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Abstract

Previous studies show aggression-related structural alterations in frontal and limbic brain regions. Most studies have focused on overall
aggression, instead of its subtypes, and on specific regions instead of networks. This study aims to identify both brain networks and regions that
are associated with reactive and proactive subtypes of aggression. Structural MRI data were collected from 340 adolescents (125 F/215 M) with
a mean age of 16.29 (SD=1.20). Aggression symptomology was indexed via the Reactive Proactive Aggression Questionnaire (RPQ).
Freesurfer was used to estimate Cortical Volume (CV) from seven networks and regions within specific networks associated with aggression.
Two multivariate analyses of covariance (MANCOV As) were conducted on groups for low versus higher reactive and proactive RPQ scores.
Our reactive aggression MANCOVA showed a main effect in CV [F(14,321) = 1.935, p = 0.022,np*> = 0.078] across all the 7-Networks.
Unpacking this main effect revealed significant volumetric differences in the right Limbic Network (LN) (p = 0.029) and the Temporal Pole
(p =0.011), where adolescents in the higher reactive aggression group showed higher cortical volumes. Such findings are consistent with
region/voxel-specific analyses that have associated atypical structure within the LN and reactive aggression. Moreover, the temporal pole is
highly interconnected with regions important in the regulation and initiation of reactive aggression.
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Introduction Substantial neuroimaging work has pointed to an association
between an increased risk for aggression and structural and
functional disruptions within regions of the fronto-limbic-striatal
systems (Blair, 2016; Ducharme et al., 2011; Sukhodolsky et al.,
2021). However, it is important to note that acts of aggression
are not homogenous and have different subtypes and etiologies. A
commonly made distinction is drawn between reactive and
proactive aggression. Reactive aggression is unplanned and made
in response to threat or social provocation, whereas the less
common proactive aggression is goal-oriented and is seen as more
callous (Blair, 2018; Blair et al., 2021; Crick & Dodge, 1996).
There are a lack of studies distinguishing between these two
subtypes of aggression, though there are indications that they can
be differentiated at the neural level (Cima & Raine, 2009; Naaijen
et al., 2020). Most neuroimaging studies focus on frontal regions

High levels of aggression can have significant costs to society and
are one of the leading causes for youth seeking referrals to mental
health (Magalotti et al., 2019). While aggression is not atypical
during childhood development, maladaptive levels of aggression
(i.e., overly frequent and intense) can lead to impaired social
relationships, incarceration, and even death (Hendricks & Liu,
2012). An increased risk for aggression is transdiagnostic with a
variety of psychiatric diagnoses, including major depressive disorder
(MDD), attention-deficit/hyperactivity disorder (ADHD), conduct
disorder (CD), and oppositional defiant disorder (ODD)
(Buchmann et al,, 2014; Liu & Cole, 2021; Saylor & Amann,
2016). Given the poor prognosis for aggressive individuals, there
is a considerable need to determine reliable trait variables that

might aid in clinical decision-making.
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involved in response control and reinforcement-based decision-
making as well as limbic structures, such as the amygdala and
hippocampus. Overall, high aggression, especially reactive aggres-
sion, is associated with a decrease in activity in the ventral medial
prefrontal cortex (vmPFC) and an increase in activity in the
amygdala (Blair et al., 2021; Choe et al., 2015; Coccaro et al., 2007;
Lee etal., 2008; Sukhodolsky et al., 2021). Structural and functional
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connectivity between the amygdala and vmPFC and/or orbito-
frontal cortex (OFC) has also been considered to be important in
regulating aggression (Sukhodolsky et al., 2021; White et al., 2016).
However, one DTI study in a healthy sample showed no
structural differences within OFC-amygdala connectivity
between participants with high and low physical aggressiveness
(Beyer et al., 2014).

There are few neuroimaging studies that have examined the
differences in reactive and proactive aggression. Functional studies
tend to agree on a few key findings regarding the two subtypes.
The response to threat involves increased function within the
amygdala, hypothalamus, and periaqueductal gray (Coker-
Appiah et al., 2013; Haller, 2018). These regions are shown to
be associated with reactive aggression, which is mediated by a
threat response circuit involving these regions and the vmPFC
(Blair, 2016). Proactive aggression has been shown to be
associated with not only the amygdala but also regions implicated
in goal setting and reward, such as the dorsolateral PFC and
striatum (Belfry & Kolla, 2021; Blair, 2016).

Of the very few structural studies that have looked at the
subtypes, there have been mixed results. There have been reports
that increased anterior cingulate cortex volume (Farah et al, 2018)
but decreased thickness (Romero-Martinez et al., 2022; Yang et al.,
2017) is selectively associated with proactive aggression. One study
using youth with conduct disorder saw significant decreases
in gyrification in the bilateral superior parietal cortex within
individuals with high proactive aggression scores (Jiang et al.,
2022). Alternatively, though, there is at least one report that both
proactive and reactive aggression were associated with increased
right OFC volume and thickness of the left paracentral areas (Yang
et al., 2017). Amygdala volumes have been reported to negatively
correlate with proactive aggression (Naaijen et al, 2020) but
positively with reactive aggression (Farah et al., 2018). Reactive
aggression has also been reported to negatively correlate with
insula volume (Naaijen et al., 2020).

Few studies have specifically looked at networks implicated
in aggression severity. Studies have seen that alterations in
connectivity within and/or between the default-mode network
(DMN) and other networks/regions were predictive of aggression
(Dailey et al., 2018; Ibrahim et al., 2022; Weathersby et al., 2019).
Other studies have seen disruptions in activity and connectivity
within the DMN in individuals who are prone to aggression
(Broulidakis et al., 2016; Dalwani et al., 2014; Sun et al., 2022; Tang
etal, 2013; Zhou et al., 2016). Another network commonly seen in
aggression literature is the limbic network (LN), where structural
and connectivity alterations relative to typical developing
participants have been reported in individuals presenting with
higher aggression (Ducharme et al., 2011; Yang et al., 2017). The
LN is comprised of the OFC and temporal pole (Yeo et al., 2011)
and involved in important frontal-limbic connections commonly
seen in those with aggression (Gan et al., 2016).

This present study will look at the differences in cortical volume
(CV) between high and low aggression groups (both reactive
and proactive aggression groups) within seven different net-
works: Visual Network, Somatomotor Network; Dorsal
Attention Network, Ventral Attention Network, Limbic
Network, Frontoparietal Network, and Default-Mode Network.

Previous literature has shown alterations in regions within the
DMN and LN in individuals at increased risk for aggression (De
Brito et al., 2009; Ducharme et al., 2011; Yang et al., 2017). Because
of these previous findings, we adopted an exploratory approach
and hypothesized that proactive and reactive aggression would be
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associated with alterations in CV within these regions in these
networks (specifically orbitofrontal cortices and superior tempo-
ral gyri).

Methods
Participants

Participants were recruited from a residential care facility in the
Midwest and from the surrounding community. Participants
recruited from the residential facility had been referred for
behavioral and mental health problems, whereas participants from
the community were recruited through flyers or social media.
Structural MRI data were collected from 340 adolescents (125 F/
215 M) with a mean age of 16.29 (SD = 1.20, 14-18 years), and IQ
of 103.91 (SD =10.73).

Exclusion criteria included braces, claustrophobia, active sub-
stance dependence, pervasive developmental disorder, Tourette’s
syndrome, lifetime history of psychosis, neurological disorder, head
trauma, non-English speaking, and presence of active safety
concerns. Clinical characterization was done through psychiatric
interviews by licensed and board-certified child and adolescent
psychiatrists with the participants and their parents to adhere closely
to common clinical practice. All participants and their parents
provided written informed assent/consent prior to enrollment. The
study protocol was approved by the Institutional Review Board at
Boys Town National Research Hospital (BTNRH).

Demographics characteristics

Group differences in sex, age, IQ, intracranial volume (ICV)
(Barnes et al., 2010), and RPQ scores were examined via chi square
and independent sample t-tests. These variables were used as
covariates in the following analyses.

Data collection

Neuroanatomical data

High resolution structural MRI (T1-weighted) data were collected
using a 3-Tesla Siemens MRI scanner located at BTNRH. Whole-
brain anatomical data for each participant were acquired using
a 3D magnetization-prepared rapid acquisition gradient echo
sequence, which consisted of 176 axial slices (slice thickness =
1 mm, voxel resolution =0.9 X 0.9 X 1 mm3, repetition time =
2200ms; echo time = 2.48 ms; matrix size =256 X 208; field of
view (FOV) =230 mm, and flip angle = 80).

General intelligence (1Q)

The Wechsler Abbreviated Scale of Intelligence II (WASI-II)
(Wechsler, 2011) was used to estimate IQ in the domains of
perceptual reasoning, verbal comprehension, and Full-Scale 1Q
(FSIQ). FSIQ scores have high reliability (@ = 0.98) and strong
correlations (r=0.92) with scores on the full Wechsler Adult
Intelligence Scale-1II (Wechsler, 1997, 1999) and were used in the
current context.

Reactive-proactive aggression questionnaire

The Reactive-Proactive Aggression Questionnaire (RPQ; Raine
et al., 2006) is a 23-item questionnaire which has shown to be a
validated measure of both proactive aggression (11 items; @ = 0.87)
and reactive (12 items; a = 0.83) aggression in youth (Cima
et al,, 2013).
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Table 1. Demographics of sample
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High Low
High Reactive Low Reactive Proactive Proactive

Aggression Aggression Significance Aggression Aggression Significance
Demographics N=178 N=162 (x2/t-value) N =208 N=132 (x2/t-value)
Sex 66 F/112 M 59 F/103 M 0.02" 73 F/135 M 52 F/80 M 0.64"
Age (SD) 16.26 (1.13) 16.31 (1.27) 0.30 "™ 16.22 (1.12) 16.39 (1.30) 1.23"™
1Q (SD) 102.20 (9.15) 105.79 (11.98) 3.08%* 102.79 (9.98) 105.68 (11.64) 2.36%
ICV (x10°) in mm3 1.50 (1.57) 1.53 (1.56) 1.45" 1.51 (1.50) 1.52 (1.66) 0.81%
(sD)
Total (SD) 14.73 (6.80) 4.37 (2.36) —19.297%s#:# 13.08 (7.40) 4.49 (2.88) —15.04##*
Reactive (SD) 11.12 (3.49) 3.59 (1.85) —25.14%#% 9.46 (4.63) 4.49 (2.88) —12.21%%*
Proactive (SD) 3.61 (4.12) 0.67 (1.17) —9.13ksksk 3.61 (3.74) 0.00 (0.0) —13.94#%:*
MDD (%) 33 (18.5) 12 (7.4) - 31 (14.9) 14 (10.6) -
SAD (%) 47 (26.4) 30 (18.5) = 9 (23.6) 8 (21.2) =
GAD (%) 56 (31.5) 30 (18.5) - 8 (27.9) 28 (21.2) -
PTSD (%) 27 (15.2) 11 (6.8) - 0 (14.4) 8 (6.1) -
CD (%) 102 (57.3) 43 (26.5) = 111 (53.4) 34 (25.8) =
ODD (%) 111 (62.4) 64 (39.5) - 119 (57.2) 50 (37.9) -
ADHD (%) 111 (62.4) 58 (35.8) - 121 (58.2) 54 (40.9) -
Antipsychotics (%) 13(7.30) 7 (4.30) - 6 (7.7) 4 (3.0) -
SSRIs (%) 29 (16.30) 23 (14.2) - 39 (18.8) 13 (9.8) -
Stimulants (%) 31 (17.4) 21 (13.0) = 35 (16.8) 17 (12.9) =

Key to table. ns: Non-Significant; *p < 0.05; **p < 0.01; ***p < 0.001; SD = Standard Deviation; IQ =

Intelligent Quotient; ICV = Intercranial Volume; MDD = Major Depressive Disorder;

SAD = Social Anxiety Disorder; GAD = Generalized Anxiety Disorder; PTSD = Post Traumatic Stress Disorder; CD = Conduct Disorder; ODD = Oppositional Defiant Disorder; ADHD = Attention
Deficit Hyperactivity Disorder; SSRIs=Selective Serotonin Reuptake Inhibitors. There was a 43.5% overlap between the two high aggression groupings.

Image preprocessing

The “recon-all” pipeline from the FreeSurfer toolbox (Version 6.0;
https:// surfer.nmr.mgh.harvard.edu) was used to process the
anatomical brain images (Dale et al., 1999; Fischl et al., 1999) and
for estimating CV measures. Structural image processing included
head motion-correction, brain extraction, automated transforma-
tion to the standard MNI template space, volumetric segmentation
into cortical and sub-cortical matter, intensity correction, and
parcellation of the cerebral cortex into gyral and sulcal matter
(Desikan et al., 2006). See (Dale et al., 1999; Fischl, 2004; Fischl
et al.,, 1999) for full details. Steps to ensure preprocessing accuracy
included a careful visual inspection of raw structural images, skull-
stripped brain volumes, and pial surfaces via FreeSurfer (Version
6.0; https:// surfer.nmr.mgh.harvard.edu).

Data analysis

Behavioral analysis

A correlation between reactive and proactive aggression scores was
conducted to look at a possible association between these subtypes
of aggression.

Network volume analysis

FreeSurfer was used to parcellate the whole brain into seven
networks using Yeo’s atlas (Yeo et al., 2011) (N1: Visual Network;
N2: Somatomotor Network; N3: Dorsal Attention Network; N4:
Ventral Attention Network; N5: Limbic Network; N6:
Frontoparietal Network; and N7: Default-Mode Network). A
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network cortical volume analysis was conducted (sex, age, IQ, and
intracranial volume [ICV] were used as covariates) using network-
wise CV data to look at potential differences between high and low
aggression groupings. Two multivariate analyses of covariance
(MANCOVAs) were conducted on the seven bilateral networks
(14 total) for each subscale RPQ score group (i.e., one examining
groups with higher vs. lower reactive aggression and a second
examining groups differing in proactive aggression levels).

Region-based analysis

Our steps for region-based analysis are as follows: 1. Identify any
significant networks (as described above). 2. If any significant
networks were discovered using the above analysis, we then extracted
regions from the networks. 3. We then looked at associations of CV
of the extracted regions and aggression groups by performing a
MANCOVA- again with sex, age, IQ, and ICV as covariates.

Follow-up analyses

Potential confounds: impact of other major psychopathologies
and prescribed medications

Several of our participants were diagnosed with different psychiatric
disorders including Major Depressive Disorder (N =45), Social
Anxiety Disorder (N = 77), Generalized Anxiety Disorder (N = 86),
Post-Traumatic Stress Disorder (N =38), Conduct Disorder
(N = 145), Oppositional Defiant Disorder (N = 169), and Attention-
Deficit/Hyperactivity Disorder (N = 175). In addition, several of our
youth were on psychiatric medications (N = 124) during the time of
the study, including SSRIs, stimulants, and antipsychotics. Table 1
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Limbic Network

Figure 1. Limbic network and temporal pole locations: location of the limbic network (via Yeo’s 7 network parcellation) and temporal pole (via clustering).

shows demographic characteristics of both comorbidities and
medications. Given the potential confounds, the MANCOVA
described above (individual networks) was repeated, first, with the
inclusion of psychiatric diagnoses and, second, with the inclusion
of prescribed medications as covariates.

Potential confounds

In order to control for the effects of proactive aggression
when looking at reactive aggression and vice versa, a follow-up
MANCOVA with the other aggression subtype as a covariate will
be run if either of the groups showed significant network cortical
volume differences. Another follow-up MANCOVA will be run
after removing participants that had high scores in both reactive
and proactive aggression as well.

Results
Bivariate analysis

Reactive aggression scores and proactive aggression scores from
the RPQ were significantly correlated across the entire sample
(r=0.63, p<0.001).

Demographics characteristics

Table 1 shows the total number of participants in each group.
There was some overlap (n =148, 43.5%) between groups
(meaning these youth had high scores in both reactive and
proactive aggression). There were no significant differences in sex
(A(1)=0.016, p=090; 4*(1)=0.642, p=042) or age
(#(338) =0.302, p=0.76; t (248.52) =1.23, p=0.22) between
high/low reactive and high/low proactive aggression groups
respectively. ICV was not significantly different between high/
low reactive aggression groups, [#(338) = 1.452, p = 0.15], but was
significantly different between high/low proactive aggression
groups, [#(338) =0.81, p =0.04], where those with low proactive
aggression had higher ICV. There were significant differences in
IQ between high and low reactive [£(300.378) =3.081, p = 0.002]
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and high and low proactive [#(247.64) = 2.36, p = 0.019] aggression
groups, where lower aggression groups had higher IQ scores.

Group differences in CV

Our MANCOVAs showed a significant main effect across the
7 networks in CV for reactive aggression [F(14,321)=1.935,
p=0.022, np2 = 0.078; Wilk’s lambda = 0.922] but no significant
effects for the MANCOVA on proactive aggression [F(14,321) =
0.666, p=0.807, np*> = 0.028; Wilk's lambda =0.972]. This
particularly reflected group differences driven by the right
Limbic Network [F(1,334) = 4.802, p = 0.029, np? = 0.014], where
adolescents in the higher reactive aggression group showed higher
cortical volumes (Figures 1 and 2).

Follow-up exploratory analysis of the MANCOVA main effect

Our ROI-specific MANCOVA for the right Limbic Network
showed significant group differences in ROI volume [F(2,333) =
3.471, p=0.032,np? = 0.020; Wilk’s lambda = 0.980]. Specifically,
we saw significant difference in CV of the Temporal Pole
[F(1,334) = 6.466, p=0.011, np*> = 0.019], where adolescents in
the higher reactive aggression group showed higher cortical
volumes (Figure 3).

Follow-up to reactive aggression analysis

Diagnoses

Our follow-up MANCOVA analysis with the addition of seven
psychiatric diagnoses (see Table 1 for full list) continued to show a
significant equation that mirrored the results of the main analysis
[F(14,314) = 2.145, p = 0.010, np? = 0.087], still showing strongest
significant differences in the right Limbic Network [F(1,327) =
7.116, p =0.008, np* = 0.021].

Medication
Our follow-up MANCOV A analysis with the addition of the three
medications (Antipsychotics, stimulants, and SSRIs) continued to
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Figure 3. Temporal pole. Within the right limbic net-
work, cortical volume of the temporal pole was also
significantly different between those with high and low
reactive aggression (high reactive aggression > low
reactive aggression) * = p < 0.05.
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show a significant equation that mirrored the results of the main
analysis [F(14,318) = 2.023, p = 0.016, np* = 0.082], again showing
strongest significant differences in the right Limbic Network
[F(1,331) = 5.126, p = 0.024, np? = 0.015].

Subtype

Our follow-up MANCOV A analysis with the addition of proactive
aggression as a covariate in our regression analysis, continued to
show a significant equation that mirrored the results of the main
analysis [F(14, 320) = 1.805, p = 0.037, np? = 0.073], again show-
ing strongest significant differences in the right Limbic Network
[F(1,333) = 5.557, p=10.019, np?=0.016]. When adding reactive
aggression as a covariate to our MANCOV A looking at proactive
aggression, we still saw a non-significant result (p = 0.879).

Removal of participants in both high score groups

Our next follow-up MANCOV A was the same as the main analysis
(7 Network), however, with the removal of individuals that had
both high reactive aggression scores and high proactive aggression
scores (43.5% who had both). The removal of these participants
made our results no longer significant within the reactive
aggression groupings [F(14, 173) = 1.423, p =0.147, np? = 0.103].

Discussion

The goal of this study was to examine differences in cortical
volumes (CV) in brain networks within high and low aggression
groups (both reactive and proactive aggression). We found that CV
of the right Limbic Network (LN) was significantly greater in those
with higher vs. lower reactive aggression scores. In addition,
region-specific analysis showed that within the right LN, CV of the
temporal pole was significantly increased in the higher reactive
aggression score group. Contrary to our hypothesis, we did not see
any significant differences in CV within networks in proactive
aggression groups.

Previous work has typically taken a region/voxel-focused
approach to analysis and not focused on network-level structural
alterations in individuals prone to higher levels of aggression
(Chester et al, 2017; Jiang et al., 2022; Naaijen et al., 2020).
However, and consistent with the current findings, there are
several previous results which indicate atypical LN function/
structure relating to increased aggression risk. Indeed, accounts of
reactive aggression have stressed the importance of dysfunction in
components of this system for some time (Bertsch et al., 2020;
Blair, 2004). Individuals at increased risk of reactive aggression
frequently show poor emotion regulation (Nikolic et al., 2022).
Notably, the role of OFC in emotion regulation has long been
recognized (Blair, 2004; Christiansen et al., 2019; Zheng et al,,
2018). Empirical work has associated atypical connectivity between
the amygdala/temporal cortex and OFC with an increased risk
for aggression, particularly reactive aggression (Sukhodolsky
et al,, 2021; White et al., 2016). These regions have also been
implicated in mediating reactive aggression (Coccaro et al.,
2007; Gan et al., 2016). Moreover, atypical structure of OFC and
amygdala volumes have been associated with an increased risk
of reactive aggression (Farah et al., 2018; Yang et al., 2017), and
lesions within the LN can lead to increased impulsivity and
aggression (Berlin et al., 2004; Kuniishi et al., 2016; Potegal,
2012; Shiba et al., 2015).

It should be noted that within the LN, it was particularly
atypical temporal pole structure that was associated with increased
risk for reactive aggression. The temporal pole is a dominant hub in

https://doi.org/10.1017/5S0954579424000750 Published online by Cambridge University Press

923

the processing of semantic and socioemotional information (Guo
et al., 2022; Pehrs et al., 2017) and is considerably interconnected
with other regions very important in the regulation and initiation
of reactive aggression: the amygdala (Li et al., 2016), as well as OFC
(Novitskaya et al., 2020; Olson et al., 2007). It could be speculated
that larger volumes are associated with strong emotional reactions
and disruptions in the perception of provocations, leading to
outbursts or disrupted emotional processing. Previous work has
tended to report reductions in thickness and volume in the
temporal pole (rather than the increased volume seen here) in
groups of aggressive individuals (Cope et al., 2014; Ermer et al,,
2012; Gregory et al., 2012; Ly et al., 2012). However, most of that
work has been conducted in individuals with psychopathy which
was not a predominant feature of the sample with higher reactive
aggression studied here. It is notable that one previous finding, in a
slightly more similar study, also observed increased temporal pole
volumes in those exhibiting higher reactive aggression (Breitschuh
et al., 2018).

In contrast to predictions, there was no association of CV
within the DMN and either reactive or proactive aggression.
Previous work has reported alterations in connectivity within and/
or between the DMN and other networks/regions were predictive
of aggression (Dailey et al., 2018; Ibrahim et al., 2022; Weathersby
et al,, 2019), disruptions in activity and connectivity within the
DMN in individuals who are prone to aggression (Broulidakis
et al,, 2016; Dalwani et al., 2014; Sun et al., 2022; Tang et al., 2013;
Zhou et al,, 2016) and structural alterations within the DMN in
individuals at increased risk for aggression (De Brito et al., 2009;
Ducharme et al,, 2011; Yang et al, 2017). The reason for the
absence of comparable findings in the current cohort are unclear
but it is possible that it represents a Type II error.

Also, in contrast to predictions, we found no networks showing
atypical structure in the group of participants showing higher
levels of proactive aggression. Relatively little previous work
has focused on individuals showing higher levels of proactive
aggression as opposed to focusing on samples who are at increased
for proactive aggression (but also reactive aggression), such as
individuals with psychopathy (Blair, 2010; Garofalo et al., 2021;
Hofhansel et al., 2020). It has been argued that proactive aggression
is a chosen behavior reflecting the individual’s decision-making
(Blair, 2019). This may result in socially undesirable choices
because of the economic realities of the individual or because the
individual’s representations of potential costs (e.g., the distress of
others) is disrupted (Blair, 2019). As such, it is possible that
structural differences may be less commonly seen in those at
increased risk for proactive rather than reactive aggression.

Despite the strengths of our study, including large sample size
and diverse range of clinical symptomatology, there were some
caveats. First, 72% of the adolescents in our sample had at least one
psychiatric diagnosis, and it could be argued that we are seeing
results from specific disorders instead of aggression severity. Our
follow-up analysis with diagnoses as covariates showed results
approximate to the main analysis, with the LN still showing highest
significance. Second, multiple adolescents were on medications
including SSRIs, stimulants, and antipsychotics. Our follow-up
analysis with the inclusion of the medications as covariates also
revealed LN showing significant differences between the two
groups. Third, our reactive aggression group was not matched in
IQ scores; those in the lower reactive aggression group had higher
IQ scores than those with higher reactive aggression. However, we
did use IQ as a covariate in our analysis (in addition to age, sex, and
ICV). As such, it is unlikely that our findings can be considered to
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reflect group differences in IQ. Fourth, multiple participants were
in both the high proactive aggression group as well as the high
reactive aggression group. A post hoc analysis was ran removing
individuals in both groups, which made our results no longer
significant (see Table 1 for breakdown of groups). Fifth, the group-
based analysis approach chosen here due to test-retest reliability
concerns runs the risk of data loss by dichotomizing the variable of
interest (Dawson & Weiss, 2012) Our goal would be to extend the
current study in future work where the test-retest reliability of core
measures is known and satisfactory.

In conclusion, our study revealed that CV of the right LN,
particularly the temporal pole region within the LN, was significantly
greater in those with higher reactive aggression scores. These findings
broaden our knowledge of the neurobiology of reactive aggression
and can inform future imaging work.
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