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A LOWER BOUND FOR THE FIRST PASSAGE
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Abstract

We prove that the first passage time density ρ(t) for an Ornstein–Uhlenbeck process
X(t) obeying dX = −βX dt + σ dW to reach a fixed threshold θ from a suprathreshold
initial condition x0 > θ > 0 has a lower bound of the form ρ(t) > k exp[−pe6βt ] for
positive constants k and p for times t exceeding some positive value u. We obtain explicit
expressions for k, p, and u in terms of β, σ , x0, and θ , and discuss the application of the
results to the synchronization of periodically forced stochastic leaky integrate-and-fire
model neurons.
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1. Introduction

The distribution of the first passage time τ of an Ornstein–Uhlenbeck (OU) process to a
fixed boundary is of interest in a variety of fields including mathematical neuroscience, where
it describes the interspike interval distribution of a leaky integrate-and-fire model (LIF model)
neuron driven by a combination of steady and fluctuating current sources [1]. Unlike the density
of the first passage time (FPT) to a fixed boundary for Brownian motion, the FPT density for
the OU process is not known in closed form. Explicit expressions are known for the moments
of the FPT; in a neuroscience context the mean and variance are respectively related to the
rate and variability of neuronal discharge [21], [33]. Conditions guaranteeing the existence and
smoothness of the FPT density to constant and moving boundaries have been studied [10], [17].

Intuitively it is perhaps ‘obvious’that the FPT density for an OU process is never identically 0,
because no matter how removed a time t is from the typical time of first passage, there must exist
a set of trajectories of positive measure that make a sufficiently large excursion from the mean
behavior that arrival at the boundary is delayed until t or later. It is the purpose of this paper to
augment this intuitive argument by providing an explicit positive lower bound valid for the tail
of the distribution. We restrict attention to the lower bound problem for the ‘suprathreshold’
case, i.e. the case in which the initial value x0 and the asymptotic mean x∞ of the process are on
opposite sides of the threshold value. In the neural context this case corresponds heuristically
to that of an LIF model neuron driven by a sufficiently strong injected current that it will reach
its firing threshold in finite time, i.e. firing is not dependent on the presence of fluctuations. This
case is therefore fundamentally distinct from that of ‘stochastic resonance’ phenomena, which
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occur in a subthreshold setting. For the subthreshold case, the initial and asymptotic values of
the OU process lie on the same side of the capture boundary. In this case asymptotic results
have been proven that characterize the tail of the distribution at large times [6], [14]. In contrast,
the author is aware of no results providing strictly positive lower bounds for the FPT density
in the suprathreshold case. Such bounds would be of interest in the study of synchronization
of neural activity via periodic stimulation, for reasons to be discussed below. Our main results
are summarized in Theorem 1.1.

Theorem 1.1. (Positive lower bound theorem.) Let {X(t), t ≥ 0} be an OU process satisfying
the Itô stochastic differential equation

dX = −βX dt + σ dW (1.1)

with initial condition

X(0) = x0, (1.2)

where β, σ , and x0 are positive constants, and W(t) is a standard Wiener process. Let θ be a
fixed threshold satisfying x0 > θ > 0. Then there exist positive constants k, p, and u such that
the FPT density of the process to the threshold, ρX(t), satisfies

ρX(t) > k exp[−pe6βt ], (1.3)

provided that t > u.
In particular, for given values of the constants β, σ , x0, and θ , inequality (1.3) is satisfied

for the following values of k, p, and u:

k = 1024β

9π

(
x0

θ
− 1

)
,

p = 1 + β

32

(
θ

σ

)2

,

u = 1

2β
log

[
1 +

{
8 ∨

(
1 + x2

0

θ2

)
∨

(
8σ 2

βθ2

)}]
.

Here ‘∨’ denotes the maximum operator.

The proof of Theorem 1.1 is obtained from a geometric construction, elaborated in Sections 2
and 3, which exploits the well-known change of variables by which an OU process may be
written in terms of a standard Brownian motion [18]. Sato [22] used the same transformation
to obtain analytic results on the FPT distribution of the OU process to a constant boundary, in
the subthreshold case. While our results use the same change of variables, we cannot obtain
the explicit lower bound sought directly from Sato’s asymptotic results.

The paper is organized as follows. In Section 2 we introduce the needed change of coordinates
and establish a lower bound for the FPT of a standard Brownian motion to a piecewise-linear
approximation of a square root boundary. In Section 3 we use these results to establish
Theorem 1.1. In Section 4 we discuss potential applications of our result to the synchronization
of periodically forced LIF model neurons in the presence of additive noise, as well as related
asymptotic results in the literature.
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2. Bounding the FPT distribution to a square root boundary for Brownian motion

2.1. Coordinate transformation

Let X(t) be an OU process described by (1.1) and (1.2), and let B(t) denote a standard
Brownian motion, i.e. B(t) satisfies

dB = dW, (2.1)

B(0) ≡ 0, (2.2)

from which E[B] = 0 and var[B] = t . We will identify the sample space � for Brownian
trajectories with C[0,∞).

For t ≥ 0, we have the representation of X in terms of B:

X(t) = x0e−βt + σe−βt
√

2β
B(e2βt − 1). (2.3)

The problem of finding the FPT distribution for an OU process with a fixed boundary is
equivalent to the problem of finding the FPT distribution for a standard Brownian motion to a
moving boundary with square root time dependence. Given the parameter β for the OU process,
(1.1), define an exponentially rescaled time

s = e2βt − 1, t ≥ 0. (2.4)

Equivalently, for s ≥ 0, we have t = (1/2β) log(s + 1).

Lemma 2.1. LetX andB be as defined in (1.1)–(1.2) and (2.1)–(2.2), with x0 > θ > 0, and let
s be as defined in (2.4). Fix a particular Wiener process trajectory ω ∈ �. Then X(t, ω) > θ

for 0 ≤ t < τ if and only if

B(s, ω) >

√
2β

σ 2 (θ
√
s + 1 − x0)

for all 0 ≤ s < e2βτ − 1.

Proof. From (2.3),
X(t) > θ for 0 ≤ t < τ

⇐⇒ x0e−βt + σe−βt
√

2β
B(e2βt − 1) > θ for 0 ≤ t < τ

⇐⇒ B(e2βt − 1) >

√
2β

σ 2 (θ − x0e−βt )eβt for 0 ≤ t < τ

⇐⇒ B(s) >

√
2β

σ 2 (e
βt θ − x0) for 0 ≤ s < e2βτ − 1

⇐⇒ B(s) >

√
2β

σ 2 (θ
√
s + 1 − x0) for 0 ≤ s < e2βτ − 1.

This concludes the proof.

Note that, when s = t = 0, we have B(0) ≡ 0 > (
√

2β/σ 2)(θ − x0), consistent with the
assumption that x0 > θ .
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Let t ′ be the time of first passage of X(t) to θ . Let s′ be the time of first passage of B(s) to
the boundary

b(s) =
√

2β

σ
(θ

√
s + 1 − x0). (2.5)

The following corollary to Lemma 2.1 is immediate.

Corollary 2.1. Let the processes X and B be defined as in Lemma 2.1. Let b be the boundary
function given by (2.5), and let s be the rescaled time given by (2.4). Then, as dt → 0, the FPT
densities of X and B satisfy

Pr(t ′ ∈ [t, t + dt)) = Pr(s′ ∈ [s, s + ds))

with

ds = ds

dt
dt = 2βe2βt dt = 2β(s + 1) dt.

Consequently ρX(t), the FPT density for X, can be obtained from the FPT density for B,
ρB(s), as

ρX(t) = 2β(s + 1)ρB(s) = 2βe2βtρB(e
2βt − 1).

An explicit positive lower bound for ρB will then provide a positive lower bound for ρX.

2.2. Piecewise-linear approximation for b(s)

In order to obtain a positive lower bound for ρB , we will need the slope b′(s) of the boundary
function b(s):

b′(s) =
√

2β

σ

θ

2
√
s + 1

= θ

σ

√
β

2

1√
s + 1

.

In particular, we have b′(0) = θ(
√
β/2)/σ > 0 and, for all s ≥ 0, b′(s) > 0.

Given s′ > 0 and a small time ds > 0, let�0 ⊂ � be the set of all trajectories in the sample
space� = C[0,∞) with FPT s′ to the boundary b(s) in the small interval s′ ∈ [s, s+ ds). We
will decompose the set �0 into two subsets and obtain a positive lower bound for the measure
of one of them. First we construct a piecewise-linear approximation of the boundary function b
(see Figure 1).

Let L1 be the half-line {(s, a1 + sb1) | s ≥ 0}, where

a1 = b(0) = (θ − x0)
√

2β

σ < 0
, (2.6)

b1 = b′(0) = (θ/2)
√

2β

σ > 0
. (2.7)

The line L1 is tangent to the boundary function b(s) at s = 0. The boundary function has
negative second derivative for all s > 0, so we have a1+sb1 > b(s) for all s > 0. Consequently,
every continuous trajectory B(s) that begins at the initial condition B(0) ≡ 0 and meets the
boundary b(s) at some time s′ > 0 must first meet the line L1 at some time s′′ < s′.

Let s′ > 0 be given. We define a second boundary line L2 as the horizontal line with height

a2 = b(s′) =
√

2β

σ
(θ

√
s′ + 1 − x0).

Lines L1 and L2 intersect at the point

s∗ = a2 − a1

b1
= 2(

√
s′ + 1 − 1). (2.8)
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Figure 1: Geometric construction of the piecewise-linear boundary approximation, and sample tra-
jectories. Here the boundary b(s) is the arc starting from b(0) ≈ −2.8, and is given by (2.5) with
σ = 0.5, β = 1, x0 = 2, and θ = 1. The line L1 begins at the same location and rises above the arc with
slope b1 = √

2. LineL2 is horizontal, intersecting lineL1 at s∗ = 2
√

5−1 ≈ 2.47 and the boundary b(s)
at s′ = 4. Approximate Brownian trajectories were generated using MATLAB®, beginning at B(0) ≡ 0
and evolving with noise factor σ = 0.5. Of the twenty-five trajectories shown, three (thick lines) cross
L1 for the first time at s′′ > s∗. One of these trajectories (the thick pale (cyan) line) then crosses L2 in
the interval [s′, s′ + ds); here ds = 0.2 for illustration. Because L2 lies below b(s) for s > s′, the cyan
trajectory must also have its first passage to b(s) within the interval [s′, s′ + ds). The cyan trajectory is a

typical element of �2.

Note that s∗ < s′ provided that s′ > 0. The duration 	 of the interval I = [s∗, s′] is

	 = s′ − s∗ = s′ + 2(1 − √
s′ + 1) (2.9)

and satisfies 	+ 2
√
	 = s′. Figure 1 illustrates the geometry of b(s), L1, and L2. We note

for future reference that when s′ = 8, s∗ = 	 = 4, and that s∗ is a strictly increasing function
of s′ for s′ ≥ 0.

Given ds > 0, we have defined �0 to be the collection of all Wiener process trajectories
ω ∈ � = C[0,∞) such that the process X(s, ω) makes its first passage from X(0) ≡ 0 to
b(s) in the interval [s′, s′ + ds). We further define �1 to be the subset of �0 consisting of
those trajectories in �0 that make their first passage from X(0) ≡ 0 to the line L1 at any time
s′′ ≥ s∗. Figure 1 shows an example of such a trajectory (the thick pale (cyan) line). Starting
from X(0) = 0, the cyan trajectory remains above the line L1 until passing the intersection
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of L1 and L2 at s = s∗, after which it crosses b(s) for the first time in the interval [s′, s′ + ds).
Of the trajectories in �1, some—like the trajectory shown in cyan—also cross the line L2
somewhere in the interval [s′, s′ + ds). Denote the set of trajectories in �1 with this property
by �2.

Clearly,�2 ⊂ �1 ⊂ �0. Because b(s) is continuous and strictly increasing, every trajectory
that remains above line L1 until at least s = s∗ and then intersects line L2 for the first time in
the interval [s′, s′ + ds) must also make its first passage to b(s) in the interval [s′, s′ + ds).
Hence, if the density of trajectories in �2 crossing L2 in [s′, s′ + ds) is strictly positive, so is
the FPT density of all trajectories in �0, which is the FPT density of interest. We now derive
an explicit positive lower bound on the FPT density of trajectories in �2; hence, also a lower
bound for the FPT density of trajectories in �0.

2.3. Strictly positive lower bound for ρB

The FPT density for a standard Brownian motion fromB(0) ≡ 0 to a boundary moving with
constant velocity is well known (see, e.g. [3, p. 221] and [12]). The density of first passage
from B(0) ≡ 0 to L1 at time s is

g01(s) = |a1|
(2πs3)1/2

exp

[
− (a1 + b1s)

2

2s

]
,

where a1 and b1 are given in (2.6) and (2.7). Similarly, the density of first passage from a
starting position a1 + b1s at time s to the line L2 at time s′ > s is given by

g12(s
′ | s) = |(a1 + b1s)− a2|

(2π(s′ − s)3)1/2
exp

[
− ((a1 + b1s)− a2)

2

2(s′ − s)

]
.

Because of the almost-sure continuity of Brownian trajectories, we may write the FPT density
g2(s

′) for trajectories in�2 from initial position B(0) ≡ 0 to line L2 at time s′ as a convolution
of g01 with g12. Using l1(s) to denote (a1 + b1s), we write

g2(s
′) =

∫ s′

s=s∗
g01(s)g12(s

′ | s) ds

= |a1|
2π

∫ s′

s∗

l1(s)− a2

((s′ − s)s)3/2
exp

[
− l1(s)

2

2s
− (l1(s)− a2)

2

2(s′ − s)

]
ds, (2.10)

where the upper endpoint (s′) and lower endpoint (s∗) for the integration both depend on s′,
as does the height of L2, namely a2 = b(s′). The integrand in (2.10) approaches 0 at both
endpoints, but is strictly positive in the interior of the interval I = {s | s∗ ≤ s ≤ s′}. To obtain
a positive lower bound for the integral, we rewrite the integrand as a product of three factors:

g2(s
′) = |a1|

2π

∫
s∈I

F1(s, s
′)F2(s, s

′)F3(s, s
′) ds, (2.11)

F1(s, s
′) = a1 − a2(s

′)+ b1s,

F2(s, s
′) = (s(s′ − s))−3/2,

F3(s, s
′) = exp

[
− (s

′ − s)l21(s)+ s(l1(s)− a2)
2

2s(s′ − s)

]
= exp

[ −β
4σ 2

Q1(s, s
′)

Q2(s, s′)

]
,
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where we introduce the notation

Q1(s, s
′) = (s′l21(s)− 2sl1(s)a2 + sa2

2)
2σ 2

β
(2.12)

= s2θ(4x0 + θ(s′ − 4
√

1 + s′))+ 4s′(x0 − θ)2

− 4s(x2
0 + (s′ − 2)x0θ + (−1 − 2s′ + 2

√
1 + s′)θ2),

Q2(s, s
′) = s(s′ − s).

By construction, F1(s∗, s′) ≡ 0 for all s′ > 0 (recalling that s∗ depends on s′) and F1(s, s
′) > 0

for s > s∗. On the other hand, F3(s, s
′) → 0 as s → s′. Thus, the integrand approaches 0 at

both ends of the interval of integration. In order to obtain a strictly positive lower bound on the
integral, we restrict integration to a subinterval of [s∗, s′]. Let η and ν be chosen in the interval
0 < η < ν < 1, and set

s1 = s∗ + η	, s2 = s∗ + ν	,

where, as above, 	 = (s′ − s∗) is the duration of the integration interval. Then s∗ < s1 <

s2 < s′. Let I ′ denote the interval I ′ = [s1, s2] ⊂ I . Each factor F1, F2, and F3 is nonnegative
on the interval I . Consequently, we have the inequality

g2(s
′) ≥ |a1|

2π

∫
s∈I ′

F1(s, s
′)F2(s, s

′)F3(s, s
′) ds.

We consider each factor in turn.
The factor F1(s, s

′) is strictly increasing in s for all s, s′, so, for all s ∈ I ′, we have

F1(s, s
′) ≥ F1(s1, s

′) = η
θ
√

2β

2σ
	.

The quadratic Q2(s, s
′), which also appears in the factor F2(s, s

′) = Q2(s, s
′)−3/2, has a

global maximum (in s) of (s′)2/4 at s = s′/2. In the range s ∈ [s1, s2],Q2(s, s
′) is strictly

positive. Consequently for all s ∈ I ′, we have

F2(s, s
′) ≥ F2

(
s′

2
, s′

)
= 8

(s′)3
.

From (2.10), it is clear that both Q1(s, s
′) and Q2(s, s

′) are strictly positive for s ∈ I ′. The
factors β and σ are also positive; therefore, for s ∈ I ′,

F3(s, s
′) ≥ exp

[
− β

4σ 2

maxI ′ Q1(s, s
′)

minI ′ Q2(s, s′)

]
.

As established in the next lemma, Q1 is just a quadratic function of s with second derivative
that is guaranteed to be positive, provided that s′ > 8.

Lemma 2.2. If s′ > 8 and x0 > θ > 0, then the quadratic functionQ1(s, s
′) defined in (2.12)

has positive second derivative with respect to s.

Proof. The second derivative ofQ1 with respect to s is constant in s, ∂2Q1/∂s
2 = 2θ(4x0 +

θ(s′ − 4
√

1 + s′)). Suppose that s′ > 8. Then (s′)2 > 8s′, so (4 + s′)2 > 16 + 16s′. Taking
square roots, we obtain 4 + s′ > 4

√
1 + s′, which means that 1 >

√
1 + s′ − s′/4 and,

since θ > 0 by assumption, θ > θ(
√

1 + s′ − s′/4). By the assumption on x0, x0 > θ >

θ(
√

1 + s′ − s′/4). Consequently, x0 + θ(s′/4 − √
1 + s′) > 0, from which the conclusion

follows.
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Because Q1(s, s
′) has constant positive second derivative with respect to s, it achieves

its maximum on I ′ either at s1 or at s2. The quadratic Q2(s, s
′) has constant negative second

derivative with respect to s and achieves its minimum at one of the endpoints as well. Therefore,
we may conclude that

F3(s) ≥ exp

[
− β

4σ 2

(
Q1(s1) ∨Q1(s2)

Q2(s1) ∧Q2(s2)

)]
,

where ‘∨’denotes the greater and ‘∧’denotes the lesser of the two arguments. For compactness,
here and henceforth, we write Qi(s) for Qi(s, s

′), leaving the dependence on s′ implicit.
In terms of the quadratics Q1 and Q2, and the given constants, we therefore have the

following lower bound for the FPT density at time s′:

g2(s
′) ≥ |a1|

2π
(ν − η)	

(
η
θ
√

2β

2σ
	

)
8

(s′)3
exp

[
− β

4σ 2

(
Q1(s1) ∨Q1(s2)

Q2(s1) ∧Q2(s2)

)]
,

provided that s′ > 8.
Note that, for s′ > 8, 	(s′) > 2

3 (s
′ − 2) > 4. Since |a1| = (x0 − θ)

√
2β/σ > 0, we may

write

g2(s
′) > (ν − η)

(x0 − θ)
√

2β

2πσ

(
8

9

θ
√

2β

σ
η

)
8

(s′)3
exp

[
− β

4σ 2

(
Q1(s1) ∨Q1(s2)

Q2(s1) ∧Q2(s2)

)]

= (ν − η)η
64βθ

9πσ 2

x0 − θ

(s′)3
exp

[
− β

4σ 2

(
Q1(s1) ∨Q1(s2)

Q2(s1) ∧Q2(s2)

)]
.

For any number α, 0 < η ≤ α ≤ ν < 1, we may write a point s ∈ I ′ as s = s∗ + α(s′ − s∗)
and (s′ − s) = (1 − α)(s′ − s∗). Therefore, we can write Q2(s) as Q2(s) = (1 − η)s∗(s′ −
s∗)+ η(1 − η)(s′ − s∗)2. When s′ = 8, we have 	 = 4 and s∗ = 4 from (2.8) and (2.9). Both
	 and s∗ are strictly increasing as functions of s′, so, for s′ > 8, we have 	 > 4 and s∗ > 4.
Therefore, for s′ > 8, we have

Q2(s1) ∧Q2(s2) = 16(1 − ν2).

It remains to obtain an estimate on the quadratic Q1.

Lemma 2.3. Assume that x0 > θ > 0. Fix the constants 0 < ν < η < 1, s1 = s∗ + η	, and
s2 = s∗ + ν	, where 	 = (s′ − s∗) and s∗ is as in (2.8). Let Q1 be given by (2.12), and let
s′ > 8 ∨ (1 + x2

0/θ
2). Then

Q1(s1) ∨Q1(s2) ≤ 	2θ2s′.
Proof. For any number 0 ≤ α ≤ 1, we have a corresponding point s ∈ I for which

s = s∗ + α(s′ − s∗) and (s′ − s) = (1 − α)(s′ − s∗). As shown in Lemma 2.2,Q1 has constant
positive second derivative with respect to s when s′ > 8. Hence, its largest value for α ∈ [0, 1]
exceeds its largest value for α ∈ [ν, η]. From (2.12) we obtain

Q1(s)β

2σ 2 = (s′ − s)l21(s)+ s(l1(s)− a2) = s′l21 − sl21 + sl21 − 2sa2l1 + sa2
2 .

Note that, by construction, l1(s) = b1(s − s∗)+ a2. Therefore,

Q1(s)β

2σ 2 = (s′ − s)(b1(s − s∗)+ a2)
2 + s(b1(s − s∗))2

= (s′ − s)(b2
1(s − s∗)2 + 2b1a2(s − s∗)+ a2

2)+ sb2
1(s − s∗)2.
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Write s′ − s = (1 − α)	 and s − s∗ = α	. Then

Q1(s(α))β

2σ 2 = (1 − α)	(b2
1α

2	2 + 2b1a2α	+ a2
2)+ (s′ − (1 − α)	)(α2	2)b2

1

= 	(2(1 − α)αb1a2	+ (1 − α)a2
2 + s′b2

1α
2	)

= 	
2β

σ 2

(
(1 − α)αθ(θ

√
s′ + 1 − x0)+ (1 − α)(θ

√
s′ + 1 − x0)

2

+ α2	s′θ2

4

)
,

Q1(s∗) = Q1(s(α)|α=0) = 4	(θ
√
s′ + 1 − x0)

2,

Q1(s
′) = Q1(s(α)|α=1) = 	2θ2s′.

For s′ > 8, we have	 > 4, as shown previously. Therefore, for s′ > 8, we have the inequalities√
s′

s′ + 1
< 1 <

√
	

2
, 0 >

1

2
√
s′ + 1

−
√
	

4
√
s′
,

1 > 3 − 2
√

2 >
√
s′ + 1 − 1

2

√
	s′,

since
√
s′ + 1 − 1

2

√
	s′ = 3 − 2

√
2 when s′ = 8 and

d

ds

(√
s + 1 − 1

2

√
	s

) = 1

2
√
s + 1

−
√
	

4
√
s
.

Therefore,

x0 > θ > θ
√
s′ + 1 − θ

2

√
	s′,

1
2

√
	s′θ > θ

√
s′ + 1 − x0, (2.13)

1
4	s

′θ2 > (θ
√
s′ + 1 − x0)

2, (2.14)

Q1(s
′) > Q1(s∗).

Inequality (2.14) follows from (2.13) because (θ
√
s′ + 1 − x0) > 0, by the assumption that

s′ > (1 + x2
0/θ

2). Therefore,

Q1(s1) ∨Q1(s2) ≤ Q1(s
′) ≤ 	2θ2s′,

as was to be shown.

We are now able to state Lemma 2.4 which leads directly to Theorem 1.1.

Lemma 2.4. Let x0 > θ > 0, and let s′ be sufficiently large that

s′ > 8 ∨
(

1 + x2
0

θ2

)
∨ 8σ 2

βθ2 .

Then, for the standard Brownian motion given by (2.1) and (2.2), the conditional FPT density
g2 defined by (2.11) for B(s) to arrive at the boundary b(s) given by (2.5) satisfies

g2(s
′) > 512

9π

(
x0

θ
− 1

)
(s′)−6 exp

[
− β

32

(
θ

σ

)2

(s′)3
]
.
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Proof. Lemmas 2.2 and 2.3 and the subsequent remarks establish that, when s′ > 8 ∨ (1 +
x2

0/θ
2), the density g2 defined by (2.11) satisfies

g2(s
′) ≥ Aη(ν − η) exp

[
− 2B

1 − ν2

]
, (2.15)

where the parametersη and νmay be chosen arbitrarily subject to the constraints 0 < η < ν < 1,
and the positive terms A and B (which depend on s′) are given by

A(s′) = 64βθ(x0 − θ)

9πσ 2(s′)3
, B(s′) = βθ2	2s′

128σ 2 .

Let us rewrite the right-hand side of (2.15) as g2 = AM(η, ν), introducing

M(η, ν) = η(ν − η) exp

[
− 2B

1 − ν2

]
. (2.16)

Because the choices of η and ν are arbitrary, within the constraints, g2 must be bounded below
by the supremum ofM over the region 0 < η < ν < 1. Clearly,M is positive and differentiable
within this region, and M → 0 as (η, ν) approach any of the boundaries η = 0, ν = 1, η = ν.
So the supremum will occur at a point (η+, ν+) in the interior of the constraint region. Setting
∂M/∂η to 0 to find the critical point gives ν+ = 2η+. Substituting this back into (2.16) and

differentiating gives ν+ =
√
B + 1 − √

B2 + B . Substituting again to find the maximum
value yields

Mmax = 1 − C

4
exp

[
−2B

C

]
, (2.17)

where we introduce
C =

√
B2 + 2B − B.

Note that, for all B > 0, we have 0 < C < 1. The value of C increases monotonically and
C → 1 from below as B → ∞. Since B is directly proportional to s′, we can find a value of
s′ sufficiently large that C exceeds any value less than 1. For B > 1

4 , for example, we have
C > 1

2 . Consequently, we can bound below the exponential factor in (2.17):

exp

[
−2B

C

]
≥ exp[−4B] (2.18)

whenever B > 1
4 .

The factor (1 − C) → 0 as B → ∞. But provided B ≥ 1 we have the following:

8B2 − 8B + 1 > 0,

(4B2 + 4B − 1)2 > 16B2(B2 + 2B), (2.19)

4B2 + 4B − 1 > 4B
√
B2 + 2B, (2.20)

1 − C = 1 + B −
√
B2 + 2B >

1

4B
. (2.21)

Inequality (2.20) follows from (2.19) because we clearly have 4B2 + 4B − 1 > 0, provided
that B ≥ 1.
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Putting together (2.17), (2.18), and (2.21), we may write Mmax > exp[−4B]/(16B),
provided that B > 1. But, requiring B > 1 is equivalent to s′ > 128σ 2/(β	2θ2). As
noted earlier, when s′ > 8, we have 	 > 4, so it is enough to require that s′ > 8σ 2/(βθ2).
Therefore, under the hypotheses of the lemma, g2(s

′) > A(s′) exp[−4B]/(16B), from which
it follows that

g2(s
′) > 512

9π	2

(
x0

θ
− 1

)
(s′)−4 exp

[
− β

32

(
θ	

σ

)2

s′
]
.

Since 	(s′) < s′ for s′ > 0, and since β > 0, we have

g2(s
′) > 512

9π

(
x0

θ
− 1

)
(s′)−6 exp

[
− β

32

(
θ

σ

)2

(s′)3
]
,

as required. This completes the proof of Lemma 2.4.

3. Strictly positive lower bound for ρX

The proof of our main theorem follows from Lemma 2.4 and Corollary 2.1.

Proof of Theorem 1.1. Let {X(t), t ≥ 0} be an OU process satisfying (1.1) and (1.2), and
let β, σ , and x0 be positive constants; let θ be a constant satisfying x0 > θ > 0. To simplify
the notation, we introduce the positive constants

K = 512

9π

(
x0

θ
− 1

)
, H = β

32

(
θ

σ

)2

.

Let u = (1/2β) log[1+{8∨(1+x2
0/θ

2)∨(8σ 2/(βθ2))}]. Then, by virtue of the time rescaling
(cf. (2.4)), from Corollary 2.1 and Lemma 2.4, provided that t > u, we may write

ρX(t) ≥ 2βe2βtg2(e
2βt − 1)

> 2βe2βtK(e2βt − 1)−6 exp[−H(e2βt − 1)3]
> 2βKe−10βt exp[−He6βt ].

Letp = 1+H and k = 2βK . By hypothesis, s = (e2βt−1) > 8, so βt > log 3 > 1. It follows
that e−10βt > exp[−e6βt ]. Therefore, ρX(t) > 2βK exp[−(1 + H)e6βt ] = k exp[−pe6βt ].
This concludes the proof of Theorem 1.1.

The form of the constants and the bound are consistent with the following heuristic rela-
tionships between the parameters and the tail of the decay. If β is small, the initial condition
is far from the threshold, and the noise is large (x0, σ � θ ), it is reasonable that the tail of the
FPT density should decay relatively slowly. If β is large, the initial condition is close to the
threshold, and the noise is small, it is reasonable to expect a faster decay of the density at long
times.

4. Discussion

4.1. Potential improvements to the construction

The work reported here does not aim to provide the sharpest possible lower bound to the
tail of the FPT density ρX. For reasons discussed further in Section 4.3, our goal was merely
to provide some rigorous strictly positive lower bound. It is obvious from inspecting Figure 1
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that the bound may significantly underestimate the FPT density, even for the constants used in
the figure. Consider the region bounded by the lines L1, L2, and the curve b(s) for 0 ≤ s ≤ s′.
The probability density g2 is conditioned so as to eliminate any paths that enter this region,
even though many of the paths that make first contact with the curve b(s) in the interval
[s′, s′ + ds) may pass through it. Clearly, we could get a better approximation by replacing
the horizontal line L2 with a line intersecting the point (s′, b(s′)) with slope db(s′)/ds. The
resulting boundary would still yield a convolution of known transition densities, although with
a somewhat more complicated form. Going further, we could replace the two component
piecewise-linear protective boundary with an n-segment piecewise-linear protective boundary.
The first segment would have the same slope as L1; the last segment would have slope b′(s′);
intermediate lines could be chosen appropriately.

Indeed, comparison of inequality (1.3) with numerically generated samples from the FPT
distribution suggests that the lower bound derived here significantly underestimates the density
in the tail of the distribution. Further work in this direction lies beyond the scope of this paper.

4.2. Relation to other asymptotic FPT density results

Nobile et al. [14] derived an asymptotic expression for the FPT distribution ρθ (t | x0) for an
OU process with limiting mean value x∞ to go from initial value x0 to a boundary of height θ
in the limit in which θ � x0, x∞. They proved that

ρθ (t | x0) = 1

τ
e−t/τ + o

(
1

τ
e−t/τ

)
as θ → ∞,

where τ is the mean FPT. These same authors extended this result to a broader class of diffusion
processes in [15]. Similarly, Giorno et al. [6] showed that the FPT distribution showed good
agreement with the form

ρ(t) ≈ Z(t)e−λt

for passage to a periodically varying boundary θ(t), in cases where θ(t) � x0 = x∞. The
limit θ � x0, x∞ corresponds to the subthreshold case, in contrast to the suprathreshold case
x0 > θ > x∞ which concerns us here.

Pauwels [17] gave conditions on the noise (σ ) and drift (b) parameters, guaranteeing that the
stochastic differential equation {dXt = σ(Xt ) dBt + b(Xt ) dt, X0 = x0} should yield an FPT
density, ρ(t, θ | x0), that is jointly continuous and k-fold differentiable in t , θ , and x0. Pauwels’
conditions are satisfied by the time homogeneous process considered above. In [10] Lehmann
used an integral equation approach to extend these results, giving conditions guaranteeing
Hölder continuity of the FPT distribution.

Several authors have obtained expressions for moments of the distribution of first passage
times, to constant as well as to certain moving barriers, for the time homogeneous OU process.
See, for instance, [32] and [33]. Lindner [11] calculated moments of the FPT for both
exponentially decaying and periodic driving terms similar to the situation described in (4.1)
below. However, knowing the moments of the FPT distribution does not provide a strictly
positive lower bound for the tail of the density.

In 1977 Sato proved that the FPT density ρc(t) for a Wiener process from B(0) = 0 to a
square root boundary c

√
t + 1 scales as

ρc(t) ∼ αt−p(c)−1,

where 0 < p(c) < 1
2 , and it is assumed that c > 0. This provides a lower bound for the tail

of the density (in the case considered) since if ρc(t)/(αt−p(c)−1) → 1 as t → ∞ then, for
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any ε > 0, there is a T such that, for t > T , we have

ρc(t) >
αt−p(c)−1

1 + ε
.

Sato’s result does not provide a lower bound for the suprathreshold OU process however. The
suprathreshold case corresponds instead to a boundary of the form −1 + c√t after appropriate
scaling, because in this case the moving boundary crosses the mean value of the Wiener process,
and the expected FPT is finite. In the case considered by Sato, the mean FPT is infinite, and
the distance from the mean E[B] = 0 to the boundary grows monotonically.

4.3. Prospective application to neural synchronization

Strictly positive lower bounds are also of interest in the case of OU processes with time
varying forcing. The timing of action potentials in nerve cells stimulated by fluctuating current
injections are of significant interest in neuroscience [7], [13], [19], [29]. The timing of individual
spikes in relation to ongoing endogenous rhythmic activity is of particular interest [24], [30],
as is the reliable occurrence of specific patterns involving multiple spikes in succession [5],
[31]. There are many models available for theoretical studies of the synchronization of nerve
cells, but, for models incorporating the effects of noise, the LIF model remains among the most
tractable, attracting sustained attention [23], [26], [27]. For this case, the model dynamics in
(1.1) are extended to incorporate the drive through the time varying function h(t), assumed to
be bounded, measurable, and of zero mean:

dX = (−βX + h(t)) dt + σ dW. (4.1)

When the forcing function h is periodic with period T , we are interested in the succession of
FPTs {τ1, τ2, . . .}, assuming that the process is instantaneously reset to x0 upon each encounter
with the threshold. It can be shown that the sequence of phases of the boundary crossings
relative to the periodic drive, φn = τn mod T , then forms a Markov process on the circle
S

1 ≡ [0, 1), with transition probabilities given by a map K : fk → fk+1, where

fk+1(φ) =
∫
ψ∈S1

K(φ,ψ)fk(ψ) dψ. (4.2)

Here fk(φ) is the density function for the phase of the kth boundary crossing relative to the
periodic drive. This framework has been elaborated to study stochastic synchronization of
systems analogous to the LIF model neuron driven by periodic injected current [28] as well as
LIF model neurons with constant drive and periodically varying θ(t) [23], [25], [26]. In both
types of model, numerical investigations suggest that, regardless of initial conditions, the phase
distribution converges to a unique probability density on the circle [23], [28]. This situation
contrasts with that of the deterministic periodically forced LIF model neuron, in which a rich
collection of resonances and p : q mode locking are known to occur [2], [8], [16], [20]. The
existence of p : q mode locked solutions (q boundary crossings per p stimulus periods) implies
the existence of multiple invariant measures on the circle when p > 1.

Tateno et al. [28] conjectured that the operator K for the stochastic periodically forced
LIF model neuron has a unique invariant density and that the sequence of probability densi-
ties {Knf0} is asymptotically stable (see [28, Sections 5–6]). One approach to proving this
conjecture would be to exploit the following result (with m = 1).
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Theorem 4.1. (Corollary 5.7.1 of [9]; see also [28, Equation (38)].) Let (X,A, µ) be a measure
space, let K : X × X → R be a stochastic kernel, and let K be the corresponding Markov
operator (defined by the integral equation (4.2)). Denote byKn the kernel corresponding to K

n.
If, for some m, ∫

X

inf
y
Km(x, y) dx > 0 (4.3)

then {Pn} is asympotically stable.

Exhibiting a strictly positive lower bound analogous to (1.3) for the periodically forced case
would immediately establish the infimum criterion (4.3). The criterion has been assumed to hold
under various circumstances (cf. [4, Equation (6)], [23, p. 330], and [25, Equation (29)]), but, to
the author’s knowledge, an explicit lower bound for the FPT density for a suprathreshold system
has not been obtained either for the periodically forced LIF model with constant boundary or
for the time homogeneous LIF model with oscillating boundary. The extension of Theorem 1.1
to one or another of these cases remains a topic for future research.

Acknowledgements

This work was supported in part by NSF grants DMS-0720142 and DMS-1010434 in the
mathematical biology program. I am grateful for discussion and encouragement to the follow-
ing: D. Calvetti, M. Denker, R. Galan, K. Kirkpatrick, P. Kotelenez, K. Loparo, E. Somersalo,
S. Szarek, and W. Woyczynski. I thank an anonymous referee for providing valuable feedback.
I am grateful to the Oberlin College Library for research support.

References

[1] Capocelli, R. M. and Ricciardi, L. M. (1971). Diffusion approximation and first passage time problem for a
model neuron. Kybernetik 8, 214–223.

[2] Coombes, S. and Bressloff, P. C. (1999). Mode locking and Arnold tongues in integrate-and-fire neural
oscillators. Phys. Rev. E 60, 2086–2096.

[3] Cox, D. R. and Miller, H. D. (1965). The Theory of Stochastic Processes. John Wiley, New York.
[4] Doi, S., Inoue, J. and Kumagai, S. (1998). Spectral analysis of stochastic phase lockings and stochastic

bifurcations in the sinusoidally forced van der Pol oscillator with additive noise. J. Statist. Phys. 90, 1107–1127.
[5] Fellous, J.-M., Tiesinga, P. H. E., Thomas, P. J. and Sejnowski, T. J. (2004). Discovering spike patterns in

neuronal responses. J. Neurosci. 24, 2989–3001.
[6] Giorno, V., Nobile, A. G. and Ricciardi, L. M. (1990). On the asymptotic behaviour of first-passage-time

densities for one-dimensional diffusion processes and varying boundaries. Adv. Appl. Prob. 22, 883–914.
[7] Hunter, J. D., Milton, J. G., Thomas, P. J. and Cowan, J. D. (1998). Resonance effect for neural spike time

reliability. J. Neurophysiology 80, 1427–1438.
[8] Keener, J. P., Hoppensteadt, F. C. and Rinzel, J. (1981). Integrate-and-fire models of nerve membrane

response to oscillatory input. SIAM J. Appl. Math. 41, 503–517.
[9] Lasota, A. and Mackey, M. C. (1994). Chaos, Fractals, and Noise (Appl. Math. Sci. 97). Springer, NewYork.

[10] Lehmann, A. (2002). Smoothness of first passage time distributions and a new integral equation for the first
passage time density of continuous Markov processes. Adv. Appl. Prob. 34, 869–887.

[11] Lindner, B. (2004). Moments of the first passage time under external driving. J. Statist. Phys. 117, 703–737.
[12] Loader, C. R. and Deely, J. J. (1987). Computations of boundary crossing probabilities for the Wiener process.

J. Statist. Comput. Simul. 27, 95–105.
[13] Mainen, Z. F. and Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science 268,

1503–1506.
[14] Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985). Exponential trends of Ornstein-Uhlenbeck first-

passage-time densities. J. Appl. Prob. 22, 360–369.
[15] Nobile, A. G., Ricciardi, L. M. and Sacerdote, L. (1985). Exponential trends of first-passage-time densities

for a class of diffusion processes with steady-state distribution. J. Appl. Prob. 22, 611–618.
[16] Pakdaman, K. (2001). Periodically forced leaky integrate-and-fire model. Phys. Rev. E 63, 041907, 5pp.
[17] Pauwels, E. J. (1987). Smooth first-passage densities for one-dimensional diffusions. J. Appl. Prob. 24, 370–377.

https://doi.org/10.1239/jap/1308662636 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662636


434 P. J. THOMAS

[18] Pinsky, M. and Karlin, S. (2011). An Introduction to Stochastic Modeling, 4th edn.Academic Press, Burlington,
CA.

[19] Reinagel, P. and Reid, R. C. (2002). Precise firing events are conserved across neurons. J. Neurosci. 22,
6837–6841.

[20] Rescigno, A., Stein, R. B., Purple, R. L. and Poppele, R. E. (1970). A neuronal model for the discharge
patterns produced by cyclic inputs. Bull. Math. Biophys. 32, 337–353.

[21] Ricciardi, L. M. and Sato, S. (1988). First-passage-time density and moments of the Ornstein-Uhlenbeck
process. J. Appl. Prob. 25, 43–57.

[22] Sato, S. (1977). Evaluation of the first-passage time probability to a square root boundary for the Wiener process.
J. Appl. Prob. 14, 850–856.

[23] Shimokawa, T. et al. (2000). A first-passage-time analysis of the periodically forced noisy leaky integrate-and-
fire model. Biol. Cybernet. 83, 327–340.

[24] Stiefel, K. M., Fellous, J. M., Thomas, P. J. and Sejnowski, T. J. (2010). Intrinsic subthreshold oscillations
extend the influence of inhibitory synaptic inputs on cortical pyramidal neurons. Eur. J. Neurosci. 31, 1019–1026.

[25] Tateno, T. (1998). Characterization of stochastic bifurcations in a simple biological oscillator. J. Statist. Phys.
92, 675–705.

[26] Tateno, T. (2002). Noise-induced effects on period-doubling bifurcation for integrate-and-fire oscillators. Phys.
Rev. E 65, 021901, 10pp.

[27] Tateno, T. and Jimbo, Y. (2000). Stochastic mode-locking for a noisy integrate-and-fire oscillator. Phys. Lett.
A 271, 227–236.

[28] Tateno, T., Doi, S., Sato, S. and Ricciardi, L. M. (1995). Stochastic phase lockings in a relaxation oscillator
forced by a periodic input with additive noise: a first-passage-time approach. J. Statist. Phys. 78, 917–935.

[29] Thomas, P. J., Tiesinga, P. H., Fellous, J. M. and Sejnowski, T. J. (2003). Reliability and bifurcation in
neurons driven by multiple sinusoids. Neurocomput. 52-54, 955–961.

[30] Tiesinga, P., Fellous, J.-M. and Sejnowski, T. J. (2008). Regulation of spike timing in visual cortical circuits.
Nature Rev. Neurosci. 9, 97–107.

[31] Toups, J. V. et al. (2011). Finding the event structure of neuronal spike trains. To appear in Neural Computation.
[32] Tuckwell, H. C. and Wan, F. Y. M. (1984). First-passage time of Markov processes to moving barriers. J. Appl.

Prob. 21, 695–709.
[33] Wan, F. Y. M. and Tuckwell, H. C. (1982). Neuronal firing and input variability. J. Theoret. Neurobiol. 1,

197–218.

https://doi.org/10.1239/jap/1308662636 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1308662636

	1 Introduction
	2 Bounding the FPT distribution to a square root boundary for Brownian motion
	2.1 Coordinate transformation
	2.2 Piecewise-linear approximation for b(s)
	2.3 Strictly positive lower bound for B

	3 Strictly positive lower bound for X
	4 Discussion
	4.1 Potential improvements to the construction
	4.2 Relation to other asymptotic FPT density results
	4.3 Prospective application to neural synchronization

	Acknowledgements
	References

