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Abstract. Our aim in this paper is to deal with Sobolev’s embeddings for Sobolev–
Orlicz functions with ∇u ∈ Lp(·) log Lq(·)(�) for � ⊂ �n. Here p and q are variable
exponents satisfying natural continuity conditions. Also the case when p attains the
value 1 in some parts of the domain is included in the results.

2000 Mathematics Subject Classification. 46E30

1. Introduction. Variable exponent spaces have been studied in many papers over
the past decade; for a survey see [6, 21]. These investigations have dealt with the
spaces themselves, with related differential equations and with applications. One typical
feature is that the exponent has to be strictly bounded away from various critical
values. More concretely, consider the example of the Sobolev embedding theorem.
Such embeddings and embeddings of Riesz potentials have been studied, e.g., in [1, 3,
5, 6, 9, 11, 14, 15, 18, 22] in the variable exponent setting. Most proofs in the literature
are based on the Riesz potential and maximal functions and thus lead to the additional,
unnatural restriction inf p > 1.

Early papers owing to Edmunds and Rákosnı́k [7, 8] avoided this restriction by a
use of ad hoc methods of proofs, but it turned out that these do not extend conveniently
to other situations. Recently, Harjulehto and Hästö [12] introduced a method based on
a weak-type estimate which covers the case inf p = 1 and can be easily adopted also to
other situations. Their result was extended to the case of unbounded domains in [13].
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In this paper we consider more general variable exponents following Cruz-Uribe
and Fiorenza [4]. To define these spaces let p : �n → [1,∞) and q : �n → � be
continuous functions. We will be considering spaces of type Lp(·) log Lq(·)(�). For
simplicity we denote the function defining the space by � throughout the paper,
i.e. �(x, t) = tp(x)(log(c0 + t))q(x). By C we denote a generic constant whose value may
change between appearances even within a single line.

We assume throughout the paper that our variable exponents p and q are
continuous functions on �n, satisfying
(p1) 1 � p− := infx∈�n p(x) � supx∈�n p(x) =: p+ < ∞;

(p2) |p(x) − p(y)| � C
log(e + 1/|x − y|) whenever x ∈ �n and y ∈ �n;

(p3) |p(x) − p(y)| � C
log(e + |x|) whenever |y| � |x|/2;

(q1) −∞ < q− := infx∈�n q(x) � supx∈�n q(x) =: q+ < ∞;

(q2) |q(x) − q(y)| � C
log(e + log(e + 1/|x − y|)) whenever x ∈ �n and y ∈ �n.

Moreover, we assume that
(�1) there exists c0 ∈ [e,∞) such that �(x, ·) is convex on [0,∞) for every x ∈ �n.

If there is a positive constant C0 such that

C0 (p(x) − 1) + q(x) � 0,

then condition (�1) holds; this follows from a computation of the second derivative
of �(x, ·). For example, this inequality holds if p− > 1 or if q− � 0. For later use it is
convenient to note that (�1) implies the following condition:
(�2) t �→ t−1�(x, t) is non-decreasing on (0,∞) for fixed x ∈ �n.

We define the space L�(�) to consist of all measurable functions f on the open set
� ⊂ �n with

∫
�

�

(
x,

|f (x)|
λ

)
dx < ∞

for some λ > 0. We define the norm

‖f ‖�(·,·)(�) = inf
{
λ > 0 :

∫
�

�

(
x,

|f (x)|
λ

)
dx � 1

}

for f ∈ L�(�). These spaces have been studied in [4, 18]. Note that L�(�) is a Musielak–
Orlicz space [19]. In case q ≡ 0, L�(�) reduces to the variable exponent Lebesgue space
Lp(·)(�).

Our first aim in this paper is to prove a weak-type inequality of maximal functions
in Theorem 2.5. Then we prove in Theorem 3.5 a weak-type estimate for the Riesz
potential. These enable us to prove the main result of this paper, namely a Sobolev
embedding for functions in W 1,�. The Sobolev space W 1,�(�) consists of those
functions u ∈ L�(�) with a distributional gradient satisfying |∇u| ∈ L�(�). Further we
denote by W 1,�

0 (�) the closure of C∞
0 (�) in the space W 1,�(�) (cf. [10] for definitions

of zero boundary value functions in the variable exponent context).
Let p�(x) denote the Sobolev conjugate of p(x); that is to say

1/p�(x) = 1/p(x) − α/n.
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For the Sobolev emedding in W 1,� we need the conjugate exponent with α = 1, which
is denoted by p∗.

THEOREM 1.1. Let p and q satisfy the above conditions. If p+ < n, then

‖u‖�(·,·)(�) � c1‖∇u‖�(·,·)(�)

for every u ∈ W 1,�
0 (�), where �(x, t) := (t log(c0 + t)q(x)/p(x))p(x) and �(x, t) :=

(t log(c0 + t)q(x)/p(x))p∗(x).

This extends [11, Proposition 4.2(1)] and [13, Theorem 3.4] which dealt with the
case q ≡ 0.

2. Weak-type inequality of maximal functions. In order to prove the main result
of this section, namely a weak-type inequality for the maximal function, we start by
presenting several preparatory results.

Let B(x, r) denote the open ball centred at x with radius r. For a locally integrable
function f on �n, we consider the maximal function Mf defined by

Mf (x) := sup
B

fB = sup
B

1
|B|

∫
B

|f (y)|dy,

where the supremum is taken over all balls B = B(x, r) and |B| denotes the volume of
B.

The following lemma is an improvement of [18, Lemma 2.6].

LEMMA 2.1. Let f be a non-negative measurable function on �n with ‖f ‖�(·,·)(�n) � 1.
Set

I := 1
|B(x, r)|

∫
B(x,r)

f (y) dy

and

J := 1
|B(x, r)|

∫
B(x,r)

�(y, f (y)) dy.

Then

I � C{J1/p(x)(log(c0 + J))−q(x)/p(x) + 1}.

Proof. By condition (�2), for K > 0 we have

I � K + C
|B(x, r)|

∫
B(x,r)

f (y)
(

f (y)
K

)p(y)−1 (
log(c0 + f (y))
log(c0 + K)

)q(y)

dy,

where the first term, K , represents the contribution to the integral of points where
f (y) < K . If J � 1, then we take K = 1 and obtain

I � 1 + CJ � C.
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Now suppose that J � 1 and set

K := CJ1/p(x)(log(c0 + J))−q(x)/p(x).

Note that JC/ log(CJ1/n) � C and (log(c0 + J))C/ log(log(e+CJ1/n)) � C. Since we assumed
that ‖f ‖�(·,·)(�n) � 1, we conclude that

J � 1
|B(x, r)|

∫
�n

�(y, f (y)) dy � 1
|B(x, r)| .

Hence, by Conditions (p2) and (q2), we obtain, for y ∈ B(x, r), that

K−p(y) �
{

CJ1/p(x)(log(c0 + J))−q(x)/p(x)
}−p(x)+C/ log(1/r)

�
{

CJ1/p(x)(log(c0 + J))−q(x)/p(x)
}−p(x)+C/ log(CJ1/n)

� CJ−1(log(c0 + J))q(x)

and

(log(c0 + K))−q(y) � {C log(c0 + J)}−q(x)+C/ log(log(e+1/r))

� {C log(c0 + J)}−q(x)+C/ log(log(e+CJ1/n))

� C(log(c0 + J))−q(x).

Consequently it follows that

I � CJ1/p(x)(log(c0 + J))−q(x)/p(x).

Combining this with the estimate I � C from the previous case yields the claim. �

In view of Lemma 2.1, for each bounded open set G in �n we can find a positive
constant C such that

{Mf (x)}p(x) � C{Mg(x)(log(c0 + Mg(x)))−q(x) + (1 + |x|)−n} (2.1)

for all x ∈ G and g(y) := �(y, f (y)), whenever f is a non-negative measurable function
on �n with ‖f ‖�(·,·)(�n) � 1.

For later use it is convenient to note that

C−1(1 + |x|)−n/p∞ � (1 + |x|)−n/p(x) � C(1 + |x|)−n/p∞ (2.2)

in view of (p3).

LEMMA 2.2. Let f be a non-negative measurable function on �n with ‖f ‖�(·,·)(�n) � 1.
If J � 1, then

I1 := 1
|B(x, r)|

∫
B(x,r)\B(0,|x|/2)

f (y) dy � C
{
J1/p(x) + (1 + |x|)−n/p(x)}.

Proof. By condition (�2), for K > 0 we have

I1 � K + C
|B(x, r)|

∫
B(x,r)\B(0,|x|/2)

f (y)
(

f (y)
K

)p(y)−1 (
log(c0 + f (y))
log(c0 + K)

)q(y)

dy.
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Then we take K := max{(1 + |x|)−n/p(x), J1/p(x)} � 1 and find

I1 � K + CK−p(x)+1J � CK,

since p(y) � p(x) + C/ log(e + |x|) for y ∈ B(x, r) \ B(0, |x|/2) by (p3). Thus the proof
is complete. �

LEMMA 2.3. Let f be a non-negative measurable function on �n with ‖f ‖�(·,·)(�n) � 1.
If J � 1, then

I2 := 1
|B(x, r)|

∫
B(x,r)∩B(0,|x|/2)

f (y) dy � C(1 + |x|)−n/p∞ .

Proof. Since J � 1, we see from Lemma 2.1 that I2 is bounded on B(0, e), so that
we have only to treat the case when |x| � e.

If r � |x|/2, then the integration set is empty and the claim is trivial. We will show
that

I ′ := 1
|B(0, r)|

∫
B(0,r)

f (y) dy � Cr−n/p∞ (2.3)

for r > 1. Since I2 � I ′ when r > |x|/2, the claim then follows.
By condition (�2), we have the following for a measurable function K = K(y) > 0:

I ′ � 1
|B(0, r)|

∫
B(0,r)

K(y) dy

+ C
|B(0, r)|

∫
B(0,r)

f (y)
(

f (y)
K(y)

)p(y)−1 (
log(c0 + f (y))
log(c0 + K(y))

)q(y)

dy.

If p∞ > 1, then we take K := (1 + |y|)−n/p∞ and find that

I ′ � C
(
r−n/p∞ + rn(p∞−1)/p∞J ′)

by use of (p3), where

J ′ := 1
|B(0, r)|

∫
B(0,r)

�(y, f (y)) dy.

If p∞ = 1, then we take K := (1 + |y|)−β for β > n and obtain

I ′ � C(r−n + J ′).

Noting that J ′ � Cr−n completes the proof. �

LEMMA 2.4. Let f be a non-negative measurable function on an open set � with
‖f ‖�(·,·)(�) � 1. Set

N(x) := Mg(x)1/p(x)(log(c0 + Mg(x)))−q(x)/p(x),
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where g(y) := �(y, f (y)). Then ∫
Et

�(x, t) dx � C,

where Et := {x ∈ � : N(x) > t, Mg(x) > C1(1 + |x|)−n} and C1 := |B(0, 1/2)|−1.

Proof. By the Besicovitch covering theorem, we can find a countable family of balls
Bi = B(xi, ri) with a bounded overlap property such that Et ⊂ ∪iBi,

t < g1/p(xi)
Bi

(log(c0 + gBi ))
−q(xi)/p(xi)

and

gBi > C1(1 + |xi|)−n.

If 1 � gBi � |Bi|−1, then Conditions (p2) and (q2) imply that

g1/p(xi)
Bi

(log(c0 + gBi ))
−q(xi)/p(xi) � Cg1/p(x)

Bi
(log(c0 + gBi ))

−q(x)/p(x)

for x ∈ Bi; and if C1(1 + |xi|)−n < gBi � 1, then ri � (1 + |xi|)/2, so that we obtain the
above inequality by using (p3). A similar argument holds for changing q(xi) to q(x).
Thus we obtain

�
(
x, g1/p(xi)

Bi
(log(c0 + gBi ))

−q(xi)/p(xi)
)

� C�
(
x, g1/p(x)

Bi
(log(c0 + gBi ))

−q(x)/p(x))
= CgBi (log(c0 + gBi ))

−q(x)( log(c0 + g1/p(x)
Bi

(log(c0 + gBi ))
−q(x)/p(x))

)q(x)

� CgBi .

Hence we see that∫
Et

�(x, t) dx �
∑

i

∫
Bi

�(x, t) dx

� C
∑

i

∫
Bi

gBi dx = C
∑

i

∫
Bi

g(y) dy

� C
∫

�

g(y) dy � C.

�
We are now ready for the first main result, a weak-type estimate for the maximal

function. This is an extension of [2, Theorem 1.6] and [12, Theorem 3.2].

THEOREM 2.5. Let f be a non-negative measurable function on �n with ‖f ‖�(·,·)(�n) �
1. Then ∫

{x∈�n:Mf (x)>t}
�(x, t) dx � C.

Proof. Lemmas 2.1–2.3 and (2.2) give

I � C
{
J1/p(x)(log(c0 + J))−q(x)/p(x) + (1 + |x|)−n/p∞

}
(2.4)
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for x ∈ �n. Hence

{x ∈ �n : Mf (x) > t} ⊂ Et ∪ {x ∈ �n : (1 + |x|)−n/p∞ > t/C}
with Et as in Lemma 2.4. Note that we may assume Mg(x) � C1(1 + |x|)−n in the first
set, since if Mg(x) � C1(1 + |x|)−n and N(x) > t/C, then (1 + |x|)−n/p∞ > t/C.

If the second set is empty, the claim follows from Lemma 2.4. If this is not the case
we define r > 0 so that (1 + r)−n/p∞ = t/C. Note that t is bounded in this case. Then

∫
{x∈�n:Mf (x)>t}

�(x, t) dx �
∫

Et

�(x, t) dx +
∫

B(0,r)
�(x, t) dx.

The first integral on the right-hand side is bounded by Lemma 2.4. For the second, we
note that �(x, t) � Ctp(x) since t and q are bounded. By the definition of r we have

∫
B(0,r)

tp(x) dx � C
∫

B(0,r)
(1 + r)−np(x)/p∞ dx � C

∫
B(0,r)

(1 + r)−n+(Cn/p∞)/ log(e+|x|) dx.

For 0 < m < n, noting that (1 + r)−m+(Cn/p∞)/ log(e+t)(1 + t)m is bounded on (c1, r) when
−m + (Cn/p∞)/ log(e + c1) < 0, we find

∫
B(0,r)

tp(x) dx �
∫

B(0,c1)
tp(x) dx + C(1 + r)m−n

∫
B(0,r)

(1 + |x|)−m dx � C.

Therefore
∫

B(0,r) �(x, t) dx � C, and so we obtain the theorem. �

REMARK 2.6. Take ω ∈ C∞(�) such that 0 � ω � 1, ω(r) = 0 when r � 0 and
ω(r) = 1 when r � 1/2. Let

p(x) := 1 + a log(e + log(e + |x|))
log(e + |x|) ω

(
2xn − |x|
1 + |x|

)

for x = (x1, . . . , xn), where a > 0. Consider the function

f (x) :=
{

(e + |x|)−n(log(e + |x|))β if 4xn > 3|x| + 1,

0 elsewhere.

If −1 < β < an − 1, then f ∈ Lp(·)(�n). Note that

Mf (x) � C(e + |x|)−n(log(e + |x|))β+1

for all x ∈ �n. There exists a constant C > 0 such that if

|x| � Ct−1/n(log(e + t−1))(β+1)/n,

then Mf (x) > t, so that
∫

{x∈�n:Mf (x)>t}
tp(x) dx � t |{x ∈ �n : Mf (x) > t, xn < 0}|

� C(log(e + t−1))β+1,

which tends to ∞ as t → 0+. This example shows that the assumption on the exponent
in our weak-type estimate is quite sharp.
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3. Weak-type inequality for Riesz potentials. For 0 < α < n, we define the Riesz
potential of order α for a locally integrable function f on �n by

Iαf (x) :=
∫

�n

f (y)
|x − y|n−α

dy.

Here it is natural to assume that
∫

�n
(1 + |y|)α−n|f (y)| dy < ∞, (3.1)

which is equivalent to the condition that Iα|f | �≡ ∞ (see [16, Theorem 1.1, Chap-
ter 2]).

Our aim in this section is to establish weak-type estimates for Riesz potentials of
functions in L�(�n), when the exponent p satisfies

p+ < n/α.

Let p�(x) denote the Sobolev conjugate of p(x), as defined in the ‘Introduction’.

LEMMA 3.1. Suppose that p+ < n/α. If f is a non-negative measurable function on
�n with ‖f ‖�(·,·)(�n) � 1, then

∫
�n\B(x,r)

f (y)
|x − y|n−α

dy � C
{
rα−n/p(x) + (1 + |x|)α−n/p∞

}

for all x ∈ �n and r � 1/e.

Proof. If |x| � r and r � 1/e, then (2.3) gives

∫
�n\B(x,r)

f (y)
|x − y|n−α

dy � C
∫

�n
(r + |y|)α−nf (y) dy

� C
∫ ∞

0

(∫
B(0,t)

f (y) dy
)

(r + t)α−n−1 dt

� Crα−n/p∞ � C(1 + |x|)α−n/p∞ .

Next consider the case |x| > r � 1/e. Then we have

∫
B(0,|x|/2)\B(x,r)

f (y)
|x − y|n−α

dy � C|x|α−n
∫

B(0,|x|/2)
f (y) dy � C|x|α−n/p∞

and
∫

�n\B(0,2|x|)

f (y)
|x − y|n−α

dy � C
∫

�n\B(0,2|x|)
|y|α−nf (y) dy

� C
∫ ∞

2|x|

(∫
B(0,t)

f (y) dy
)

tα−n−1 dt

� C(1 + |x|)α−n/p∞ .
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It remains to estimate the integral of |x − y|α−nf (y) over the set E := B(0, 2|x|) \
{B(0, |x|/2) ∪ B(x, r)}. By condition (�2), for K(y) := |x − y|−n/p(x) we have

∫
E

f (y)
|x − y|n−α

dy �
∫

E

K(y)
|x − y|n−α

dy

+ C
∫

E

f (y)
|x − y|n−α

(
f (y)
K(y)

)p(y)−1 (
log(c0 + f (y))
log(c0 + K(y))

)q(y)

dy

� Crα−n/p(x) + Crα−n+n(p(x)−1)/p(x)
∫

E
�(y, f (y)) dy

� Crα−n/p(x),

since p(y) � p(x) + C/ log |x| for y ∈ �n \ B(0, |x|/2) by (p3) and αp+ < n. �

LEMMA 3.2. Suppose that p+ < n/α. Let f be a non-negative measurable function
on �n with ‖f ‖�(·,·)(�n) � 1. Then

∫
B(x,1/e)\B(x,δ)

f (y)
|x − y|n−α

dy � Cδα−n/p(x)(log(c0 + 1/δ))−q(x)/p(x)

for all x ∈ �n and 0 < δ < 1/e.

Proof. The proof is similar to the last case in the previous proof. Let us set
E := B(x, 1/e) \ B(x, δ) and

K(y) := |x − y|−n/p(x)(log(c0 + 1/|x − y|))−q(x)/p(x)

for y ∈ E. By Conditions (p2), (q2) and (�2), we obtain
∫

E

f (y)
|x − y|n−α

dy �
∫

E

K(y)
|x − y|n−α

dy

+ C
∫

E

f (y)
|x − y|n−α

(
f (y)
K(y)

)p(y)−1 (
log(c0 + f (y))
log(c0 + K(y))

)q(y)

dy

� C
(

δα−n/p(x)(log(c0 + 1/δ))−q(x)/p(x)

+
∫

E
|x − y|α−n/p(x)(log(c0 + 1/|x − y|))−q(x)/p(x)�(y, f (y)) dy

)

� Cδα−n/p(x)(log(c0 + 1/δ))−q(x)/p(x)
(

1 +
∫

E
�(y, f (y)) dy

)

� Cδα−n/p(x)(log(c0 + 1/δ))−q(x)/p(x),

as required. �

The next lemma is a generalisation of [18, Theorem 2.8].

LEMMA 3.3. Suppose that p+ < n/α. Let f ∈ L�(�n) be non-negative with
‖f ‖�(·,·)(�n) � 1. Then

Iαf (x) � C
{
Mf (x)p(x)/p�(x)(log(c0 + Mf (x)))−αq(x)/n + (1 + |x|)−n/p�

∞
}
.
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Proof. By Lemmas 3.1 and 3.2,

Iαf (x) =
∫

B(x,δ)

f (y)
|x − y|n−α

dy +
∫

�n\B(x,δ)

f (y)
|x − y|n−α

dy

� C
{
δαMf (x) + δα−n/p(x)(log(c0 + 1/δ))−q(x)/p(x) + (1 + |x|)α−n/p∞

}
for δ > 0. Here, letting

δ = min
{
Mf (x)−p(x)/n(log(c0 + Mf (x)))−q(x)/n, 1 + |x|},

we find

Iαf (x) � C
{
Mf (x)p(x)/p�(x)(log(c0 + Mf (x)))−αq(x)/n + (1 + |x|)−n/p�

∞
}
.

�
Recall that �(x, t) = (t log(c0 + t)q(x)/p(x))p#(x).

LEMMA 3.4. Suppose that p+ < n/α. Let f be a non-negative measurable function
on an open set � with ‖f ‖�(·,·)(�) � 1. Set

N(x) := Mg(x)1/p�(x)(log(c0 + Mg(x)))−q(x)/p(x),

where g(y) := �(y, f (y)). Then
∫

Ẽt

�(x, t) dx � C,

where Ẽt := {x ∈ � : N(x) > t, Mg(x) � C1(1 + |x|)−n} and C1 := |B(0, 1/2)|−1.

Proof. By the Besicovitch covering theorem, we can find a countable family of balls
Bi = B(xi, ri) with a bounded overlap property such that Ẽt ⊂ ∪iBi,

t < g1/p�(xi)
Bi

(log(c0 + gBi ))
−q(xi)/p(xi)

and

gBi > C1(1 + |x|)−n.

As in Lemma 2.4, we obtain

�
(
x, g1/p�(xi)

Bi
(log(c0 + gBi ))

−q(xi)/p(xi)
)

� C�
(
x, g1/p�(x)

Bi
(log(c0 + gBi ))

−q(x)/p(x)) � CgBi

for x ∈ Bi. Hence obtain as before that∫
Ẽt

�(x, t) dx �
∑

i

∫
Bi

�(x, t) dx

� C
∑

i

∫
Bi

gBi dx � C
∫

�

g(y) dy � C.

�
Now we are ready to show the weak-type estimate for Riesz potentials, as an

extension of [2, Theorem 1.9] and [12, Theorem 3.4].
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THEOREM 3.5. Suppose that p+ < n/α. Let f be a non-negative measurable function
on �n with ‖f ‖�(·,·)(�n) � 1. Then

∫
{x∈�n:Iα f (x)>t}

�(x, t) dx � C.

Proof. Lemmas 3.3 and 2.1–2.3 give

Iαf (x) � C
{
Mf (x)p(x)/p�(x)(log(c0 + Mf (x)))−αq(x)/n + (1 + |x|)−n/p�

∞
}

� C
{
Mg(x)1/p�(x)(log(c0 + Mg(x)))−q(x)/p(x) + (1 + |x|)−n/p�

∞
}

for x ∈ �n. Hence

{
x ∈ �n : Iαf (x) > t} ⊂ Ẽt ∪ {x ∈ �n : (1 + |x|)−n/p�

∞ > t/C
}
,

where Ẽt is as in Lemma 3.4. If the second set is empty, then the claim follows from
Lemma 3.4. If this is not the case we define r > 0 so that (1 + r)−n/p�

∞ = t/C. Then
∫

{x∈�n:Iαf (x)>t}
�(x, t) dx �

∫
Ẽt

�(x, t) dx +
∫

B(0,r)
�(x, t) dx.

The first integral on the right-hand side is bounded by Lemma 3.4. For the second we
note that �(x, t) � Ctp�(x), since t and q(·) are bounded. Thus

∫
B(0,r)

tp�(x) dx �
∫

B(0,r)
C(1 + r)−n+(Cn/p�

∞)/ log(e+|x|) dx � c,

where the last step follows exactly as in the proof of Theorem 2.5. �

REMARK 3.6. Continuing with the notation of Remark 2.6, we further see that

Iαf (x) � C(e + |x|)α−n(log(e + |x|))β+1

for all x ∈ �n, so that
∫

{x∈�n:Iα f (x)>t}
tp�(x) dx � tn/(n−α)|{x ∈ �n : Iαf (x) > t, xn < 0}|

� C(log(e + t−1))n(β+1)/(n−α),

which tends to ∞ as t → 0+.

REMARK 3.7. In view of [17], for each β > 1 one can find a constant C > 0 such
that

∫
�n

{Iαf (x)}p�(x)(log(e + Iαf (x)))−β(log(e + Iαf (x)−1))−β dx � C

whenever f is a non-negative measurable function on �n with ‖f ‖Lp(·)(�n) � 1. This gives
a supplement of O’Neil [20, Theorem 5.3].
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4. Sobolev functions. Let us consider the generalised Orlicz–Sobolev space
W 1,�(�) with the norm

‖u‖1,�(·,·)(�) = ‖u‖�(·,·)(�) + ‖∇u‖�(·,·)(�) < ∞.

Further we denote by W 1,�
0 (�) the closure of C∞

0 (�) in the space W 1,�(�) (cf. [10]
for definitions of zero boundary value functions in the variable exponent context).
To conclude the paper, we derive a Sobolev inequality for functions in W 1,�

0 (�) as
the application of Sobolev’s weak-type inequality for Riesz potentials of functions in
L�(�). First note the following lemma.

LEMMA 4.1 (Corollary 2.3 of [18]). Set κ(y, t) := t(log(e + t))y for y and t � 0.
Then

κ(y, at) � τ (y, a)κ(y, t)

whenever a, t > 0, where

τ (y, a) := a max{(C log(e + a))y, (C log(e + a−1))−y}.

We define local versions of p+ and p− as follows:

p−
� = ess infx∈�p(x) and p+

� = ess supx∈�p(x).

Using the previous lemma we can derive a scaled version of the weak-type estimate
from the previous section, which will be needed below.

LEMMA 4.2. Let � be an open set in �n. Suppose that p+ < n/α. Let f ∈ L�(�n)
be non-negative with ‖f ‖�(·,·)(�n) � 1. Then for every ε > 0 there exists a constant C > 0
such that ∫

{x∈�:Iαf (x)>t}
�(x, t) dx � C‖f ‖(p�)−�−ε

�(·,·)(�n),

for every t > 0.

Proof. For simplicity we denote ‖f ‖�(·,·)(�n) by a ∈ [0, 1]. The case a = 0 is clear; so
we assume that a > 0. We apply Theorem 3.5 to the function f/a, whose norm is equal
to 1. Thus ∫

{x∈�:Iα f (x)>s}
�(x, s/a) dx =

∫
{x∈�:Iα

f
a (x)>t}

�(x, t) dx

�
∫

{x∈�n:Iα
f
a (x)>t}

�(x, t) dx � C.

With κ as in the previous lemma and r = q(x)p�(x)/p(x), we have �(x, t) =
tp�(x)−1κ(r, t). Hence the lemma implies that

�(x, s/a) = �(x, s)a1−p�(x) κ(r, s/a)
κ(r, s)

� �(x, s)a1−p�(x)τ (r, a)−1.

Since τ is logarithmic and a � 1, it follows that ap�(x)−1τ (r, a) � Ca(p�)−�−ε. Now the
claim follows by combining the inequalities derived. �
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LEMMA 4.3. Suppose that p+ < n, p+
� < (p∗)−� and � is an open set. If u ∈ W 1,�

0 (�n),
then there exists a constant c1 > 0 such that

‖u‖�(·,·)(�) � c1‖∇u‖�(·,·)(�n).

Proof. We may assume that ‖∇u‖�(·,·)(�n) � 1 and u is non-negative. It follows from
[16, Theorem 1.2, Chapter 6] that

|v(x)| � C(n)I1|∇v|(x)

for v ∈ W 1,1
0 (�n) and almost every x ∈ �n. For u ∈ W 1,�

0 (�n) and each integer
j, we write Uj = {x ∈ � : 2j < u(x) � 2j+1} and vj = max{0, min{u − 2j, 2j}}. Since
vj ∈ W 1,1

0 (�) and vj(x) = 2j for almost every x ∈ Uj+1, we have

I1|∇vj|(x) � C2j

for almost every x ∈ Uj+1. It follows that
∫

�

�(x, u(x)) dx �
∑
j∈�

∫
Uj+1

�(x, u(x)) dx

� C
∑
j∈�

∫
Uj+1

�(x, 2j+1) dx

� C
∑
j∈�

∫
{x∈Uj+1:I1|∇vj |(x)>C2j}

�(x, C2j) dx.

Taking r ∈ (p+, (p∗)−�), we obtain by Lemma 4.2 that

∑
j∈�

∫
{x∈Uj+1:I1|∇vj |(x)>C2j}

�(x, C2j) dx � C
∑
j∈�

‖∇vj‖r
�(·,·)(�n)

� C
∑
j∈�

∫
Uj

�(x, |∇u(x)|) dx � C,

which completes the proof. �

Proof of Theorem 1.1. We may split �n into a finite number of cubes �1, . . . , �k

and the complement of a cube, �0, in such a way that p+
�i

< (p∗)−�i
for each i. Then

‖u‖�(·,·)(�n) �
k∑

i=0

‖u‖�(·,·)(�i) � c1

k∑
i=0

‖∇u‖�(·,·)(�n) = (k + 1)c1‖∇u‖�(·,·)(�n),

by the previous lemma. �
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