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1. Introduction and method

Let r denote the modular group, that is, the free product of a group of order
2 and a group of order 3. Morris Newman investigates in [2] the factor-groups of
F and calls them T-groups for short; thus a group is a T-group if and only if it
has a generating set consisting of an element of order dividing 2 and an element of
order dividing 3. Newman's interest centres on finite simple T-groups. He proves
that the linear fractional groups LF{2, p) for primes p are T-groups, and poses the
problem of deciding which of the alternating groups enjoy this property.

The authors tackled and solved this problem and the analogous one for sym-
metric groups, finding that all finite symmetric and alternating groups except
S5, A6, S6, An, A8, Ss fall into the class. Very soon afterwards a conversation
with B. H. Neumann led to the discovery that G. A. Miller had proved this same
result * in [1 ]. Miller's proof is based on the truth of Bertrand's postulate, and
his generators depend on choosing a prime p in the range n—2 > p > n/2,
n being the degree of the groups under discussion. As such they are not explicitly
given. We offer here very explicit generators that are easily expressed in terms of
the degree, and proofs that do not depend on results extraneous to the elementary
theory of permutation groups. However, proofs are not short, and we shall re-
strict ourselves to giving a table of generators and to indicating briefly why they
do what is required of them.

We are grateful to B. H. Neumann for pointing out Miller's work to us and
for some ideas which have improved the exposition.

Notation is that of Wielandt's book [3]. The basis of the method is to give an
element a of order 3 and two elements x, y of order 2 in the relevant symmetric
group Sn, with x even and y odd, such that <a, JC> and <a, y} are primitive on the n
symbols and both contain some cyclic permutation of prime order p (the prime
may differ in the two cases) such thatp < n — 2. But then a well-known theorem
of Jordan applies to prove that both these groups contain An\ that is, that <a, x> =

1 It has also come to our notice that Graham Higman has proved the similar but more
difficult result that An is a factor group of (2, 3, 7) = <a, b | a2, b3, (a6)7> for all large enough n;
this work is unpublished.
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An and <a, j> = Sn. A convenient reference for Jordan's theorem is page 39 of
[3]. In fact the only primes which arise are 2, 3, 5, 7, 11, 13, and in all cases ex-
cept two some power of ax (or ay) is a prime cycle; the exceptions are Atl and
S1 6 , where we were obliged to take commutators. In each case we indicate the ap-
propriate element.

The table in the next section is divided into eight parts I-VIII. The first six
parts list suitable generators for all cases with n 2: 19, the parts depending on the
residue of n modulo 6. VII lists the generators for the Sn and An which are /"-groups
and not listed in I-VI; this section has a distinctly ad hoc flavour about it, though we
have tried as far as possible to model the generators on those in I-VI. Just for com-
pleteness, VIII lists those An and Sn which are not T-groups. To use the table, pro-
ceed like this. If the degree n falls in the range covered by VII and VIII, that is,
if n :g 18, everything is self-explanatory. If n >: 19, write n= 6m + k with 0 ^ k< 6,
and select the relevant section I-VI. If m is odd put x = bt,y = b2, and x = b2,
y = bt if m is even. That is, for odd m, <a, Z>x> = An and <a, b2} = Sn; whereas
for even m it is the other way round.

In § 3 we indicate a proof of primitivity in the 'general' cases n ̂  19, and § 4
contains some comments on the exceptions.

2. Tables

It will be useful to have a shorthand for certain permutations of order 2 and 3.
Firtly, let n be a positive integral multiple of 3. Then by an we mean the permutation
(1,2, 3)(4, 5, 6 ) . . . (n — 2, «— 1, n) of degree n. Next, for any k >: 1, ck stands for
the product n*=i(6/'> 6r + 3)(6r+l , 6r + 4)(6r + 2, 6r + 5), so that ck has degree 6k.

I. n = 6m, m ^ 4

a = 0n-3 ,

b, = (l,4)(2,«-2)(3,n-l)(/i-6,»-3)(i!-5,B)c1B_2,

and (ab2)
18 are 11-cycles.

II. n = 6m+l,m ^ 3

Z>! = (1, 4)(2,«X3,«-l)(«-6,n-3)(n-5,«-2)cm_2,
b2=b1(n-\2,n-9);

(i) m ̂  4

and (ab2)
18 are 13-cycles.

(ii) m = 3

(ab^6 is a 13-cycle, (ab2)
16 is a 3-cycle.
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III. n = 6m + 2,m ^ 3

a = an-2,
b, = (l,4)(2,n-l)(3,«)(«-8,n-5)(«-6,«-3)cm_2,
b2 = b^n-1, n-4),
(a£>i)18 and (ab2)

6 are 11-cycles.

IV. n = 6m + 3,m ^ 3

a = an_3,
bt = (1, 4)(2, «-2)(3, «-l)(n_3, «>:„_!,
b2 = bl(n-S,n-5),

and (ab2)
60 are 11-cycles.

V. n = 6m + 4, m ^ 3

a = an-i,
^ = (l,4)(2,n)(3,H-3X«-10,«-7)(n-8,H-5)cm_2,
b2 =bl(n-9,n-6),

and (ab2)
6 are 13-cycles.

VI. M = 6m + 5,m ^ 3

Z>2 = £>!(«-10, « -7 ) ,
(ab^)6 and (ai2)1 2 a r e 11-cycles.

VII. T-groups with n ^ 1 8 .

We shall not list the cases n :g 4; they are trivial. Primitivity proofs are
omitted except for the following simple observations, which deal with most of the
cases in this part of the table. Transitive groups of prime degree are automatically
primitive; any transitive group of degree n and containing a prime cycle of degree
more than nip, p being the smallest prime divisor of n, is primitive. The remaining
cases can be dealt with in a completely straightforward fashion.

n

5 fl = a 3 , j e= ( l , 4 ) (2 > 5 ) .

7 a = fl6,^=(l,4)(2,7)(3,5),
(ay)5 is a 2-cycle.

9 a = a9, x = (1, 4)(2, 9)(3, 7)(5, 6), y = (1, 4)(2, 8)(5, 9),
(ax)5 is a 3-cycle, (ay)* is a 5-cycle.

10 a = a9tx=(l, 4)(6, 9)(3, 10)(2, 8), y = (1, 4)(2, 10)(3, 7)(5, 9)(6, 8),
(ax)1 is a 3-cycle, (ay)15 is a 2-cycle.
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11 a = a9, x = (1, 4)(2, 10)(3, 11)(6, 9), y = (1, 4)(2, 7)(5, 8)(6, 11)(3, 10),
[a, x, a]5 is a 3-cycle, (ay)11 is an 11-cycle.

12 Generators for Al2 a = a9, x = (1, 4)(2, 10)(3, 8)(6, 9)(7, 11)(5, 12),
(ax)7 is a 5-cycle.

Generator /or S12 a = a12, y = (1, 4)(2, 10)(3, 11)(6, 9)(7, 8),
(ay)8 is a 3-cycle.

13 a = al2, x = (1, 4)(2, 13)(3, 5)(6, 9)(7, 10)(8, 11), j = JC(3, 5),
(ax)8 and (ay)10 are 3-cycles.

14 a = a12,
x = (1, 4)(2, 13)(3, 14)(6, 9)(7, 10)(8, 11),
j = (1, 4)(2, 13)(3, 14)(5, 8)(6, 9)(7, 10)(ll, 12),
(ax)11 is a 3-cycle, (ay)s is a 5-cycle.

15 a = a15, x = (1, 4)(3, 14)(6, 9)(7, 10)(12, 15)(5, 13), y = x(2, 8),
(ax)35 is a 3-cycle, (ay)12 is a 5-cycle.

16 a = a15, x = (1, 4)(2, 16)(6, 9)(7, 10X8, 11)(3, 13), >> = x(5, 15),
(ax)13 is a 3-cycle, [a, y]9 is a 5-cycle.

17 a = al5

x = (1, 4)(2, 16)(3, 17)(12, 15)(6, 9)(7, 10)(8, 11)(13, 14), y = x(13, 14),
(ax)5 and (ay)6 are 11-cycles.

18 Generators for A18 a = a15,
x = (1,4X2,16)(3,17)(12,15)(13,18)(6,9)(7,1OX8,11),
(ax)11 is a 7-cycle.

Generators for S18 a = a18,
y = (1, 8)(2, 16)(3, 4)(5, 7)(6, 10)(12, 13)(9, 14),
(ay)42 is a 5-cycle.

VIII. The exceptions: S5, A6, S6, A-,, A8, S8 are not T-groups.

3. Primitivity in the cases n |£ 19

The proof of primitivity of <a, x> and <a, ̂ > is straightforward2 and essen-
tially the same in all cases, though variations occur which are major enough to
make a uniform proof impossible. But we can begin uniformly. Firstly, transitivity is
clear. The generator a always fixes at least one symbol, and, if a is the least symbol
fixed by a, then the generator of order 2, b for short, always contains the product
(1, 4)(2, a) and fixes the symbol 5. Suppose that a lies in a block T which is not the
whole of Q = {1, 2, • • • , « } ; then our aim is to show that T is the singleton {a}.
Firstly Ta = Tand it is clear that 2 £ T, else Ta = T = Tb and T = Q contrary to

2 Especially on a blackboard!
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assumption. Set T2 = Tb so that 2 e T2 and T2 n T = 0. But then 1 $ T2; otherwise
4 = lft e J so that 5 = Aa e T, which means that Tb = T since ft fixes 5. In this
way it becomes quite evident that 1, 2, 3, a all lie in different blocks.

We could push this general argument a little further, but it seems preferable
to prove one case in detail as an example. The worst case seems to be n = 6m, for
then a fixes 3 symbols and n is guaranteed to have several divisors, giving the
highest likelihood of imprimitivity. We shall, then, establish the primitivity of
the group of degree 6m generated by

a = (1, 2, 3)(4, 5, 6) • • • (6m-5, 6m-A, 6m-3),

ft = (1,4)(2, 6m-2)(3, 6m-l)(6m-6, 6m-3)

(6m-5, 6m) Yl (6r, 6r + 3)(6r+l, 6r + 4) (6r + 2, 6r + 5),
r - l

with m ^ 4.
As we have seen already, we can assume that 6m —2, 1, 2, 3 lie in different

blocks, say T, Tt, T2, T3 respectively; the aim is to prove that 6m — 2 is the only
symbol in T. Let P denote an element of T, and remember that Ta = T,Tta = T2,
T2a = T3, T3a = T1, Tb = T2, T2b = T. We eliminate the possibilities for /? as
follows.

(a) If fie {6r+l, 6r + 2, 6r + 3} for some r with 1 g r < m—\, then Pa and
Pa2 lie in Tsince Ta = T. Thus in this case {6r+l, 6r + 2, 6r + 3} £ Tso that T2

contains (6r+l)ft = 6r + 4 and (6r + 2)ft = 6r + 5. But (6r + A)a = 6r + 5 and a
fixes r 2 , a contradiction.

(b) If Pe{6m-5, 6m-A, 6m-3} then 6m-4eT. But 6w-4 is fixed by b
and r is not.

(c) If Pe{6r + 4, 6r + 5, 6r + 6} with 1 < r < m—\, then as before we con-
clude that T2 contains (6r + A)b — 6r+l, (6r + 5)b = 6r + 2; this again gives the
contradiction that T2a = T2.

(d) If P e {4, 5, 6} then 5 6 7", which is false since ft fixes 5.

There are just two possibilities left, namely P = 6m — 1 and /? = 6m. If
P = 6m— 1, then r 2 contains (6w — l)ft = 3, which is false. Thus T can contain at
most 2 elements, and the same goes for all the other blocks. If 6m e T it must be
the case that 6m-5eT2, and then that 6m-4eT3, 6m-3eT1. However, ft
fixes 6m — 4 so that T3b = r3 ; since 3ft = 6m— 1 it follows that r 3 contains the
three distinct elements 3, 6m— 1, 6m — 4, and this is our final contradiction. Thus
T = {6m — 2} and <a, ft> is primitive, as required.

4. The exceptions

We shall not verify the exceptional nature of S5, A6, S6, A-,, A8, Ss, but one
or two remarks are perhaps in order. Any subgroup of S5 which is a T-group and
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not in As is intransitive, as may be readily checked. The only T-group which is
primitive of degree 6 is the A5 in its usual primitive representation of degree 6.
The largest T-group which is a transitive subgroup of An is PSL(2,7) in its natural
representation of degree 7; this is perhaps the most surprising result in view of the
small size of PSL(2, 7) and the fact that S7 is a T-group. The only primitive groups
of degree 8 which are T-groups are PSL(2, 7) and PGL(2, 7) in their representa-
tions of degree 8.

This work was done while the authors were at the Australian National
University.
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