile.

(c) Cc(X) does not contain (a copy of) R
N.

(d) Cc(X) does not contain a dense barrelled subspace of R
N.

Thus, (a) ⇒ each (µn)n ⊂ Cc(X)′
σ is boundable (take εn = (‖µn‖+1)−1) ⇒ (b) ⇒ (a).

This proves equivalence of docility and boundability in Cc(X)′
σ and justifies the abstract’s

characterization of pseudocompactness.
Parts (b)–(d) suggest stronger analogues:

(b′) Cc(X)′
β is docile (docility is preserved by continuous linear images);

(c′) Cc(X)′
β does not contain ϕ, the strong dual of R

N (ϕ is a useful ℵ0-dimensional
space with its strongest locally convex topology (cf. [5–7,10,11]));

(d′) Cc(X) does not contain a dense subspace of R
N.

We shall see that each of (b′)–(d′) is equivalent to Warner boundedness of X, and if
Cc(X) is replaced by an arbitrary LCS E, we have (b′) ⇒ (c′) ⇒ (d′). Examples in
the last section show that, in the larger LCS universe, neither arrow reverses and (d′) is
generally much weaker than (b′).

In [8] we proved that Cc(X) is a df -space if and only if Cc(X)′
β is

(e) a Banach space, or

(f) a Fréchet space, or

(g) docile and locally complete, or

(h) has the equicontinuity property of the abstract.

Weaker analogues come to mind. Roughly half of Theorem 11 in [14] may be interpreted
as saying that X is Warner bounded if and only if Cc(X)′

β is

(e′) normable, or

(f′) metrizable;

(g) is another motivation for (b′); and (h) compels us to consider boundability as in the
abstract.
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2. Analytic characterizations

Buchwalter [1] (see also [13]) calls a Tychonov space X Warner bounded if for every
disjoint sequence (Un)n of non-empty open sets in X there exists a compact K ⊂ X

such that Un ∩ K �= ∅ for infinitely many n ∈ N. Please note: if ‘disjoint’ is omitted,
the concept remains the same due to regularity of X (cf. the theorem on p. 5 of [2]).
Two observations light an amazingly direct path to analytic characterizations of Warner
boundedness.

Lemma 2.1.

(a) An LCS E contains a dense subspace of R
N if and only if there is a sequence of

non-zero wn ∈ E such that every continuous seminorm on E vanishes at wn for
almost all n.

(b) If E contains a dense subspace of R
N, then E′

β contains ϕ.

Proof. (a) Given (wn)n as above, one routinely finds a biorthogonal sequence
(vn, un)n ⊂ F × F ′, where (vn)n is a subsequence of (wn)n spanning a subspace F

of E. By hypothesis on (wn)n and the Hahn–Banach Theorem, F ′ is spanned by the un.
Clearly, F is isomorphic to the span G of the canonical unit vectors in R

N.
Conversely, for a dense subspace G of the metrizable R

N, there exists a sequence
(pn)n of continuous seminorms on G such that each continuous seminorm on G is
majorized by some pn. Since G is infinite dimensional and has its weak topology, each
Gn =

⋂
i�n p−1

i (0) is a finite-codimensional, hence infinite-dimensional, subspace of G,
and we may choose wn ∈ Gn\{0} to produce the required sequence.

(b) Since the strong dual of R
N is ϕ, this is a straightforward application of the Hahn–

Banach Theorem, the bipolar theorem and Grothendieck’s result which says that every
bounded set in the completion F̂ of a separable metrizable LCS F is contained in the
closure in F̂ of a bounded set in F . �

Theorem 2.2. The Tychonov space X is Warner bounded if and only if Cc(X) does
not contain a dense subspace of R

N.

Proof. If (fn)n is a sequence of non-zero members of C(X) almost all of which vanish
on any compact subset of X, then there exist non-empty open sets Un in X such that
fn is non-zero at each point of Un, and thus each compact set in X misses Un for almost
all n, i.e. X is not Warner bounded.

Conversely, if (Un)n is a sequence of non-empty open sets almost all of which miss
each compact set in X, then there exists a sequence (fn)n of non-zero members of C(X)
such that each fn vanishes off Un, and thus each continuous seminorm on Cc(X) is zero
at almost all the fn. �

The result seems strikingly natural, translating word for word between analysis and
topology via Lemma 2.1 (a). Yet Theorem 2.2 was overlooked for 45 years in the absence
of Theorem 1.1. Now, with the added aid of Lemma 2.1 (b), half of Warner’s fundamental
Theorem 11 [14] quickly follows.
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Theorem 2.3 (Warner). The following assertions are equivalent.

(1) X is Warner bounded.

(2) [X, 1] is bornivorous (absorbs bounded sets) in Cc(X).

(3) Cc(X) has a fundamental sequence of bounded sets (FSBS).

Proof. (1) ⇒ (2). Let B be a bounded set in Cc(X); equivalently, B is uniformly
bounded on any compact subset of X. If B is not absorbed by [X, 1], then for each n

there is some fn ∈ B and xn ∈ X such that |fn(xn)| > n. Continuity provides an open
neighbourhood Un of xn such that |fn(x)| > n for all x ∈ Un. By Warner boundedness,
there is a compact K ⊂ X with K ∩ Un �= ∅ infinitely often, contradicting the fact that
{fn : n ∈ N} ⊂ B must be uniformly bounded on K.

(2) ⇒ (3). Since [X, 1] is a bounded bornivore, (n[X, 1])n is an FSBS for Cc(X).

(3) ⇒ (1). By (3), Cc(X)′
β is metrizable, and no metrizable space contains the non-

docile ϕ. Thus (1) holds by Lemma 2.1 (b) and Theorem 2.2. �

Warner’s remaining two characterizations and the conveniently added part (6) also
follow quickly.

Theorem 2.4 (Warner). The previous three conditions are equivalent to the follow-
ing three.

(4) Every Cauchy sequence in Cc(X) is a Cauchy sequence in Cb
u (X).

(5) X is pseudocompact and Cc(X) is sequentially complete.

(6) X is pseudocompact and Cc(X) is locally complete.

Proof. (1) ⇒ (4). Since (1) ⇒ (2), X is pseudocompact, so that C(X) = Cb(X). It
suffices to show that any null sequence (fn)n in Cc(X) is also null in the dominating
Banach space Cu(X). But if (fn)n is not null in Cu(X), then there exist a subsequence
(gn)n, an ε > 0 and, by continuity, a sequence (Un)n of non-empty open sets such that
|gn(x)| > ε for all x ∈ Un. Since (gn)n converges to 0 uniformly on compact sets, compact
sets miss Un for almost all n, contradicting (1).

(4) ⇒ (5). The dominating Cu(X) is complete.

(5) ⇒ (6). In general, sequentially complete implies locally complete.

(6) ⇒ (2). Barrels are bornivorous in locally complete spaces [10, 5.1.10]. �

Since (a) ⇔ (b), we may replace the first part of (5) and (6) with ‘Cc(X)′
σ is docile’.

If we then replace Cc(X) with an arbitrary LCS E, statements (5) and (6) still make
sense, but become non-equivalent.

Example 2.5. There is a locally complete LCS E with E′
σ docile such that E is

not sequentially complete. Indeed, E = (c0, σ(c0, �
1)) is locally but not sequentially

complete [10, 5.1.12], and E′
σ is docile, being dominated by a Banach space.
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Corollary 2.6. The following assertions are equivalent.

(1) X is Warner bounded.

(2) Cc(X)′
β is normable.

(3) Cc(X)′
β is metrizable.

(4) Cc(X)′
β is Fréchet–Urysohn.

(5) Cc(X)′
β is docile.

(6) Cc(X)′
β does not contain ϕ.

(7) Cc(X) does not contain a dense subspace of R
N.

As noted already, (2) and (3) interpret Theorem 2.3 and are due to Warner. Note also
that (i) ⇒ (i + 1) for i = 2, 3, 4, 5, 6, even when Cc(X) is replaced with an arbitrary
LCS E. For E arbitrary, however, the ensuing Examples 3.1–3.4 show that (j) � (j − 1)
for j = 7, 6, 5, 4, 3, making our conditions (7)–(4) decidedly weaker than Warner’s condi-
tions (3) and (2).

Since strong dual boundability fits between (2) and (5), the corollary confirms the
abstract’s characterization of Warner boundedness. We now enjoy several new analytical
perspectives on the well-known fact that

X is pseudocompact ⇐ X is Warner bounded ⇐ Cc(X) is a df -space.

Examples 3.5 and 3.6 deny the converses.

3. Examples

Example 3.1. Let E be the topological direct sum of d or more copies of an infinite-
dimensional normed space, where d is the dominating cardinal. Then E has a continuous
norm and therefore does not contain a dense subspace of R

N, yet E′
β is the product

of d or more copies of an infinite-dimensional Banach space and therefore contains ϕ

by [12, Theorem 2] (see also [11, Theorem 1.4]).

Example 3.2. Let E be a space with its strongest locally convex topology and with
dimension κ at least as large as the bounding cardinal b. Then E′

β is the product space
R

κ, which cannot contain ϕ since R
κ has its weak topology, yet is not docile since κ � b

(see the example at the end of [9]).

Example 3.3. Let κ be an uncountable cardinal and let R
[κ] be, without topology,

the vector space consisting of those members of R
κ which have only finitely many non-

zero coordinates, and identify R
κ with the algebraic dual of R

[κ] in the usual way. The
subspace R

κ
0 consisting of those members of R

κ which have at most countably many non-
zero coordinates is sufficiently large to separate points of R

[κ]. Let E1 and E2 be R
[κ]

endowed with locally convex topologies that yield E′
1 = R

κ
0 and E′

2 = the span of R
κ
0
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and x, where x is a fixed member of R
κ\R

κ
0 . It is clear that only finite-dimensional

subsets of E1 and E2 can be bounded, and thus the topology for their strong duals is that
induced by the product topology for R

κ; it is well known that this topology, in the first
case, is Fréchet–Urysohn but not metrizable (see, for example, [5, § 2]), and in the second
case is not Fréchet–Urysohn but is docile, since every infinite-dimensional subspace of
(E2)′

β meets (E1)′
β in an infinite-dimensional subspace that is Fréchet–Urysohn and hence

docile [6, Theorem 4.1].

Example 3.4. The strong dual of ϕ is the metrizable, non-normable R
N.

Example 3.5. Haydon’s example [3] of an infinite pseudocompact space Y in which
every compact set is finite distinguishes between pseudocompact and Warner-bounded
spaces. For such Y the space Cc(Y ) contains dense subspaces of R

N but no dense barrelled
subspaces of R

N (Theorems 1.1 and 2.2).

Example 3.6. Let X = [0, ω1]×[0, ω]\{(ω1, ω)} be the Tychonov plank, and let (Un)n

be a sequence of non-empty open sets in X. Each Un contains some (αn, βn) ∈ [0, ω1) ×
[0, ω] by density of the latter set in X. Thus the compact set K = [0, α] × [0, ω] ⊂ X

meets each Un, where α = supn αn, and it follows that X is Warner bounded.
With xn = (ω1, n), it is clear that the sequence (xn)n has no accumulation points in

X. In particular, the sequence is not relatively compact, and therefore Cc(X) is not a
df -space by part (8) of the main theorem of [8]. One could also argue that the sequence
(µn)n of evaluation functionals corresponding to (xn)n fails the equicontinuity condition
stated in the abstract.
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