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ERIC N. SOMMERS

Dedicated to George Lusztig on his 60th birthday

Abstract. An equivalence relation is defined and studied on the set of B-stable
ideals in the nilradical of the Lie algebra of a Borel subgroup B. Techniques
are developed to compute the equivalence relation and these are carried out in
the exceptional groups. There is a natural partial order on equivalence classes
coming from inclusion of one ideal in another. A main theorem is that this
partial order is a refinement of the closure ordering on nilpotent orbits.

§1. Introduction

Let G be a connected simple algebraic group over C and B a Borel

subgroup of G. Let g be the Lie algebra of G and b the Lie algebra of B.

The nilradical of b is denoted n.

The subspaces of n which are stable under the adjoint action of B (or

the adjoint action of b) are ideals in n. They are called B-stable ideals of n or

often just called ideals. The study of these ideals has attracted much recent

attention, both from the perspective of representation theory and also from

the combinatorial perspective. In addition there are tantalizing connections

to the numerology which arises in the theory of cluster algebras introduced

by Fomin and Zelevinsky. We mention the work of Kostant, Cellini-Papi,

Cellini-Frajria-Papi, Panyushev, Panyushev-Röhrle, Suter, Athanasiadis,

Athanasiadis-Reiner, and the author.

Some of these works have dealt with connections to nilpotent orbits (for

example, see [14]). It is worthwhile to note that a number of important ear-

lier papers have exploited the set of ideals in order to study nilpotent orbits

and the representation theory that depends upon them. We mention the
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following sources: Mizuno [13], DeConcini-Lusztig-Procesi [5], Kawanaka

[8], and Shi [15]. The ideas in this paper were influenced by and expand

upon the ideas in the first three of these papers.

Consider the following question. Given a B-stable ideal I, what is the

G-saturation G.I of I where

G.I := {g.X | g ∈ G and X ∈ I},

where the dot refers to the adjoint action of G on g, and how can this be

computed? The saturation is necessarily the closure of a single nilpotent

orbit, denoted by OI . From the Jacobson-Morozov theorem, it is clear that

every orbit is equal to OI for some ideal I.

On the other hand, it may be relevant to study the centralizer Be for

e ∈ OI ∩ I. However, OI ∩ I need not be a single B-orbit. The structure of

the different centralizers can be captured by considering the moment map

π : G×B I −→ G.I

given by (g,X) → g.X. In some cases this map has connected fiber over a

point in OI (for example when I arises from the Jacobson-Morozov theo-

rem), but in other cases the fiber may be disconnected. Let e ∈ I ∩OI and

let Ge denote the centralizer of e in G. One can show as in [5] that the fiber

π−1(e) is a disjoint union of irreducible smooth varieties and that Ge acts

transitively on the set of irreducible components. The identity subgroup G0
e

clearly stabilizes each component. Let HI denote the stabilizer in Ge of an

irreducible component of the fiber. Then the image of HI in the component

group

A(e) := Ge/G
0
e

defines a subgroup KI that is well-defined up to conjugacy, as in [5]. One

of our goals is to understand for each ideal how to compute both OI and

KI .

Note that if a subgroup P containing B stabilizes I, then one can define

the analogous moment map. The saturation of I will clearly be the same,

but so too will the analogous subgroup KI . In this more general setting,

the subgroups KI have been studied (see [10]) when I is the nilradical nP

of the Lie algebra of any parabolic subgroup P or more generally when I

arises from induction of an ideal coming from the Jacobson-Morozov ideal

in a Levi subalgebra. Computing the saturation of such ideals amounts
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to calculating Lusztig-Spaltenstein induction [12]. See [20] for Elashvili’s

calculations in the exceptional groups and [4] for the classical groups.

The smallest interesting example occurs in type B2. Here there are six

ideals. Of these, one has saturation the zero orbit; one, the regular orbit;

and one, the minimal orbit. The remaining three have saturation equal

to the subregular orbit. For one of these ideals, the fiber over e ∈ OI is

connected, but for the other two, the fiber has two components. Hence in

the former case, KI = S2 and in the latter cases, KI is trivial.

In order to study these questions, we define an equivalence relation on

the set of B-stable ideals in n. It has the property that equivalent ideals

have the same OI and the same group KI , which we henceforth regard

as being defined up to conjugacy (and this is well-defined, independent of

which base point e we choose). The equivalence relation is closely related

to the equivalence relation considered in [5] on a certain subset of ideals,

or rather their intersection with the space g2, arising from the Jacobson-

Morozov theorem for e. It is also strongly related to the work in [13], where

Mizuno was interested in those ideals which have the same saturation and

in simple operations on ideals which preserve the saturation.

We show that the natural partial order on ideals given by inclusion of

one ideal in another ideal descends to give a partial order on equivalence

classes. A main result is that this partial order refines the closure order

on nilpotent orbits, something which is essentially proved in a case-by-case

fashion by Mizuno [13] in the exceptional groups.

One issue which arises for each orbit O is the minimal value of the

dimension of an ideal I with OI = O. Kawanaka [8] computed a minimal

possible value for the dimension of I and then used Mizuno’s work to show

that the minimal value is always obtained for each orbit in the exceptional

groups. We extend Kawanaka’s work by giving a conjectural algorithm to

find an ideal achieving this minimal value. These ideas are then employed

to compute OI and KI for each ideal I in the exceptional groups and thus

the partial order on the set of equivalence classes of ideals.

The paper concludes with some speculations. In particular we speculate

on a connection between the partial order on equivalence classes and the

partial order introduced by Achar [1] on the set of pairs consisting of a

nilpotent orbit and a conjugacy class in Lusztig’s canonical quotient. We

show that these conjectures are true in the exceptional groups.

It is a pleasure to dedicate this paper to Professor Lusztig, my Ph.D. ad-

visor. I have been greatly influenced by his ideas and perspectives, gleaned
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both from his many beautiful papers and lectures, as well as from numerous

conversations over the past decade.

§2. Definitions

Let G/B be the flag manifold of G. For a rational representation of

τ : B → GL(V ), we can form the vector bundle G×B V over G/B [21]. For

convenience, we use V also to denote the sheaf of sections of this bundle

and write H i(G/B, V ) for its cohomology groups. Fix a maximal torus T

in B and let (X,Φ, Y,Φ∨) be the root datum determined by G and T , and

let W be the Weyl group. Let Π ⊂ Φ+ denote the simple roots and positive

roots determined by B. As usual, 〈 , 〉 denotes the pairing of X and Y .

We denote the standard partial order on Φ by �; so α � β for α, β ∈ Φ

if and only if β − α is a sum of positive roots.

We define an ideal I of Φ+ to be a collection of roots such that if α ∈ I,
β ∈ Φ+, and α + β ∈ Φ+, then α + β ∈ I. In other words, if α ∈ I and

γ ∈ Φ+ with α � γ, then γ ∈ I.

It is easy to see that B-stable ideals in the nilradical n of b are naturally

in bijection with the ideals of Φ+. Namely, if I is a B-stable ideal of n, it is

stable under the action of T , hence I is a sum of roots spaces. Denote by

I the set of roots whose root space is contained in I. Then I is an ideal of

Φ+, called the support of I, and this map is a bijection. We will often use

I both for an ideal in n and for the corresponding ideal in Φ+.

Given an ideal I in Φ+, we define the minimal roots Imin of I as

follows: α ∈ I belongs to Imin if and only if for all β ∈ Φ+ with β � α

and β 6= α, then β /∈ I. Clearly I determines and is determined by its

set of minimal roots Imin. Note that the elements of Imin are mutually

incomparable elements of Φ+ and that every set of mutually incomparable

elements of Φ+ is an Imin for a unique I (namely, I is the set of all elements

bigger or equal to the elements of Imin).

We are ready to define an equivalence relation on the ideals of n. If

V1 ⊂ V2 are representations of B, then the restriction of the polynomials of

degree n on V2 to polynomials on V1 induces a map in cohomology:

(1) H i(G/B,SnV ∗
2 ) −→ H i(G/B,SnV ∗

1 )

where Sn(−∗) denotes the n-th symmetric power of the linear dual. More

precisely, this map arises from the Koszul resolution of the ideal defining

V1 in V2. For ideals of n we make the definition
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Definition 2.1. Let I ⊆ J be two ideals of n. Then I and J are
equivalent if the map in (1) is an isomorphism for all n ≥ 0 whenever i = 0.

The reason we are ignoring the higher cohomology groups (in contrast

with [2]) is that it seems likely that these cohomology groups vanish for

ideals whenever i > 0 and also it is harder to establish some of the basic

properties of the equivalence relation if we require at this early stage that

(1) is an isomorphism for all i ≥ 0.

Note that if I1 ⊆ I2 ⊆ I3 are ideals, then I1 and I3 are equivalent if and

only if both I1 and I2 are equivalent and I2 and I3 are equivalent. Thus it is

clear that the above definition generates a well-defined equivalence relation

on the set of ideals in n. We write I ∼ J for this relation.

Now it is not hard to see that if I ⊆ J are ideals, then there exist a

chain of ideals

I = I0 ⊆ I1 ⊆ · · · ⊆ Ik = J

such that the Im/Im−1 is one-dimensional. Indeed, Im−1 is obtained from

Im by omitting a root space corresponding to a minimal root in the support

of Im (which does not belong to the support of I). In this way the Im are

inductively defined and the process clearly terminates in I after a finite

number of steps. Consequently if I and J are equivalent, all the ideals Im

lie in the same equivalence class. Thus in order to describe an equivalence

class of ideals, we are often led to focus on ideals I ⊆ J such that J/I is

one-dimensional.

Let us assume that this is the case and write U = J/I for the one-

dimensional B-representation. The Koszul resolution for the exact sequence

of B-modules

0 −→ U∗ −→ J∗ −→ I∗ −→ 0

is the exact sequence

0 −→ Sn−1J∗ ⊗ U∗ −→ SnJ∗ −→ SnI∗ −→ 0.

Taking the long exact sequence in cohomology, we see that I and J are

equivalent whenever the following condition holds:

(2) H i(G/B,SnJ∗ ⊗ U∗) = 0 for all n ≥ 0, for i ∈ {0, 1}.

There is an easy (but very useful) case when (2) is sure to hold; it is due

to Demazure [6]. For α ∈ Π, let Pα denote the minimal parabolic containing

B corresponding to α. Let gα denote the root space in g corresponding to

the root α ∈ Φ.
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Proposition 2.2. ([2]) Let I ( J be two ideals of n with J = I + gβ

where β ∈ Φ+. If J extends to a representation of Pα for some α ∈ Π such

that

〈β, α∨〉 = −1,

then

Hi(G/B,SnJ∗ ⊗ U∗) = 0 for all i, n ≥ 0.

In particular, I and J are equivalent.

If two ideals satisfy the hypotheses of Proposition 2.2, we say that they

are equivalent via the basic move (with respect to α if we want to emphasize

the simple root). Note that in the above proposition the simple roots Π are

determined by B (and not the opposite Borel as is also common). The basic

move already shows up in DeConcini-Lusztig-Procesi’s work [5, Section 2.8]

and in Mizuno’s [13, Lemma 1].

§3. Main properties

Let I be a B-stable ideal in n. There is a natural map (the moment

map)

π : G×B I −→ g

which send (g,X) ∈ G×B I to g.X.

The image is irreducible (since I is irreducible and G is connected) and

it is closed since G/B is projective. The image, which consists of nilpotent

elements and is G-stable, is thus a union of nilpotent orbits. Since there

are only finitely many such orbits in g, the image is the closure of a single

nilpotent orbit OI . We call OI the associated orbit of I; we call its closure

OI the G-saturation of I and denote it also by G.I. We note that OI is

also the unique nilpotent orbit such that OI ∩ I is dense in I.

The fibers of π over points in OI were studied in [5] (in a slightly

modified setting) in order to show that the cohomology of a Springer fiber

has no odd cohomology. For our purposes we recall the salient facts. First

note that G acts on the left on G ×B I and on g and the map π is clearly

equivariant for these actions. For e ∈ OI , we can study the action of Ge

on the fiber of π over e, where Ge is the centralizer of e in G under the

adjoint action. Clearly, Ge preserves the fiber and its identity component

G0
e preserves each irreducible component of the fiber.

Using the fact that OI ∩ I is open in I, one deduces that OI ∩ I is both

smooth and irreducible. Consider the subset GI of G defined by

GI := {g ∈ G | g−1.e ∈ I}.
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As in [5], GI is stable under the action of B on the right and of Ge on

the left. On the one hand, Ge\GI identifies with OI ∩ I and on the other

hand, the fiber π−1(e) identifies with the image of GI in G/B. Then the

arguments in [5, Lemma 2.2] go through: the smoothness of OI ∩ I ensures

that π−1(e) is smooth, and the irreducibility of OI ∩ I ensures that Ge acts

transitively on the connected components of π−1(e) (which are necessarily

irreducible, since they are smooth).

Then as mentioned in the introduction and following [5], it makes sense

to consider the stabilizer HI in Ge of an irreducible component of the fiber.

Since HI contains G0
e, it defines a subgroup

KI := HI/G
0
e

of A(e). Both HI and KI are well-defined up to conjugacy in Ge and

A(e), respectively, since Ge permutes the components of the fiber over e.

Henceforth we make no distinction between HI and KI and other subgroups

conjugate to them in Ge and A(e), respectively. They are then well-defined

independent of the base point e ∈ OI .

If a parabolic subgroup P stabilizes I with B ⊂ P , then we can form

the appropriate moment map πP : G ×P I → G.I. For e ∈ OI , the fiber

π−1(e) is a P/B-bundle over π−1
P (e). Hence the subgroup KI will be the

same regardless of whether we use P or B. This can be useful when trying

to compute KI explicitly.

We next consider the perspective of the Stein factorization of π:

G×B I
µ1
−→ YI

µ2
−→ OI .

The first map µ1 is projective and has connected fibers. The second map

µ2 is finite. Both maps are equivariant for G. Since OI is affine, so is YI .

Moreover, by construction there is an isomorphism of (finitely generated,

reduced) C-algebras C[YI ] ∼= C[G ×B I] of the global regular functions of

each variety. Since G×B I is smooth, YI is a normal variety.

Let us set ẎI := µ−1
2 (OI). Clearly this is a G-variety and since Ge

acts transitively on the components of π−1(e), it follows that it also does

on the fiber of µ−1
2 (e) as the latter is a finite set of points. Hence G acts

transitively on ẎI . Furthermore the stabilizer of a point in ẎI sitting above

e identifies with the subgroup HI in Ge. It follows that

ẎI ' G/HI .
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Now since OI − OI has codimension two in OI and µ2 is finite, the com-

plement of ẎI in YI has codimension two in YI . Then using that ẎI is

smooth and YI is normal, it follows that the inclusion of ẎI into YI induces

a G-equivariant isomorphism

(3) C[ẎI ] ' C[YI ]

(see [7]).

We can now prove

Lemma 3.1. Let I ⊆ J be ideals. Then

H0(G/B,SnI∗) ' H0(G/B,SnJ∗)

for all n ≥ 0 if and only if OI = OJ and KI = KJ .

Proof. The C∗-action on I puts a grading on the the regular functions
C[G ×B I] and then the functions of degree n on C[G ×B I] identify as
a G-module with H0(G/B,SnI∗) (see [7]). Furthermore the inclusion of
G×B I into G×B J induces a graded G-equivariant map of C-algebras

C[G×B J ] −→ C[G×B I]

compatible with the maps of G-modules H0(G/B,SnJ∗)→ H0(G/B,SnI∗)
for each n.

The following diagram commutes (all maps are G-equivariant):

G×B I
f

−−−−→ G×B J

µI,1





y

µJ,1





y

YI
g

−−−−→ YJ

µI,2





y

µJ,2





y

OI
h

−−−−→ OJ

On the level of functions the following diagram commutes:

C[G×B I]
f∗

←−−−− C[G×B J ]

µ∗

I,1

x





µ∗

J,1

x





C[YI ]
g∗

←−−−− C[YJ ]

µ∗

I,2

x





µ∗

J,2

x





C[OI ]
h∗

←−−−− C[OJ ]
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The maps µ∗
I,1 and µ∗

J,1 are isomorphisms. The map h∗ is a surjection
since h is an injective map between affine varieties. Also, µ∗

I,2 and µ∗
J,2 are

injections since µI,2 and µJ,2 are surjective.

Now if H0(G/B,SnJ∗) → H0(G/B,SnI∗) is an isomorphism for all
n ≥ 0, this implies that f ∗ is an isomorphism and thus g∗ and h∗ are
isomorphisms. Hence OI = OJ . But also YI ' YJ as G-varieties, whence
their open orbits are isomorphic ẎI ' ẎJ . Consequently, picking a fixed
base point in e ∈ OI , we see that HI is conjugate in Ge to HJ , whence KI

and KJ are conjugate in A(e).

For the reverse direction, if OI = OJ , then h is an isomorphism. Then
g must be surjective and it maps ẎI onto ẎJ . This induces a surjection of
G/HI to G/HJ , which shows that some conjugate of KI is contained in KJ .
In particular, if the groups are isomorphic, we have that ẎI ' ẎJ . Thus
C[ẎI ] ' C[ẎJ ] and also C[YI ] ' C[YJ ] by (3). Hence f ∗ is an isomorphism
and the result follows.

Corollary 3.2. If I ⊆ J and OI = OJ , then KI ⊆ KJ for some

representatives of these conjugacy classes of subgroups. If I ∼ J , then

OI = OJ and KI = KJ .

Proof. The first statement follows from the proof itself. The second
statement is clear.

It follows that the basic move of Proposition 2.2 preserves both OI and

KI . Compare this proof with the one in [5, Lemma 2.11].

§4. Partial order

There is a partial order on the set of all B-stable ideals of n given by

inclusion. We now show that this partial order descends to equivalence

classes of ideals.

Proposition 4.1. Suppose I1 ∼ I2 and J1 ∼ J2. If J1 ⊆ I1 and

I2 ⊆ J2, then all four ideals are equivalent.

Proof. There is an injection of OJ1
into OI1 and of OI2 into OJ2

.
Hence by the second statement of Corollary 3.2 all ideals have the same
saturation. Then the first statement of Corollary 3.2 gives that KJ1

⊆ KI1

and KI2 ⊆ KJ2
and hence that all groups are isomorphic. It follows that

J1 ∼ I1 by Lemma 3.1 as J1 ⊆ I1.
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Hence there is a well-defined partial order on equivalence classes in-

duced by the inclusion of one ideal in another (that the transitive property

goes through is an easy modification of the proposition).

Let us denote the equivalence class containing I by [I] and write [I] �
[J ] to denote when two elements are comparable in the partial order.

It is clear that if [I] � [J ] then OI ⊆ OJ . We now show that a

converse is true: namely if O1 ⊆ O2, then there exists ideals I1, I2 with

OIi
= Oi and I1 ⊆ I2. In other words the closure order on nilpotent

orbits is computable by studying the inclusion order on ideals (where in

this case only the saturation of the ideal is needed). As mentioned in the

introduction, this was shown by Mizuno in the exceptional groups in a

case-by-case fashion.

By the Jacobson-Morozov theorem every nilpotent element e can be

embedded in an sl2-triple {e, h, f} in g. Let gh,i be the i-eigenspace for

ad(h), written as gi when there is no confusion about the semisimple element

h. Let gh,≥i and gh,>i denote the obvious sum of eigenspaces. Then if h ∈ h

and α(h) ≥ 0 for all α ∈ Π (that is, h is dominant), then

I = g≥2

is a B-stable ideal of n. Moreover, OI = Oe, the orbit through e, see [3].

We call I the Dynkin ideal for Oe.

Theorem 4.2. The closure order on nilpotent orbits is obtained from

the partial order on equivalence classes of ideals by passing to the saturation

of an ideal.

Proof. Suppose that O1 ⊆ O2 where O1 6= O2. We would like to find
ideals I ⊂ J with OI = O1 and OJ = O2. It suffices to consider the case
when there is no orbit in between O1 and O2 in the closure ordering since
any descending chain of closed subvarieties of g must be finite.

Let J = g≥2 be the Dynkin ideal for the orbit O2 with respect to a
dominant semisimple element h′ ∈ h. For this proof we omit the subscript
h′.

Now O1 ∩ J 6= ∅ since O1 ⊂ G.J . Pick e ∈ O1 ∩ J and write e = x + y
where x ∈ g2 and y ∈ g>2. Note that x /∈ O2 since

(4) O2 ∩ g≥2 = (O2 ∩ g2) + g>2

(see [4, Lemma 4.14]).
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Let L ⊂ G be the subgroup with Lie algebra g0. By Kawanaka’s clas-
sification of L orbits on g2 [9], there exists h ∈ h such that {x̃, h, f} forms
an sl2-triple for some x̃ ∈ L.x and furthermore that

G.x̃ ∩ (gh,≥2 ∩ g2)

is dense in gh,≥2 ∩ g2.
Now set

I := (gh,≥2 ∩ g2) + g>2.

Then I ⊂ n and we wish to show that I is B-stable. Appealing to [9] again,
we can choose h so that h is dominant for the simple roots ΠL which come
from L. Assume that α ∈ ΠL. Then α(h′) = 0 and so ad(gα) preserves
each gi. Furthermore α(h) ≥ 0 and so ad(gα) preserves gh,≥2. Consequently,
ad(gα)(I) ⊆ I. On the other hand, if α ∈ Π\ΠL, then α(h′) > 0 and thus
ad(gα) maps g≥2 into g>2. Consequently, ad(gα)(I) ⊆ I in this case too.
Thus I is an ad(b)-stable ideal and so also B-stable.

To finish the proof, note that I does not intersect O2. Indeed if it did,
then (4) would imply that O2 ∩ (gh,≥2 ∩ g2) is non-empty and hence it is
dense in gh,≥2 ∩ g2. This would contradict the fact that x̃ /∈ O2. On the
other hand some L- conjugate of e lies in I, so I does intersect O1. Also
I ⊂ J . It follows that

O1 ⊆ G.I ( G.J

and hence that O1 = G.I since by assumption there is no orbit between O1

and O2.

§5. Computing the OI and KI

In this section we gather some results about ideals that we can use

to compute OI and KI for an ideal I. These allow us to determine the

equivalence classes in the exceptional groups and thus compute the partial

order.

5.1. Ideals of minimal dimension

One main question which arises is to find, given a nilpotent orbit O,

the minimal dimension of an ideal I such that G.I = O. More generally, if

we also make some assumption on Be for e ∈ O ∩ I, we would like to know

the minimal dimension of such an I. This will be helpful to show that KI

does not intersect a given conjugacy class in A(e).

Here is our main result about the lower bound on the dimension of I.

The case where s ∈ B0
e was known to Kawanaka [8].
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Proposition 5.1. Let O be a nilpotent orbit. Let I be an ideal and

e ∈ O ∩ I where OI = O. Let s ∈ Be be a semisimple element. Then

dim I ≥ dimB − dim(BGe
) + rank(Ge)− rank(Gs,e)

where BGe
is a Borel subgroup of Ge and Gs,e denotes the elements which

commute with s and also commute with e under the adjoint action.

Proof. First

dim I ≥ dimB − dimBe.

Next, there exists a maximal torus S of Be which is invariant under con-
jugation by s (see [22]). In other words s ∈ NB(S), the normalizer of S
in B. However, B is connected and solvable and S consists of semisimple
elements. Thus ZB(S) = NB(S) by [21, Corollary 6.3.6]. It follows that
S ⊂ Gs,e and so

rank(Be) ≤ rank(Gs,e).

This together with the fact that Be is solvable and so Be ⊆ BGe
gives the

inequality

dimBe ≤ dim(BGe
)− (rank(Ge)− rank(Gs,e))

and the result follows.

We can easily obtain the information to compute the lower bound of the

proposition. The rank of Ge equals the rank of G less the subscript in the

Bala-Carter designation of O (which denotes the rank of the minimal Levi

subalgebra containing e). If we insist that s lies in a specified conjugacy

class C in A(e), then the rank of Gs,e is the rank of G less the subscript in

the generalized Bala-Carter designation of C in [16]. In other words, the

difference of ranks in the proposition is the difference of subscripts of the

two Bala-Carter designations. Let Ne denote the number of positive roots

in the reductive part of Ge. Given the weighted Dynkin diagram for O, we

can compute the dimensions of gi. Then we have

dimBGe
= dimGe −Ne

= dim g0 + dim g1 −
1

2
[dim(g0)− dim(g2)− rank(Ge)]

= dim g1 +
1

2
[dim(g0) + dim(g2) + rank(Ge)].
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Of course, in practice we can also just read this information from tables in

[3].

Let us set

mO = dimB − dim(BGe
)

for e ∈ O. More generally for e ∈ O and C a conjugacy class in A(e), let

s ∈ Ge be a semisimple element representing the class C and set

mO,C = dimB − dim(BGe
) + rank(Ge)− rank(Gs,e).

These values are well-defined independent of the choice of e or s.

Example 5.2. As an example, consider an element e in the orbit of
type D4(a1) in E6. Then rank(Ge) = 6 − 4 = 2 and dim g0 = 20 and
dim g2 = 18, so that dimBGe

= 20. For E6, dimB = 42 and thus the
minimal dimension for an I with OI = O is mO = 22. There does exist an
ideal achieving this value (see Section 5.2).

Now if we specify that the image of s ∈ Be has order two in A(e),
then the Bala-Carter designation of the pair (e, s) is A3 + 2A1, so that
rank(Ge) − rank(Gs,e) = 1 and the minimal dimension of such an I is 23.
There does exist an ideal with these properties.

Next if we specify that the image of s has order three, then the minimal
possible dimension of such an I is 24. Mysteriously there does not exist any
ideal satisfying these properties. The smallest such ideal has dimension 25.

We now consider what happens when dim I = mOI
.

Corollary 5.3. Suppose that I is an ideal with dim I = mOI
. Then

(1) [8] B acts transitively on OI ∩ I.

(2) The image of Be in A(e) equals KI for any e ∈ OI ∩ I.

Proof. Let e ∈ OI∩I. Since dim I = mOI
, the proof of Proposition 5.1

shows that B0
e = BGe

and dim I = dimB − dimBe. Hence the B-orbit
through e is dense. Since this holds for any point in OI ∩ I, which is
irreducible, B acts transitively on OI ∩ I. From this we can deduce that
Ge acts transitively on the fiber X = π−1(e). Indeed a typical element in
the fiber is (g, e′) where g.e′ = e and e′ ∈ I. The B-transitivity gives that
(g, e′) = (gb−1, b.e′) = (gb−1, e) for some b ∈ B. Hence (g, e′) = gb−1.(1, e)
and gb−1 ∈ Ge. Incidentally this also shows that each component of X is
isomorphic to the flag variety of G0

e.
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To complete the proof, let s ∈ HI where HI is the stabilizer in Ge of
the irreducible component of X containing (1, e). Then by definition this
means that s.(1, e) lies in the same irreducible component of X as (1, e).
Since G0

e acts transitively on each component of X, we have (s, e) = (g, e)
for some g ∈ G0

e, where the equality is in G×B I. In other words, sb−1 = g
and b.e = e for some b ∈ B. But then b ∈ Be and g−1s = b and thus b
and s have the same image in A(e), proving that the image of HI in A(e)
coincides with the image of Be.

Usually the corollary is enough to determine KI when dim I = mOI

as we discuss in Section 5.3. Of course it would be helpful to know that

this minimum value is actually achieved. This is the case in the exceptional

groups, which was shown by Kawanaka [8] in his work on Gelfand-Graev

representations. Kawanaka’s observation relies on Mizuno’s calculations

(which in a sense we are trying to simplify and make more uniform in this

paper). In the next subsection we give a conjectural algorithm which pro-

duces an ideal of minimal dimension (re-verifying Kawanaka’s observation).

It seems reasonable to conjecture for all groups that

Conjecture 5.4. For each orbit O, there exists an ideal I with OI =
O and dim I = mO.

The following is also going to be useful to compute KI .

Corollary 5.5. Let I be an ideal with dim I = mOI
+1. Let e ∈ OI∩I

and assume that there is a semisimple element s ∈ Be with rank(Ge) −
rank(Gs,e) = 1. Suppose also that there exists a parabolic subgroup P = Pα

of semisimple rank one that stabilizes I. Then the image of Pe in A(e) is

exactly KI .

Proof. By Proposition 5.1 and the assumption on s,

dim I ≥ dimP − dimPe ≥ dimB − dimBe > dimB − dimBGe
.

The hypothesis on the dimension of I then shows that dim I = dimP −
dimPe. Let XP be the fiber of the bundle G×P I over e. Then dimXP =
dimGe − dimPe.

Let Z be the orbit of G0
e through (1, e) in XP . Then dimZ = dimGe−

dimPe = dimXP , so Z is dense in its irreducible component of XP . Let
s ∈ HI be the stabilizer in Ge of this component. Then s.Z ∩ Z must be
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non-empty. Hence for some g, h ∈ G0
e, s.(g, e) = (h, e) in G×P I. Thus for

some p ∈ P we have sgp−1 = h and p.e = e. This means that p ∈ Pe and p
and s have the same image in A(e).

Finally we note that if an ideal I is stabilized by a parabolic subgroup P

such that G×P I has the same dimension as OI , then the fiber over e ∈ OI

being of dimension zero also ensures that the image of Pe is KI . This is

useful when an ideal is induced from a Dynkin ideal in a Levi subalgebra

since this dimension property always holds in that case.

5.2. Importing lower rank ideals

We now describe a method to find the saturation of ideals in g and

get some structure on KI from the knowledge of the saturation of ideals in

certain subalgebras of g.

Let Π̃ = Π ∪ {−θ} be the extended simple roots of g, where θ ∈ Φ+ is

the highest root with respect to Π. For J ( Π̃ define ΦJ to be the roots of

Φ which are integral combinations of the roots in J . Let

gJ := h⊕
⊕

α∈ΦJ

gα.

Let GJ be the corresponding group in G. Then we call gJ a standard

pseudo-Levi subalgebra of g.

Now suppose e ∈ l = gJ is a nilpotent element for some pseudo-Levi

subalgebra. Let h ∈ h∩[l, l] be a Dynkin element for e in l. Then lh,≥2 defines

an ideal for l for some Borel subalgebra bl of l containing h and contained

in the parabolic subalgebra lh,≥0. Then the intersection Oe ∩ lh,≥2 is dense

in lh,≥2. In other words

GJ .lh,≥2 = GJ .e

in l.

Let Il ⊂ lh,≥2 be an ideal with respect to bl whose saturation is also

GJ .e. Let w ∈W be an element such that w(h) is dominant for g. Certainly

w(Il) ⊂ gw(h),≥2.

Since Oe ∩ Il is dense in Il, the same holds for w(Il). Also, Oe ∩ gw(h),≥2 is

dense in gw(h),≥2. Hence the B-stable ideal I generated by w(Il) (meaning

the smallest ideal containing the latter) must also have this property. In

other words, I has saturation equal to Oe. In this way we have located an

ideal I contained in gw(h),≥2 with the same saturation.

https://doi.org/10.1017/S0027763000009296 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009296


176 E. N. SOMMERS

Moreover if the pair (l, e) corresponds to the conjugacy class C ⊂ A(e)

as in [16], then there exists s ∈ T such that s ∈ Ge and the image of s

in A(e) lies in C. Consequently, w(s) lies in Gw.e and this shows that the

image of Bw.e in A(w.e) intersects the conjugacy class w(C). This is all

well-defined since the component groups A(e) and A(g.e) are isomorphic

and any isomorphism between them coincides on conjugacy classes. Hence

we can conclude that KI intersects the conjugacy class C specified by the

pair (l, e).

For purposes of computation it is easiest to specify an ideal in n by

its minimal roots. Hence we are led to find the minimal roots for I, the

ideal generated by w(Il). We can not expect that they are always w applied

to the minimal roots of Il in l since for one thing the minimal roots of I

must be W -conjugate to a subset of Π [19]. However under some additional

assumptions the situation is as good as can be expected.

Let us assume that the simple roots of l are determined by b, so that

the simple roots of l are J∩Π together with possibly one additional positive

root γ. In other words, bl = b ∩ l. Also assume that the element h ∈ h has

the property that α(h) ∈ {0, 2} for all α ∈ J ∩ Π and that γ(h) = 2 if γ

exists. Let l(−) denote the length function of W defined with respect to

the simple reflections {sα | α ∈ Π}.

Proposition 5.6. Under the assumptions of the previous paragraph,

let β1, . . . , βm be the minimal roots of Il. Assume that βi(h) = 2 for all βi

and that β1 = γ if γ exists. Let w ∈ W be the element of minimal length

such that w(h) is dominant. Then the minimal roots of the ideal I generated

in n by w(Il) are

w(β2), . . . , w(βm)

and possibly also w(γ). In particular if J ⊂ Π, then the minimal roots are

exactly {w(βi)}.

Proof. If α(h) = 2, then w(α) is a positive root since w(α) ∈ gw(h),2

and w(h) is dominant. Also γ(h) = 2 and thus w(γ) is a positive root.
Now by the next lemma w(α) is a positive root even when α(h) = 0 for
α ∈ J ∩ Π (indeed it is a simple root). We conclude that all the simple
roots of l remain positive roots after applying w. Since every root of w(Il)
is of the form

w(βj) + β

where β is a sum (with repetitions) of w(γ) and the w(α) where α ∈ J ∩Π,
this shows that the minimal roots of I are found among the roots {w(βi)}.
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It remains to show that for i, j 6= 1 that w(βi) and w(βj) are not comparable
and also that w(βi) is never less than w(γ).

Suppose that

w(βi)− w(βj) =
∑

νk

is a sum of positive roots. Then
∑

νk(w(h)) = 0 and since w(h) is dom-
inant, all νk(w(h)) = 0. Let w = sr1

· · · srp
be a reduced expression for

w. Now βi and βj are both non-comparable positive roots of ΦJ∩Π by as-
sumption and hence they must be non-comparable as roots in Φ+. Thus
some νk has the property that w−1(νk) is a negative root. It follows that
there exists a q such that srq

· · · sr1
(νk) is the simple root αrq+1

. But then
αrq+1

(srq
· · · sr1

w(h)) = 0, that is,

(srq+1
srq
· · · sr1

w)(h) = (srq
· · · sr1

w)(h),

and so we can omit srq+1
from the reduced expression of w and get an

element of shorter length which makes h dominant. This is a contradiction.
A similar proof shows that w(γ) is never less than w(βi) for i > 1 using

the fact that βi − γ can not be a sum of positive roots of Φ+.

Let V = Y ⊗Z Q, the vector space spanned by the cocharacters of G.

Lemma 5.7. Let λ ∈ V . Let w ∈ W be the element of W of minimal

length such that w(λ) is dominant. Then α(λ) = 0 for α ∈ Π implies that

w(α) ∈ Π.

Proof. The fact that α(λ) = 0 implies that wsα(λ) = w(λ). But
then l(wsα) > l(w) by the minimal length of w and so w(α) ∈ Φ+ since
α is simple. Write w(α) =

∑

γi where γi ∈ Π. Of course 〈w(α), w(λ)〉 =
〈α, λ〉 = 0. Hence

∑

γi(w(λ)) = 0. But w(λ) is dominant and this forces
γi(w(λ)) = 0 for all i. Then sγi

w(λ) = w(λ) and the minimal length of
w implies that w−1(γi) ∈ Φ+ for all i. In other words, α =

∑

w−1(γi) is
written as a sum of positive roots. But α is simple so there is only one term
in the summation. That is, w(α) is a simple root.

We conjecture that the method of Proposition 5.6 can be used to find

an ideal with dim I = mOI
, when OI is not distinguished.

Conjecture 5.8. Let O be a nilpotent orbit in g. Let l be a standard

minimal Levi subalgebra such that O ∩ l is nonempty. Then there exists an

ideal Il in l and w ∈W as in Proposition 5.6 such that the ideal I generated

by w(Il) satisfies dim I = mOI
.
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We have verified the conjecture in the exceptional groups. Certainly Il

has to be an ideal of minimal dimension in l by Proposition 5.6. Thus the

conjecture would reduce the problem of finding ideals with dim I = mOI

to the case of distinguished orbits. These need to be handled in an ad hoc

manner, which we sketch in the next subsection. In fact in the exceptional

groups these were basically handled in [5, Section 4.1].

As an example illustrating the proposition and the conjecture, consider

the orbit of type D4(a1) in E6.

Example 5.9. There are three ideals in a subalgebra l of type D4

which achieve the minimal value for the orbit of type D4(a1) in l. One of
them has minimal roots

{α2, α3 + α4, α6}

(embedding D4 into E6 using the notation of [18]). Writing h ∈ [l, l] in the
basis of simple coroots of E6 gives

4α∨
2 + 6α∨

3 + 4α∨
4 + 4α∨

6 .

The element w of minimal length such that w(h) is dominant is

s3s4s2s6s3s4s2s5s1.

Applying this to α2, α3 + α4, α6 gives

α1 + α2 + α3, α3 + α4 + α5 + α6, α2 + α3 + α4,

respectively. Also w(α3) = α6, a simple root as predicted by Lemma 5.7.
Proposition 5.6 then guarantees that the ideal in E6 with minimal roots
α1 + α2 + α3, α3 + α4 + α5 + α6, α2 + α3 + α4 has saturation equal to the
closure of the orbit of type D4(a1). A computation shows that it has the
predicted minimal dimension of 22.

We finish the subsection by noting a sort of converse to Proposition 5.6.

That proposition produces ideals for which the image of Be intersects a fixed

conjugacy class in A(e). Conversely, let I be an ideal and let e ∈ OI ∩ I.

Suppose that there exists s ∈ Be whose image in A(e) intersects a fixed

conjugacy class C. By taking its semisimple part, s may be taken to be

semisimple and by conjugating by B we can assume that s ∈ T . Then

gs ∩ b is a Borel subalgebra of gs. It follows that I ∩ gs is an ideal of gs

with respect to a Borel subgroup of Gs. Moreover, since e ∈ I ∩ gs, we
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have that the saturation of I ∩ gs is Gs.e. Now by [16] gs is conjugate by

W to a standard pseudo-Levi subalgebra of g. Hence if we understand the

saturation of ideals in pseudo-Levi subalgebras, we can put a limit on the

conjugacy classes which intersect the image of Be.

5.3. Computations in the exceptional groups

Here is our algorithm to compute the equivalence classes in the ex-

ceptional groups. First we compute the equivalence relation generated by

the basic move (using a computer). This produces an upper limit on the

number of equivalence classes of 6 in G2; 25 in E6; 64 in E7; and 128 in

E8. The output of this operation will be available at www.math.umass.edu/

˜esommers/partialorder.html.

Next we have to decide which ideals have saturation corresponding to

distinguished orbits. We can use the Dynkin ideals g≥2 and Proposition 5.6

for pseudo-Levi subalgebras which are not Levi subalgebras. As a last re-

sort, we can induce a Dynkin ideal from a proper Levi subalgebra l: namely

take the minimal roots for a Dynkin ideal in l and add to these the simple

roots of g not in l to form an ideal in n. By [12] the dimension of the

saturation of this ideal is known and then inclusion of ideals is enough to

determine the actual saturation of the ideal. This is necessary, for example,

for the orbit of type E7(a5) in E7.

Then we use the Dynkin ideals g≥2 and the ideals coming from Propo-

sition 5.6 for Levi subalgebras to compute the saturation of ideals in each

block of ideals determined by the basic move. It turns out that this is

sufficient to determine the saturation of all ideals.

Next we seek to compute KI for each I. For an ideal equivalent to g≥2,

then KI = A(e). At the other extreme if I satisfies dim I = mOI
, then each

conjugacy class of KI is represented by an element s ∈ Be by Corollary 5.3.

This can be chosen to be semisimple and by applying B, can be taken to

be s ∈ T as in Section 5.2. From this it follows that gs ∩ I must be an

ideal in gs (taking the positive roots to be those in b ∩ gs). This means

that for such ideals, it is purely a combinatorial problem to determine the

conjugacy classes of A(e) which intersect KI . However, usually we can

avoid all work, since it often happens that rank(Ge) > rank(Gs,e) and thus

by Proposition 5.1, KI misses the conjugacy class represented by s. In this

manner we can determine whether KI = 1 or KI = S2 whenever A(e) = S2.

Now when A(e) = S3, it turns out in many cases that when s ∈ Be

represents the 3-cycle that rank(Ge)−rank(Gs,e) = 2 and for s representing

the 2-cycle that rank(Ge) − rank(Gs,e) = 1. This allows us to show that
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KI is trivial for an ideal achieving the minimal value for OI . Next it also

turns out that there is an ideal satisfying the hypotheses of Corollary 5.5

with s ∈ Be representing the 2-cycle (by a use of Proposition 5.6). Hence

Proposition 5.1 and Corollary 5.5 give that the 3-cycle does not show up

in KI and hence KI = S2. We note that in all of these cases, there is no

ideal I with KI containing a 3-cycle which achieves the value mOe,C for C

containing the 3-cycles. Indeed the minimal achieved is mOe,C + 1. We do

not have any explanation for this phenomenon.

For the remaining cases (including the distinguished cases), we do need

to decide when an ideal coming from a pseudo-Levi subalgebra can be con-

jugated by W into I. We omit the details.

We note that most of these computations can be obtained via

Kawanaka’s use of Mizuno’s detailed computations [8], [13]. Additionally

the computations for the distinguished orbits (although not all of the de-

tails) are contained in [5].

The equivalence classes are thus computed. The partial order is given

in the appendices.

We used these results to double check the partial order on nilpotent

orbits in [13], [3], and [20] (by Theorem 4.2). We were able thus to confirm

that Spaltenstein’s graph of the partial order is totally correct (although

there are some redundant lines). In Carter’s graphs the following inclusions

are missing: in E7, D5(a1) + A1 ≤ D6(a2); in E8, E8(b6) ≤ E6 + A1 and

A3 ≤ A3 + A1. There are several errors in Mizuno’s graphs.

As noted in the introduction, these calculations also allow the work in

[10] and Elashvili’s induction tables in [20] to be verified.

§6. Main conjectures

We conclude by stating some conjectures about equivalence classes of

ideals. We have checked them in the exceptional groups.

Conjecture 6.1. Let Oe be a nilpotent orbit. Let K be a subgroup

of A(e). There is at most one equivalence class [I] such that OI = Oe and

KI = K.

Corollary 3.2 shows that if there are two equivalence classes [I] and

[J ] with OI = OJ and [I] � [J ], then KI ⊆ KJ . It seems likely that the

converse holds. Namely,

Conjecture 6.2. Given two ideals I and J with OI = OJ and KI ⊆
KJ , then [I] � [J ].
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A key unresolved question is which subgroups of A(e) arise as KI for

some equivalence class [I]. From the work in [5] it is clear that these sub-

groups are closely related to the subgroups which arise as stabilizers in A(e)

of irreducible components of the Springer fiber of e, that is, the fiber over

e of the moment map

G×B n −→ g.

However, it is possible for these groups to differ. For example if e is of

type A4 + A1 in E8, then A(e) = S2. There are two classes of ideals with

OI = Oe. One has KI = 1 and the other has KI = S2. On the other hand,

the stabilizer in A(e) of any irreducible component of the Springer fiber is

trivial. It would be nice to understand better what is going on here. At the

least it seems reasonable to conjecture

Conjecture 6.3. Let I be an ideal and let e ∈ OI . Let K = KI .

Then all irreducible representations of A(e) arising in Ind
A(e)
K (1) contribute

to the Springer correspondence.

Let Ā(e) be Lusztig’s quotient of A(e). Given a conjugacy class C in

Ā(e) of A(e), there is a corresponding subgroup of Ā(e) constructed in [11]

and [2] . Let HC be the pre-image of this subgroup in A(e).

Conjecture 6.4. Assume that HC satisfies the Springer condition in

Conjecture 6.3. Then HC = KI for some ideal I satisfying OI = Oe.

Let No,c̄ denote the set of pairs consisting of a nilpotent element and

a conjugacy class in Ā(e) (up to conjugation by G). Achar [1] defined a

partial order on the set No,c̄ using the work in [17]. We speculate that the

partial order on equivalence classes of ideals is almost enough to completely

explain Achar’s partial order on No,c̄.

Let (e, C), (e′, C ′) be elements of No,c̄ such that the subgroups HC ,

HC′ satisfy the hypothesis of Conjecture 6.4. Assuming also the uniqueness

property of Conjecture 6.1, let [I], [I ′] be the corresponding equivalence

classes. Then

Conjecture 6.5. [I] � [I ′] if and only if (e, C) � (e′, C ′), where the

latter is the partial order on No,c̄ defined in [1].

We have verified all of these conjectures in the exceptional groups using

our explicit computations. This led us to some corrections in the tables of [1]
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for E8 that must have propagated from the misprints mentioned above in [3].

Namely, the following are related in Achar’s partial order: (E8(b5), E7(a2)+

A1) ≤ (E7(a1), 1), (A3, 1) ≤ (A3 + A1, 1), (E8(b6), D8(a3)) ≤ (E6 + A1, 1),

and (D4(a1), 3A2) ≤ (D4(a1) + A1, 3A2 + A1). There is also one redundant

line starting at (A4 + A2, 1).

Appendix: The partial order on equivalence classes in the excep-

tional groups
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Ã2 + A1

ZZZZZZZZZZZZZZZZZZZZZ (B2, 1)

A2 + Ã1
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