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A functional calculus for

continuous affine operators

J.J. Koliha

In the Appendix to a recent paper by J.J. Koliha and A.P. Leung
(Math. Ann. 216 (1975), 273-284)}, a functional caIculus for
continuous affine operators was constructed on the basis of the
Taylor-Dunford calculus. This calculus applied only to functions
defined and analytic in an open set containing the spectrum of an
operator and the point A = 1 . In the present paper I examine
the affine resolvent, and develop independently a more general
calculus applicable to functions which are analytic in any open

neighbourhood of the spectrum of an affine operator.

Let X Dbe a complex Banach space. An operator A4 : X + X is affine

if Afax+(1-a)y) = odx + (1-a)dy for all =z, y € X and all complex « .
The trace of A is the linear operator A# on X defined by

A#x =Ax -A0, x €X.

PROPOSITION 1. Let A, B be affine operators on X , and let X, U
be complex numbers. Then:

(1) A 1is continuous 1ff A# 18 continuous;

(ii) Ouns)? = + wst e = 4B

(ii1) if A ie bijective, then the inverse A™> is affine, and
-l)# #) -1,

(4 = (4 ;
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(iv) A is bijective iff A" is bijective;
(v) if A 1is continuwous and bijective, its inverse A_l 18
continuous.
The proof is omitted.

PROPOSITION 2. The set A(X) of all continuous affine operators on

X 1is a Banach space under the norm

lall = Jaof + lla"]

The norm topology of A(X) coincides with the topology of wniform

convergence on bounded subsets of X .
The proof is omitted.

We note that A(X) is a near algebra with the unit I , satisfying

the laws
(A+B)C = AC + BC , (cd)B = a(4B) .
Furthermore,

¢(4+B)x

(CA+CB)z - €O ,

A(oB)x = a(dB)z + (1-0)A40 .

For any operator A € A(X) , we define the resolvent set p(A) of A
as the set of all complex A such that the operator AI - 4 is bijective;
the spectrwn o(4) is the complement of p(4) in the complex plane.

[‘I’his definition differs from the one given in [3], where the point A =1

was adjoined to o(4) when A was non—linear.) In view of Proposition 1,

o(a) = p(ah , ola) = o) .

It follows from [2, pp. 123-125] that the resolvent set is open, and that
the spectrum is non-empty and compact. The spectral radius r(4) of
A € A(X) is the number n(4) = sup{|A] : X € o(4)} .

For A4 € A(X) , the function R(X; 4) = (U—A)_l defined for

A € p(4) is the resolvent of A. We note that R(A; 4) = R(A; A#]

THEOREM 1. For any 4 € A(X) the function A+ R(X; A) on p(4)
to A(X) 1is analytic in the norm topology of A(X) .
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Proof. TFirst we show that

(1) RO M)z = R(A; 4%) (x+a0) , A € p(a) .
Indeed, applying Al - 4 to the vector on the right in (1), we get

(z-a")r(r; 4®)(z+40) + (A\1-4)0 =  , and (1) follows.

-1
Choose AO € p(4) . For all X in the disc IA—A0| < ”R(XO; A#]”

© #} n+l

the series ) ()\0—)\) 5
n=0 ’

[AO; A converges to R(A; A#) in norm by

Theorem 4.7.1 in [Z, p. 123]. Consequently,

«© n ¥ n+l

(2) R(A; A)x = 3 (AO-A) R[AO; A ] (x+40)
n=0

uniformly on bounded subsets of X . QO

Let X be a compact subset of an open set  in the complex plane.
A cycle Yy [1, p. 1381 is a Cauchy cycle with respect to the pair (§, k)

if Y has a representation as a sum of rectifiable loops in Q\X¥ , and if

the index n(y, A) (2ﬂi)_l f (E-A)_ldg equals 0 for all A € C\@ ,

Y
and 1 for all A € XK . The existence of such cycle is demonstrated as

follows. Let € > 0 be such that |p-A| =z ¢ if u € C\Q and X € X .
Cover the complex plane with a mesh of squares, each of diameter less than

€ , and let BSl, cees 8Sn be the positively oriented boundary loops of

those closed squares Sl’ e

Yy = BSl + ...+ SSn is a desired cycle.

. Sn that meet X . Then

With each operator A € A(X) we associate the class F(4) of complex
valued functions §f defined and analytic in an open neighbourhood A(f)
of the spectrum o(4) . For f € F(4) , the germ [f] is the set of all
g € F(4) such that g(A) = f(X) for all X in some open neighbourhood of
o(4) .

Let f € F(4) for some A € A(X) . We put R(f) = A(HNM1} irf
A =1 is in the resolvent set of A4 , and 2f) = A(f) otherwise. We
define f} as the unique function analytic in Q(f) satisfying
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FO) =T ADF00 A e

where T =1 equals f(1) if 1 € g(4) , and 0 if 1 € p(4) .

r.A
Finally, define f; on Q(f) by
f* = f# - f .
If A € A(X) and f € F(4) , we define f(4)x for each x € X by
the formula
(3) Fla)x = ﬁf FOORA; A)zdr + 2lT¢J F(MR(A; A)odr
Y Y

where Yy is any Cauchy cycle with respect to the pair (Q(f), U(A)) .

THEOREM 2. For any A € A(X) and any f € F(2) , Ff(4) is a
continuous affine operator on X dependent only on the germ [f1] .
Proof. The map «x +* R(A; A)x is affine, and the correspondence
h— fy % is linear; so f(4) 1is affine. Let Y = O+ ...+ 0, be a
representation of Y by loops in Q(f) , and let
n

1 #
M= 3= ) Hz{x; A"} v(o.,
= jgl )\ESI;I;.[ L PN HIR(As 4")117 (o)

Noting that R(A; A)az:l - R(X; A):x:2 = R()\; A#) (xl—xQ] for all T, €xX,

2
we deduce that ||f(.4):cl—f(A)x2H = Mll:x:l-x2|| , which proves the (Lipschitz)
continuity of f(4) .

Let fl, f2 be members of F(A4) belonging to the germ [f] . Let
Y be a Cauchy cycle with respect to (Q(fk) s O(A)) , k=1,2 . By

assumption, there is an open neighbourhood £ of 0(4) such that
fl(k) = fa()\) for all A € 2 . Choose a Cauchy cycle Y with respect to

(@, o(4)) . For k € {1, 2} , Yy is also a Cauchy cycle with respect to
(Q(fk), o(4)) , and n(y-yk, A) =0 if A kQ(f‘k) \o(4) . Hence Y -7,

is a cycle homologous to zero in Q(fk) \c(A) . The homology form of

Cauchy's Theorem [/, p. 145] implies that [ hk = f hk for any analytic
Yk Y
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function hk on Q(fk)\o(A) to X . If, in addition, h, and h, are

equal on £ , then
[ e me] n-
Yy Y Yo

The conclusion now follows as A +—> R(A; A)x is analytic in p(4) for

each fixed x € X by Theorem 1. (]
If A is linear, the second integral in (3) vanishes, and we have

Fla)z = L[ FOOR(; A)adh
Y

2mi

in agreement with the Taylor-Dunford calculus.

THEOREM 3. For any 4 € A(X) and any [ € F(4) ,
(1) fz = flahe + £, (a"a0 ,
where
rlaty = s, r,aMa0 = aro

Proof. Let 7Y be a Cauchy cycle with respeect to the pair
(Q(f), G(A)) . The defining formula (3) implies that f(4)x - f(4)0 is
equal to the integral

gi—ifY FOA) (B(A; 4)2-R(A; A)0)dA

which is seen to be fﬁ4#)x . Again by (3),

(5) 70 = 225 [ 1, 00m0; Ao .
‘ Y
Since R(A; 4)0 = R(}; A#)Ao by (1), we get f(4)0 = f#(A#)Ao . ]

A formula closely related to (4) was used in [3] to define the
functional calculus for an affine operator 4 , admitting only functions f

analytic in an open neighbourhood A(f) of the set OCA#) u {1} . For any
such f define 1 on A(f) by £ = (AD)L(F-F(1)) ir A#1,

and f#(l) = f'(1) . The calculus presented in [3] is defined by the
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formula
(1) Fayz = f@h)z + 7 (a0 |

where f(A#) and f#(A#) are interpreted in the sense of the Taylor-
Dunford calculus. To prove the consistency of (4) and (4)', we show that
for any member f of F(4) whose domain A(f) contains the point A =1
we have f(4)0 = F(4)0 ; +that is,

. S |
(5) s = 5k [ om0 moar

where O is any Cauchy cycle with respect to (A(f), O(A))

If 1 € g(4) , then f'# = f# . Suppose that 1 € p{(4) , and recall

that Q(Ff) = A(F)\{1} . Choose a Cauchy cycle Y with respect to
(Q(A), O(A)) > and a Cauchy cycle 0 with respect to (A(f), O(A)) . We
note that Y is also a Cauchy cycle with respect to (A(f), o(4)] , so
that the difference

1 .1
Py fo f#(A)R(X; A)0odA - ye JY f#()\)R()\; A)0dAr

is equal to

1 -1

m[ (1) (=110 ; 4)odr .
Y

The last integral vanishes since the integrand is analytic in Q(f) , and

the cycle Y homologous to zero in Q(f) . This result combined with (5)

establishes (5)°'.

The foregoing argument illuminates our convention that the point

X =1 be deleted from A(f) when 1 € p(4) .

To test the formula (3) as a basis for a functional calculus, we prove

that for each « € X ,

k

ke if fk(x)=x , k=0,1, ... .

fk(A)x =4

According to the formula (4), this is equivalent to

#):c = 4™z ana f(a)o = 470 .

(6) fr (4
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The first equation in (6) follows from the well known power series

expansion for the linear resolvent R(X; A#) (Theorem 4.7.2 in [Z,

p. 1243). 1In view of (5)', the second equation in (6) is equivalent to

1 k-1 . %
%J [Z )\JJR()\; A)odxr = 4%0 ,
g ‘j=0

where O 1is any Cauchy cycle with respect to (C, O(A)) , and where

Z = 0 . Proceeding by induction, we obtain

i

koo
LJ [ z AJ]R(A; 4)0dn = 4% + ;?f A}z (x; a™)a0ar
ag g

AkO + A#kAO

= A

THEOREM 4, ret 4 € A(Xx) , let f, g € F(4) , and let o, B be
complex numbers. Then:

(1) aof + Bg € F(4) , and (aftBg)(4) = of(4) + Bgl4) ;
(i1) fog € F(4) , and
fladgla)z = (feg)la)z + (1-1)f(4)0 ,
vhere T = g4 equals g(1) if 1 € o(4) , and O <if
1 € p(a) ;

(ii1) if f has the power series expansion f(A) = Y a X

valid in an open neighbourhood of o(4) , then

fla) = T oa*
k=0

in the norm of A(X) ;

(tv) o(f(a)) = flo(a))

Proof. (i) This follows from the defining formula (3) and the
identity (of+Bg), = of, + Bg, -

(iZ) If A is linear, we apply the argument given in (5.2.7) [2Z,
p. 1691 with T and T' chosen as follows: let R = Q(f) n Q(g) , and

let D be a bounded open neighbourhocod of o(4) whose closure D is
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contained in 2 . Then select [ as a Cauchy cycle with respect to
(D, o(4)) , and T' as a Cauchy cycle with respect to (9, D) . We
conclude that

f(A)g(4) = (f+g)(4) .

Let A be affine. In view of Theorem 3 and the preceding result for

linear operators, (7) will be established when we show that
(8) f(4)g(4)o = (feg)(4)o + (1-1)f(4)0 .

Applying (4), the preceding result for linear operators, and part (Z) of

the present theorem, we reduce (8) to
(£g,47,) (4110 = (790 1-0F,) (4Pao
this equation holds as (f"g)# = f°g# + 'I.'f# .

(1i221) Using the first equation in (6) and the limit passage under the

integral sign, we obtain the series expansion

(=2

= Z OLkA#k (in the operator norm).

(9) fla
k=0

Let 1 € 0(A) . Then f'#=f#,and

f#()\) = § ak[:g: }\j]

uniformly on compact subsets of A(f) by (A9) in [3]. According to the
formula (5) and the second equation in (6), f(4)0 is given by

Ll 1 k-1 . © X
> % i3nT J [ D AJ]R()\; A)odr} = Y akA 0
k=0 Y Yg=0 k=0

Let 1 €p(4) . Then f,(A) = (A-1)"LF(A) for all A € A(A\1} ,

and f(A)0 is equal to

- 1 f -1,k
o, |== (A=1)""A"R(A; A)OdA]
kZ‘O k(em ¥

for any Cauchy cycle Y with respect to (A(f)\{l}, O(A)) . The integral

under the summation sign is equal to
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- J [ki% Aj]R(A- A)Odh + -2;-f (A-l)_lR(X- A)odx
2nL o ? 2ng ? ?
Y g=0 Y

the second integral vanishes, and we have again

(10) fla)o = Y akAko .
k=0

The result follows from (9) and (10).

(iv) Since dﬂM)=oUMﬁ]=oU@ﬁ),wewn@ﬂyﬁewwhﬂ
mappirg theorem for bounded linear operators [Z, p. 1711]. 0

Theorem 4 (7), (27), (2171) extend the correspondingly numbered parts
of Theorem Al in [3] to arbitrary members f, g of F(4) . The best
result on composite functions seems to be Theorem Al (iv) of [3] which

states that

n(f(4)) = (hof)(4)
if f € F(4) is such that f(1) =1 , and if h € F[f(A)) . When we
relinquish the requirement f(1) = 1 , we can only conclude that
h(f(A)) - (hof)(4) 1is a constant operator.

We observe that the operators F(4), g(A) do not commute in general;
however, the commutator [f(4), g(4)] = f(4)g(4) - g(4)}f(A) is a constant

operator, namely
[F(4), g(4)]z = [f(4), gl4)]o , = €X.
We conclude the paper with an application.

EXAMPLE. ILet T ©ve a bounded linear operator on X , and let
Y, 8 € X be given. We show that the differential equation

g%(f)-=fy(t) + ez ,» y(0) =y,

in the real variable ¢ has a unique solution given by

tA
y(t) = e’y ,
where A 1is the affine operator defined by Ax = Tx + z .

Clearly, it is enough to prove that
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é%-etAy = AetAy + (et—l]z .

Put G(t, A) = etA , and define G(t, A) in accordance with (3).

Differentiating under the integral sign, and observing that
9G,/dt = (3G/dt), , we obtain that

d tA

= 3G
Ze =3 (t4)

The result then follows when we find that
%%-(t, Ay = AetAy + (et—l)z

by Theorem 4 (4%) with f(A) =X and g(A) = etk .
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