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STABLE VECTOR BUNDLES ON AN ALGEBRAIC SURFACE

MASAKI MARUYAMA®

Introduction.

Let X be a non-singular projective algebraic curve over an algebrai-
cally closed field k. D. Mumford introduced the notion of stable vector
bundles on X as follows;

DEFINITION ([7]). A vector bundle F on X is stable if and only if
for any non-trivial quotient bundle F' of E,

deg (E)/r(E) < deg (F)/r(F) ,

where deg ( - ) denotes the degree of the first Chern class of a vector
bundles and 7( - ) denotes the rank of a vector bundle.

D. Mumford, M. S. Narasimhan and C. S. Seshadri showed that
the family of stable vector bundles on X with given degree and rank
has a coarse moduli scheme ({7], [11], [12], [13]). To prove this they
used some special facts which were provided by the assumption that X
was a curve. For instance, (1) a coherent Oy-module is torsion free if
and only if it is locally free, (2) every vector bundle E has a filtration
0O=E,CE,C..-CE,_,CFE,=F such that E;/FE;_, is a locally free
Ox-module of rank 1, (3) the set of isomorphism classes of indecomposable
vector bundles on X with fixed degree (Chern class) and rank is bounded®.

Let us consider higher dimensional cases. Assume that X is a non-
singular projective variety over %k with dim X > 2. Since, at least, the
above three are not necessarily true, we have to overcome various dif-
ficulties to construct moduli of vector bundles on X. It is inevitable
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1) Let X be an algebraic scheme over an algebraically closed field k. We say a
set S of coherent 0x-modules is bounded if there exist an algebraic k-scheme T and a
T-flat coherent Oxx;r-module F such that every member of S is isomorphic to one of
{Ft =F Qoxyr k(t)| t e T(k)}.
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that, as the curve case, we have to restrict ourselves to a subfamily of
vector bundles which satisfy some suitable conditions. Then what kind
of properties should the conditions possess? First of all the family of
vector bundles satisfying the conditions with given Chern classes and
rank should be bounded. This is essential unlike the curve case because
(8) above is not necessarily true in this case. Secondarily the conditions
should be open conditions, that is, if 7 is an algebraic k-scheme and
if F is a vector bundle on X X ,T, then the set of k-rational points ¢
of T such that F, satisfy the conditions forms that of k-rational points
of an open subset of 7. Finally the subfamily should behave nicely
when one takes a quotient by some equivalence relation (cf. §4). Now
it seems to the author that the following condition is a hopeful candidate
to fulfill our requirement.

DEFINITION (Mumford-Takemoto [15]). Let us fix an ample linebundle
H on X. A torsion free coherent 0x-module F is stable (or, semi-stable)
(with respect to H) if and only if for any non-trivial, non-torsion, quotient
coherent @x-module F' of E,

d(E,H)/r(E) < dF,H)[r(F)  (or, <, resp.),

where d(., H) is the degree of the first Chern class of a coherent @x-
module with respect to H.

The main purpose of this article is to show that if X is a surface,
then the family of stable vector bundles of rank 2 on X is a good one.

In §1 we shall introduce the notion of vector bundles of type
ay, +++,a,_;. Though this notion itself contains some important geometric
meaning, we use it only to prove the main result of §2. §1 is devoted
to modifying the results in §1 of [15] about stable vector bundles. In
§2 we shall show that the set of isomorphism classes of stable vector
bundles on an algebraic surface with fixed Chern classes and rank is
bounded. In rank 2 case this was proved by F. Takemoto [15] and
D. Mumford (unpublished). Though the basic idea of our proof is the
same as theirs, we need the notion of type «y,---,a,_, to prove it in
every rank and by our method we get more general results. In fact
the above result is a special case of our theorem (Theorem 2.5 and
corollaries to it). Openness of the stable vector bundle will be proved
in § 3 (Corollary 3.4.1). In §4 we shall construct a coarse moduli scheme
of the family of stable vector bundles of rank 2 on a non-singular
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projective surface (Theorem 4.10). We use the assumption rank 2 only
in Lemma 4.1. If we can replace it by some suitable lemma, then the
restriction rank 2 can be omitted (see Remark 4.12). Our method is
essentially the same as what Seshadri used in his proof in the curve
case. But he used some facts which are peculiar to a curve. In our
case we have to analyze more deeply the action of the group PGL(N)
on some special schemes. We shall discuss a little bit about singularities
of the moduli in the final part of §4.

Notation and convention.

Throughout this paper k denotes an algebraically closed field and
all varieties are reduced and irreducible algebraic k-schemes. We use
the terms “vector bundles” and ‘“locally free sheaves” interchangeablly.
Let X be a non-singular projective variety over k. If E is a coherent
Ox-module of rank r, then we can define the Chern classes ¢,(E), - - -, ¢,(E)
of E (see [1]). For a coherent Ox-module F, hi(F) denotes dim, H{(X, F')
and y(F) denotes J(—1)*h'(F). For a divisor D on X, 0Ox(D) denotes the
linebundle defined by D. If L is a linebundle on X, then |L| denotes
the complete linear system |D| for a divisor D on X with 0y(D) = L.
For S-schemes Z and T, Z(T) denotes the set of T-valued points of Z,
that is, Z(T) = Homg (T,Z) and in particular if Z is an algebraic k-
scheme, then Z(k) means the set of k-rational points of Z. For a
scheme S and a coherent 0s-module E, P(E) denotes Proj (S,,(E)), where
S,(E) is the 0s-symmetric algebra of E.

The main part of this work was done while the author stayed at
Mathematics Department, Harvard University in the academic year
1972-73. He wishes to thank all the people who made it possible. He
also wishes to thank Professors H. Hironaka and D. Mumford for their
encouragement and valuable suggestions.

§1. Vector bundles of type «y, - - -, o, _;.

Let X be a non-singular projective variety over k& and let us fix a
very ample linebundle H on X. For any coherent @y -module F, d(E, H)
denotes the degree of the first Chern class of £ with respect to H and
r(E) denotes the rank of E, that is, the rank of E(x) = F ®,, k(x) as a
vector space over k(x) with the generic point # of X. Now let us extend
the notion of stable vector bundles.
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DEFINITION. Let oy, -+, a,_, be a sequence of » — 1 rational numbers.
A torsion free coherent Oy-module E of rank » on X is called of type
oy, oy, (With respect to H) if and only if for any non-trivial, non-
torsion, quotient coherent @z-module F of E, the following inequalities
are satisfied;

dE,H)/r(E) — a; < dF,H)|r(F) ,
where s=7r(F) A <s<r—1).

Remark 1.1, i) FE is semi-stable if and only if it is of type 0, ---,0.
ii) Take a sequence of » — 1 rational numbers «,, - - -, a,_, such that

—~1/rs <a, < 0. Then E is stable if and only if it is of type ay, - - -, @, _;.
iii) In the definition we may assume that F is torsion free (see [15]).
Let us show some lemmas which will be used often later.

LEMMA 1.2. A torsion free coherent Ox-module E of rank r on X
8 of type ay, ---,a,_, if and only if for any non-trivial coherent Ox-
submodule G of E, the following inequalities are satisfied;

d(E’ H)/T(E) +‘ Sd,_s/(T - S) 2 d(G9 H)/T(G) ’
where s =1r(G@) A<s<r—1).

Proof. Put F = E/G, then by the definition ¥ is of type a;, - -, @,_;
if and only if for any G, we get

dE, H)[r(E) — a,_s < dF, H) [r(F)

because 7(F) = r(E) — »(G) = r — s. Since d(¥,H) = d(F,H) + d(G,H),
the above inequalities are equivalent to those in our lemma. q.e.d.

LEMMA 1.8. Let E be a torsion free Ox-module of rank r and let
L be a linebundle on X. Then E is of type oy, ---,a,_; if and only if
so is E®,, L.

Proof. If one notes that the equality ¢,(F ®,, L) = ¢,(F) + r(F)e,(L)
holds for any coherent Or-module F', the proof is obvious.

LEMMA 1.4. Let E,,E, be two torsion free coherent Ox-modules of
rank r. Assume that there is an open subset U of X with codim (X — U, X)
> 2 and an isomorphism f: E,|U-——>FE,|U. ThenE, isof typea,, - - -, a,_,
if and only if so is E,.
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Proof. It is clear that we have only to prove “if” part. Let G,
be a coherent 0y-submodule of E, of rank s (1 <s<r —1). There is
a coherent (Oy-submodule G, of E, such that G,|U = f(G,|U) (E.G. A.
Ch. I, 9.4.7). Since codim (X — U, X) > 2, we know that c¢,(F,) = c,(¥))
and ¢,(G,) = ¢,(G;). On the other hand, G, satisfies the inequality in
Lemma 1.2. Thus G, does it too, whence E, is of type «,, -+, o, _;

q.e.d.

For a coherent Oy-module E of rank », put EV = #om,, (F,0x),

then EV is a torsion free coherent ¢x-module of rank 7.

LEMMA 1.5. Let E be a torsion free coherent Ox-module of rank r.
Then E is of type ay, ---,a,_, if and only if EV is of type a,_,/(r — 1),
"',80(,,__3/(7'- 3)7 "'7(7. - 1)0(10

Proof. Let F* be a torsion free, quotient coherent ¢y-module of F
of rank s 1 <s<r—1). There exists an open subset U of X such
that codim (X — U, X) > 2 and that F|U is locally free. Then (EV)V|U
= F|U. On the other hand, there are natural inclusion ¢: E — (EV)V
and j: F = Hom,, F*,05) — (EV)V. If we put F’ = ¢'(j(F)), then we
know that F’|U = F'|U. Thus we get that ¢,(F’) = ¢,(F) = —c¢,(F'*) because
F* is torsion free and codim (X — U,X) > 2. Now assume that F is of

type oy, - - -, a,_,. Then by virtue of Lemma 1.2 the following inequality
holds;

dF’,H)|r(F') < d(E, H) |7(E) + sa,_/(r — ) .
Clearly this is equivalent to the following;
A(EY, H) [1(BV) — sa,_[(r — 8) < d(F™*, H) [r(F™*) .

We know therefore that EV is of type «a,_,/(r — 1), -+, 80,_;/(r — 8),
.o, (r — Da, (see Remark 1.1, (iii)). If we replace £ by EV in the
above argument, then we get the converse by virtue of Lemma 1.4
because K |U = (EV)V|U. q.e.d.

LEMMA 1.6. Let E be the same as in Lemma 1.5. Then E is of type
Ay, -+, 0,_, With respect to H if and only if it is of type nay, - -, N, _,
with respect to nH.

Proof. Obvious.

The following lemma is a key in the next section.
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LEMMA 1.7. If a torsion free Ox-module E of rank r is of type
ay, - yar ond if d(E,H) < —ra,_,/(r — 1), then H'(X,E) = 0.

Proof. Assume that H(X,E) # 0 and pick a non-zero element s of
HX,FE). By the multiplication of s we get an inclusion j: 0y — E.
We know that d(j(@x),H) =0. On the other hand, we have that
d(§(0y),H) < d(E,H)|r + a,_,/(r —1) <0 by virtue of Lemma 1.2 and
our assumption. This is a contradiction. Therefore we get that H'(X, E)
=0. q.e.d.

§ 2. Boundedness of stable vector bundles on an algebraic surface.

Our main aim in this section is to prove the boundedness of stable
vector bundles with fixed Chern classes and rank on an algebraic surface.
In the sequel we assume that X is a non-singular projective surface.
We also fix a very ample linebundle H and if we say that a vector
bundle or a torsion free @y -module is of type «,, - - -, @,_, or (semi-)stable,
then it means that it is so with respect to H unless otherwise stated.
We shall use the notation E(n) instead of £ ®,, H®". We denote d(H, H)
by h. Let Ky be the canonical bundle of X. If E is a torsion free
Ox-module, then there are only a finite number of points x,, - - -, z, such
that the rank of F ®,, k(x;) is greater than that of £. Weecall 2, -- -, z,
pinch points of E. FE is locally free on X — {z,, - - -, ,}.

Let E be a coherent @x-module of rank » with Chern classes ¢,(E), c,(E).
Then we get the following formulae;

2.1 ce(E(m) = ¢,(B) + rne(H) ,
2.2 c(E(m)) = r(r — Dn*h/2 + (r — Dnd(E, H) + ¢(E) .
Thus Riemann-Roch theorem implies

2.3) y(Em) = rn*h/2 + 2dE,H) — rd(Ky, H)n/2 — (¢,(E), Kx)/2
+ (ci(B), c(E)) |2 — ¢)(B) + r2(Ox) -
Let S7(ay, - - -, 0,13 €4, C;) be the set of isomorphism classes of torsion

free @x-modules of type ay, :-:,a,_, with Chern classes ¢, ¢, (modulo
numerical equivalence).

LEMMA 2.1. There exists an integer n, such that for any E ¢ S™(a;,
<0y Gy C), and for any integer n > n,, we get that H(X, E(n)) # 0.
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Proof. By the formula (2.3) there exists an integer =, such that
y(E(n)) > 0 for any integer n > n,. On the other hand, by Serre duality
h¥(E(n)) = k' (Hom,, (E(n), Ky)). Since d(E(n)" Q,, Ky, H) = —d(E, H) — rnh
+ d(Ky, H), there exists an integer n, such that d(E(n)V ®,, Ky, H) < —ra,
for any n > n,. Moreover, Hom,, (E(n), Ky) is of type «,_,/(r — 1), ---,
Soty_s/(r — 8), « -+, (r — Da, by virtue of Lemma 1.3 and Lemma 1.5 because
Hom,, (E(n),Ky) = Em)¥ ®,, Ky. Thus if n > n,, then R*E®)) =0 by
virtue of Lemma 1.7. Now put %, = max (n,,n,), then 0 < y(F(n))
= W(E(n)) — h(E1n)) < h'(E(n)). q.e.d.

The preceding lemma and the following are special facts in the case
of a surface and they are fundamental tools for the induction process
in the proof of our main theorem.

LEMMA 2.2. If E is o torsion free Ox-module, then there exist a
unique vector bundle E' and an injective homomorphism f:E — E’ such
that f induces an isomorphism on U, where X — U is the set of pinch

points of K.
Proof. Let {x ---,2,} be the set of pinch points of E. If the set
is empty, then there is nothing to prove. Put U =X — {2, ---,2,} and

let ¢: U — X be the inclusion. If there exist E’ and f, then B’ = ¢,4*(F)
and f is defined by the natural homomorphism F — ¢,4*(E), whence they
are unique. Let us prove that ¢,2*(E) is locally free @y-module. If Y;
= Spec (O ,,) and if u;: Y; — X is the natural morphism, then u; is flat
and we get the following diagram;

74
Y, —x;—>U

Since 7 is of finite type and separated and since u; is flat, we have an
isomorphism ;% ((*(E)) = ¢, (u,)*@*E)) (E.G. A., Ch.III, 1. 4. 15).
Since ,0*(F) is locally free if and only if wu;*(, (¢*(E)) is free, we have
only to prove that g,.(u;)*(@*(E)) is free. On the other hand, (u;)*(@* (X))
is locally free. Thus we can reduce our assertion to Corollary 4.1.1 of
[8]. Let f be the natural morphism of £ to ¢,i*(£). Then Supp (ker (/)
c {%, --+,2x,}. Hence ker (f) is a torsion ¢y-module. Since E is torsion
free, we know that ker (f) = 0. q.e.d.
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Remark 2.3. i) As a matter of fact E/ in the above lemma is
isomorphic to (V)Y and f is the natural inclusion E — (EV)V.
ii) Lemma 2.2 is not necessarily true if dim X is greater than 2.

LEMMA 2.4. Let A be a noetherian integral domain such that for
any peSpec(A), A, is a U. F. D. and let m be an element of a finitely
generated torsion free A-module M. Then the following are equivalent
to each other;

i) M/Am is o torsion free A-module.

ii) For any pe Spec (4) with ht(p) =1, if m = am’ for some ac A,,
m' e M, then a is a unit in A,.

Proof. (ii)=>(i): First of all note that a finitely generated A-module
N is torsion free if and only if so is N®, A, for any maximal ideal p
of A. Thus replacing A by A,, we may assume that A is a U. F. D..
Assume that M/Am is not torsion free, then there are an element m’
in M and a non-unit element @ in A such that m’ is not contained in
Am and am’ = bm for some be A. We may assume that ¢ and b contain
no common divisors. If a is a unit, then m’ is contained in Am. Thus
there is a prime ideal p of A such that ht(p) =1, aep and bep. Then
this is a contradiction because a/b is not a unit in 4, and m = (a/b)m’.

(i) = (ii): Assume that there are p e Spec (A) with ht(p) =1, m' e M
and a non-unit element a in A, such that m = am’. If m’ is contained
in mA,, then m’ = a'm = aa’m’ for some a’c A,, that is, aa’ =1 in A4,
because M is torsion free and A, is an integral domain. Hence
m’ #= 0 mod. A;m and am’ = 0 mod. A,m, which means that M/Am is not
torsion free. This is a contradiction. q.e.d.

Now we come to the main theorem in this section.

THEOREM 2.5. Let a be an integer and let S7(ay, -+, a,_1; C,) be the
set || S™(ayy + -+ 13 €y 6). Then there are two constants by, b, (independ-

axce

ent of each ¢, such that for any E e Si(ay, - +,a,_:; ¢), WN(E) < b, and
W(E R, Og) < b, for any curve C in an open set U(E) of |H|, where
UE) may depend on E.

Proof. A) Put VSi(a, - -,a,15¢) ={EeSia, - ,a,_1;c)|E is
locally free}. First of all let us show that if the theorem is true for
VSi(eey, +++y0,_13¢), then so is for S(a,:--,a,_,;¢). For any
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EcSi(a, -+, ; ¢), there exists the following exact sequence by virtue
of Lemma 2.2;

0 E E T 0,

where E’ is locally free and dim Supp (T) < 0. It is clear that ¢,(F) = ¢,(E").
We claim that ¢,(T) = 0 and ¢,(T) = —h%(T) < 0. Infact, since dim Supp(T)
< 0 and dim X = 2, we know that ¢(T) = 0 and 2/(T) = h¥T) = 0. This
and Riemann-Roch theorem imply that A7) = ¢(T) = —¢(T). Thus
¢, (B = ¢,(F) — h(T) < a. On the other hand, by virtue of Lemma 1.4
E’ is of type «;, - -,a,_;,. We know therefore that E’ is contained in
VSi(a, - -,a,_,;¢). By the assumption that our theorem is true for
VSi(ay, +++yar_y3 ¢) We get by, by, UE") such that r'(E") < by, B(E’ ®,, 0¢)
< b, for any CeU(E’). Since AY(E) < h(E’) and since hr'E Q,, O¢)
= h(E’ ®,; 0;) if C goes through none of pinch points of F,b, b, and
UE) = {Cec UE")|C goes through none of pinch points of E} are the
desired ones.

B) Let S'c,c,) be the set of isomorphism classes of torsion free
Ox-modules of rank 1 with Chern classes ¢, ¢,. Put Si(c,) = [| S'(cy, ¢).

azca

Let us prove that for Si(c¢,), there exist constants b, b, which satisfy
the consequence of our theorem. Let L(c,) be the set of isomorphism
clagses of invertible @x-modules with Chern class ¢,. Then L(c¢) is
bounded because it is parametrized by a finite number of connected
components of Pic(X). Thus there is a constant b, such that r%(L) < b,
for any L e L(¢,). Let C be a non-singular curve in |H|. Then h"(L ®,, 0;)
< max{d(e;, H) — (h + d(Kx, H))/2 — 1, d(¢c,, H)/2, 0} = b, by Riemann-Roch
theorem and Clifford’s theorem. Thus by the same argument in (A)
we know that the b,, b, above are the desired constants.

C) Assume that the theorem is true in the case of rank » — 1.
Under this assumption we ghall show that for VSi(ay, ---,a,_; ¢,) our
theorem holds. For any F e VS (a, ---,a,_,; ¢;) we get the following by
virtue of the formula (2.3);

y(B(n) = re*h )2 + QA(E, H) — rd(Kx, H))n/2
+ (e)(E), e(B) — Kz) /2 — c(E) 4 r¢(0x)
> rwth/2 + (2d(c,, H) — rd(Ky, H))n/2
+ (e, 06— Kx) /2 — a + r¢(0x) -

If n is sufficiently large, then the right hand side of the above is positive,
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whence so is the left hand side. Thus by a similar argument in the
proof of Lemma 2.1 we know that there is an integer =, such that
R(E(n)) > 0 for any n > n, and any F e VSi(a, -+, ,_;; ¢). Let us fix
an integer n > n, and take an element E of VSi(a, ---,,_;;¢). Pick
a non-zero element s of HYX, E(n)). Assume that there is a positive
divisor D such that s can be written in the form of s = s, ® s, with
s, e H'(X, E(n) ®,p Ox(—D)), s,€ H(X,0x(D)). Then there is a maximal
element D in the set of such divisors because the degrees of them are
bounded above. For the maximal element D, if s, , = ut, with some
UEOx 1t € (E(N) ®yy Ox(—D)),, then u is a unit in 0y ,. Hence in the
following exact sequence F” is torsion free by virtue of Lemma 2.3;

0—> Oy —> E(n) @, Ox(—D) —> F' —> 0 .
L [©)]
a+—> as,;
This sequence yields the following exact sequence;

0—> 0x(D)®, H® " —>E-—>F—>0,

where F is torsion free. Put % = {D|D is obtained as above from some
EecVSi(a, -+, a,_;; ¢)}/(linear equivalence) and 4 = ¥ /(numerical equiv-
alence). Then we claime that §(A4") < co. In fact since 0y (D) is an Ox-
submodule of E(n) for some locally free @x-module E of type oy, - - -, a,_;
with ¢(®) = ¢, we have by virtue of Lemma 1.2 that d(D,H) <
d(Em), H)[r(Em)) + a,_,/(r — 1) = d(c,, H)/r + nh + a,_,/(r —1). More-
over D is a positive divisor. Hence #(A4") <oo (see p. 113 of [9]). Omn
the other hand, it is clear that c¢,(F) = ¢,(F) — D + nc,(H). We get
therefore that c,(F) = cy(E) — (¢/(F), ¢,(0x(D) ®,, H®™™) = ¢,(E) — (¢, — D
+ ne,(H), D — ne,(H)). Since (¢, — D + nc,(H),D — ne,(H)) depends only
on the numerical equivalence class of D and since #(A") <oo,{—(¢, — D
+ nH,D — nH)|D e ¥} is bounded above. Put g = max {~(,—D +nH,D

— nH)}. Then c¢(F) < a4+ g for any F obtained as above. Let us prove
that every F' obtained from some E in VSi(ay, ---,a,_;;¢) is of type
a’, -+ ,a,_, for some sequence of r — 2 rational numbers «/, ---,a,_,.
Let p: F— G be a surjective homomorphism of F to a coherent 0y-
module G of ranks s (1 < s <7~ — 2). Since the natural homomorphism

q: E—sF-25Gis surjective and since E is of type «y,-:-,a,_,, wWe
obtain the following inequality;
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dE,H)|r —a, < dG,H)/s .
Meanwhile,

dE,H)/r —a;,=dE,H)/@r—1) —dE,H)/r(r — 1) — a,
=dF,H)/r —1) — [1/(r — D{nh — d(D, H)
+ dle, H) |1} + ai] .«

If we put «,p,=1[1/(r — D{nk — d(D, H) + d(c,, H)/r} + ], then «;p
depends only on the numerical equivalence class of D. Since §(A4") <oco,
@, p ranges over a finite number of rational numbers. Take the number
a’ = t})lea;c {as.p}, then the above inequality implies

dF,H)/(r—1) —a/ <dG,H)/s.

Hence F is of type o/, -+, a,_,/. If 2 is the set of isomorphism classes
of F’s which are obtained from some E in VS7(aj, ---,a,_;; ¢;) as above,
then the above results imply

2c [l L[ St e/, -y, ¢, — 2+ Ny, C)

AEN a+f2ce

where 15 is the numerical equivalence class of ¢,(H). By the assumption
that the theorem is true in the case of rank r — 1, there are two con-
stants b, 0,, satisfying the conditions of our theorem for S;7i(«/,
ceya.y3 ¢ — 2+ nidy). Thus if we put b;, = rflea//x {b;;} ¢=0,1), then

for any Fe2,h°(F)<b,, and AF ®,,0,) < b,, for Ce UF), where
U(F) is a suitable open set of |H|. On the other hand, there are two
constants b, ,, b, , such that 2%(0x(D) ®,, H*™ ") < b,, and h'(Ox(D) ®,, H® "
®or Op) < by, for any De ¥, where C is contained in a suitable open
set U of |H|, because #(A) <oco (see the proof in (B)). Thus we get

R(E) < R(0x(D) ®,, H®") + h'(F)
< bo,l + bo,z»
RAE ®oy Oc) < h(Ox(D) R HE" @,y U¢) + h(F @y Oc)
< b+ by,

where C is contained in the subset U(E) = {C ¢ U(F) N U|C goes through
none of the pinch points of F}. It is clear that U(F) is open in |H|.
Consequently we obtain b, = b,, + b,,, b, =b,, + b,, and U(E) which
satisfy the conditions of the theorem.
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(D) If the theorem holds in the case of rank » — 1, then we get
the theorem for locally free @x-modules of rank r by virtue of (C).
Then (A) implies that the theorem holds in the case of rank . Com-
bining this and (B) we complete the proof of our theorem by induction
on 7.

COROLLARY 2.5.1. S7(ay, -+, ,_1; €1, C,) 1S bounded for every a, - - -,
Qp_1, €, €. Im particular the set of (semi-) stable vector bundles with
fixed Chern classes and rank on o mon-singular projective surface is
bounded. '

Proof. It is obvious by virtue of our theorem and Theorem 1.13
of [4].

COROLLARY 2.5.2. The set of second Chern classes of torsion free
Ox-modules of type ay, ---,a,_, with a fixed first Chern class ¢, (numerical
equivalence) is bounded below.

Proof. Fix an integer n such that d(En)Y ®,, Ky, H) = d(Ky, H)
— d(c¢,, H) — nrh < —7ray. Then h¥(E(n)) =0 for any torsion free @x-module
of type ay, - --,a,_, with the first Chern class ¢, (see the proof of
Lemma 2.1). Let us consider the set Si(ay,:-:,a,_;; ¢, + nriyz) (the
notation is the same as in the proof of Theorem 2.5). For every F ¢
Si(a, -+ a1 € + nriyg), we get

e, (F(—n)) = c(F) — r(r — Dhn*/2 — (r — Dd(c,, H)n .

Theorem 2.5 implies that there is an constant b, such that »%F) < b,.
On the other hand, AYF) > y(F) = ry(Ox) + (¢, + nre,(H), ¢, + nre,(H)
— K3)/2 — ¢,(F) by Riemann-Roch theorem because F' = E(n) with some

torsion free Ox-module E of type «y, - -, a,_, with the first Chern class
¢,. Thus b, > h(F) > A — ¢,(F) with some constant A, whence {¢,(F)|F
is a torsion free @x-module of type «y, - --,a,_, with the first Chern class

¢} is bounded below. Hence by virtue of the relation between the
second Chern classes of F' and F(—n) this implies our assertion gq.e.d.

COROLLARY 2.5.3. Si(ay, ++,a,_,; ¢) tn Theorem 2.5 is bounded for
ONY gy ** 5 Ap_yy Cyy e

COROLLARY 2.5.4. For a wvector bundle E of rank r on X, put
AE) = (r — 1)(c,(E), c(E)) — 2rc(E) (A4(E) = —c(End,, (E))). There is a
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constant C such that A(E) < C for any vector bundle E of type ay, -+, a,_,
on X.

Proof. For any linebundle L, 4(E) = A(E ®,, L) and 4(E) depends
only on the numerical equivalence classes of ¢(E), c,(F). Thus we may
assume that c,(F) ranges a finite number of numerical equivalence classes
because Pic (X)/Pic*(X) is a finitely generated abelian group. Then by
virtue of Corollary 2.5.2 the set of the numerical equivalence classes of

¢,(E)’s is bounded below, whence the set of 4(F)’s is bounded above.
q.e.d.

§ 3. Openness of stable vector bundles on an algebraic surface.

In this section we shall show that if there is a family of vector
bundles F' on X, that is, F' is a locally free 0Oy,r,-module with some
locally of finite type k-scheme T, then the set S = {te T(k)|F, is stable}
is that of k-rational points of an open set of T.

LEMMA 3.1. Let E be a torsion free coherent Ox-module of rank r
generated by its global sections. Then there is a filtration 0 = E, C K,
c...CE,_,CE,=FE such that E,/E,_, =0y for 1<i<r—1 and
E,/E,._, is a torsion free coherent Ox-module of rank 1.

Proof. Let x,,.---,z, be the pinch points of £ and put U=X
—{®y, -+, 2. If7:Y =PW@E|U)— U is the projective bundle associated
with FE|U, then we get a natural map 6:HYX,E)— H'U,E|U)
= H'(U, n,(0y(1))) = H(Y, 0y(1)), where 0y(1) is the tautological linebundle
of EF|U. Let &% be the linear system defined by the image of . We
claim that # has no base points. In fact, if yeY is a base point of
& and #(y) = x, then {s(x)|se H'(X,E)} is a proper linear subspace of
E(x) because if one regards s(x) as a linear form on P(Hom,,, (E(%), k(x))),
then s(x)(y) =0 for any se HYX,E). This contradicts that H'X, E)
generates E,. Then Bertini’s theorem and the fact that D, (De %) is
a hyperplane of P(E), for an xe X(k) imply that general members of
% are irreducible. We know therefore that there is an element s of
H'(X,E) such that F = {z|s(z) = 0} is a closed set of X with codim (F, X)
> 2 because if codim (F', X) = 1, then the divisor D in % corresponding
to s is reducible. Such an s gives rise to the following exact sequence;

0-—>0X—~——>E—p—>E’——>0 R

w [\))
a+—> as

https://doi.org/10.1017/50027763000016688 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016688

38 MASAKI MARUYAMA

where E’ is a torsion free @Ox-module of rank r» — 1 by virtue of Lemma
2.3. Assume that there is a filtration 0 =FE/CE/C-.-CFE,_/=F'
such that E,//E; / = 05,1 <i{<* —2and E,_//E,_, is torsion free. Put
E, =0, E;,=p'(¥,;_)), then we know that E,/E,  =FE; //E;, ) =0y
and E,./E,_ = FE, //E,_, is torsion free. Thus we complete our proof
by induction on 7.

COROLLARY 3.1.1. If E is as above, then c¢,(E) > 0° and c,(F) > 0.

Proof. Take a filtration as in the above lemma. Then c¢,(F)
=c¢,(E/E,_), ¢(E) =c(F|E,_) and E/E,_, is generated by its global
sections because so is E. Thus we have only to prove our assertion in
the case of rank 1. By virtue of Lemma 2.2 there is an imbedding of
E to a linebundle L on X;

0 E L T 0,

where dim Supp (7) < 0. Since H'(X,L) D H'(X,E) + 0, we know that
¢(L) > 0. Moreover ¢(T) =0 and ¢, (T) < 0 as was shown in the proof
of Theorem 2.5. Hence we know that ¢(F) =c¢(L) >0 and c,(E)
= —¢,(T) > 0. q.e.d.

For convenience sake let us introduce the notion of cotype.

DEFINITION. Let X be a non-singular projective variety defined
over k and let H be a very ample linebundle on X. Let g, .--,5,_, be
a sequence of r — 1 rational numbers. Then a torsion free @x-module
E of rank r is called of cotype B, ---,B,_; (with respect to H) if and
only if for any coherent @y -submodule G of rank s (1 < s < r — 1), the
following inequalities are satisfied;

d(E, H)/r(E) + p; = d(G, H)[r(G) .

By virtue of Lemma 1.2 E is of cotype 8, ---,8,; if and only if
it is of type ABT-I/(/r - 1), " "S‘Br—s/(/r - S), Tty ("' - 1)ﬁ1.

Let us come back to the surface case.

LEMMA 3.2. If a vector bundle E of rank r on X is not of cotype
Bis -y Broyy then there exists a locally free Ox-submodule G of rank s
for some 1 < s <r — 1 such that G is of cotype B, — sy« Ps-1 — B E |G

2) This means that for the rational equivalence class ¢:(E), the complete linear
system |¢:(E)| is not empty.
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is torsion free and that d(G,H)/r(G) > dE,H)/r(E) + B,. df s=1,
then the condition about the cotype of G is automatically satisfied).

Proof. Since E is not of cotype g, - - -, B,_;, there is an ¢x-submodule
F of EF of rank s (1 < 3s < r — 1) such that d(F, H)/r(F) > d(E, H)/r(E)
+ Bs. If E'=E/F, T is the torsion part of £’ and if E” = E’/T, then
there are two exact sequences;

0 F E-25E 0,
0 T E' E” 0.

Put F/ = p~Y(T). Since ¢,(F") = ¢,(F) + ¢,(T) and since ¢,(T) > 0, we get
d(F’,H)/r(F") > d(F,H)|r(F) > d(E,H)/r(E) + ps. Let x,--.,x, be the
pinch points of F” and ¢: U =X — {x, ---+,%,} — X be the natural in-
clusion. Then F” = ,0*(F”) is a locally free 0x-submodule of E = i,i*(E).
Look at the following diagram;

0

T

0 B E E/F"—0

R

0—> F” E—E/FF =E'—>0.

Since E” is torsion free and since (X /F")|U ﬁ':zE” U, we know that
Supp (ker (@) C {zy, - - -, z,}, whence ker (¢) = 0. Thus « is an isomorphism,

which means that F/ =F”. If F’ is of cotype B — Bs ++ s Bs1 — Bs»
then it is one of the desired submodules. Assume that F’ is not of
cotype B, — Bs» ++ 5 Bs-1 — Bs- Then by induction on »(E) we obtain a
locally free @Ox-submodule G of FV of rank t such that G is of cotype
(131 - 188) - (.Bt _ﬁs) :.31 - ,ch ""(,Bt_1 —133) — (ﬁc —‘,Bs) :.Bt-l _.Bt’ FI/G
is torsion free and that d(G, H) /7(G) > d(F’, H) | r(F") + B, — Bs > d(E, H) | v(E)
+ B.. Since F'/G and E/F’ are torsion free, so is F/G. Thus G is
one of the desired submodules. q.e.d.

LEMMA 3.3. Let R be a complete discrete valuation ring over a
field K(K D k), L (or, M) be the quotient field (or, the residue field,
resp.) of R and let g (or, s) be the generic point (or, the closed point,
resp.) of Spec (R). If F is a vector bundle of rank r on Y = X X x Spec (R)
and if F, = F®,, L is not of type a,, ---,a,_, on Xz with respect to Hy,
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then so is F, = F ®,, M on Xy with respect to Hy, where L (or, M) is
the algebraic closure of L (or, M, resp.).

Proof. By the assumption there is a coherent quotient @y;-module
E of F, of rank t 1 <3 <r—1) such that dF, Hy)/r(F,) — «a,
> d(E, Hz)/r(E). Then there exist a finite algebraic extension L’ of L
and a coherent quotient Oy,-module E’ of F,/=F ®,, L’ such that
E =FE' ®, L. Take a discrete valuation ring R’ with Q(R’) = L’ which
extends R. Then the residue field of R’ is a finite algebraic extension
L’ of L and a coherent quotient 0y,-module E’ of F,/ = F ®,, L’ such
that £ = E'®,. L. Take a discrete valuation ring R’ with QR = L’
which extends R. Then the residue field of R’ is a finite algebraic
extension M’ of M. Put Y = Xy X zSpec(R’) and F’' = Fy. Then
there is a coherent quotient ¢p’-module G of F' such that G is R’-flat
and G, = E’ (2], Lemma 3.7). Since G is R’-flat, d(F,H) = d(G,, H)
= d(Gy, Hy) = d(G; ®y. M, Hy) and t=rE) = (G, Ry M). Thus
d(F,Hy) |r(F) — a, > d(G, Ry M, Hz) |17(G, Qy. M). q.e.d.

Now let us prove our main theorem in this section.

THEOREM 3.4. Let X be a mnon-singular projective surface with a
very ample linebundle H, T be a scheme locally of finite type over k
and let F' be a coherent Oy,,,~module. If a, = sB,_/(r —s) with an
ascending sequence of rational numbers By, ---,8,_., and if F is T-flat,
then the set S, = {t e T(k)|F, is locally free and of type ay, - - -, a,_, with
respect to H} is that of k-rational points of an open set of T.

Proof. Since the problem is a local property with respect to T, we
may assume that T is of finite type. Since 7V = {te T|F, is locally free}
is open, we may assume that F' is locally free ([12], p. 320). There is
an integer n such that F,n) is generated by its global sections for any
teT. Hence replacing F' by F ® p,*(H®"), we may assume that F, is
generated by its global sections for any ¢tc¢T. We may assume also
that T is connected, whence c,(F',), c,(F',), 7(F,) are invariable (numerical
equivalence). Let us prove our theorem by induction on #(F,). First
of all note that a torsion free Oy-module is of type «,, :::,a,_, if and
only if it is of cotype B, ---,8,_;, (Lemma 1.2). Now if »(F',) = 1, then
there is nothing to prove. Assume that r =rF,)>2. If we put
a = d(F;,, H)/r, then « is independent of ¢ and « > 0 by virtue of Corol-
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lary 3.1.1. Let B, be the set of locally free Oy-modules E of rank s
such that 1) s <7, 2) for some tec T(k), E is an Ox-submodule of F,
and F,/E is torsion free, 3) E is of cotype 75, -+, ri., (72 = Bi — Bs)»
4) d(E,H)/s > a + B;. Let us show that B = (J;z} B, is bounded. By
virtue of Corollary 2.5.1 we have only to prove that c¢,(E),c,(E),Eec¢B
range over a finite number of numerical equivalence classes. For any
E ¢ B take a point te T(k) such that E C F, and F,/E is torsion free.
Since F', is generated by its global sections, so is G = F,/E. Then by
virtue of Corollary 3.1.1 we get that ¢,(G) > 0, ¢,(G) > 0. On the other
hand, since min(a + g, (* — D« + B)) < d(E,H) = d(F,, H) — d(¢(G), H),
d(c,(@), H) is smaller than some constant a. Hence the set of numerical
equivalence classes of ¢,(G)’s is finite, whence so is the set A4 = {¢,(E)
= ¢,(F') — ¢,(G)|E € B}/(numerical equivalence). As for the second Chern
classes since c,(F) = ¢,(F',) — ¢,(G) — (¢c(E), ¢,(F,) — ¢,(F)) < ¢,(F,) —
(c.(E), e,(Fy) — ¢(F)) and since #(A") <oco, there is a constant a’ such
that ¢,(F) < o’ for any E in B. Moreover, since every E in B, is of
cotype 75, ---,7i., and #(A") <oco, there is a constant e¢” such that for
any F in B, a” < ¢, (E) by virtue of Corollary 2.5.2. Therefore there
are an algebraic k-scheme P and a locally free sheaf F’ on X x P such
that B C {F’,|p € P(k)}. Since we may assume that r(F,) > r(F’,) for any
p € P, the set \J;Zi {qg € P(k)|F’, is of cotype i, - - -, 75_, and d(F'y, H) |r(F’,)
> a + B} is that of k-rational points of an open set @ of P by virtue
of the induction assumption. Put F"" = F’'|Q. Let S’ be the set {te
T(k)|Hom,, (F”,, F,) + 0 for some ¢qe¢ Q(k)}. For a teT(k), if F, is not
of cotype B, -+, Br_1, then F, D E with some E € B by virtue of Lemma
3.2. This implies that Hom,, (F",, F,) + 0 for a ¢qe Q(k) because B C
{F”,]a e Q(k)}. Thus we get that T(k) — S, < S’. Conversely, suppose
that there is a non-zero homomorphism p:F”, — F, for some q e Q(k)
and te T'(k). If we put £ = u(F”,), then E is torsion free with r(E)
< r(F,. Since F”, is of cotype 7i,---,75_;, we have that d(E, H)/r(E)
> d(F g, HY[s — UBso — B)/(S — w) > a + B — U(Bs_u — B /(S —U) > a + B,
because of the condition (4) on B. We know therefore that F, is not
of cotype B, -, B,.,, whence S’ C T(k) — S;;. Consequently S’ = T(k)
—8S. Now let us consider the locally free sheaf F= 0, (F) @ p*(F"Y)
on X X ;T X ,Q. For a k-rational point (¢, q) of T' X .Q, F'(t,q) =F,Q, F'"Y
= Homey (F"y, ). Hence H (X, F’(L,q)) = Hom,, (F",, F',). By virtue of
upper semi-continuity of h"(F’(t,q)), I'={xeT X ,Q|h(F,) #+ 0} is closed

https://doi.org/10.1017/50027763000016688 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016688

42 MASAKI MARUYAMA

in T X Q. Then z(I") is a constructible set of T, where r is the natural
projection of T x ,Q to T. By virtue of the above argument we know
that =(IN(k) = T(k) — Si;- On the other hand, #(I") is closed under
specializations by virtue of Lemma 3.3. Therefore z(I") is closed in T,
whence U =T — #(I') is open in T. Moreover U(k) = S,. q.e.d.

COROLLARY 3.4.1. Let F and T be the same as in Theorem 3.4. Put
So={teTk)|F, is locally free and semi-stable} and S = {te T(k)|F, is
locally free and stable}. Then S, and S are sets of k-rational points of
open sets of T.

§4. Moduli of stable vector bundles of rank 2 on an algebraic surface.

Our aim of this section is to construct coarse moduli schemes of
stable vector bundles of rank 2 on a non-singular projective surface.
We shall maintain the notation in the preceding two sections (X, H, h, K
ete.).

LEMMA 4.1. Let & be a family of vector bundles of rank 2 on X
with fixed Chern classes ¢, c,. Assume that for any E e %, (i) d(F, H)
— d(Kx,H) > 0, (i1) h'(E1n)) = hA(E () = 0 for any non-negative integer
n. Then there exists an integer m, such that h'(L(m)) < W(E(m))/2 for
any integer m > m,, EcF and for any invertible Ox-submodule L of E
with d(L,H) < d(E, H)/2.

Proof. 1) Assume that d(L,H) < 0. Let us consider the following
exact sequence;

00— L — L(m) —> L(m) K,, 0o —> 0,

where C is a non-singular member of |H®™"|. Since the genus of C is
(m*h + md(Kg, H))/2 + 1, we get R(L(m) Q,, 0;) < A(m) = max {m?h/2
+ m(d(L, H) — d(Kx, H)/2), (m*h + md(L, H))/2,0} by Riemann-Roch the-
orem and Cliford’s theorem. Moreover A%(L(m)) < h(L(m) ®,, O;) because
the assumption d(L, H) < 0 implies that A%L) = 0. Thus we have that
R(L(m)) < A(m). On the other hand, our assumption (ii) and Riemann-
Roch theorem imply

HEm)) [2 = mth )2 + m(d(e, H) — d(K, H))/2
+ (¢, — Kx,¢)/4 — ¢/2 + x(Ox)
= B(m) .
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Thus we obtain

h(E(m))/2 — h(L(m)) > min [m{d(c,, H)/2 — d(L, H)}
+ (¢, — Kx, ¢)/4 — &/2 + 7(0x), m{d(c,, H)
— d(Ky, H) — d(L, H)}/2 + (¢, — Ky, ¢) /4
— /2 + 1(Ox), B(m)] .

Since d(L,H) <0, d(¢;,, H) — d(Ky,H) >0 and since d(c,, H)/2 — d(L, H)
> 0, there exists an integer m, (independent of L and E) such that the
right hand side of the above inequality is positive for any m > m,,
whence h'(L(m)) < h*(E(m))/2 for any m > m,.

2) Assume that d(L,H) > 0. Let us consider the following exact
sequence ;

0 — L(m — 1) —> L(m) —> L(m) @, Op —> 0,

where D is a non-singular member of |H|. Since the genus g of D is
(h + d(Kx,H))/2 + 1, there exists a positive integer m, such that
deg (L(m) ®,, Op) > 29 — 1 for any L with d(L,H) >0 and for any
m > m, On the other hand, since d(c,, H)/2 > d(L, H), there exists an
integer m, such that d(L(m),H) < 0 for any m < m, and L, whence
h(L(m)) =0 for any m < m, and L. Moreover the assumption that
d(L, H) < d(c,, H)/2 implies that there is a constant ¢ such that A'(L(m)
®oy Op) < ¢ for any m; < m < m, and L. If m > m,, then hr'(L(m) &®,; Op)
=mh + d(L,H) — (h + d(Kx, H))/2 because L(m)®,, 0, is not special.
On the other hand, we have that h%(L(m)) < h%(L(m — 1)) + R(L(m) Q,, Op).
Thus for any m > m,,

RAL(mM)) < 33 myir UL @ox Op)
< (m, — my)e — m?h/2 — m,d(L, H) + m,d(Ky, H)/2
+ m*h/2 + m{d(L, H) — d(Kx, H)/2}
< (my — my)e + md(Kg, H)[2 + m’h |2
+ m{d(L, H) — d(Ky, H)/2}
= m*h/2 + m{d(L, H) — d(Kx,H)/2} + ¢,
where ¢ = (m, — my)c + m,d(Ky, H)/2. We get therefore
R(E(m))[2 — h*(L(m)) > m{d(c,, H) /2 — d(L, H)}
+ (¢, — Kx,¢)/4 — ¢,/2 + x(Ox) — ¢ .
Since d(c,, H)/2 — d(L, H) > 0, we obtain an integer m, > m, such that

https://doi.org/10.1017/50027763000016688 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016688

44 MASAKI MARUYAMA

the right hand side of the above inequality is positive for any m > m,

and L.
Now if one puts m, = max (m,,m,), then it satisfies the condition
in the lemma. g.e.d.

LEMMA 4.2. Let E be a vector bundle of rank r on a non-singular
projective variety Y. Assume that E is generated by its global sections.
Let s, ---,8,¢ H(Y,E) be independent at the generic point of Y. Then
the set Z ={yeY|(s; \--- A s)(y) = 0} is contained in Supp (D) for some
D ¢ e, (E)).

Proof. Since E is generated by its global sections, there are elements
Sy o058, of H(Y,E) such that s,--.,s, form a basis of F at the
generic point of Y. Obviously Z C {yeY|(s; A--A s,)(y) = 0} and hence
we may assume that ¢t =». Then s, \---A s, is a global section of the

linebundle /T\ E. On the other hand, s, A---A s, # 0 because s, --,8,
are independent at the generic point of Y. Thus s; A---/A s, defines a

divisor D in |¢,( /K E)|, which completes the proof because ¢,( /\ E) = ¢(F)
and {yeY|(s; A--- N 8)») = 0} = Supp (D). g.e.d.

Let B(e,c,) be the set of isomorphism classes of stable vector
bundles of rank 2 on a non-singular projective surface X with Chern
classes ¢, ¢, (modulo numerical equivalence class). As was shown (Corol-
lary 2.5.1), B(c, ¢,) is a bounded family. Hence there is an integer =,
such that B(c, ¢,)(n) = {E(n)|E € B(c, ¢,)} satisfies the conditions (i), (ii)
in Lemma 4.1 for any » > n,. Then by virtue of Lemma 4.1 we get
an integer m, such that for any m > m,, B(c, ¢,)(m) satisfies the follow-
ing conditions (a), (b);

a) For any K e B(c¢,c)(m),E is generated by its global sections
and RY(E) = h¥(E) = 0.

b) For any E e B(c,c)(m) and any invertible @r-submodule L of
E, (L) < h(E)/2.
Let us fix an integer m > m, Since h%E) = p is constant for any
FE ¢ B(e, ¢c,)(m) and since E is generated by its global sections, every
vector bundle in B(c,, ¢,)(m) is a quotient of ¢2». Meanwhile if F' is the
universal quotient sheaf on X X ,Qut.@»x, then Q = {ge Qut@p/rclaﬂ(ﬁ'q) =
2, cl(F’q(——m)) = ¢, cZ(F’q(—m)) = ¢,} is a union of a finite number of con-
nected components of Qut@»» and hence @ is projective over k. Ob-
viously B(c,, ¢;)(m) is contained in the set of k-rational points of @ (that
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is, for any E ¢ B(e,, ¢,)(m), there is a k-rational point ¢ of @ such that
the isomorphism class of F’q is E). Moreover Auty (09?) = GL(p, k)
naturally acts on @ and the center of GL(p, k) stabilizes every point of
Q. Thus G = PGL(p, k) = GL(p, k)/G,, acts on Q. Now R, = {ge Q]F’q
is locally free} is a G-stable open subset of @ and F :F’|Xkan is a
locally free Oy, z,-module of rank 2 ([12]) Proposition 6.1). Let n be an
ordered set of N distinct points z,, ---,zy on X. Then as in [12] we
obtain a morphism z(n) of R, to HY, where Hj, is the product of N-
copies of the Grassmann variety H), of 2-dimensional linear quotient
spaces of a p-dimensional linear space over k (i-th coordinate of z(1n)(q)
is the quotient vector space of HY(X, ¢%") represented by the fibre of F,
at x;, then (1) is a morphism because of the universality of Grassmann
variety). Clearly z(n) is a G-morphism with respect to the natural action
of G on HY,. If N is sufficiently large and if «,,-..,2y are in suf-
ciently general position, then -(n) is injective ([12] p 326). If R is the
subset of R, consisting of the points ¢ ¢ R, such that the canonical map
HY(X X kD), Oxy,x8) — HY(X X ,k(q), Fy) is bijective, then it is G-stable
open subset of E,. Moreover for q,,q,c R, F,, and F,, are isomorphic to
each other if and only if ¢, can be transformed to ¢, by the action of
G ([12] Proposition 6.2). The set {g ¢ R(k)|F, is a stable vector bundle}
is that of k-rational points of a G-stable open subset R, of R by virtue
of Corollary 3.4.1. Then the above argument implies that the set of
isomorphism classes of F,, qe Ry (k) is just B(c, ¢,)(m).

Now the proof of the following proposition is essentially same as
that in [12].

PROPOSITION 4.3. If N is sufficiently large and if x,,---,2y are in
sufficiently general position, then t(n)(R,) is contained in the set of prop-
erly stable points (see [8] and [12]) of HY, with respect to the canonical
action of G = PGL(p,k) on HY, and the linebundle which defines the
Pliicker coordinates. :

Proof. Take a k-rational point ¢ of R, and put £ =F,. Let F
be a proper linear subspace of V = H'X, ¢0%?) and let F; be the linear
subspace of E(x;) = E Q,, k(x;) generated by {s(x;,)|seF}. We set

y(F) = L r@)/IN

2
r(F) p’
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where r(F) (or, r(F;)) is the rank of F (or, F;, resp.) over k. What
we have to prove is that v(F) > 0 for any proper subspace F' of V (see
[13] p. 328 or [8] Proposition 4.3). Let L, be the @r-submodule of F
generated by F. Then there is a unique locally free @x-submodule L(F)
of E such that L(F) is isomorphic to L, on an open set U of X with
codim (X — U, X) > 2 by virtue of Lemma 2.2. Let us set
_ ) 2
v(I(F)) = @

Then u(L(F)) > 1/p* because r(F) < h'(I(F)) <p/2 or p according to
r(L(F)) =1 or 2 by virtue of the condition (b) on B(c, ¢,)(m). On the
other hand, there is a positive constant 1 such that for every positive
integer N, there exist i-independent O-cycles on X of degree N (see [9]
Lecture 20, Proposition 1 and note that if z,, ---,zy are in sufficiently
general position, then >, x; is A-independent). Take a i-independent
cycle > %, x; of degree N and put n = (x,, -- -, xy). Since r(I";) < r(L(F))
if and only if {s(x;)|se F} generates a vector subspace of FE(x;) with
rank less than »(L(F)), we know that »(F,) < r(L(F)) only if

1) in the case of r(I(F)) = 1, s(x;) = 0 for a fixed non-zero element
s of F,

2) in the case of 7(L(F)) = 2, (s; A\ s;)(x;) = 0 for fixed general two
elements s, s, of F (satisfying the condition of Lemma 4.2).
In both cases, r(F';) < v(L(F)) only if x; is contained in Supp (D) for some
fixed D e|c,(E)| by virtue of Lemma 4.2. Thus we know that [number
of z,/s with »(F,) < r(L(F))] < [number of z;’s contained in Supp (D)]
< 2d(D, H)? = 2d(c,, H)?. We get therefore

_ = QL @) — r(F))/N _ 22d(c, H)’
0 < w(L(F)) — u(F) F) < Noy

Thus if N > 2p®d(c,, H)?, then 0 < v(L(F)) — v(F) < 1/p* for any F. Hence
for any proper linear subspace F' of V, we get that v(F) > 0 because
v(I(F)) > 1/p" q.e.d.

Fix a k-rational point # of X and let i, be the closed immersion
Q — X X :Q defined by . Put G = i,*(F'), then we get an exact sequence;

0—>K—>08—>G—>0.

Let V be a 2-dimensional quotient vector space of H(X, #2?) and let
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v = (V4,....;,_,) be the Pliicker coordinates of V with respect to a system
of coordinates ey, - --,e, of H(X,¢%) which can be regarded as a free
basis of ¢2». For a point ¢ of Q and an affine open neighborhood U of
q in @, take a set of generator {k; = > k;;e;} of I'(U,K), then V is a
quotient space of the quotient vector space of H'(X, 02?) represented by
the fibre of F’,,te U at o if and only if ki A X viy ., .8, AN ey,
= 0 mod m,, thatis, 221 k;;(Dvy,,.... ,,...,s,-, = 0 for any 7 and any (p — 1)-
ple (4, -+ +,7,0) with 1 <j, <...<j,,, <p. Thus the set I', = {(q, V)
eQ X :H,,|V is a quotient space of the quotient vector space of
H(X, %) represented by the fibre of F'q at xz} is a closed subset of
Q X xH,, Similarly for n = (x,, -, 23), [, =1{(q, V), -+, Vi) e Q X HY,
|V, is a quotient space of the quotient vector space of H(X, %) represented
by the fibre of F‘q at x; for every 4} is also a closed subset of @ X ,HY,.

LEMMA 4.4. Let @, be the correspondence of Q to HY, defined by
the above I', witn n = (x, ---,2y). If N is sufficiently large and if
X, -+, %y are in sufficiently general position, then for any ge @ — R,
D.(q) N z(m)(Ry) = ¢.

Proof. Take some N and z,,---,xy. Let p, (or, p,) be the projec-
tion of I'y, n= (%, --,2y)) to Q@ (or, H}), resp.). For the diagonal
scheme 4 of Hj, X .Hj, we set B, = [(p, X p){(0, X p)7'(D}] N {R, X (Q
— Ry)}. Then since H}, is projective over k, (p, X p){(p, X p)"(4)} is
closed in @ x ,Q and hence B, is closed in B, X ,(Q — R)). It is suffi-
cient to prove that B, = ¢ if N is sufficiently large and if «,, - - -, zy are
in sufficiently general position. We claim

SUBLEMMA 4.5. Let S be a non-singular projective wvariety of
dimension n and let E,, E, be two distinct quotient coherent Og-modules
of a locally free Os-module E, with the same Chern classes ¢, -, ¢,
(numerical equivalence) and the same rank r. If E, is locally free, then
there exists a non-empty open set U of S such that for any point s of
U,E\(s) = E, ®,, k(s) and E,(s) = E,®,, k(s) are different to each other
as quotient vector spaces of E\(s) = E, &, k(s) and that E, is locally
free on U.

Proof. Since S is reduced, it is clear that there exists an open set
U, on which E, is locally free. Let us consider Y = P(E)), W, = P(E)
and W, = P(F,), where W, can be regarded as closed subschemes of Y.
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If F is the scheme theoretic intersection of W,|,, and W,|y, in Y|y,
then Z = {se U,|E\(s) = E,(s) as quotient vector spaces of E(s)} is just
{seU,|dim F; =r — 1}. Thus Z is closed in U, by virtue of a theorem
of Chevalley (E. G. A. Ch. IV, 13.1.3). Hence we have only to prove
that Z == U,. Assume that Z = U,, then W,|,, is contained in W,|,, as
sets. On the other hand, W, is reduced and irreducible because E, is
locally free. Thus W, is contained in W, as schemes. Therefore if ¢0,(1)
is the tautological linebundle of E, and if = is the natural projection of
of Y to X, then we get homomorphisms «;: 7, (0y(1) = E; — 7, (0y(1)
oy Ow) = Eyy 0,0 By — 1,0y Q,, Oy) = E, and g: E,/ — E, with fa, = ;.
On the other hand, there is a natural homomorphism y: E, — E,/ (E. G.
A.Ch.11,38.38). If¢,:E,—E, (1=1,2) are given homomorphisms, then
clearly 8, = «, and 76, = @,. Since Byd, = fa, = o, = 9, is surjective, we
know

O1=ay

E,—— F,

B 7

g/
E,

that ¢ = fy is surjective. If T is the torsion part of F,, then T = ker (¢)

because E, is torsion free, r(E) = r(¥,) and ¢ is surjective. Thus we
get the following exact sequence;

0 T E,—>E, 0.

This sequence provides the equality y(¥,(a)) = y(E.(@) + x(T(@)) for every
integer a. On the other hand, our assumption that c,(¥)) = ¢;(F,) = ¢;
(numerical equivalence) implies that for every a, x(E,(a)) = y(F.(@)). We
have therefore that for every a,y(T(a)) =0. Take an integer b such
that AW (T()) =0 (1 <i<n) and that T(b) is generated by its global
sections. Then x(7(d)) = 0 implies that HYS, T(d)) = 0 and hence T(b)
= 0. Therefore ¢ is an isomorphism. Moreover since ¢d, =4, E, is
isomorphic to E, as quotient @g-modules of E,, which is a contradiction.
Thus we get Z = U,. Then U = U, — Z is one of the desired open sets.

q.e.d.

Let us come back to the proof of Lemma 4.4. Assume that B, + ¢
and let B,®, ..., B, be irreducible components of B,. Take a k-rational
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point (q;, q¢}) in each B,® and take an open set U, of X satisfying the
conditions in Sublemma 4.5 for S = X, E, = 0%%, E, = F’qi and E, = F'qi,
(note that F',, # F',, because I, is locally free but F,, is not so and
hence there exists such a U,;). If y is a k-rational point of U = M, U,,
then F’qi(y) + F’qt,(y) as quotient vector spaces of HYX, ¢#%®) for every i.
Now put n' = (%, -+, 2Zy,%). Then the above result implies that B,.
contains none of (q,,q), ---,(q;, q.), whence it does none of B,®, ..., B,®.
Thus dim B,, < dim B,. Applying the above argument repeatedly we get
Y1+ -+ Yy Such that for n, = (@, -+, Xy, ¥y + - +» Yn-), dim B,, = —1, that
is, B,, = ¢. g.e.d.

Our present aim is to prove that z(n) is an immersion and there is
a G-stable open set U, of HY, such that z(n)(R,) is closed in U, for
n=(x,---,2y) with a sufficiently large N and z, ---, 2y in sufficiently
general position.

LEMMA 4.6. If N 1is sufficiently large and if x,---,2y are in
sufficiently general position, then there exist G-stable open subschemes
U, U and U, of HY, such that for n = (x;, - - -, Ty),

) cR) < U, (R < U and () (R, < U,

ii) the morphisms t()|z,: R — Uy, e()|p: R — U and «(): B, — U,
are proper.

Proof. Take n such that z(n) is an injective G-morphism and the
conclusion of Lemma 4.4 holds. Let f:R,— R, X;Hj, be the graph
morphism of z(n). Then there exists a closed subscheme I" of Q X, HJY,
such that f induces an open immersion f’:R,— ' and that the base
space |I'| of ' is contained in I",. Since the projection p,: I' — HY, is
proper, U, = HY, — p,(I' N (@ — Ry X, HY,) is an open subscheme of
HY,. Moreover U, is G-stable because G acts naturally on I", I" N ((Q
— R) X, HY,) is a G-stable closed subset of I" and because p, is a G-
morphism. Lemma 4.4 implies that f/(B) C 'y, =1 X ay, Uy, whence
Sf'(Ry) = T'y,. Thus «(n) =p,p, - f': B, — U, is proper because p, , is
proper and f':R,— I'y, is an isomorphism. Put U, = HY, — p,(I" N ((Q
—R) X HY)), U=HY, —p(I' N (Q — R) X, HY,)), then by a similar
argument as above we know that they satisfy the conditions (1), (ii)
because z(n) is injective. q.e.d.

PROPOSITION 4.7. If N is sufficiently large and if x,, -+, %y are in
sufficiently general position, then =(nt) is an immersion for n = (%, -+, Ty).
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Proof. Take n = (x,, - --,2y) such that the conclusion of Lemma 4.6
holds for n. Then there exists a G-stable open subscheme U, of HJ,
such that :(W)(R,) € U, and z(n): Ry — U, is proper. Thus z(n),(0f,) is
a coherent ¢y -module. Let ¢ be a k-rational point of R, and let ¢ = z(1)(q).
Since z(n) is injective, we get that (t(0)(0Ug)); = Oryq- Og, is therefore
a finite 0y, ,-module. Thus we have only to show that the dc(n), of
Tr,qto Ty¥,, is injective, where T, , (or, Ty¥ ) is the Zariski tangent
space of R, at q (or, HY, at ¢, resp.). For if dr(n), is injective, that
is, m,/m} — m,/m? is surjective, then by virtue of Nakayama’s lemma
on Oy, , we know that m,0z,, = m,. Then the facts that ¢y ,/m =
Oro,a/Mq = k and that O, , is a finite Oy, ,-module imply that 0y, , — Og,
is surjective by Nakayama’s lemma on 0@y,,. Now let us recall the
results of Grothendieck on the Zarigki tangent space of R, at ¢q. Take
the infinitesimal scheme I = Spec (kle]),s* =0 and consider T(q) = {f ¢
Hom, (I, R)|f-i = q}, where ¢ is the k-rational point of I. Then T(g)
can be naturally identified with T ,. For a given feT(q) we get a
locally free quotient Oy,,,-module E; of 0% such that for the natural
morphism ¢: X - X X1, g*E,;) = E,/¢E, = F'q. Let us consider the
following exact commutative diagram;

B

0—>Kq—a>(0§1’ 5 F,—>0

1

03 5 B, —5 0.

For a special element f, = q¢-p of T(¢) (p is the structure morphism I
— Spec (k)), we get

B

o H>F, —0

<] 22

0X><k1®p? Efo-—_) O .
o

Pick an element u of K, then there is an element v of 0y, 9” with
a(u) = z(v). Since z;-B,(v) = n;,-B;,v) = f-a(w) = 0, B,(v) and B,(v) can
be written in the forms ew and ew, respectively with some we E;, w,
e E;,. Hence we obtain an element w’ = z,(w) — =,(w,) of F, from u.

It is easy to see that w’ is uniquely determined by u (i.e. independent

6
of the choice of v) and that the map urﬁ)» w’ is an Ox-homomorphism.
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By this way we get a map 0: Ty, , = T(q) 3 f —> 6(f) € Hom,, (K,, F').
6 is an isomorphism as k-vector spaces (see [2] Proposition 5.1, Corollary
5.3). Let 0 w., ko®r Vi, 0 be the exact sequence of
vector spaces corresponding to ¢;e H, (k) with ¢ = (¢, ---,ty), then we
get the following exact commutative diagram;

0—s W, —>k® 5V, — >0

T T T residue at the point x; ¢ X (k).
0 K, 0% F, > 0

By a similar reason as above we know that T,,,, is isomorphic to
Hom, (W,,,V,). Thus for an feHom,, (K, F,) = Tg,, we obtain an
element f(z;) of Hom, (W,,V,) = TI'y,,,, by taking the residue class of
S at z;. The map f+— (f(x), -, f(xy) of Tg,, to Ty¥,, is just
de(n),. Then put Z(n) = {geR,|dc(n), is not injective} and Z(n) =
Supp (coker (07, — t(1)4(Or,)), then Z(n) = c(n)*(Z(n)") because dc(n), is
injective if and only if 07, , — (z(0).(0g,)), is surjective with ¢ = z(n)(q)
as was shown in the first part of this proof. Since Z(n)’ is closed in
HY,, so is Z(n) in R,. For irreducible components Z, ---,Z, of Z(n),
take a k-rational point z; of each Z,. Let S,, C Hom,, (Kzlyﬁzl) be the
kernel of the map dz(n),,. Since for a non-zero element fe¢S,,, the set
{xe X| f(x) = 0} is closed, there exists a k-rational point ¥, of X such
that f(y) # 0. Then for n, = (%, ---, 2y, %), the kernel S,; of dz(n),,
is a proper subspace of S,,. By induction on dim (ker (dz(n),)) we get
a sequence of k-rational points ¥,, - - -, ¥,, such that for n,, = (%,, - - -, Ty, ¥,
-, Yp), dr(n,),, is injective. For the kernel S,, of dec(n,),, we obtain
a sequence of k-rational points ¥, ,,, - - -, ¥,, such that dc(n,,),, is injective
with n,, = @, -+ -, &y, Y1, - - -, ¥,,) by the same argument. Applying this
argument to all z,’s repeatedly we get n’ such that dc(n’),, is injective

for any 4. Since Z(n’) contains none of z,, - - -, 2,,, we know that dim Z(n’)
< dim Z(n). By induction on the dimension of Z(n) we get i such that
Z(i) = ¢. g.e.d.

Let (HY,), (or, (HY,?) be the set of points with 0-dimensional sta-
bilizer group (or, properly stable points ([14] Definition 1.1), resp.) of
HY, with respect to the action of PGL(p) and the linebundle which
defines the Pliicker coordinates. Then they are PGL(p)-stable open subsets
of HY, ([8] p. 10, [14] Theorem 3.1). By virtue of Proposition 4.3 and
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Proposition 4.7 we may assume that R, (or, R,) is a subscheme of HZ,
(or, (HY,);, resp.). Hence from now on we shall disregard z(n).

The following lemma is a general remark which seems well-known.

LEMMA 4.8. Let us consider the canonical action ¢ of PGL(p) on
(HY ). Then o is a free action ([8] Definition 0.8, (iv)).

Proof. Put = (6,p,): PGL(p) X HY, — HY, X, HY,, where ¢ is the
canonical action of PGL(p) on HJ, and p, is the projection PGL(p)
Xy Hy,— Hy,. We have to prove that , = (¢, p,) : PGL(p) X, (HY )5 —
(HY )i X x (HY )5 is a closed immersion. Take k-rational points g,t =
(¢, -+, ty) of PGL(p),(HY,), respectively. Then t is represented by
N-ple of r X p matrices M(t) = (M), ---, My(t)) with rank (M%) = r
(M%) is not unique) and the action of g = (g9;;) is given by the multi-
plication of matrices; (M), -, My@) —> (M,(£)(9:y), - - -» Mx(t)(94y))-
Let V be the vector space over k which consists of row vectors with
length p, let a{®, - - -, a!? be the row vectors of M,(t) and let gal®, .- ., gat®
be those of M/(t)(9;;). Let e,---,e,,,---,€, be a basis of V such that
e N Ney, ANaP AN -ANa®£0and e A---Aey_, Aga® N---A gat®
#0forany1 < ¢ < N. Put U, = {seHj,|s is represented by a matrix
with row vectors b, ---,b, (b;eV X, k(s)) such that e, A---ANe,.,\Db
A--Ab,#0}. Then U, is an affine open neighborhood of ¢ and U,

= Spec (k[u®]), 1 <i<Lr, 1 <j<p—r, thatis, U, & Ar?=n . In fact
if se U, is represented by row vectors b, ---,b, and if b; = > 2., a;ey,
then the » X (p — r) matrix B(s)7!A(s) defines a point s’ in A;?-" and
FO>s) =, where B(s) =(a;;;1<i<r, p—r+1<j<p) and A(s)
= (a5} 1 <i1<r, 1<j<p—17) (note that det B(s) = 0 because of e
AN Ney, ANbyo-- A b, = (det B(s))e; \--- N e, = 0). Similarly we get
an affine open neighborhood V, of ¢(g,t) which is also isomorphic to
A7 = 8pec (k[v)D), 1 <i<7n1<j<p—7r. PutU=V,Xe - XxVy
XU Xy XUy, then U is an affine open neighborhood of (a(g,t),t)
in HY, X, HY,. Let x = (x;;) be the system of homogeneous coordinates
of PGL(p) (PGL(p) is the affine open set of P®*-? defined by det (x;;) # 0).
For u®eU,,xe PGL(p),o(x,u?®) is contained in V, if and only if
det (B(o(x, u®)) = h(x,u®) #+0. Thus (U) =W is the affine open
neighborhood of (¢,%) in PGL(p) X U, X+ X Uy defined by h,(z,u®)
+ 0, -, hy(z,u?™) 0. We may assume that g, * 0 without loss of
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any generality. Take the affine open neighborhood W’ of (g,t) in W
defined by x,, = 0 and the system of inhomogeneous coordinates (w;;), w;;
=1 of PGL(p). Let us put

uﬁ)’ . ',uig—n 1’ 0, t '70)0

@ uéf)’ ] uég—n 0, 1’ O’ ] 0
CYu,w) = (w5

u;«?, . ',uy,)p—-noy 0’ °t "0,1

and write C9(u, w) = (C¥, C¥), where C{® is an » X (p — r) matrix and
C{¥ is an r X r matrix. Then for (C{)"'C{¥ = (d{¥(u,w)), the map

o: I'(U, 0y) — I'(W’,0y) induced by + is given by o®{?) = d{?(u, w) and
o(u?) = u{®. Consider the following equation;

CPy\ (CP 0\ (@
() =l |
o 0 o)\
The equation ¢(+) obtained from (x) by replacing »{? by ¢(v{?) is a linear
equation with respect to (w;;) over the ring ¢(l'(U, @) and the assump-
tion that ¢ is contained in (HY,),(k) implies that the solution of the
equation (%) is unique at the point (5(g,?),t). Thus there is a (p> — 1)
X (p* — 1) submatrix L of the matrix of the linear equation (x) such
that for det L = F(u,v), F(u,v) is not zero at (6(g,t),t). Let U’ be the
affine open neighborhood of (6(g,?),t) in U defined by F(u,v) = 0. Then
we get that w;; = ¢'(F(u,v)) with some F,(u,v)el'(U,0;) and
o (U, 0y) — I'(y~Y(U"), Oy) induced by . Let U, be the affine open
neighborhood of (é(g,t),t) in U defined by

F(u,v) =0, H,(u,v) = h(F;(u,v),u?) £ 0,
D(u,v) = det (F;,(u,v)) 0 .

Then W, = ¢ '(U,) is an affine open neighborhood of (g,%) in W. More-
over, since F(u,v) is invertible on U,, a fortiori so is ¢(F(u,v)) on W,
we know that z,, = 0 on W, (if 2, = 0 at some point in W,, then the
constant terms of the equation (%) is zero at that point and hence we
have no solusions) and 4 '(y) is one point for any k-rational point
Y = (Y, ¥,) of ¥(W,). Thus W, is contained in W’ N (PGL(p) X, (HY,),)
because dim ~'(y) = dimension of the stabilizer group of ¥,. Now we
get
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R, = I'(Uy, Oy,) = klu, v, F(u, v)™", H (u, v)™, D(u, v)"']
RZ = F(Wo: @Wo) = k[’“, w, SD(F(uy 'v))_ly ?(Hl(u, 'U))_I, SD(D(,M’ v))—l] .

As was shown in the above argument, if ¢”: R, — R, is the map induced
by +, then w,u{? are contained in the image of ¢”, whence ¢” is
surjective. Thus we get the following diagram;

W, = Spec (R,) W U, = Spec(R)

E

Uy 0 ((HF )y X1 (Hy o)

Since |y, is a closed immersion and since the family of open sets such
as U, covers Y(PGL(p) Xy (Hp ),V is an immersion on PGL(p) X, (HY,),.
Hence v, is also an immersion because (HY,); is an open subscheme of
(H% ). On the other hand, we know that v, is a proper morphism by
virtue of Proposition 3.2 of [14]. 4+, is therefore a closed immersion.

q.e.d.

The following lemma is an essential part in the proof of our main
theorem.

LEMMA 4.9. Let R, and G be as above. Then there exist a quasi-
projective k-scheme U and o morphism ¢: R, — U such that (U,¢$) is a
geometric quotient with respect to the above action ¢ of G on R,. More-
over ¢: R, — U is a principal fibre bundle with group G ([8] Proposition
0.9), i particular, ¢ is faithfully flat.

Proof.” Since HY, is projective and normal, (HY,); has a geometric
quotient (V,+) in the sense of Seshadri® ([14] Theorem 7.2). Moreover
V is quasi-projective. Since V is normal and since + is equidimensional
(dim G = dim ¥"'(v) for every ve V),y is universally open, a fortiori
universally submersive by a criterion of Chevalley (E. G. A. Ch. IV, 14.4.4).
Then +: (Hy )i — V is a principal fibre bundle with group G ([8] Prop-
osition 0.9). Now if we take n = (%, - - -, zy) for which Lemma 4.6 and
Proposition 4.7 hold, then there exists a G-stable open set U, of HJ,

3) Proposition 7.1 of [8], which made our proof of this lemma clear, was noticed
the author by Professor T. Oda.

4) Seshadri assumed, in his definition of geometric quotients, only submersive.
On the other hand, D. Mumford did “universally” submersive.
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in which R, is a closed subscheme. We may assume that U, is contained
in (HY); because so is B,. Then y(U,) = V, is an open subscheme and
Ply,: Us — Vs is a principal fibre bundle with group G. In this situation
we can apply Proposition 7.1 of [8] to S=Spec(k), X=R,, Y =U,,
Q =7V, = =1|y, and to L = 0z, and we get the required scheme U = P.

q.e.d.

Now we come to our main theorem of this section which implies
the existence of coarse moduli schemes of stable vector bundles of rank
2 on a non-singular projective surface.

THEOREM 4.10. Let X be a non-singular projective surface over k
and let B(c,c,) be the set of isomorphism classes of stable vector bundles
on X (with respect to a fixed very ample linebundle H) of rank 2 with
fixed Chern classes c,,c, (numerical equivalence). Then there exists
quast-projective algebraic k-scheme M(c,, c,) satisfying the following con-
ditions ;

(i) There exists a bijective map ¢ of Blcy, ¢,) to M(cy, c)(k).

(ii) Given an algebraic k-scheme T and a locally free Oy, r-module
E such that E, is contained in B(c,c,) for any te T(k), there exists a
morphism fz of T to M(c,, ¢;) with fz(t) = ¢(E,) for any te T(k). More-
over, the correspondence E —> [z is functorial, that is, for a morphism
9: 1" — T of algebraic k-schemes, fg-9 = [arxam-

(iil) If on algebraic k-scheme V and a maep ¢': B(c,c,) — V(k)
satisfy the above condition (it), then there exists a unique morphism
Vi M(e,e) >V with ¥(k)-¢ = ¢y - fzg = fu, where fy. is the morphism
given by the condition (it) for V.

Proof. We may assume that B(c, ¢, satisfies the conditions (a), (b)
before Proposition 4.3 for any m > 0 because the map F r—> F(m) of
B(e,, ¢;) to B(ey, ¢,)(m) is bijective and because if E is a locally free Oy -
module such that FE,cB(e,c¢) for any tecT(k), then for FE(m)
=F @ p,*(H®™), E(m), is contained in B(c, ¢,)(m) for any te T(k), where
p, is the projection X X, T — T. Then we obtain a subscheme R, of
HY,, a locally free Ox.z-module F and a surjective homomorphism
a: Ox 22 — F. Moreover, F has the following universal property; For
any algebraic k-scheme T and any surjective homomorphism of locally
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free Oy, ,-modules 8: ¢%%, — E such that E, e B(c, ¢,) and g, induces an
isomorphism H(X, 09" = H(X, E,) for any t ¢ T(k), there exists a unique
morphism h,: T — B, such that (1y X hp)*(F) = E and (1x X hp)*(e) = 8.
Now R, has a natural action ¢ of G = PGL(p) and by virtue of Lemma
4.9 there exists a geometric quotient (M(c,,c,),n) of R, by G. We shall
show that M(ec, c,) is the desired algebraic k-scheme. As was shown in
Lemma 4.9, M(c,, ¢,) is an algebraic k-scheme. M(c, ¢, is quasi-projec-
tive. Since the set of orbits of k-rational points of R, is in bijective
correspondence with B(c,, ¢,) and since M(c, ¢,) is a geometric quotient of
R, by G, we get a bijective map ¢ of B(c,¢,) to M(c, c)(k). Assume
that T and E satisfy the assumptions of (ii). Let p, be the projection
of X X;T to T and let (p)(E) = E’. Since p, is proper and flat and since
H'(X ®, k), E,) = 0 for any t ¢ T by our assumption (a) put on B(c, c,),
the natural map 7, : B’ ®,, k(t) — H'(X ®, k(t), E,) is an isomorphism for any
te T ([10] p. 53, Corollary 3) and E’ is a coherent ¢,-module. For a given
te T(k), take an affine open neighborhood W, and put M = I'(W,, E’).
Let m,, --.,m, be elements of M such that their images by M — E’

R, k(t) —> HY(X,E,) form a basis of HX,E,. Then by Nakayama’s
Tt

lemma m,, ---,m, generate £’ at £. Thus there is an affine open neigh-
borhood W of t such that the map 09 — E’|, given by (a, ---,a,)
~ >2_ a;m; is surjective. Then a natural map By : 08w = p.*(O)
— 0, *(E'|w) — E|xxw is surjective because E, is generated by its global
sections for any ge T (assumption (a)) and the map H'(X ®; k(9), 0%z
— HY(X ®, k(), E,) induced by By is bijective. Thus by the universal
property of (R, F) mentioned above we get a unique morphism &, (m,,
cvo,my) of W oto R, with (1 X hyp(my, - -, m))*(F) = Elyp and (Ix
X hy(my, - -, mp))*(@) = By. Put fy = z-hyim,, ---,m,). Then we claim
that f, is independent of the choice of m,, ---,m,. For let m{, ..., m]
be another generators of E’|,, then we get that m; = >32_, mia;; with
some a;; € I'(W, 0y). Then at any point ¢ of W, det (a;;) mod (m,) is not
zero. Thus det (a;;) is an invertible element of I'(W, @), whence (a;;)
is contained in GL(p, '(W,0y)). Hence we get a W-valued point a of
PGL(p,k). Then by the definition of the action of G on R, we know
that o(W)(a, hy(mi, - - -, m})) = hy(m,, - -+, m,) as W-valued points of R,.
On the other hand, by the definition of a geometric quotient the follow-
ing diagram is commutative;
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a(W)

Hom, (W, &) x Hom, (W, R,) — Hom, (W, R,)
lpz(W) ln(W)
Hom, (W, R,) "W, Hom, (W, M(c,, ¢y)) -

We get therefore that z-hy(mi, ---,m}) = @W)-p,(W))(a, hy(mi, - - -, m}))
= (@(W)-a(W))(a, hyy(mi, - - - ,m3) = a(W)(hy (M, - -+, Mp)) =7 Ry (M, - - -, M),
which proves our claim. Let us cover T by a family of such open sets
{W,} as W above. Then there exists a family of morphisms f, of W,
to M(c, ¢,). The above claim implies that f;, coincides with f, on W,
N W,, whence we obtain a morphism f; of T to M(c,c,) such that
Selw, = fi. It is clear that fz(f) = o(E,) for any te T(k). Next assume
that a morphism of algebraic k-schemes g: 7’ — T is given. For a k-
rational point ¢’ of 7', take an affine open neighborhood W of ¢g(¢’) and
my, - -+, m, as above. We have a natural map d: g*(E’) — (p),(1x X 9)*(E)
= E”, where p;, is the projection X X, T’ — T’. 4(q¢) is surjective for
any ¢’ e T'(k) because for ¢ = g(q’), the map E’ ®,, k(q) = g*(E’) ®,, k(q’)

2D B ®,, k(@) 3 HX, (g X 9)*E)y) = H(X, By is equal to 7, and 7,

is an isomorphism. Thus 6 is surjective, whence d(g*(m,), - - -, 5(g*(m,))
generate E” on g~'(W). Hence if gy : 092 — E|xxw is the homomorphism
defined by m,, - - -, m,, then (1x X 9)*(Bw) : Oxxg-10n®" — Lz X 9*(E)|xxo-107)
is that defined by d(g*(m,), ---,d(g*(m,)). Then we know that hy(m,,
. ')mp)'g = hg~l(W)(5(g*(ml))7 . ‘;5(9*(7”1;)))» that is, Jw-g = fg—l(W)- By
the construction of fr we get that fz 9 = furxp*w- In order to prove
(iii) let us consider the following diagram;

GL(, k) X R, 2> G X, R, —> R,

II I

G xR, R, I5v.
Let e, - -, e, be the fixed basis of 0%%,, and let e, ---,e, be the free
basis of 0% .z, corresponding to e, ---,e,. The map e} — 32, e/g;; of

O%% . pxr, to itself induces an automorphism 6 of 09%e«xr, and 6 does an
isomorphism of (p,-p)*(F) to (c-p)*(F). Thus we get that fr-c-p
= ooy = Fpppray = o Dr-p.  Since p is an epimorphism, we obtain
that fp .6 = fr-p,. Since M(c,c,) is a geometric quotient (a fortiori
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categorical quotient) of R, by G, there exists a unique morphism
v M(ey,e) -V with ¥ fr = fr. It is clear that V(k)-¢o = ¢’. Assume
that an algebraic k-scheme T and a locally free 0z, r-module E satisfy-
ing the assumptions of (ii) are given. Let us cover T by such a family
of open sets {W,} as in the above proof of (ii). Then there exists a
family of morphisms 4, of W, to E; such that »*(F) = E|,,. Then by
the functoriality of f; and f; we get

‘J"fEIW/z = ‘If‘fh‘}(r) = ‘If'fﬁ"hz =f1?"hx = fzlewz .
Thus we obtain that - fz = fz. q.e.d.

Remark 4.12. Let T be an algebraic k-scheme. Let Z#(T) be the
set of isomorphism classes of locally free Oy, r-modules E of rank 7
such that for any te T(k), E, is a stable vector bundle of rank » with
Chern classes ¢, c¢,. Consider an equivalence relation on #(T);E is
equivalent to E’ if and only if F = E' @ p,*(L) for some linebundle L on
T. Let v #Bx(r,c,c)T) be the quotient set of F(T) by this equivalence
relation. For a morphism of algebraic k-schemes f:7T'— T, if E is
contained in F(T), then f*(¥) is a member of Z#(T") and if E and E’
are equivalent to each other, then so are f*(F) and f*(&’). Thus we
get amap f*: ¥ Bx(r, ¢, )(T)— V" B (1, ¢, ¢,)(T’). By this way v %#(r, ¢, ¢,)
is a contravariant functor from the category of algebraic k-schemes to
the category of sets. Then the above theorem means that M(c,c,) is a
coarse moduli scheme ([8] Definition 5.6) of 7' %4(2,c¢,¢,) (note that fj

=7 E®P2*(L))‘

Remark 4.12. Consider the following property (*) of a vector
bundle E on a non-singular projective surface X;

(x) If a locally free 0x-submodule F' of FE is generated by its global
sections outside a finite set of points of X, then

RE) [r(F) < W(E)[r(E) .

Let B(r,c,c,) be the set of isomorphism classes of stable vector bundles

of rank » on X with Chern classes ¢, ¢,, Suppose the following is true;
(xx) There exists an integer m, such that for any m > m, and any

FE e B(r, ¢, ¢;), E(m) possesses the property (x). Then replacing Lemma

4.1 by (x%), we can eliminate the assumption “rank 2” in Theorem 4.10.
The following is a corollary to the proof of Theorem 4.10.
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COROLLARY 4.10.1. M(c,, ¢,) ts non-singular (normal or Cohen-Macaulay)
if and only if so is R;.

Proof. Since n: R, — M(c,, ¢,) is a principal fibre bundle with group
PGL(p), = is a smooth morphism. Then our assertion is clear by virtue
of E.G.A. Ch1V, 6.3.4, 6.5.2 and 6.5.4. q.e.d.

Remark 4.13. If X is a non-singular projective curve, then the
scheme corresponding to our R, is non-singular ([12] p. 324). Thus by
the same reason as above we can prove that the coarse moduli schemes
of stable vector bundles on X are nonsingular (see [12] and the remark
after Theorem 5 of [13]).

In general M(c,, c,) is not necessary non-singular. In fact,

EXAMPLE 4.14. Let us construct such an example as M(c,c,) has
singularities.

We shall begin with some general facts. Let E be a simple vector
bundle of rank » on a non-singular projective surface X, let E be
generated by its global sections and let N = r°(E). Then we get an
exact sequence

0 F o E 0

with some locally free 0y-module F. By tensoring E the dual sequence
of the above, we get

*) 0—EQ, EYV—>E®N —FEQ, FV—s>0.
Assume that r'(E) = h%(E) = 0. Then we get the following exact sequence

0—HX,EQ,, EV) — H(X,E)®" — H'X,E ®,, FV)
IR
k —> H(X,E®,, EV) —> 0

and H'(X,E ®,, FV) 5 H(X,E ®,, EV). Let x be the k-rational point of
Q = Qut,®~, which corresponds to the above surjective homomorphism
0%" — E. Then the Zariski tangent space Ty, of @ at x is isomorphic
to H'(X,E ®,, FV) (see the proof of Proposition 4.7). Now the above
exact sequence implies

1) dim Ty, = (E ®, FV) = I(E ®,, EY) + N> — 1.
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On the other hand, by virtue of Riemann-Roch theorem

2) WE QL EY) =1+ PE Q,, EV) + (r — 1)(c,(E), c,(E)) — 2rc,(E)
+ r’¢(0x) .

Thus in order to compute r'(F ®,, F'V) we have only to do h(E ®,, EV)
= h'(F @,, BV ®,, Kx), where Ky is the canonical bundle on X. Next
assume in addition to the above that rank of E is 2.

Then we get a canonical exact sequence

0—> 0y —>E®, EY —> S(E) ®,, det (BV) — 0,
n
gndgx (E)

where 0y is contained in &nd,, () as scalar multiplications. Moreover
if the characteristic p of k is not equal to 2, then we get that (Tr/2)-¢
= id, where Tr is the trace map of &nd,, (F) to 0x. The above sequence
therefore splits under the assumption p = 2. Let Op /(1) be the tauto-
logical linebundle of E, then S*E) = 7,(0p 4 (2)), where = is the natural
projection of P(E) to X. Thus

3) W(E @, EY®,, Ky) =9, + K (S(E) ®,, det (V) Q,, Kx)
= pg + ho(@P(E)(Z) ®0P(E) ﬂ*(det (E\/) ®0X KX))

under the assumption that p # 2 or h'(Ky) = 0.

Now let us construct an irreducible algebraic k-scheme U and a
vector bundle F' of rank 2 on X X, U such that A(F,®,, FY ®,, Kx), %
e U(k) is not constant and that F', is stable for any xze U(k). Note
first of all that M = M(c,(F,), ¢,(F';)) (¢ U(k)) has singularities. For by
virtue of Theorem 4.10, (ii) there exists a morphism f»: U — M such
that fr(x) = o(F;) for any z e U(k). We may assume that for all m > 0,
B(e,(F), ¢,(F,))(m) satisfies the conditions (a) and (b) before Proposition
4.3 (see remarks at the beginning of the proof of Theorem 4.10). Then
we get a principal fibre bundle +: R, - M with group G = PGL(N)
(N = h(F';)). The above argument shows that for xeU(k),yec
v (fr@)(k), Tg,,, = H(X,F"V &®,, F;), where F’ is the kernel of a canon-
ical homomorphism 0%9¥ — F,. Thus dim Ty ;. = dim T, , — dim G
=REFY Qe Fy) — N + 1 = h({F,Q,, FY) by formula (1). Since A'F,
Ry FY Roy Kx) = W(F, ®,, F'Y) is not constant, so is r'(F, ®,, FY) by
formula (2). Thus dim Ty ;. is not constant. On the other hand,
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since U is irreducible, so is f#(U), whence f(U) is contained in a
conected component of M. We know therefore that M has singularities.

To construct (U, F), assume that (i) Pic(X) = Z as a group, (ii) the
complete linear system |Ky| of the canonical bundle Ky of X has no
base points, (iii) there exists a non-singular irreducible curve T on X
with (KX, T) > (T,T) + 5, where K is a member of |Ky|. Pick a curve
T of genus ¢ on X satisfying the condition (iii). Let D be a divisor on
T with deg D = (K, T) = t. Take a regular vector bundle F in R¥(X, T, D)
([6] p. 109, p. 112). Let E be defined by Y and let Y’ be the center of
(elm%)-!. We have to compute the dimension of the linear system ¥ =
|Op(2)(2) ®opyr*(det (BV) ®,, Kx)|. Pick a member Z’ of L and write
Z=A" + ar\(T) (A" 27 (D)a>0),A"z7(T) =nY + B B pY)
Let A be the proper transform of A’ by elm$., H be the divisor (0) x X
of P! X, X, n, be the projection P! X, X — X and let C = H-z;(T). Then
by virtue of Appendix II we get the following cases;

I) The case where n=0: Then A~2H + 1 — a)nz"(T) + 7 Y(K)
and A.-7;}(T) ©2Y. Thus A-7;(T)~2C + (1 — a)z)7'(T-T) + (z)7}(K-T)
and A.z;Y(T) = 2Y + (z)7'(B)~2C + (z)7'(2D + B) with some positive
divisor B on T. Hence we have that 2D — K. T~(Q — a)(T-T) — B.
Comparing the degrees of both sides, we get that t =0 — &)(T,T)
—degB< (1 — a)(T,T), which is impossible because of the assumptions
(i) and (iii).

II) The case where n = 1: Then A ~2H — ary'(T) + n;3(K), A -7y (T
DYand A-r;¥(T) p2Y. Thus A-z;(T) ~ 2C — a(z)7'(T-T) + (z)7;«(K-T)
and A-z;'(T)~Y + C + (7)7'(B)~2C + (z)7'(D + B) with some positive
divisor B on T. Hence we have that D — K- T~ —a(T-T) — B. Since
the degree of the left hand side is zero, we know that B = 0 and « = 0.
Thus A-z;}(T) = Y + C’ with some C’ =P X T,P c P, and A is a member
of |2H + #ny*(K)|. Therefore choosing a suitable system of homogeneous
coordinates X,, X, of P%, C’ is defined by X, = 0 with the restriction X,
of X; to P, and A is defined by s,X; + 8,X,X; + 8X? =0 with some
81,85, 8; in HY(X,Ky). Since A.-n;(T) =Y + ¢/, we know that 5, =0,s,
and s, have no common zeros on T and Y is defined by §X, + 5X, =0,
where 3; is the restriction of s; to T. Conversely pick three elements
81585, 8; of HY(X,Ky) such that s, and s, have no common zeros on 7T
and 8, = 0 (such s,s,, s, exist because of the assumption (ii)) and define
A (or, Y) by 8,X2 + 8,X,X, + 8,X? =0 (or, 5X, + 5X, =0, resp.). Then
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A~2H + 7;4(K),ADY and A »2Y. Hence the regular vector bundle
E defined by Y is contained in R¥X,T,K-T), the proper transform of
A by elm} is a member of & for E and n=1. We know therefore
that this case occurs if and only if E is defined by (5,8) with some
8, 8,€e H(X, Kx) (see [6] Principle 2.6).

III) The case where n =2 and Sing(4’) D Y’: Then A + ar;¥(T)
~2H — 7;(T) + n;"(K) and A-z;'(T) pY. Let Z be a member of
2H — z;}(T) + 2;%(K)| and assume that Z contains Y. Then Z.z;%(T)
~2C + (n)7'K-T) — (7" (T-T) and Z-n;'(T)~Y + C + (m)7'(B)~2C +
(z)7'(D 4+ B) with some positive divisor B on T. Thus 0 = deg (K-T)
— deg D = deg B + deg (T-T) > 0, which is a contradiction. Hence the
set of members Z’ of L satisfying n = 2 and Sing (Z’) D Y’ is just that
of total transforms of members of |[2H — zy(T) + =;%(K)| by elm}.

IV) The case where n = 2 and Sing (A’) 7 Y’: Then A~2H — z;(T)
+ 7p(K) and A-7;(T) D2Y. We know by the same reason as in (I)
that this case can not occur either.

Combining the results from (I) to (IV), we know

(A) if De|K-T| and if E is defined by (5,8) with some s,s,
e H'(X, Ky), then AI(FE Q,EY®,,Kz) = h(Ky) + (S (E)®,, det (EV)
Rz Kx) > p, + dim [2H + 7;(K) — 75'(T)| + 2 = p, + 3h(Ox(—T) ®,, Kx)
+1,

(B) otherwise W'(F ®,, BV ®,, Kz) = p, + 3k (0x(—T) ®,, Kx), under
the assumption that p = 2 or h'(Ky) = 0 by virtue of formula (3).

Next put V ={Y|Y is a section of (w));:P; — T such that Ye |C
+ (m)7'(D)| with some divisor D on T whose degree is ¢}, then V is an
open subscheme of a union of finite number of connected components of
Hilbpy/. Let Y be the universal family on PL X,V induced from that
on Pz X; Hilbpy ;. Let s;, s, be elements of H(X, Ky) such that they have
no common zeros on T (see the assumption (ii)) and define Y, by 35X,
+ 5,X, = 0, then Y, corresponds to a k-rational point y, of V. Since
for the normal bundle Ny,p; of Y, in P7, deg (Ny,p;) = 2(K,T) = 2¢
>2(((T, D) + (K, T)/2 + 2) = 2(9 + 1), we have that H'(Y,, Ny, p) =0,
whence V is smooth at Y, and dimV = h’'(Ny,pp) =2t — g + 1 at v,
(see [2] Corollary 5.4). On the other hand, for the natural morphism
h of V to the Jacobian variety J of T, since (D) is an open subset
of |C + n;'(D)], we get that dim A (K -T) = 2Ky ®,, 0;) <t + 2 by
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Clifford’s theorem (note that K.T is a special divisor on 7). Thus if
U is the irreducible component of V containing v, then dim U =2t — ¢
+1>t4+2>dimh Y K.-T), which implies that U 2 h"Y(K.T). More-
over we can construet a vector bundle F' on X X, U such that for any
ye U(k), F', is the regular vector bundle defined by Yy ([6] Theorem 2.9).
For any yeUk),c(F,) =T and c¢(F,) =t and F, is simple because
(T, T) <t ([6] Corollary 3.10.1). By virtue of Proposition A.1 and the
assumption (i), we know that for every ye U(k),F, is a stable vector
bundle. On the other hand, 2°(F,, Q,; Fy, ®o, Kx) > 1y + 3hNOx(—1T) &, Kx)
+ 1 =841 by virtue of (A) and if a Fk-rational point y of U is not
contained in 2 '(K-T)(k), then r'(F, ®,, F)y Q,, Kx) = B by virtue of (B).

Finally we have to show that there exist X and T which satisfy
the conditions (i), (ii) and (iii). For instance let X be a general hyper-
surface of degree n (n > 6) in P%, and let T' = S.X, where S is a general
hypersurface of degree m (1 < m < n — 5) in P:. Then it is well-known
that X and T satisfy the conditions (i), (ii) and (iii) (note that A'(Ky)
= 0).

All the moduli schemes are smooth under a suitable assumption on
their base space. In fact

PROPOSITION 4.15. Let X be a non-singular projective surface such
that for the canonical bundle Ky of X, Kx % Ox and |—Kyx| + ¢. Then
M(e,, ¢,) on X is smooth for any numerical equivalence classes c,, c,.

Proof. We may assume that for any m > 0, B(c, ¢c,)(m) satisfies
the conditions (a) and (b) before Proposition 4.3. Then we can construct
the subscheme R, of H%, for B(c,c,). By virtue of Corollary 4.11.1 we
have only to show that R, is smooth. Take an arbitrary k-rational
point x of R,, then x corresponds to an exact sequence

#3%) 0 F 0% E 0

with some FE ¢ B(e, ¢,). Since B(e, ¢,) satisfies the condition (), H(X,E
Qo FV) = H(X,E ®,, EV) as in Example 4.14. If HXX,E ®,, EV) # 0,
then H'X,E ®,, EV ®,, Ky) #+ 0 by Serre duality. On the other hand,
our assumption on K, implies that a global section of F ®,, BV ®,, Ky
provides that of E®,, EV ®,, Ky ®,, KY = E®,, EY which has zeros.
But this is impossible because HX,E ®,, EV) = End,, (E) consists of
multiplications of constants (i.e. E is simple). Thus we know that
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H¥X,E ®,, EV) =0, whence H'X,E®,,FV)=0. Let S = Spec(4),
S = Spec (4/I) with some finite dimensional local k-algebra A and an
ideal I of A and let j: X ->X X, S=X5, h:Xz—X xS =Xs be
natural closed immersions. Assume that there exists an exact sequence
of locally free @xs;-modules

k) 0 —> F(S) —> 02¥ —> ES) —> 0

whose inverse image by 7 is (xx). We have to lift this sequence to Xj.
In order to do this, using an induction on dim, A, we can reduce to
the case where dim, I = 1 because there exists an ideal J of A with
dim,J =1 and J c I. Since E(S) is locally free, we can lift locally (ssx)
to X5. Thus there exists a class of obstruction for lifting in HY(X, E(S)
®0X§ FS)V ®.I) (see [2] Corollary 5.2). From the assumption that
dim,I =1, we know that E(S)®, FO®;]=FE®,F'. Since
H(X,E ®,, FV) =0, H(X, E(S) ®, - F(S)Y ®,;I) =0, which implies that
there exists an exact sequence of locally free 0y,-modules

0 —> F(S) —> 02 —> E(S) —> 0

whose inverse image by h is (x##x). Therefore R, is smooth at z (see
[9] Lecture 22). q.e.d.

Appendix.

I. Let us prove the following proposition which is a corollary to
Theorem 1.12 and Theorem 3.10 of [6].

PrOPOSITION A.1. Let X be a non-singular projective wvariety over
k with dim X = 2 or 3 and Pic(X) = Z as an abstract group. Then a
vector bundle E of rank 2 on X is stable if and only if E is simple.

Proof. The “only if” part was shown in [15]. Let us prove that
if E is not stable, then E is not simple. Let H be a linebundle on X
which is a generator of Pic(X) (we may assume that H is ample).
Since E(n) = E ®,, H®" is simple (or stable) if and only if so is E, we
may assume that E is regular (see Proposition 2.3 or Theorem 1.12 of
[6]). Let E be defined by Y (see [6] p. 109) and let Y’ be the center of
A(elm‘{,)“l. Assume that E is not stable, then there is a torsion free
coherent Oy-module L of rank 1 such that L is a quotient module of F
and that d(F, H) > 2d(L, H). Then the surjective homomorphism ¥ — L
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provides a closed subscheme Z of P(E). Since we need only the inequality
d(E,H) > 2d(L,H) in our proof below, we may assume that Z is ir-
reducible. Then Z gives us a positive divisor Z’ on P(F) such that
Op5)(Z') = Op 5/ (1) Qppy n*(0x(D)) with some divisor D on X, where
Op (1) is the tautological linebundle of £ and ~: P(F) — X is the natural
projection. Now the inequality d(¥, H) > 2d(L, H) means that d(z,((Z’
— z (D). (Z' — = ' (D)), H) = 2d(z, ((Z' — =7*(D))-Z), H), that is, d(z.(Z’-
Z),H) < 0. Let Z, be the proper transform of Z’ by elm$}. and let =,
be the projection of P, to X. Since Z, is a positive divisor and since
Pic (X) = Z, we have that Z,~(0) x X + »=~'(H,) with some positive
integer m and H,, ¢ |[H®™|. If Z’ DY’ then (n)(Z,-Z,) = n.(Z-Z), whence
d((my)(Z,- Zy), H)=d(z(Z - Z), H). But this is impossible because d(x . (Z - Z), H)
< 0 and d((r)4(Z,-Z,), H) = 2md(H, H) > 0. Next assume that Z’' » Y.
Then (z),(Z,-Z)) = ny(Z-Z) + T, where T = r,(Y) and Y is a section of
P.. If T is contained in [H®"|, then the inequality d(z.(Z-Z),H) <0
implies that 2m < ». By this and the fact that Z, > Y we know that
FE is not simple ([6] Theorem 3.10 or p. 128 (4)). q.e.d.

Remark A.2. 1) Let X be a non-singular projective variety over
k with Pic (X) = Z as an abstract group and let H be an ample line-
bundle which is a generator of Pic (X). If for all » > n,, H(X, H®") + 0,
then every simple vector bundle of rank 2 is of type n,d(H,H’) — ¢
(0 < ¥e < 1) with respect to a very ample linebundle H’ on X.

2) Proposition A.1 does not hold unless rank of E is 2. In fact
we can show the following: For every non-singular projective surface
X, there exists a simple but not stable vector bundle of rank 3 on X.

II. Let X be a non-singular variety over k£ and let (Y, T) be a pair
of subvarieties of a P-bundle z:P — X and X respectively. Assume
that (Y, T) satisfies the condition (#,) ([6] p. 105). Put P’ = elm%(P) and
let #’ be the projection of P/ to X. Let Y’ be the center of (elm})-'.
Assume that Z is a positive divisor on P such that 0p(Z) = 0p(2) ®,p 7*(L)
with some tautological linebundle @p(1) on P and some linebundle L on
X and that Z 2 z~'(T). Let Z’ (or, Z”) be the proper (or, total, resp.) trans-
form of Z by elm%. Set n =max {r|Z-z~'(T) DrY}, » = max {+'|Z’-2’"Y(T)
D 7'Y’} and m = max {s|Z” D sz’"'(T)}. Then we get the following table;

https://doi.org/10.1017/50027763000016688 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016688

66 MASAKI MARUYAMA

n n m
0 2 0
1 1 1

Sing(Z) oY 0 2
2 Sing(Z)p Y 2 1

where Sing (Z) denotes the singular locus of Z.

Proof. Since the problem is a local property with respect to X,
we may assume that X = Spec (4), P = Proj (4[4, 1,]) and that the
defining ideal I, for T in A (or, Iy for Y in A[2,4,]) is generated by
teA (or, t,A, resp.). Then P’ = Proj (A[X}, 2.]) with 2, = 1}, 2, = t2, and
the defining ideal Iy, for Y’ in A[x, 2] is generated by t,4, (see [6]
Lemma 1.4). Shrinking X if necessary, we may assume that Z is defined
by a2 + a4, + @42 = 0 with (a,, a,, a,)A & tA.

1) Assume that oA ¢ t4, then Z’ = Z” and they are defined by
a2 + ataA + a,t?a? = 0. Since Z-z7Y(T) (or, Z’-n’~Y(T)) is defined by
T2 + T Ah; + @22 = 0 (or, @y =0, resp.), we have that n =0, »’ =2,
m = 0, where ~— denotes the homomorphic image by the natural homomor-
phism of A[A, 4] (or, A[ZX, 2]]) to the homogeneous ring (A/tA)[7, 1] of
=~ (T) (or, (A/tA)X, 2] of z’~Y(T), resp.).

2) Assume that @,A C tA4,a,A ¢ tA, then Z’ (or, Z”) is defined by
ast + adody + a,t27 = 0 (or, agta® + a, b2, + a,t?2? = 0, resp.), where a, =
agt. Since Z-z7(T) (or, Z’-z’~*(T) is defined by (@,4, + @,2)1, = 0 (or, @7, +
@A) = 0, resp.) and since @, # 0, we have that n = 1, »’ = 1 and m = 1.

3) Assume that a,A C tA,04 ¢ t°A and a,A C tA. Then by the
assumption that Z 2 2z '(T), we know that a,A ¢ tA. In this case Z’
(or, Z”) is defined by g7 + ajtaid, + a,t2® = 0 (or, ajtd? + a2 + a,t222
=0, resp.), where a, = ait,a, = ajt. Since Z.zY(T) (or, Z’-z’~Y(T)) is
defined by @, = 0 (or, @A = 0, resp.) and since @, + 0,a, = 0, we have
that n =2, »’ =2 and m = 1. Moreover if y is the generic point of
Y, then 0y, is a regular local ring whose maximal ideal m, is generated
by ¢,2 = 4/, and the defining ideal for Z at y is generated by 2, = ajt
+ ait2 + a,’. Since a; is a unit in 0p 2, is contained in m, but not in
mj, whence Z is simple at y.

4) Assume that ¢, A C 4 and a,A C tA. In this case we know
also that a,A # tA. Then Z’ (or, Z”) is defined by a7 + a2, + a2
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=0 (or, a)t? + ait’2i4, + a,t’a? = 0, resp.), where a, = ayt’, a, = ait.
Since Z.z~Y(T) (or, Z’-x'~Y(T)) is defined by a,22 =0 (or, ayi? 4 @i,
+ @42 =0, resp.), we have that n =2, " =0 and m = 2. Moreover
the defining ideal for Z at the generic point y of Y is generated by
2, = at* + ajta + @, and z,eml. Thus y is a singular point of Z.
Combining all the above results we get the desired table. q.e.d.

III. To show that the main theorem of §4 is not trivial let us
prove the following proposition.

PROPOSITION A.3. Let X be a non-singular projective surface over
k and let H be a very ample linebundle on X. For a given divisor D
on X, there exists an integer n, such that for any n > n,, there exists
a stable vector bundle E of rank 2 on X with respect to H with c¢,(F)
= the class of D and c,(F) = n.

Proof. Replacing D by D + H, with a suitable H, in |[H®™|, we
may assume that |D| contains a non-singular irreducible curve. Pick a
non-singular irreducible member 7' in |D|. Let & be the set of positive
divisors C with d(T, H)/2 > d(C, H) and put 4" = & /(numerical equivalence).
Then 4 is a finite set. Set n, = max {(T,0)|Ce &} + 1. Since A" is a
finite set and since (7,C) depends only on the numerical equivalence
class of C,n, is finite. Now let us show that n, = max {n,, genus of T}
is one of the desired integers. Take an integer n > n,, then there exists
a divisor B on T such that deg B = n and |B| is free from base points
because n > genus of 7. Then R*X, T, B) is not empty (see [6] p. 112).
Let us take a member E of R%X,T,B) which is defined by Y. Since
¢(E) = the class of D and c,(F) = deg B =7, we have only to prove
that E is stable. Assume that E is not stable and take a torsion free
coherent @y-module L and divisors Z’,Z, on P(F),P% respectively as in
the proof of Proposition A.1. If Z, does not contain Y, then d(L, H)
> d(T,H) > d(E,H)/2. Thus Z, has to contain Y. Moreover Z,~(0) X X
+ #7%(C) with some positive divisor C on X. The inequality d(¥, H)/2
> d(L, H) implies that d(T,H)/2 > d(C,H). On the other hand, since
O X T+ (@) (C-T)~Zy- 27 (T)~Y + (m)7Y(B’) with some positive divisor
B, we get that (I,C) =deg(B + B’) >n >mn, This is impossible
because C is contained in /. Thus E is stable. q.e.d.

https://doi.org/10.1017/50027763000016688 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016688

68 MASAKI MARUYAMA

REFERENCES

[1] A. Borel and J.-P. Serre, Le théoréme de Riemann-Roch. Bull. Soc. Math. France,
86 (1958).

[ 2] A. Grothendieck, Techniques de construction et théorémes d’existence en géométrie
algébrique IV: Les schémas de Hilbert, Séminaire Bourbaki, t. 13, 1960/61, n°
221,

[E.G.A.] A. Grothendieck and J. Dieudonné, Eléments de Géométrie Algébrique, Chaps.
I, I, III, IV, Publ. Math. I. H. E. S,, Nos. 4, 8, 11, 17, 20, 24, 28 and 32.

[ 3] G. Horrocks, Vector bundles on the punctured spectrum of a local ring, Proc.
London Math. Soec. (3) 14 (1964).

[4] S. Kleiman, Les théorémes de finitude pour le foncteur de Picard. Séminair de
Géométrie Algébrique du Bois Marie, 1966/67 (S.G.A.6), Expose XIII, Lecture
Notes in Math., 225, Springer-Verlag, Berlin-Heidelberg-New York (1971).

[5] D. Knutson, Algebraic Spaces, Lecture Notes in Math., 203, Springer-Verlag,
Berlin-Heidelberg-New York (1971).

[ 6] M. Maruyama, On a family of algebraic vector bundles, Number Theory, Algebraic
Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo
(1973).

[ 71 D. Mumford, Projective invariants of projective structures and applications, Proc.
Intern. Cong. Math., Stockholm (1962).

[ 8] D. Mumford, Geometric Invariant Theory, Springer-Verlag, Berlin-Heidelberg-
New York (1965).

[9]1 D. Mumford, Lectures on Curves on an Algebraic Surface, Annals of Math.
Studies, No. 59, Princeton Univ. Press (1966).

[10] D. Mumford, Abelian Varieties, Oxford Univ. Press, Bombay (1970).

[11] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a
compact Riemann surface, Ann. of Math. (2) 82 (1965).

[12] C. S. Seshadri, Space of unitary vector bundles on a compact Riemann surface,
Ann. of Math. (2) 85 (1967).

[18] C. S. Seshadri, Mumford’s conjecture for GL(2) and applications, Proc. Bombay
Collog. on Algebraic Geometry, Oxford Univ. Press, Bombay (1969).

[14] C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Ann. of Math.
(2) 95 (1972).

[15] F. Takemoto, Stable vector bundles on algebraic surfaces, Nagoya Math. Jour.
47 (1972).

Department of Mathematics
Kyoto University

https://doi.org/10.1017/50027763000016688 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000016688



