THE SERIES Z‘: f(n)/n FOR PERIODIC f

Arthur E. Livingston

(received August 25, 1964)

1. The Problem Posed. We are here concerned with the

problem of deciding when Z:_i f(n)/n # 0, given that f is
periodic and the series convergent. In particular, we consider
CONJECTURE A. Let p be a positive integer and f

a (real-or complex-~valued) number-theoretic function with
period p. _I_f_ f(n) # 0 for some positive integer n, then

E:—i f(n)/n # 0 whenever the series is convergent.

The problem in this form was posed by S. Chowla in an address
delivered before the Annual Meeting of the American Mathematical
Society in 1949 and appeared subsequently as one of fourteen
unsolved problems in number theory in the published version of
that address [1, p. 300]. He (incorrectly) attributed Conjecture A
to Paul Erdds. (See Section 5 below for Erdds' conjecture.)

A positive resolution of Conjecture A would include several
results in number theory whose known proofs are decidedly non-
trivial. In this connection, Chowla cites the Dirichlet formula

o]
z E/n # 0,
n=1
where (%) is the Legendre '"quadratic character" symbol
(defined to be 0 when p[n), which is a special case of

THEOREM A [2, p.93]. If p is a positive integer and y
a non-principal character modulo p, then
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X

Z x(n)/n ¢ 0,
n=1

the series being convergent.

This Theorem is the crucial step in the known proofs of
Dirichlet's

THEOREM B 2, p.96]. If a and b are positive integers
for which (a,b) =1, then there are infinitely many primes in the
o]

sequence {a+nb}n=1 .

Observe that the requirement of convergence for the series
in Conjecture A is equivalent to the condition zp—i f(n) =0. 1Itis
n=

then clear that when p =2, the only functions under consideration

+1
are multiples of (~i)n . In this case, Conjecture A is obviously

true, the series in question being a multiple of fn 2. We
formalize this as

THEOREM 1.4. Conjecture A is true when p =2.

One of the purposes of this note is to show that Theorem
1.1 is all that can be said. Indeed, we show that Conjecture A
is false for every p> 2 {(Corollary 2.1). Admittedly the
counter-examples we exhibit do not have all the structure of
characters modulo p, though in certain cases they are multi-
plicative. They do suggest, however, that Theorem A is suffi-
ciently deep that an argument of the complexity of Dirichlet's
cannot be avoided.

Since Conjecture A is generally false, is it possible that
it will become true under sufficiently mild further restrictions
on f? For example, can we get by with the additional assump-

tion that f(p-n) = -f(n), which is the case for £f(n) = (%) when
P is a prime of the form 4k+3 [3, p.38]? In particular,
Chowla has (informally) posed [1, p. 300]

CONJECTURE B. lLet p be a positive integer and f
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a (real- or complex-valued) number-theoretic function with
period p. If f(p-n) =- f(n) (n=1,2,...,p-1) and {(n) #0

o0
for some positive integer n, then zn-‘l f(n)/n # 0 whenever

the series is convergent.

In the case when p =2, it is evident that the only number-
theoretic function for which f(n+2) =f{n) and £(2-n) =- f(n) is
the zero function; hence Conjecture B is (vacuously) true when
p=2. For p=3 and p=4, itis easily seen that the only
functions under consideration in Conjecture B are multiples of
f(n) = sin(2nw/3) and £(n) = sin(nw/2), respectively. The Con-
jecture is then obviously true for these cases; formally,

THEOREM 1.2. Conjecture B is true for p<4.

Chowla claims to have proved the truth of Conjecture B
under the additional assumption that p and (p-1)/2 are primes.
"Professor Siegel, to whom I showed my proof, proved the result"
in the form of Conjecture B[1, p.300]. Apparently they implicitly
imposed further restrictions on f, for we show that, as a matter
of fact, Conjecture B is false for p> 3 (Corollary 2. 2).

The number-theoretic functions of most interest are
multiplicative. In view of the results already mentioned, we are
naturally led to

CONJECTURE C. Let p be a positive integer and f
a (real- or complex-valued) multiplicative number-theoretic
function of period p. If f(n) # 0 for some positive integer n,

then “z::f_i f(n)/n # 0 whenever the series is convergent.

But even this conjecture, though true for prime periods p
(Theorem 3.1), is almost always false (Corollary 3.2).

Having come this far, we might just as well combine the
assumptions of Conjectures B and C and set forth

CONJECTURE D. Let p be a positive integer and f a
{real- or complex-valued) multiplicative number-theoretic
function of period p, for which f(p-n)=- f(n) (n=1,2,...,p-1).
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If f(n)# 0 for some n, then Z:

-

1 f(n)/n # 0 whenever the

series is convergent.

Again, this Conjecture suffers the same fate as the earlier ones:
It is sometimes true, sometimes false {Theorems 4.1 and 4. 2).

REMARK. It is perfectly clear that Theorems 1.4 and

[*<]
1.2 are equally valid for series zn__i anf(n) if the sequence

0
is sufficientl ble; £ le, if
{an}1 is iciently manageable; for example a <2

(n=1,2,3,...) and lim a =0. We see no point in formalizing
n—+x n

these results.

2. Conjectures A and B. A number-theoretic function
is nothing more nor less than a (real- or complex-valued)
sequence. Consequently, with the exception of Corollaries 2.1
and 2.2, we formulate our statements in terms of sequences.

We need the more or less obvicus

LEMMA 2.1. Let {an}oz and {bn}r be (real- or

complex-valued) sequences and p a positive integer greater
than 4. I Iim a =0,
— © o — n —>00

[+ ]
a = = {a - } (r=14,2,...,p-1)

a
0 np+r nptr+i

is convergent, b =b (n=1,2,3,...), and Zp b =0,
n+p n —_—

k=t 'k
then
%) p-i
=z ab = o B
n=1 nn k=1 k k
where B "Ek b
— Tk A

> o]
Proof. It is clear that the periodicity of {bn} X and the
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condition Zi:i bk=0 imply that Bmp+k=Bk for k=1,2,...,p
and m=0,1,2,.... Writing Aa.=a_ - a, ,, we therefore
i it
obtain
mp+r p-1 m-1 r
Z Baa = T B z Aa, + £ B, Aa,
n=1 ® P k=g Njmo IPPT oy ko Ptk

by expressing the sum on the left as a sum over intervals of
"length'" p plus a residual, making the obvious change of

®
summing index, and using the periodicity of {Bn}i and the

fact that Bp = 0. Summing by parts, we then find that

mp+r mp+r
> ab =a B + = B Aa
n n

n=q B0 mpt+r+i mptr n=1

mp+r+i " r k=1 kJ 0 jptk k=1 k7 jptk
P p-1

- X o B = T a B

k=1 k 'k k=1 k 'k

as m - (41 <r<p), since a , and hence Aa , tend to zero
- - n n

as n =+ @,

be a (real- or complex-

]
THEOREM 2.1. Let {an} 1

valued) sequence and p a positive integer greater than 2.
If Iim’ a =0 and

(a -

nptr anp+r+1) (r=1,2,...,p-1)

R
"
™8

n=0

is convergent, then there is a non-zero (real- or complex-

(>
valued) sequence {bn} 4 for which bn+p = bn (n=1,2,3,...),
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P ©

b =0 and T ab =0.
zn=1 n — n={ nn

Proof. Take any vector (Bi’BZ' cen 'Bp-i) #(0,0,...,0)
which is perpendicular to (ai.az,. .. ,ap 1) in (p-1)-space.

(There are at least p-2 linearly independent such vectors.)

Next, define {bn}O: in the obvious way: b1 = Bi’ bp = -Bp-i ,

P = By By k=2:3p-),

and

b = b (n=1,2,3,...).

(In the complex case, En is used in place of Bn in prescribing
bn.) It is immediately evident that b #0 for at least one n.
n

Now appeal to Lemma 2. 1.

COROLLARY 2.4. Conjecture A is false for p >2:
Given a positive integer p greater than 2, there is a non-

trivial number-theoretic function f with period p for which

: =0
an (r)/n=0.

Proof. Take a = 1/n in Theorem 2.1, and set f(n) =bn

LEMMA 2.2. I p is a positive integer greater than 1
and bi’bz' N ,bp are {(real or complex) numbers for which

zidbkw, then

if and only if bP =0 and

Be *Bpp (kK=h2,....p2)
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k
where Bk = En=1 bn , in which case bp/Z =0 if p is even.

Proof. For the "only if", we have

P p-1
0 = Bp = Bk+n:1‘:‘.H bk = Bk+bp- n:fH bp_n
p-k-1
= Bk+bp- rfzibm = Bk+bp- Bp_k_1
and, hence,
B.+b =B (k=1,2,...,p-2).

k P p-k-1
For p =2qg+1, it follows that Bq+ bp = Bq and, hence, that
bp=0. If p=2q, we find that

B +b =B and B +b =B ’

whence B - B =0 and, then, b =0.
q q-1 P

For the converse,

P ® B Bt T Bot Bpk T Phk

for k=2,3,...,p-2, while

by =B =B , =B _,-b ,=-b_,

(B =0 since b =B =01!).
p-1 P P

THEOREM 2.2. Let p be a positive integer greater

[ o]
than 4 and {an} a real-valued sequence for which

1

Iim a =0 and
n
n-> ©
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[+ o]
= b -
%k ‘:0 (anp+k anp+k+1)

n

is convergent (k=1,2,...,p-1). Then there is a non-zero

oo}
(real- or complex-valued) sequence {bn} . for which b N =b
-_— n

n
P
=1,2,3,...), b =-b (k=1,2,...,p-1),5° b =0,
(n ) -k - p-1) =t B
is” ab =0
an anann- .

Proof. In view of the assumptions on {bn}O:, Lemmas

. t = = » 3 e ey P ’
2.4 and 2.2 tell us thaoo Bk P-k-iz (k=1,2 p-2)
b =B =0, d b = 3x"%2 B , wh

p_ Tp-1 ane T % n T T %ok Where
k .
Bk -Ejrl bj . If p is even, then
p-2 (p-2)/2 (p-2)/2
= akBk N = ap-n—i Bp-n-i - z ap-n-i n’

k=p/2 n=1

while, for p odd,

p-2 (p-3)/2
= a B = = a
k=(p+1)/2 k' k n=1 p-n-1 n
Consequently,
p-1
" =]
Z ab = T 8B
n=1 nn k=1 k k
with ﬁk=ak+ ap-k-i for k=1,2,..., [(p-3)/2] and
“lp-1/2) " “prrys2]t B EVER
Plp-1)/2] ~
, dd
“ltp-1)/2] Pe
4.0
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The construction of a sequence {bn}j satisfying the

requirements of the Theorem proceeds somewhat as in Theorem

2.1. Letting q =[(p-1)/2], choose any vector (Bi’BZ’ e ,Bq)

# (0,0,...,0) which is perpendicular to (51"32""'%) in

(real or complex) q-space. (There are at least q-1 linearly

independent such vectors.) Then define B ,B ye-.,B
q+i  q+2 p-2
by means of the formula Bk =Bp-k-i' set Bp—i = Bp =0, and
prescribe bi'bz’b3" .. in the obvious way (using B instead
n

of Bn for the complex case). It is apparent that not all the
bn' s are zero. Finally, Lemma 2.2 guarantees that

bp-k=-bk (k=1,2,...,p-1) .

COROLLARY 2.2. Conjecture B is false for p> 4 :
Given a positive integer p> 4, there is a non-trivial number-
theoretic function f with period p for which f(p-n) =- f(n)

[*o]
(n=1,2,...,p-1) and zn=1 f(n)/n=0.

Proof. Take an =1/n in Theorem 2.2 and set £(n) =bn

3. The Multiplicative Case. This section is devoted to
the discussion of Conjecture C. The number-theoretic functions
of interest are accordingly multiplicative: If a and b are
positive integers for which (a,b) =1, then f£(ab) =1£(a) f(b).

LEMMA 3.1. Let p be a positive integer and f a_
(real- or complex-valued) multiplicative number-theoretic
function with period p. Then

(i) f(ab) =£(a) f(b) whenever (a,p)=1 or (b,p)=1.
(ii) _I_f f(p) # 0, then f(a) =1 whenever (a,p)=1.

Proof. Suppose that a and b are positive integers
with (a,p) =1 . For a quick proof of the first assertion,

o
Theorem B tells us that {a + np}n_1 contains arbitrarily large

primes and, hence, that (a + np,b) =1 for some positive
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integer n. Since f has period p,
f(ab) = f{(a+np)b} = f(a+np) f(b) = f(a) (b} ,
which is what we wished to prove.

Leo Moser points out that the very deep Theorem B can
be avoided in the verification of this first assertion, and we
reproduce (essentially) his very simple argument here.

Let £ denote a prime divisor of b. If B|p and
B|(a+np) , then B|(a,p). Since (a,p)=1, it follows that
(a+np,PB) =1 for each common prime divisor of b and p and
each positive integer n . For the remaining prime divisors
of b (if there are any), define w by pwr=1 (mod II B).

Btp
By the Chinese Remainder Theorem, there is a positive integer
n such that n = w(1-a)(mod B), ﬁfp . It follows that
a+pnz1i(modp) or (a+pn,B) =1 for each such g . But then
(a+np,b) =1 for this n .

The second assertion of Lemma 3. 1 follows easily from
the first and the periodicity of f.

THEOREM 3.1. Conjecture C is true when p is a prime.

Proof. Our assumptions are that f is multiplicative
with period p, p is a prime, f(n)# 0 for some positive

. P
t , d flk) =0 .
integer n an zk=i (k)

If f(p)# 0, Lemma 3.1 (ii) tells us that f(k) =1 for

k=1,2,...,p-1. Since Ei—i f(k) =0 , it follows that f{p)=1-p.

It is then apparent that

© fn) = 4 1 1 1
- == (k+1+ ez T ke 1-1;))0'
g B w0 P P pk+p-1  pkip

If f(p)=0, then f(a) =0 whenever (a,p)=1 because of
the periodicity of f and the assumption that p is a prime,
while f(1) # 0 because of the multiplicativity. This and
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Lemma 3.1 (i) show that f is a character modulo p [3, p.83].

Finally, the condition TP . f(k)

k=1
the principal character [3, p.84]. Now, appeal to Theorem A.

=0 guarantees that f is not

(It is unfortunate that our proof of Theorem 3.1 depends
upon Theorem A. If it did not, we would of course have a new
proof of Theorem A for the case where p is a prime. What
has actually been proved is that Conjecture C and Theorem A
are equivalent when p is a prime.)

LEMMA 3.2. Suppose that p=1I

pi,pz,...,pr distinct (when r > 1) primes and =«

positive integers. For 0<a<p, let

(

ﬂl
;dpil with
1,1"2,.- . ,Tl'r

r o,
0 _1£ {a,p) = 1« p_l and 0<a, < w, for some j,
i=1 1 J J
fla) =4
roa
nx if (a,p) = O p, and @ =0 or w,  for each j,
i — . i — ] _—j ——
\pila i=1
where xi,xz,... .xr are any (real or complex) numbers (and

the empty product has its usual meaning); define f£(n+p) ={(n)

for n=1,2,3,.... Then f is a non-zero multiplicative

number-theoretic function with period p.

Proof. That f is a non-zero number-theoretic function
with period p is clear, so we concentrate on the multiplicativity.
To this end, suppose that a and b are positive integers and
that A, B, and C are the least positive residues modulo p
of a, b, and ab, respectively.

r ai
(A:P) = I pin (B»P) =

i=1

ith =0.
wi aiﬂi

i=1

423
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i
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(C,p) = @I p.
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i=1
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Case 1: 0< aj < v, for some j. Since aiﬁi =0 for

each i, 0<a +B.=¢c. < ﬂj, so that f(A} ={f{C) =0 and, hence,
J J )

flab) = £{{C) = 0 = {(A)

flA)I(B) = f(a)f(b) .

A similar argument subsists if 0 < ﬁk < T for some k.

Case 2: ai=0 or w,, and p =0 or =, for each i.
1 1 1

Then a +p. =0 or = because o f =0, and
i i i ii

£C) = m x =(1m =x)
pla ’

1 1

T x = f{A) £(B) .
p, |B )

This completes the proof that { is multiplicative.

THEOREM 3.2. Let p be a composite positive integer

©
and {a }, a real-valued sequence for which lim a =0
—_— n 1 n-=wo n

- a )
n=0 np+k nptk+1

is convergent (k=1,2,...,p-1). _I_f ak does not change sign

for k=1,2,...,p-1, then there is a non-zero multiplicative
number-theoretic function f with period p for which

<° a f(n) =0
“n= an n)=0.

Proof. If ai=az=... -:r.zp_‘1

any multiplicative function of period p (in particular, any

character modulo p) since 200 a f(n) = zi:: ak F(k) =0 by
n =

=0, we may take f to be

n=1
Lemma 2.1, where F(k) = Zj—i f(j} . We therefore assume

henceforth that ai #0 for at least one 1i.
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w,

ro i . -
Case 1: p=ni=1 P, with r> 2, Pi’pz"”’pr distinct
primes, and ni,ﬁz, TRRL positive integers. Let f be the

function defined in Lemma 3.2. According to Lemma 2. 1.,

0 -1
Zn:l an f(n) = Ei:i ak F(k) if the series is convergent, where

F(k) = z; £(j) . The conditions F(p) =0 and 21‘;: @ F(k) =0

become

r afw
>R pa 1) mx?d J=0,
S k<p j=1 7
—I' a,
1
(k,p)=T p
i=t
p-1 r ajmw,
T {Z o ( >> 1)} ox’ =0,
T nstd k<n =
P —1‘ a,
(k,p)= T p’
i=1

i 0 N = H€,,---, = ,
where each a, is or m Sp { ' er) ]ei 0 or 1}
and Tp = Sp - {(1,...,1)}. The left members here are poly-

nomials in xi, XZ' e xr, the first of degree r and the second
of degree r-1. It follows that the equations have a solution.

For example, taking x3 = x4 =... =xr =1 gives a quadratic

and a linear polynomial equation in x, and x,-
Case 2: p =qa, q a prime and a a positive integer
greater than 1. We define

1,qta
(0<a<p),

fla) ={x,q]a

Y,»2=pP-.

f(n+p) =f(n) (n=1,2,3,...).
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That f is a non-zero number-theoretic function with period p
is clear, and an argument somewhat redolent of that in the
proof of Lemma 3.2 shows it to be multiplicative.

Set F(n) = ZnH f(k) . The conditions F(p) =0 and

-1
Sp 1 a F(n) =0 become
=1 n

é(p) + { p-1-¢(p)} x+ty = 0,

p-1 p-1
z an z 1+(Zan Z 4)x =0,
n=1 k<n n=1 k<n

(k, p)=1 (k, p>1

for which it is obvious that there is a solution (x,y). Now
appeal to Lemma 2. 1.

COROLLARY 3.2. Conjecture C is false when p is
composite: If p is composite, there is a non-trivial multi-
plicative number-theoretic function f with period p for which

=% =
> fa)/m=0.

Proof. Take a =1/n in Theorem 3.2.
n

4. Odd Multiplicative Functions. Our concern now is
Conjecture D, so the functions f to be considered are multi-
plicative, have a positive integer period p, and satisfy

f(p-n) =-f(n) (n=1,2,...,p-1) and Ei:i f(n) =0 .

It is easy to see that (1) =1£(3) =1, £(2) and £(4)
arbitrary, and g a character modulo 4 give the only multi-
plicative number-theoretic functions with period 4. This
observation, the condition f(p-n) =-f(n) (n=1,2,...,p-1),
and Theorem 3.1 prove

THEOREM 4.1. Conjecture D is true when p=4 or p
is a prime.
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It is easy to construct examples for p=6,9,10,14, and
15 to demonstrate that Conjecture D is false for these composite
periods. The author feels that this conjecture is indeed false
for any composite period other than p =4, hut he is able to
offer only one general result, namely,

THEOREM 4.2. Conjecture D is false when p =4q,
q an integer greater than 1: There is a non-trivial multiplica-
tive number-theoretic function f with period p=4q, q > 1, for
which f(p-n) =-f(n) (n=1,2,...,p-1) and

)
Zn—i f(n)/n=0.

Proof. For 0<a<p=4q, define

flq) = -£(3q) = x,
a-1
(-1) 2 if (a,p) =1,
f(a) =
0 if (a,p)>1 but a#q and a # 3q,

f(n+p) = f{n) (n=1,2,3,...).

The condition f{p-n} =-f(n) is clear for n=q and n = 3q.
For (n,p) =1, we have (p-n,p) =1 and

ot 4aenet omHt oact
fpn)=(-1) 2 =(-1) % =12 =-(-1) % =-fn);

while if (n,p)>1 but n#¥q and n # 3q, then the same is
true of (p-n,p) and n-p, and so f{p-n) =0 =-£f(n) even for
this situation.

We show next that f is multiplicative. Suppose that
(a,b) =1, and let A, B, and C be the least positive residues
™

T_r i
of a, b, and ab, respectively. Writing q =2 1'1i_1 P, '
where w is a non-negative integer, pi,pz, .o ,pr are distinct

(if r > 1) odd primes, and T »W_are positive integers

2’
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(the empty product is 1, as usual), we have

a

r r B8
a i 1 a+t+
(a.m=2" m e, (B, =2 W p’ (Cp)=2 P
1=4 i=1 i

with ef=ap. =0, 0<e, <2+ 7w, and 0<ea, B <7
it - - - i i-

1

Case i: 0<a+B<w or a+PB=m+1 or a+B=m+2
or O<aj+ ﬁj<1'rj for some j, or ¢+ 8=0 and o, + 3. =7
i i

1
for each i, or a+ 8=~ and a.+ B, =0 for each i. Here
i i

(C,p)>1 but C#q and C # 3q, and the same is true of one
of A and B. Referring to the definition of f, we see that
f(C) and one of f{A) and £{(B) is zero, so that

f(ab) = £(C) = 0 = f(A){(B) =1f(a)i(b) .

Case2: a+R=a +p,=0 (i=1,2,...,r). Inthis case,
1 1

(A,p)=(B,p) =(C,p) =1. Since A and B are odd,
(A-1)(B-1) =0 (mod 4) . Thus, modulo 4,
0zAB-A-B+1=C-A-B+1=C-1-(A+B-2), and
so

C-1 A+B-2 A-1 B-1
2

§C)=(-1) ° =(-1) % =(-1) 2% (-1) ® =5a)(B).

Case 3: a+B=m and o, +p, =m_  for i=1,2,...,r.
i i i

We have C=q or C=3q and (A,p)=q or (B,p)=q, but
not both (since (A,B)=1). We may assume that (A,p) =q and,
hence, that A =q or A =3q.

Take first the case where C=q. If A =q, then
AB =qB =C =q (mod 4), so that B =1(mod 4).
B-1

Thus, £(C)=x=x(-1) 2 =f(A)f{(B) . On the other hand, if

B-1

A =3q, then B =3 (mod 4), and £(C) =x = (-x)(-1) 2 ={(A){(B).

A similar argument takes care of the situation when
C =3q, and the proof of the multiplicativity is now complete.
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Writing Bn =z f(k), the requirement that Bp =0 is

automatic:
-1
P 2 29 g
B = x4+ (-x)+ zZ (-1) = Z (-1) =0.
k=1 j=1
(k, p)=t
We find that
( k-1
2
z (-1) (1 <n<gq)
k<n
(ks P)=1
B = {
k-1
2
=z (-1) +x (a<n<2q).
k<n
\(k, p) =1
Referring to the proof of Theorem 2.2, we therefore have
k-
L) £(n) 2q-1 2q-1 ——21 2qgq-1
T —-— = T BB = B z  (-1) + x g
n=1 ° n=4 ° " a=1 7 k< n=q ”
(k, p)=1

with p >0 (n=1,2,...,29-1). It is immediate that x may
n
o
be chosen so that = f(n)/n=0.
n={

It is of course clear that the same function

REMARK.
0
(with x chosen suitably) will also make Z:n anf(n) =0 if
Iim a =0 and @ = E:=O (anp+k - anp+k+i) is convergent

(k=1,2,...,p-1) .

5. Erdds' Conjecture. Written communication with
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Erdos brought forth the statement: "If I remember correctly,
when I made the conjecture, I assumed that f(n) = 14 and
flm) =0 if m =0 (mod p)." Formally, then, we have the

CONJECTURE (Erdds). If p is a positive integer and
f is a number-theoretic function with period p for which
f(n)e {-1,1} when n=1,2,...,p-1 and {(p) =0, then

o0
z - f(n)/n # 0 whenever the series is convergent.
n

The author is unable to settle the truth status of this conjecture.
About all that he can say is that Erdds' conjecture is true if

(p-1)m )

. 10(2 sin), £n(2 sin Z%), ..., £n(2 sin
P P 2p

when p is odd, and

2 .
m, 1n(2 sin=), £n(2 sin2%), ..., 102 sin 22T 400
P P 2p

when p is even, are linearly independent over the algebraic
numbers. (As a matter of fact, this linear independence would
prove Erdds' Conjecture under the weaker assumption that

f(p) =0 and {(n) is algebraic (n=1,2,...,p-1).)

To see this, recall that

1
ntz

o
z ¢
=1

Bl

1
. ) = v+t Uz)

for 240, -1, -2, ..., where y is the Euler-Mascheroni
constant and Y(z) =I"''(z)/T(z) [4, p.247]. It follows that

1 1 k1 k

-0 \np+k-np+k+1)=q)(P)°¢(;) (k=1’2"'-:p“1)

™M 8

P

and, hence, that
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[} p-1 .
2 2 Fpn e - T e -

n=1 k=1 P

But now

k L km
¢(;) = QJ(i)—-Z-cot-; -1np+Sp(k) (k=1,2,...,p-1),

where
[(p-1)/2] . . P
5,(K) = T cos 2Ty (s smz-’—-:) + —“—(2—”— -1)%1n2

j=1

[2, pp. 34-35], so that

® T p-1 km
Z f{(n)/n = 3 Z f(k) cot— + F(p-1)Lfn p
n=1 k=1 P
p-1 [(p-1)/2] . .
T f) T cosZET gy sin® i T
k=1 j=1 L

with Tp=0 if p is odd, and

p-1 K
T =({(fn2) = (-1) £(k) (p even) .
P k=1

If now f(p) =0 (and, of course, F(p) =0), then the term
involving { n p vanishes. Since the factors cot kr/p and

[ <]
cos 2kjw/p are algebraic, we see that then zn—i f(n)/n is

an algebraic linear combination of 7, fn(2 sin w/p),
£ n(2 sin 2w/p), ..., £ n(2 sin [(p-1)/2] w/p)(and ¢t n 2 if p is
even).
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