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UNIQUENESS THEOREMS FOR A SINGULAR
PARTIAL DIFFERENTIAL EQUATION

P. RAMANKUTTY

0. Introduction and summary. A singular partial differential equation
which occurs frequently in mathematical physics is given by
s Ou

Au+9—c;£;+ku=0

where A = Y i, 92/9x,? is the Laplacian operator on R" of which the generic
point is denoted by x = (x1, ..., x,) and s and k are real numbers. The study
of solutions of this equation for the case ¥ = 0 was initiated by A. Weinstein
[58], who named it ‘Generalized Axially Symmetric Potential Theory’.
Numerous references to the literature on this equation can be found in
[1; 3; 6]. The analytic theory of equations of the type mentioned above has
extensively been treated in [2].

In this paper uniqueness theorems for more general second order linear
partial differential equations whose coefficients (of the first order derivatives)
may become unbounded on the co-ordinate hyperplanes are obtained. These
equations are assumed to be ‘quasi-elliptic’ in a sense to be defined.

In § 1 certain notations are explained and the notion of ‘quasi-ellipticity’
of a linear second order partial differential operator L, ,, in R* with unbounded
coefficients is introduced.

In §2 a uniqueness theorem for the boundary-value problem associated
with the equation L, :[#] = f is established; the case of the bounded domain
is proved in full and modifications for the case of the unbounded domain are
indicated. Consideration is restricted to solutions u satisfying an ‘“‘evenness
condition’’ (hypothesis (iv)) and, more crucially, also a restriction (hypothesis
(v)) on the nature of du/dx; near the region of singularity x; = 0. In the case
of the unbounded domain only solutions whose growth-rate at infinity is
constant are considered. The principal tool used in establishing these results
is the ‘Strong maximum Principle’ due to E. Hopf [4].

In § 3 the results of § 2 are extended to the case of the operator L, ,, (im < n)
which has singularities on m of the # co-ordinate hyperplanes.

Acknowledgement. 1 wish to thank Professor Robert P. Gilbert of Indiana
University for his help and guidance in the preparation of this paper.

1. Notations and definitions. 1. For & = (x1,...,%,—1) € R*! and
y € R, (%|xy) will denote the point (x1, ..., %1, Y, X, . . - , X—1) € R”* for
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=2,3,...,n — 2 while (&|;y) will denote the point (y, x1, %2, . . ., x,—1) € R?,
and (%|,y) will denote the point (x1, %2, . . ., %,_1,¥) € R™
2.ForD CR* and k€ {1,2,...,n}

Dyt = {(x1,...,%,) € D:x;> 0},
‘Dk—= {(xlyyxn)Eka<O},
Dy = {(x1,...,%,) € D:x = 0}.

Obviously, Dx® may be identified with {&¥ € R*1: (%[;0) € D} and this will
be done whenever needed.

3. L, will denote the linear second order partial differential operator on
C2(D) defined by

Lunlil = 3 00) 72t + 3 L5 00 2 4 oo

i, j=
where {v:}¥=1 are positive integers and @y, by, ¢ are real-valued functions
defined on D C R” These functions a;, b, @ will be called the coefficients of
L, . It will be assumed that #» = 2 and m < #. For convenience, in the case
m = 1, we will write Dy, D_, D instead of D;*, D=, D:% (y, X) instead of
(%|1y), v instead of v1, L instead of L, ; and a; instead of b,.

Definition. L, ,, is said to be quasi-elliptic in D if and only if

n

(i) X ay(x)A\,is positive definite for each x € D, = N D, and
1,j=1 k=1

n
(i1) a4;(x) N\, is positive definite for each x € Dy, %fork =1,...,m.
1,7=1,1,jk
2. An application of the maximum principle. Before proceeding to
the uniqueness theorems, it is desirable to record here an ‘“‘obvious” result
regarding the usual topology of the #-dimensional Euclidean space R

Lemma 2.1. If D C R"® is such that Dy = {x € D : x1 > 0} is a non-empty
proper subset of R% and if A is a component of D, then dA M D # .

Proof. Set H = {x € R": x; = 0}. Since 0A C dD\J H, if AN oD =@
then dA C H so that dA M R% = @. Hence A is closed and open in R% so
that A = R’ a contradiction to D, C R’%.

=

TuEOREM 2.1. If L is quasi-elliptic in a non-empty open subset D of R", if
the ‘‘coefficients of L'’ are comtinuous in D, and if for each 1 = 2,3,...,n,
a;: Dy — R defined by:

a;(x) = lim _____a,((xl; x))
7150 X1

exists and is continuous and a(Dy) C (—o0, 0], then the boundary-value problem

https://doi.org/10.4153/CJM-1973-014-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1973-014-1

158 P. RAMANKUTTY

(i) Lu] = 014n D,
(ii) u = 0 on 9D,
(iii) » € C*(D) N C(D),
(iv) u(D-) Cu(Dy),
) 4l:i1_>o ;17 %} = 0 everywhere in D,
with either D bounded, or D unbounded and
(vi) limyjz)0 % (x) = 0 has only the trivial solution w = 0 in D.

Proof. First consider the case of a bounded D. Suppose # is a non-trivial
solution. Then there is a point x € D such that u(x) # 0. Since —u is a
solution whenever # is, it can be assumed without loss of generality that
u(x) > 0. Hence # attains a positive maximum K on D. Since # = 0 on 3D it
follows that the non-empty subset @ of D defined by @ = {£ € D : u(¢) = K}
is contained in D. Before continuing we shall prove the following lemma.

LeEMMA (a). The set Q is a subset of D,.

Proof. Suppose @  D,. Then, either @ M\ D, 5~ @ or @M D_ 5 @. Since
u(D_) Cu(Dy),itfollowsthat@ N\ D_# =0 N D, # @. ThusQ ¢ Dy =
QND, #0. Let 2€ @M D, and A be the component of D, containing z;
let £ € AM Q. Since D, is open and hence locally connected, A is an open
subset of R". Therefore, from the continuity of % and the fact that #(¢) =
K > 0, it follows that there exists a closed ball B around ¢ such that B C A
and # > 0 on B. Also, ¢(x) < 0on B and x; > 0on B so that xa(x)u(x) <0
on B. This shows that if the operator M is defined by

ud 9w 2 ow
— _Jw_ ow
Mlw] = x1 ;j::la,,(x) 35,05, +Zla,(x) ax,

then
Mlu]l = —x1"a(x)u(x) = 0 on B.

Since x; > 0 on B, the quasi-ellipticity of L in D implies the ellipticity of
M in B; also the coefficients of M are continuous on B. Further, u attains its
maximum value K on B at the point £ € Int B. Hence, by Hopf’'s strong
maximum principle [4], it follows that % = constant in B. Thus, for each
x € B, u(x) = u(¢) = K. This shows that B C @ and hence that B C AN Q.
Thus, each point £ € A M Q has a closed ball B around it such that B C AN Q.
Hence A M Q is open (in fact, in R"”). But since u# is continuous, AN Q =
AN u1(K) is closed in A. Since A is connected and A M Q # @, it follows
that AN Q = A.
Therefore #(x) = K for each x € A and hence by continuity of «,

(1) u(x) = K for each x € A.
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Since A is a component of Dy, by Lemma 2.1, dA N 4D # @. Hence there
is an x € 9A such that #(x) = 0. This, however, contradicts (1) and proves
Lemma (a).

Let v:Dy— R be defined by 9(&) =u((0,%)). The hypothesis
limg, ,0(1/x,") (du/dx1) = 0 implies that lim,,,00%/dx; = 0 since v = 1.

Hence
(_62”) _lim_l_(a” (a_“) ) _lim_l_iti
%" /1m0 zis0%1 \ 9% 0x1/ z1—0 2150 X1 0X1

. —1 1 ou
= 715111_1)10 x1 o o 0 again because v > 1.

Also for 7 # 1, we have

( 9u ) _ fim 2% —1imi(§’i)
9% 30%1/ z;—0 2150 0% ;0%1 2150 0X; \ 0X1

_ 1( : _@y_) _
T 9x, hr_l)lo 91/ 0.
Therefore, rewriting L[] = 0 at (x1, ¥) where ¥ € D, and taking limits as

x1 — 0, we have
n

(2) 3 au(®) o+ X @) o + (@ = 0,
where a;;(%) = a4;((0, %)) and «(%) = a((O, x)). Clearly, the operator I
defined by

n

_ 62 n 9
Liwl = 3 auy(®) axiz“xj + 3, (@) g +al@w

1, j=

is elliptic in Dy (by the condition (ii) in the definition of quasi-ellipticity of L)
and has continuous coefficients in D,. Also by the continuity of ¢ in D and the
hypothesis a(Dy) C (—,0], we have a(Do) C (—co,0]. Moreover, in
terms of the function v, the Lemma (a) established above shows that
Q = v 1(K).

Now in R"1 let %, € € and 2 be the component of D, containing &; let
£ € 2N v 1(K). Again, 2 is open by the local connectedness of the open set
Dy, £€ 2 and v(§) = K > 0. Therefore, by the continuity of », it follows
that £ has a closed ball N surrounding it such that V. C T and v > 0 on N.
Hence, if the operator M is defined by

M['w]s Xn) (X )Bx ax, +Z

1,j=2
then

Mv] = —a(x)v = 0 on N.

Since M is elliptic with continuous coefficients in NV and v attains its maximum
K on N at the point £ € Int N, it follows again by Hopf [4] that v = constant
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on N. Thus, for each ¥ € N, v(%¥) = v(§) = K. This shows that N C v~ 1(K)
and hence that N C 2 N v~1(K). Thus, =N v~ 1(K) is open in R*! and
hence both closed and open in 2. Also ZNov1(K) # @ because
%o € 2N ovY(K). Hence it follows from the connectedness of I that
2N v 1(K) = Z. Therefore v(%¥) = K for each & € £ and, again, by the
continuity of v,

(3) v(%) = K for each & € 2.

Since dDy C 4D on which # = 0, it follows that = 0 on dD,. But since =
is a component of Dy, 2 C dD,. Hence we have v(%) = 0 for each % € 9Z.
This contradicts (3) since K > 0, and completes the proof of the theorem
in the case of a bounded D.

For the case of an unbounded D, the foregoing reasoning can be modified
as follows.

Let xo € D be such that % (x,) > 0 and for # > 0 define

B,(0) = {x € R": ||x|]| < r}.

Since % (x) — 0 as |[x|| — 00, a positive 7 can be found such that |u (x)| < u(x,)
in D\B,(0). If E = D N B,(0), then x, € E and hence u attains a maximum
K on E such that K = u(x,) > 0. Also, clearly, dE C D \JU 3B,(0) and, by
hypothesis, #z = 0 on dD while, by the choice of 7, |u(x)| < u(x,) for each
x € DM 8B,(0). Hence

4) | (x)] < u(xo) for each x € 9E,
so that . _
@={x€D:ulx) =K} ={x€ E:u(x) =K}
is a non-empty subset of E. We now establish
Lemma (b). The set Q is a subset of E,.

Proof. Suppose @  Eo. Then @ C E => either QN EL # Gor QN E_ # 0.
But from «(D-) C u(D.), we have, a fortiori, u(E_) C u(D,). Therefore,
QNE_#0=QMN D, # 0. However, in D,\E, we have, by the choice of
7, |u@)| <wu(x) = K. Therefore Q@ND, #0=QNE, #@. Thus
QT Ey=QMN E; # @. Let then, 2 € @M E, and A be the component of E,
containing z. Then as in the proof of the Lemma (a) we have

5) u(x) = K for each x € A.

But, again by Lemma 2.1, AN 9E # @ and if £ € AN JE, then by (4),
|#(%)| < u(xo) = K while by (5), #(%) = K. This contradiction proves
Lemma (b).

Now the succeeding arguments in the proof of the case of bounded D may
be repeated with D replaced by E to show that

(6) v(%) = K for each & € Z,
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where % € @ C E, C R*! and 2 is the component of E, C R*! containing
%o. Since 0E, C 9E, and by (4), |u(x)] < u(xo) £ K for each x € dE, we
have [v(%)| < K for each & € dE,. But T a component of Eq= 9= C 9E,.
Hence we have, a fortiori, |v(%)| < K for each ¥ € d=. This, however, con-
tradicts (6) and the proof in the case of unbounded D is complete.

Note 1. It may be observed from the proof of the Theorem that the
hypothesis #(D_) C (D) on u can be replaced by the weaker hypothesis
“‘there exists an & € D, such thatu« (%) = max{u(x):x€ D}". If this be done, then
in the case of bounded D, Lemma (a) is replaced by the weaker assertion
Q M Dy # @. The proof of this assertion may be constructed the same way as
that of Lemma (a) because denial of the assertion implies, by the new hypothe-
sis, that @ M Dy # @. Once the result @ M Dy # @ is proved, it can be inter-
preted in terms of v as ‘‘there exists ¥y € D, such that (%) = K. The rest
of the proof follows without change by taking = to be the component of D,
containing &y, and so on. The case of unbounded D can also be dealt with in
like manner.

Note 2. 1t is obvious that the double hypothesis “D symmetric about the
hyperplane x; =0 and for each (x1,...,%,) €D, u((x1,...,%,)) =
u((—x1, %2, . . ., %,))"" implies the hypothesis u(D_) C u (D).

Note 3. The preceding theorem does not imply uniqueness of the solution to
L[u] = f where f is a given continuous function because the hypothesis (iv)
is non-linear in the sense that if » and v satisfy (iv) it does not follow that
u — v does. For this reason it is desirable to replace (iv) by some linear
hypothesis that implies (iv). One such linear hypothesis is the ‘“‘double
hypothesis’” mentioned in Note 2 above.

3. Extension to several singularities. In this section, the result of
§ 2 is extended to the case m > 1. However, instead of the hypothesis (iv) of
Theorem 2.1, the ““double hypothesis’’ mentioned in Note 2 is used for ease of
formulation.

THEOREM 3.1. If L, ., is quasi-elliptic in o non-empty open subset D of R”

which is symmetric about the hyperplanes x, =0 for k = 1,2, ..., m, and the
“coefficients of L, " are continuous in D, and if for each k € {1,2,...,m}
and for each © ¥~ k, By : Di® — R defined by
. bg((®
Bu(s) = lim 22((F12))
y-0 y

exists and is continuous and a(D.) C (—o0,0], then the boundary-value

problem:
(1) Lymln] = 0in D,
(ii) # = 0 on 4D,
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(iii) « € C2(D) N C(D),

(iv) u((x1,...,%,)) 15 even in each xx, b = 1,2, ..., m,
(v) limyo(1/y7%) (0u ((&[xy))/9xx) = O for each & € D;° for
=1,2,...,m,

with either D bounded, or D unbounded, and
(vi) limyjzp5eu(x) = 0
has only the trivial solution u = 0 in D.

Proof. We use induction on m. For m = 1, the result follows from Theorem
2.1. Let m be an integer =2 and consider the induction hypothesis that the
theorem holds for all L, ,,_1 for p > m — 1. Letu : D — R satisfy (i) through
(v) and define v : D, — R by v(&) = u((&]:0)). Rewriting (i) at (&|1y) where
% € D% and taking limits as y — 0 we have, as in the proof of Theorem 2.1

(1)’ zn—l,m—l[v] =0in Dlo
where
Liimab] = 3 an@ 20 +3° L3 5.0 22 + a(e
nmhme i7=2 ! dx0x; 1wy ki A ’

a;; and «a being real-valued functions defined on D:° by a;(%) = a;;((8:0))
and a(%) = a((x|:0)). Since # = 0 on dD and dD.* C aD, it follows that

(i)’ v = 0 on dD,".
Also, from u € C2(D) N C(D) it follows that
(i)’ v € C2(D) N C(DY).

Again, the statement #u((x1,...,%,;)) is even in x; for k=1,2,...,m
implies that

@iv)’ 9((xg,...,%,)) iseven in x; fork = 2,...,m.

Further, the condition (v) on % implies the corresponding condition (v)’ on
the function v for & = 2,3, ..., m. Moreover, hypothesis (ii) of the quasi-
ellipticity of L, , implies that L, _; ,_ is elliptic in D,° Also the hypothesis
on the coefficients by imply the corresponding hypotheses on (4. Lastly, the
continuity of ¢ and the hypothesis a(Dy) C (—, 0] together show that
a(Dy) C (—o0, 0] which, in turn, implies that a((D;°)y) C (—o0, 0]. From
these hypotheses satisfied by L,_; ,,—1 and from the conditions (i)’ through (v)’
it follows by the induction hypothesis that v = 0, so that # = 0 on D% In
like manner, it follows that # = 0 on D;° for 2 = 1, 2, ..., m. From this and
the fact that # = 0 on 9D we have the result: # = 0 on dD, because 9D, C
oD \U U1 D0
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Now let A be any component of D,. Since dA C dD,, we have
(M) # = 0 on JA.

Since D, is an open subset of R” it follows that A is open and hence a domain.
In this domain L, ,, is elliptic by the condition (i) of quasi-ellipticity of L,
in D and hence the same is true of the operator M defined by

Mw] = [ﬁl x;k] Ly m[w].

But M has continuous coefficients in A. Using again Hopf’s maximum principle
[4] we see that (7) together with the fact that M[u] = 0 in A implies that
# = 0 in A. From the choice of A it follows that # = 0 in D, and hence by
continuity that « = 0 in D,. But then by the hypothesis (iv) on % it follows
that # = 0 in D. This completes the proof in the case of bounded D. The case
of unbounded D is similar.
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