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An automorphism & of a semigroup S is said to be an
inner automorphism if there exists a unit u in S such that

-1
ad = u au

for each a in S. Let X denote a nonempty set and let &
denote the semigroup of all binary relations on X where

AoB = {(x,y)e XXX (x,z)€ A and (z,y)€¢ B for some z in X}
for elements A and B of &. This semigroup is discussed

in [1, pp.13-16] and in [2, pp.33-35]. The purpose of this note
is to prove the following

THEOREM. Every automorphism of & is inner.
Applying this theorem, we also obtain the following

COROLLARY. The automorphism group of 3 is
isomorphic to the group of permutations on X.

The analogous results for the semigroup of all trans-
formations of a set into itself are proven in [2, pp.302-303].
It is pointed out there that I. Schreier [5], A.I. Malcev [4]
and E.S. Ljapin [3] have all given proofs of the fact that every
automorphism of the semigroup of all transformations on a set
is inner. Schreier's paper, the first of the three, appeared in
1936.

In what follows, the empty relation will be denoted by E.
Forany A in po , the domain, J(A), of A and the range,
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A (A), of A are defined by

%
E
1]

{xe X: (x,y)€ A for some y in X} and

X
E
i

{ye X (x,y)€ A for some x in X}.
Finally, for x in X,
{(y,x) e XXX ye X}
is an element of &7 and will be denoted by |x]|.
Proofs.
In proving the theorem, we make use of the following facts:
(1) Z¥(A) = X if and only if Bo A =E implies B =E.

(2) LX(A)C LH(B) if and only if Co B =E implies
Co A =E.

(3) K(A)C A (B) if and only if BoC =E implies
Ao C=E.

(4) /?(A) consists of one point if and only if A # E and
there exists an element B in &7 such that

(i) AeB=E and
(i) if Ao C#E and {}(B)CLH(C), then L¥(C)=X.
The verification of each of the statements above is straightforward
and will not be given here. Now let & be an automorphism of {7 .
Since E 1is the zero of 6, we must have
(5) E& = E.
Statements (1) and (5) together imply
(6) L3(A) = X if and only if L} (Ad) = X.

Statements (3) and (5) imply
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(1) £ (A)CS A (B) if and only if & (A3) S K (B3) .

Statements (1), (2), (4) and (5) imply

(8) K (A) consists of one point if and only if /€(AE_>)
consists of one point.

Now we are in a position to define a one-to-one trans-
formation H from X onto X. Letany x in X be given.
It follows from (6) and (8) that

|x|® = |y| for some y in X.

We define xH =y. Let us observe that H is a unit of (3 and
moreover
-1 -1
9) [x]$ = [=H| and [x|§ " = |xH |
foreach x in X. Nowforany x in X and A in 6, we
Iet

xA :{yé x (x1Y)e A} *
We will use the fact that for elements A and B of &, A =B
if and only if xA =xB for each x in X
Using (9) (several times) we get the following string of

equalities:

x(HE) = x(|x|o HY = x{(|xH " [§oHE = x((|xt ‘| H)3) =

"

x([x|e H) = xH.

x(([|x] o gt H)3) = x(|x|$) = x|xH]|

Therefore

(10) H$ = H.
Now let A be an arbitrary element of 3. It follows from (7),
(9) and (10) that the following statements are successively

equivalent:

yex(H toAoH),
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yex(|xs o Ao,
Rilyhe R oaom,

Rilyl® e Ass " [goagoHg)
RyH) K (|x|e Ao H),

yHe z(|x| o Adc H) for some z in X,,
yHe x(Ade H) ,

y € x(Ad) .

Thus x(H-io Ao H) = x(Ad) for each x in X. This implies
Ad = H_1° A©° H and the theorem is proved.

To see how the corollary follows from the theorem, recall
that the units of 5 are precisely the perrnutations on X. For
any permutation H on X, map H onto the automorphism
which carries an element A in 43 onto H 'e Ao H. This
mapping is a homomorphism from the group of permutations
on X into the group of automorphisms of (3. In fact, the
mapping is an epimorphism onto {3 since every automorphism
of & is inner. If H is in the kernel of the epimorphism, we
must have H 1o AcH=A for each A in {3 . But this implies
that H commutes with each element of ,6 which, in turn,
implies that H is the identity mapping on X. Thus, the epi-
morphism is an isomorphism and the corollary is proved.
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