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Following identification of essential micronutrients, there has been a con-
tinuum of research aimed at revealing their absorption, transport, utiliza-
tion as cofactors, and excretion and secretion. Among those cases that
have received our attention are vitamin B6, riboflavin, biotin, lipoate,
ascorbate, and certain metal ions. Circulatory transport and cellular uptake
of the water-soluble vitamins exhibit relative specificity and facilitated
mechanisms at physiological concentrations. Isolation of enzymes and
metabolites from micro-organisms and mammals has provided information
on pathways involved in cofactor formation and metabolism. Kinases
catalysing phosphorylation of B6 and riboflavin have a preference for Zn2+

in stereospecific chelates with adenosine triphosphate. The synthetase for
flavin adenine dinucleotide prefers Mg2+. The flavin mononucleotide-
dependent oxidase that converts the 5�-phosphates of pyridoxine and of
pyridoxamine to pyridoxal phosphate is a connection between B6 and
riboflavin and is a primary control point for conversion of B6 to its coen-
zyme. Sequencing and cloning of a side-chain oxidase for riboflavin was
achieved. Details on binding and function have been delineated for some
cofactor systems, especially in several flavoproteins. There is both photo-
chemical oxidation and oxidative catabolism of B6 and riboflavin. Both
biotin and lipoate undergo oxidation of their acid side chains with redox
cleavage of the rings. Applications from our findings include the develop-
ment of affinity absorbents, enhanced drug delivery, delineation of
residues in biopolymer modification, pathogen photoinactivation in blood
components, and input into human dietary recommendations. Ongoing and
future research in the cofactor arena can be expected to add to this
panoply. At the molecular level, the way in which the same cofactor can
participate in diverse catalytic reactions resides in interactions with sur-
rounding enzyme structures that must be determined case by case. At the
level of human intake, more knowledge is desirable for making micronu-
trient recommendations based on biochemical indicators, especially for the
span between infancy and adulthood.

Micronutrient cofactors: Vitamins: Metabolic pathways: Enzymes
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Introduction

The subject of micronutrient cofactors is of major importance because the vitamins and trace
elements that constitute this group of dietary ingredients are essential in their function to help
man and other organisms utilize such macronutrients as proteins, carbohydrates, fats, and
macrominerals that provide energy and the major substances of our bodies.

It should be noted for the reader who has an interest in micronutrient cofactors that there are
timely books dealing with nutritional biochemistry of the vitamins (Bender, 1992), the history as
well as particulars of conversions of vitamins to coenzymes and other biologically active forms
(Combs, 1998), and sources that provide coverage of each vitamin–coenzyme group (McCormick
et al. 1997b; Rucker et al. 2001). There are also periodic symposia resulting in volumes on the
updated findings for most of the cofactor groups. This too is the case with ongoing volumes of
‘Metal ions in biological systems’, first appearing 28 years ago (Sigel, 1974). Again symposia and
conferences on specific metal ion cofactors add to the published detail available to the professional.

Given the invitation to write ‘a reflective personal review’, the author has taken the oppor-
tunity to attempt to condense most of his scientific perambulations on micronutrient research
into a synoptic treatise. The satisfaction derived from discovery has been enhanced by applica-
tions that serve more than to catalogue basic knowledge, so such extensions are also briefly
covered in the present review. A more specific acknowledgement of the help provided by men-
tors, trainees, and other colleagues in a somewhat wider venue of biochemical and nutritional
research has been published (McCormick, 2000), so this account will be a more circumscribed
focus on findings and applications relating to those micronutrient cofactors that have received
our specific attention.

Uptake, transport, and storage of water-soluble vitamins

Although there are differences in the ways that cells take in and route the structurally dissimilar
water-soluble vitamins, findings from a number of laboratories indicate commonality of relative
specificity and facilitated uptake at physiological concentrations, with passive diffusion becom-
ing predominant at pharmacological levels. Circulatory, less-specific binding proteins help vec-
tor the vitamins to organ sites in mammals, which also have pregnancy-induced carriers in
some cases. The latter have some parallel in the specific, tight-binding proteins that permit stor-
age of such vitamins as riboflavin and biotin in the eggs of birds. Our studies in this subject
area are summarized in the following two sections.

Uptake

The entry of pyridoxine into liver cells is insensitive to Na+ (and hence Na+/K+ ATPase) and
dependent on metabolic trapping by pyridoxal kinase (Kozik & McCormick, 1984), whereas
uptake by renal proximal tubular cells is similar but may involve Na+/H+ exchange and/or pH
gradient effects (Bowman & McCormick, 1987, 1989; McCormick, 1989). Disposition of B6
glucosides was shown to depend upon uptake as well as subsequent metabolic events (Joseph et
al. 1996; Zhang et al. 1993a). Hepatocyte uptake of riboflavin, which is carrier-mediated but
not Na+-dependent and involves flavokinase-catalysed phosphorylation (Aw et al. 1983), has
been contrasted with gut (enterocyte) absorption and with uptake by proximal tubular renal
cells (Bowman et al. 1989). Biotin entry depends on ligandin (glutathione S-transferase) as typ-
ical for organic acid anions (Bowers-Komro & McCormick, 1985b).
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Transport and storage

Both physical (Pritchard et al. 1967) and biological (Lee et al. 1973b) interactions of biotin
with avidin were investigated, as was specificity of avidin (Zempleni et al. 1996e) and biocyti-
nase (McCormick, 1969). We have delineated properties of the avian carrier and storage pro-
teins for riboflavin (Froehlich et al. 1980) including its flavin-binding specificity (Choi &
McCormick, 1980), were the first to recognize the pregnancy-induced riboflavin-carrier protein
in a mammal (Merrill et al. 1979a), and elaborated on the occurrence of other cytosolic binding
proteins for this vitamin (Merrill et al. 1982). Further work has led to the identification of
immunoglobulin carriers in man (Merrill et al. 1981a; Innis et al. 1985, 1986).

Vitamin metabolism

Some of the more recent and interesting advances in research on water-soluble vitamins has to
do with their biosyntheses. In the past few years, the missing intermediates and enzymes in the
pathways for formation of pyridoxine, riboflavin, and biotin have been discovered. Biosynthesis
of B6 in Escherichia coli K-12 has been shown to involve condensation of 4-phospho-hydroxy-
L-threonine with 1-deoxy-D-xylulose 5-phosphate to form pyridoxine 5�-phosphate (Winkler,
2000). For riboflavin (Bacher et al. 2000) the beginning precursor is GTP, which, after four
steps, is converted to 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. This latter reacts
with 3,4-dihydroxybutanone 4-phosphate to form 6,7-dimethyl-8-ribityllumazine, which then
dismutates into riboflavin. Enzymes responsible for catalysing the half-dozen steps, including
the synthases for lumazine and riboflavin, have been isolated and characterized. In the case of
biotin, the terminal metal ion-containing synthases that operate to form dethiobiotin (Schneider
& Lindqvist, 1997) and biotin (Flint & Allen, 1997) have been examined. Other studies have
centred on the conversions of such vitamins to their coenzymic operating forms and their even-
tual catabolism. The following four sections outline some of our findings.

Vitamin B6

Pyridoxal (pyridoxine, pyridoxamine) kinase. Isolation of and comparative studies on both pro-
and eucaryotic forms of pyridoxal kinase allowed us to delineate general properties, including
the first substantiated role of Zn2+ in preference to Mg2+ as the cosubstrate ATP complex for the
mammalian phosphokinase (McCormick et al. 1961), and led to circumscription of inhibitory
aspects (McCormick & Snell, 1961), including the potent action of carbonyl reagents
(McCormick & Snell, 1959; McCormick et al. 1960) and such drugs are known to bind to the
kinase (McCormick & Chen, 1999).

Pyridoxine (pyridoxamine) 5�-phosphate oxidase. We succeeded in the first complete purification
of pyridoxine (pyridoxamine) 5�-phosphate oxidase, the FMN-dependent enzyme responsible for
conversion of the kinase-derived phosphovitamin B6 to coenzymic pyridoxal 5�-phosphate
(Kazarinoff & McCormick, 1975). More facile affinity purification (Bowers-Komro et al. 1986)
and assays (DePecol & McCormick, 1980) were developed and structural requirements for sub-
strate (Kazarinoff & McCormick, 1973, 1975; DePecol & McCormick, 1980; Merrill et al. 1980;
Bowers-Komro & McCormick, 1987) and coenzyme specificities (Kazarinoff & McCormick,
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1974; Merrill et al. 1979b) accomplished. The oxidase requires the 5�-phosphate for substrate but
is fairly tolerant of substitutions on the 4-aminomethyl function. Systematic elucidation of the
dimeric subunit association (Horiike et al. 1979a; Tsuge & McCormick, 1980), active-site amino
acid residues (McCormick et al. 1976; Horiike et al. 1979b; Tsuge & McCormick, 1980; Choi &
McCormick, 1981; Bowers-Komro et al. 1986), kinetics of which are somewhat different for the
two natural substrates (Choi et al. 1982, 1983), and ultimately mechanistic delineation of stereo-
chemical aspects (Bowers-Komro & McCormick, 1984b, 1985a; McCormick & Bowers-Komro,
1986) have provided definitive information on the way this essential flavoprotein operates in the
ionic abstraction of a substrate hydrogen (Bowers-Komro & McCormick, 1984a), which depends
upon the flavin status of an organism (Rasmussen et al. 1979, 1980), and participates in the regu-
lation of B6 metabolism (Merrill et al. 1978b; McCormick & Merrill, 1980). The sequences for
this essential oxidase from several organisms have been determined (McCormick & Chen, 1999).
An important interface between vitamins B2 and B6 is now clear.

The scheme given in Fig. 1 outlines the sequential roles of kinase and oxidase in the inter-
conversions of B6 vitamers toward the coenzyme pyridoxal 5�-phosphate.

Riboflavin

Flavokinase. The enzyme responsible for catalysing phosphorylation of riboflavin to form
riboflavin 5�-phosphate (FMN) in mammalian tissue and elsewhere was shown by us to be fla-
vokinase, which is another Zn2+-preferring enzyme (McCormick, 1962; Merrill & McCormick,
1980; Nakano & McCormick, 1991b). Its enrichment from liver was accomplished by classic
techniques (McCormick, 1962) and then purification done with affinity chromatography
(Arsenis & McCormick, 1964a; Merrill & McCormick, 1980; Nakano & McCormick, 1991a).
Detailed studies on the specificity of this enzyme (McCormick & Butler, 1962; McCormick et
al. 1963, 1964; Yang et al. 1964; Chassy et al. 1965) helped clarify the biological activities of
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Fig. 1. Vitamin B6 metabolism. Reactions shown occur in numerous organisms and
organs, especially the liver. For the disposition of ingested forms of B6 with an indication
of organ interplay, see McCormick (2001). Both kinase and oxidase are cytosolic. 

03NRR041  29/10/02  10:06 AM  Page  248

https://doi.org/10.1079/NRR200241 Published online by Cambridge University Press

https://doi.org/10.1079/NRR200241


flavin analogues. Investigations of substrate induction (Merrill et al. 1978a; Lee & McCormick,
1983) and thyroid hormone stimulation (McCormick et al. 1984; Lee & McCormick, 1985) led
to recognition of the ‘active’ and ‘inactive’ forms, which are poised at the regulation site for the
biosynthesis of the flavocoenzymes FMN and FAD. 

FAD synthetase. We elaborated the substrate specificity of mammalian FAD synthetase
(McCormick, 1964a,b; Bowers-Komro et al. 1989; McCormick et al. 1997a) and accomplished
its partial (Gomes & McCormick, 1983) and then complete purification using FMN-agarose
(Kazarinoff et al. 1975; Oka & McCormick, 1987). Further work on this Mg2+-preferring enzyme
led to more detailed characterization of the cooperatively interactive kinase–synthetase system
and to the kinetic order as regards substrate addition and product removal (Yamada et al. 1990).

FMN phosphatase and FAD pyrophosphatase. The interfering, non-specific actions of acid and
alkaline phosphatases (McCormick, 1961; McCormick & Russell, 1962) and FAD pyrophos-
phatase have been separated and generally characterized as degradative hydrolases responsible
for breakdown of flavocoenzymes (Lee & McCormick, 1983).

Riboflavin side-chain oxidases. A bacterial ribityl side-chain oxidizing enzyme that had been
called a ‘hydrolase’ was found by us to have relative specificity (Yang & McCormick, 1967a),
whereas another enzyme narrowly specific for riboflavin (Kekelidze et al. 1994, 1995) has been
molecularly cloned and sequenced from a fungal organism (Chen & McCormick, 1997a) and
found to form both aldehyde and acid ‘schizoflavin’ products at the 5�-terminus (Chen &
McCormick, 1997b). 

Flavin metabolites and analogues. We have helped detail the overall metabolic fate of
riboflavin (Foley et al. 1967; Yang & McCormick, 1967b; McCormick, 1975b, 1976a;
McCormick et al. 1984, 1988; Oka & McCormick, 1985; Chastain & McCormick, 1987a, b,
1988; Roughead & McCormick, 1991), 8α-amino acid flavins derived from covalent forms
(Addison & McCormick, 1978; Chia et al. 1978), and flavin analogues (Ogunmodede &
McCormick, 1966; Tu & McCormick, 1969) in the mammal and in milk from cows (Roughead
& McCormick, 1990a) and in human milk (Roughead & McCormick, 1990b). The finding that
an 8α-sulfonyl-riboflavin appears in human urine as a result of catabolic turnover of
monoamine oxidase is noteworthy (Chastain & McCormick, 1987b). The predominant catabo-
lite of riboflavin to appear in blood plasma following ingestion of the vitamin is the 7α-hydroxy
compound (Zempleni et al. 1996a,b). The in vivo kinetics of riboflavin absorption and disposi-
tion have been quantified in normal human subjects (Zempleni et al. 1996a) and in women with
liver cirrhosis ( Zempleni et al. 1996c).

The scheme given in Fig. 2 outlines central aspects of riboflavin transport, metabolism, uti-
lization, and excretion.

Biotin

Biosynthesis. Proof that biotin is formed directly from dethiobiotin was accomplished by our
use of the radiolabelled precursor of the vitamin (Tepper et al. 1966; Li et al. 1968a).
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Catabolism. The fate of biotin and some of its analogues when wholly degraded in a
pseudomonad (Brady et al. 1965, 1966; Ruis et al. 1968; Iwahara et al. 1969; Im et al. 1970,
1973; Roth et al. 1970; Kazarinoff et al. 1972; Westendorf & McCormick, 1980) and partly
degraded in a fungus (Li et al. 1968b) and the rat (Lee et al. 1972, 1973a) was elaborated in our
laboratory. Also a discriminating colorimetric reaction for biotin and analogues was developed
(McCormick & Roth, 1970). Present knowledge of the metabolism of biotin is based on these
detailed studies (McCormick & Wright, 1970; McCormick, 1975a, 1976b; McCormick &
Olson, 1984). Whereas a soil pseudomonad forced to use biotin as the sole source of C, N, S
and energy can effect extensive degradation of the vitamin, including the bicyclic ring system,
mammals, including man (Zempleni et al. 1996d), operate more sparingly, mainly on side-
chain β-oxidation and oxidation of the ring S.

Based on the numerous catabolites we have isolated and structurally identified and the
known function of ε-lysyl-linked biotin in mammalian carboxylases, an overview of events is
summarized in Fig. 3.

Lipoate

Similar studies have been conducted on the catabolic fate of lipoate, an essential cofactor that is
covalently linked to the ε-amino functions of specific lysyl residues of transacylases. Lipoate is
a vitamin for some microbes but not the mammal, which can biosynthesize it from the level of
octanoate. We first detailed total degradation of lipoate in a pseudomonad isolated by enrich-
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Fig. 2. Riboflavin metabolism. Biosynthesis and turnover of flavocoenzymes occur
in most cells, with kinase and synthetase located in the cytosol but degradative
enzymes included within organelles. 
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Fig. 3. Biotin metabolism. Though side-chain β-oxidation and S oxidation occur in
bacteria and mammals, extensive degradation of the bicyclic ring system is known to
occur only in certain bacteria. 
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ment culture from soil (Shih et al. 1972, 1975; Chang et al. 1975; Furr et al. 1978; Furr &
McCormick, 1978), and then in the rat (Harrison & McCormick, 1974; Spence & McCormick,
1976). Syntheses and delineation of the properties of critical side-chain-shortened catabolites,
for example bisnor- and tetranorlipoates, were also accomplished (Shih et al. 1974) as were
HPLC chromatographic separations of metabolites (Howard & McCormick, 1981).

The routes for function and catabolism of lipoate are shown in Fig. 4.

Flavocoenzyme function

To better understand the nature of flavocoenzymes, namely FMN and both non-covalently
bound FAD and the less frequent but critical 8α-linked FAD cases, we have examined com-
plexes of free flavins and those that were associated with those specific proteins that serve as
binding proteins or flavin enzymes. Some findings are mentioned in the next two sections.

Inter- and intramolecular flavin complexes

Our studies on the nature of inter- and intramolecular complexes of flavins with purines and
pyrimidines (Chassy & McCormick, 1965a; Tsibris et al. 1965; Roth & McCormick, 1967;
McCormick, 1968a) including synthetic analogues of FAD helped elucidate the strength and
types of interactions involved, particularly with FAD wherein the adenine moiety quenches the
fluorescence of the isoalloxazine ring. Extension of such studies to flavin–aromatic amino acid
systems (Föry et al. 1968, 1970a,b; MacKenzie et al. 1969; McCormick, 1970, 1977b; Wu &
McCormick, 1971a,b; Johnson & McCormick, 1973; Johnson et al. 1975; McCormick et al.
1975; Getoff et al. 1978) and ultimately to flavoproteins (McCormick, 1970, 1977a,b;
McCormick & Tu, 1970; Wu et al. 1970; Tu & McCormick, 1973, 1974; Shiga et al. 1975;
Merrill et al. 1981b) secured the expectation that such interactions are common, particularly
with tryptophanyl and tyrosyl residues, and often account for part of the facilitated binding of
flavins to proteins.

Flavin-dependent enzymes

The specificity of coenzyme binding and function (Arsenis & McCormick, 1964b; McCormick
et al. 1964; Chassy & McCormick, 1965b; Roth et al. 1966; Tsibris et al. 1966; Merrill et al.
1979b; Visser et al. 1968), nature of active-site residues (McCormick et al. 1967; Koster et al.
1968; McCormick, 1970; Wu et al. 1970; Tu & McCormick, 1973, 1974; Falk et al. 1976; Falk
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& McCormick, 1976; Horiike et al. 1979b; Choi & McCormick, 1981) and physical properties
of several flavin-dependent enzymes have been elucidated. One common feature is the binding
of the pyrimidinoid portion of the isoalloxazine system of FMN within a cleft, which often
allows projection of the dimethylbenzenoid edge toward solvent. A prototypic example of using
a coenzyme as a photochemical probe for the active site of an enzyme was provided by our
work with FAD in D-amino acid oxidase, wherein a tyrosyl as well as lysyl and cysteinyl
residues were proven critical (Tu & McCormick, 1973). The stereochemical effects of 8α-flavin
linkage to a cysteinyl residue in monoamine oxidase were confirmed and quantified by our syn-
thesis of the active-site portion of this enzyme (Falk et al. 1976; Falk & McCormick, 1976).

Metal ions

We have shown the involvement of K+ as an activator and Zn2+ chelated with ATP as cosub-
strate with pyridoxal kinase (McCormick et al. 1961). Also the preference for Zn2+ was estab-
lished for flavokinase (McCormick, 1962; Merrill & McCormick, 1980) and bacterial
dihydro-orotase (Sander et al. 1965). The metal ion liganding properties of several important
functional groups (Griesser et al. 1971) including amino acids (Griesser et al. 1969;
McCormick et al. 1969, 1974; Sigel et al. 1969a,b, 1970, 1972, 1977; Sigel & McCormick,
1971, 1974; Walker et al. 1972), nucleotides (Sigel et al. 1967; Sigel & McCormick, 1974), and
such vitamins as biotin (Sigel et al. 1969c, 1978a; Griesser et al. 1970, 1973; Sigel &
McCormick, 1974) and lipoate (Sigel et al. 1978a,b) have been delineated for important cations
of the Irving-Williams series. These latter studies extend our knowledge of the possible interac-
tions within biological metal ion-containing systems.

Derived applications

In biomedical sciences, most investigations are based (and funded) on the expectation that find-
ings will not only shed light on questions of a basic nature but also eventually lead to applica-
tions that will directly or indirectly improve the lot of mankind. Over the span of our research,
several extensions of the basic findings have led to useful applications. Though few such
discoveries nowadays are the result of only one individual or group, at least a significant and
literature-documented role has been played by my colleagues and me in the following.

Biochemically specific (‘affinity’) absorbents

Our numerous studies on the specificity of biopolymers (enzymes, binding-proteins, and
polynucleotides) led me to realize nearly a half century ago that one could take advantage of
the selective binding of a biopolymer to its substrate, cofactor, or complementary polynu-
cleotide by synthesizing biochemically specific absorbents. A start in this direction was my syn-
thesis in 1959 of the one-methylene-extended homologue of pyridoxal with the intent of
coupling this to some matrix for the column purification of pyridoxal kinase. This was elabo-
rated, well before the current term of ‘affinity chromatography’, with several examples that first
used derivatized cellulose, for example liver flavokinase on flavin-cellulose (Arsenis &
McCormick, 1964a), avidin on biotinyl-cellulose (McCormick, 1965), some FMN-dependent
enzymes on FMN-cellulose (Arsenis & McCormick, 1966), and polyA nucleotides on thymidy-
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late-cellulose (Sander et al. 1966). As Sephadex gained widespread use in enzymology, we
turned to this more manageable material for a matrix, often with linker arms to make an 
‘affinose’. Examples include riboflavin-binding proteins on flavinyl-affinose (Merrill &
McCormick, 1978), pregnancy-specific riboflavin-binding protein on flavinyl-affinose (Merrill
et al. 1979a), liver flavokinase on flavinyl-affinose (Merrill & McCormick, 1980), pyridoxine
(pyridoxamine) 5�-phosphate oxidase on 5�-phosphopyridoxyl-affinose (Bowers-Komro et al.
1986), FAD synthetase on FMN-affinose (Oka & McCormick, 1987; McCormick et al.
1997a,b), B6-binding proteins on pyridoxyl-affinose (McCormick et al. 1991), and brain
flavokinase on flavinyl-affinose (Nakano & McCormick, 1991a). The generalized scheme for
formation and use of affinity absorbents is illustrated in Fig. 5.

We also have immobilized enzymes as a means for flow-through catalysis. Examples are
with D-amino oxidase (Tu & McCormick, 1972) and flavokinase (Merrill & McCormick, 1979).

Drug delivery

Information from our studies on the specificity of transporters for the vitamins coupled with our
knowledge of the enzymic events that occur upon their entry into cells led to the design of vita-
min analogue models that exemplify transporter-enhanced delivery of bioactive compounds. A
specific case elaborated is the chemical attachment of bioactive amines to vitamin B6 so as to
be ‘piggybacked’ through the B6 transporter and metabolically released inside kidney or liver
cells as free amine plus the coenzyme pyridoxal 5�-phosphate (Zhang & McCormick, 1991,
1992a,b; Zhang et al. 1993b; McCormick, 1994). A means by which some less-transportable
compounds of therapeutic use can be imported into cells is exemplified in Fig. 6.

Biopolymer modifications

We established the theoretical bases, including means for calculating number of residues modi-
fied and ways to plot correctly such data, in part, to clarify the erroneous manner in which such
data had sometimes been published by others. This work (Horiike & McCormick, 1979, 1980)
can be extended to experimental protocols for chemical (McCormick, 1970; Horiike et al.
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Fig. 5. Biochemically specific (‘affinity’) absorbents. By attaching a compound that specifically binds a
biopolymer to an insoluble matrix in such a manner that allows separation from extraneous materials
followed by elution of the biopolymer, purification of the latter can be achieved. 
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1979a,b; Tsuge & McCormick, 1980; Choi & McCormick, 1981; Nakano et al. 1992; Nakano
& McCormick, 1992) and photochemical (McCormick et al. 1967; Koster et al. 1968;
McCormick, 1968b, 1970; Tu & McCormick, 1973) modifications of enzymes or, for that mat-
ter, any biopolymer.

Pathogen photoinactivation

A technique that is being developed for producing pathogen-free blood components is to take
advantage of the photochemistry that is obtained with riboflavin and the fact that erythrocytes,
platelets and plasma contain no nucleic acid. When this vitamin is irradiated with light at wave-
lengths that are in the visible range (and hence is not absorbed by simple proteins), the flavin
excited state can interact with nucleic acids contained within viral and bacterial pathogens to
effect photo-oxidation, especially of guanine residues, to cause killing of such organisms. The
side-chain photoproducts of riboflavin that result are mainly those that we have shown are
excreted in urine (Chastain & McCormick, 1987a,b, 1988) and are secreted in milk from cows
(Roughead & McCormick, 1990a) and human subjects (Roughead & McCormick, 1990b). Fig.
7 summarizes the process of photoinactivation using riboflavin.

Dietary recommendations

Our quantification of vitamins and their metabolites in the urine of human subjects has been
helpful in assessment of losses that should be replaced in the diet. This has been the case for
riboflavin (Chastain & McCormick, 1987b, 1988) and biotin (Zempleni et al.1996e). Also
knowledge of the secretion of flavins in human milk (Roughead & McCormick, 1990b) aids in
the estimation of an adequate allowance of riboflavin for infants, just as knowledge of flavin
content of cows’ milk allows us to estimate the contribution of this important source to our rec-
ommended dietary allowance such as periodically published in the US (Food and Nutrition
Board and Institute of Medicine, 1998) with counterparts in other countries. 

There has been good progress in unravelling the nature of micronutrient cofactors up to the
present. Undoubtedly more can and should be learned in future research by others. 
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Effector,
   e.g. drug                      Chemical linking                   Transport-enhanced effector
      �                                                                                  (extracellular)
Solute,
   e.g. vitamin

                                                                                    Plasma-membrane transporter

Metabolite,
   e.g. coenzyme            Enzymatic cleavage                Transport-enhanced effector
       �                                                                                     (intracellular)
Effector,
   e.g. drug

Fig. 6. Transporter-enhanced delivery of bioactive compounds. By attaching a less
transportable compound, such as a poorly soluble drug, to a compound that gains
facilitated entry and metabolic release within cells, transport of the less
transportable compound into such cells can be enhanced. 
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