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Abstract

The amount and complexity of data delivered by modern galaxy surveys has been steadily increasing over the past years. New facilities
will soon provide imaging and spectra of hundreds of millions of galaxies. Extracting coherent scientific information from these large and
multi-modal data sets remains an open issue for the community and data-driven approaches such as deep learning have rapidly emerged
as a potentially powerful solution to some long lasting challenges. This enthusiasm is reflected in an unprecedented exponential growth of
publications using neural networks, which have gone from a handful of works in 2015 to an average of one paper per week in 2021 in the
area of galaxy surveys. Half a decade after the first published work in astronomy mentioning deep learning, and shortly before new big data
sets such as Euclid and LSST start becoming available, we believe it is timely to review what has been the real impact of this new technology
in the field and its potential to solve key challenges raised by the size and complexity of the new datasets. The purpose of this review is
thus two-fold. We first aim at summarising, in a common document, the main applications of deep learning for galaxy surveys that have
emerged so far. We then extract the major achievements and lessons learned and highlight key open questions and limitations, which in our
opinion, will require particular attention in the coming years. Overall, state-of-the-art deep learning methods are rapidly adopted by the
astronomical community, reflecting a democratisation of these methods. This review shows that the majority of works using deep learning
up to date are oriented to computer vision tasks (e.g. classification, segmentation). This is also the domain of application where deep learning
has brought the most important breakthroughs so far. However, we also report that the applications are becoming more diverse and deep
learning is used for estimating galaxy properties, identifying outliers or constraining the cosmological model. Most of these works remain
at the exploratory level though which could partially explain the limited impact in terms of citations. Some common challenges will most
likely need to be addressed before moving to the next phase of massive deployment of deep learning in the processing of future surveys; for
example, uncertainty quantification, interpretability, data labelling and domain shift issues from training with simulations, which constitutes
a common practice in astronomy.
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1. Introduction in galaxies with improved resolution. On the theory side, com-
puting power has evolved to the extent that we can now generate
realistic simulations of galaxies in a cosmological context spanning
most of the Universe’s history (e.g. TNG—Pillepich et al. 2018)
which properly reproduce a large number of observable proper-
ties. In this context of growing complexity and rapid increase of
data volumes, it has become a new challenge for the community to
combine and accurately extract scientifically relevant information
from these datasets.

Although Machine Learning applications to astronomy exist
since at least thirty years ago (see Section 2), the past years have
witnessed an unprecedented increase of deep learning methods
translated on an exponential increase of publications (Figure 1).
This revival is fuelled by significant breakthroughs in the field
of Machine Learning since the popularisation of Convolutional
Neural Networks (CNNs) a decade ago (Krizhevsky, Sutskever, &
Hinton 2012). The first published work mentioning deep learn-
Corresponding author: M. Huertas-Company, Email: mhuertas@iac.es ing in astronomy is from 2015 in which CNNs were applied for
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Most fields in astronomy are rapidly changing. Unprecedentedly
large observational data exists or will soon become available.
Modern spectro-photometric surveys such as the Legacy Survey
of Space and Time (LSST; Ivezi¢ et al. 2019) or Euclid (Laureijs
et al. 2011) will provide high quality spectra and images for hun-
dreds of millions of galaxies. Integral field spectroscopic surveys
at low and high redshift are reaching statistically relevant sizes
(e.g. MaNGA—Bundy et al. 2015) enabling to resolve the inter-
nal structure of galaxies beyond integrated properties. In addition,
new facilities like the James Webb Space Telescope (JWST) are
opening the window to a completely new redshift and stellar mass
regime both in imaging and spectroscopy and we will be able to
witness the emergence of the first galaxies in the universe. X-ray
and radio facilities (e.g. SKA, Athena) will probe cold and hot gas
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Figure 1. Relative change of the number of papers on arXiv:astro-ph with different key-
words in the abstract as a function of time. The number of works mentioning neural
networks in the abstract has experienced an unprecedented growth in the last ~6 yr,
significantly steeper than other topic in astrophysics. Source: ArXivSorter.

exponentially, being the fastest growth of other topics in the field
(Figure 1). The generalisation of deep learning represents to some
extent a change of paradigm in the way we approach data analysis.
By using gradient-based optimisation techniques to extract mean-
ingful features directly from the data, we move from an approach
based on specific algorithms and features to a fully data-driven
one. It has potentially profound implications for astronomy and
science in general.

After half a decade of this new wave of applications of deep
learning to astrophysics, we thus think it is timely to look back at
the impact that this new technology has had in our field. Given the
large amount of existing publications, we will only review works
focusing on the analysis of galaxy surveys and we will restrict to
recent works after the so-called deep learning boom. We believe
however that most of the lessons learned can be extrapolated to
other areas of astrophysics.

It is not the goal of this review to provide technical details about
how deep learning techniques work, but to describe its applica-
tions to cosmology and galaxy formation in a unique reference
document. Over the past years, deep learning has been used for
a large variety of tasks such as classification, object detection, but
also to derive physical properties of galaxies such as photometric
redshifts, to identify anomalous objects or to accelerate simula-
tions and constrain cosmology among many others. The review
is thus structured following major areas of application. We pro-
vide a quick description and some keywords about the technical
solutions adopted for each science case but we emphasise it is not
the goal of this work to focus on technical aspects. The reader is
encouraged to read the publications referring to each method—
which are provided in a best effort basis—to obtain a complete and
formal description of the deep learning methods. For complete-
ness and easy access, we provide in the Appendix A a list of dif-
ferent methods mentioned in the review with the corresponding
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references. A list of current and future galaxy surveys which are
referred in this work is also provided in Appendix A.

Following this idea, we have divided the applications of deep
learning into four major categories:

e Deep learning for general computer vision tasks. These are
applications that we consider closest to standard computer
vision applications for natural images for which deep learn-
ing has been shown to generally outperform other traditional
approaches. It typically includes classification and segmenta-
tion tasks.

e Deep learning to derive physical properties of galaxies (both
posteriors and point estimates). These are applications in which
deep learning is used to estimate galaxy properties such as
photometric redshifts or stellar populations properties. Neural
Networks are typically used to replace existing algorithms with
a faster and more efficient solution, hence more suited for large
data volumes. In addition, we also review applications in which
deep learning is employed to derive properties of galaxies which
are not directly accessible with known observables, that is, to
find new relations between observable quantities and physical
properties of galaxies from simulations.

e Deep learning for assisted discovery. Neural networks are used
here for data exploration and visualisation of complex datasets
in lower dimension. We include also in this category, efforts to
automatically identify potentially interesting new objects, that
is, anomalies or outliers.

e Deep learning for cosmology. Cosmological simulations
including baryonic physics are computationally expensive.
Deep learning can be used as a fast emulator of the galaxy-halo
connection by populating dark matter halos. In addition, a sec-
ond major application is cosmological inference. Cosmological
models are traditionally constrained using summary statis-
tics (e.g. 2 point statistics). Deep learning has been used to
bypass these summary statistics and constrain models using all
available data.

This is of course a subjective division of the applications of
deep learning to cosmology and galaxy formation. There neces-
sarily exist overlaps between the different categories. The review is
organised such that, for each family of applications, we review the
state-of-the-art and key publications, highlight where the limita-
tions are and what could be the most promising research lines for
the future (Sections 3-6). In the final sections (Section 7), we assess
the impact of deep learning for galaxy surveys and extract some
global lessons learned. We have tried to provide a fair and com-
plete description of the different works. However, as previously
stated, the field has exploded in the last years and it has become
more and more difficult to keep track of all new publications. This
is partly one of the motivations for this review. It is also implies
that we might easily miss some relevant works. We apologise in
advance.

2. A very brief historical overview—or what we are not
covering in this review

Before we start discussing the most relevant results and applica-
tions, we would like to clarify that this review focuses on recent
applications of deep learning, essentially after the first applications
of CNNs to astronomy. As described in the introduction sec-
tion, we consider as deep learning all recent developments around
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neural networks which have arisen in the last decade approxi-
mately, since the first practical application of convolutional neural
networks for image classification. Deep learning generally desig-
nates gradient-based optimisation techniques of modular archi-
tectures of varying complexity; it is therefore a sub field of the
more general machine learning discipline. There is a long history
of machine learning applications in astronomy which started since
well before the more recent deep learning boom. Different types
of machine learning algorithms including early Artificial Neural
Networks (ANNs), Decision Trees (DTs), Random Forests (RFs)
or kernel algorithms such as Support Vector Machines (SVMs)
have been applied to different areas of astrophysics since the sec-
ond half of the past century. For example ANNSs, decision trees
and Self-Organising Maps (SOMs) have been extensively applied
to the classification of stars and galaxies (e.g. Odewahn et al. 1992;
Weir, Fayyad, & Djorgovski 1995; Miller & Coe 1996; Bazell &
Peng 1998; Andreon et al. 2000; Qin et al. 2003; Ball et al. 2006);
an ANN being the primary way of identifying point sources in the
commonly used SEXTRACTOR software (Bertin & Arnouts 1996)
for segmentation of astronomical images. The problem of galaxy
morphology classification has also been subject to a significant
amount of machine learning related works led in particular by the
group of O. Lahav and collaborators using ANNs and DTs (e.g.
Storrie-Lombardi et al. 1992; Lahav et al. 1995, 1996; Odewahn
et al. 1996; Naim et al. 1997; Madgwick 2003; Cohen et al. 2003).
Ball et al. (2004) is likely the first work to use ANNs to classify
galaxies in the SDSS. In the first decade of the present century
SVMs became more popular and were also used to provide cat-
alogs of galaxy morphology (e.g. Huertas-Company et al. 2008,
2011). Decision Trees have also been applied to other classification
tasks such as AGN/galaxy separation (e.g. White et al. 2000; Gao,
Zhang, & Zhao 2008). Beyond classification, machine learning,
and especially ANNs have been extensively applied to the prob-
lem of estimating photometric redshifts (e.g. D’Abrusco et al. 2007;
Li et al. 2007; Banerji et al. 2008). This review will not describe
these works though. We refer the reader to Ball & Brunner (2010)
and Baron (2019) for a complete and extensive review of pre-deep
learning machine learning techniques applied to astronomy. This
obviously does not mean that other machine learning approaches
are less interesting for astrophysics. There have been recently very
relevant applications of RFs for example for anomaly detection
(see the works by Baron & Poznanski 2017) and to assess the main
causes of star formation quenching in galaxies (e.g. Bluck et al.
2022) among many others. However, we have made the choice
not to include a detailed description of these works in this review.
We will focus essentially on how deep learning has changed the
landscape in the past half decade.

What is different with deep learning and why a dedicated
review? In many aspects, deep learning represents a change in the
way we approach data analysis. Because, we now have access to
large datasets and the computing resources are powerful enough—
especially thanks to Graphic Processing Units—we can move
from an algorithmic-centred approach relying on manually engi-
neered features to a fully data-driven unsupervised feature learn-
ing approach. This implies that instead of developing advanced
domain specific algorithms for each task, we rely on a generic opti-
misation algorithm to extract the most meaningful features in an
end-to-end training loop. This is a new approach to data in astro-
physics and in science in general. This change of paradigm has
enabled in fact tremendous progress in the computer vision com-
munity, especially for image classification, but also for many other
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tasks such as translation, speech recognition or image segmenta-
tion over the past ten years. The purpose of this review is therefore
to assess what has been the impact so far of this new approach for
data processing in the fields of galaxy formation and cosmology.

3. Deep learning for computer vision tasks in astronomy

We begin by reviewing applications close to standard computer
vision problems, for which deep learning approaches have been
demonstrated to be very efficient. We focus on classification and
source detection.

3.1. Classification

Source classification is a basic first order processing step in most
deep surveys, for which deep learning has had a noticeable impact
in the past years. The rapid penetration of deep learning can be
naturally explained because it is arguably the most straightforward
out-of-the box application. Deep learning started in fact to attract
the attention of the computer vision community, when convolu-
tional neural networks first won the ImageNet contest of image
classification (Krizhevsky et al. 2012).

One of the first tasks scientists do when confronted with a
complex problem is to identify objects that look morpholog-
ically similar. In extra galactic astronomy, object classification
can be of different flavours. For imaging, the most common
applications which we review in the remaining of this section,
are galaxy morphology classification, star-galaxy separation, and
strong lenses detection. We understand this is not an exhaustive
list of all image classification applications, however the techniques
and approaches used are representative. From the spectroscopic
point of view, there have been some works attempting to classify
galaxy spectra. However, this remains less common than images.
Finally, the classification of transients is something which has been
extensively explored over the last years, especially in view of the
LSST survey from the Rubin Observatory.

3.1.1. Optical/NIR galaxy morphology

Galaxy morphological classification is a paradigmatic example of
a science case where deep learning has rapidly become the state-
of-the-art. This task was first done by E. Hubble who classified
galaxies in the well-known Hubble sequence. The classification
scheme, which is now more than a 100 yr old, establishes that
galaxies in the Universe today come essentially in two flavours. On
one side, there are disk galaxies, like our own Milky Way; on the
other side elliptical like galaxies. We now know that, besides mor-
phology, the broad classes present different physical properties.
Understanding the origin of the morphological diversity remains
an open issue in the field of galaxy formation.

Therefore, galaxy morphological classification is still per-
formed in almost all extra galactic imaging surveys. The tradi-
tional way to estimate galaxy morphology has been through visual
inspection. However, this approach became prohibitively time
consuming in the last decade with the advent of large extra galac-
tic imaging surveys such as the Sloan Digital Sky Survey (SDSS).
Approaches to overcome this limitation came in two fronts essen-
tially. Citizen science approaches, of which the Galaxy Zoo project
is the more popular example (Lintott et al. 2008), were devel-
oped to classify large samples of galaxies. Automation through
Machine Learning has been always on the table as early as 1990s
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Figure 2. Example of level of agreement (red circles) and model confidence (blue squares) versus classification accuracy. Each panel shows a different question in the Galaxy Zoo
classification tree (smoothness, edge-on, bar). The authors quote an unprecedented accuracy of >90%. This is the first work that uses CNNs in astrophysics. The figure is adapted

from Dieleman et al. (2015)

(e.g. Spiekermann 1992) and continued in the 2000s (e.g. Huertas-
Company et al. 2008). Huertas-Company et al. (2011) was the first
to provide the community with a Machine Learning based classi-
fication of SDSS galaxies. However the accuracy reached by these
early approaches based on manually engineered features remained
moderate—especially when dealing with detailed morphological
features such as bars or spiral arms—hampering their penetration
in the community. The main limitation is that the features typi-
cally used by these methods present only weak correlations with
detailed morphological structures and are also very dependent on
noise and spatial resolution.

In this context, it is not a surprise that the first works
using Convolutional Neural Networks in astronomy focus on
galaxy morphology (Dieleman, Willett, & Dambre 2015; Huertas-
Company et al. 2015). The first one used labelled images from the
Galaxy Zoo2 sample and trained a supervised CNN to estimate the
morphological properties of SDSS galaxies going from global mor-
phology to more detailed properties such as the number of spiral
arms. The work by Dieleman et al. (2015) was the winner of a pub-
lic challenge on the Kaggle platform.* It achieved unprecedented
classification accuracy of >90% in most of the tasks (Figure 2).

This is a major improvement compared to previous approaches
and marks the beginning of the penetration of deep learning
techniques in astrophysics.

Soon after, Huertas-Company et al. (2015) applied a similar
architecture to high redshift galaxies observed with the Hubble
Space Telescope (HST), demonstrating again a similar improve-
ment as compared to other approaches, including feature-based
Machine Learning. Using CNNs to classify galaxy images repre-
sents in some sense a change of paradigm in the way we approach
the classification problem, analogous to what happened with nat-
ural images. Instead of manually trying to identify specific features
that correlate with the classes to distinguish, the features are learnt
simultaneously with the classification process. This of course
entails loosing some interpretability, since the features learned by
the network are no longer directly associated with physical proper-
ties. Interpretability is a major issue in deep learning applications
to natural sciences that we will address in Subsection 7.3.

CNNs as state-of-the-art approach In the past years, the num-
ber of works using deep learning to classify galaxies based on
their morphology has exploded, and CNNs have been used to
classify the morphologies of galaxies in a variety of optical/Near-
Infrared surveys (we address the radio domain in Section 3.1.2).

*https://www.kaggle.com/.
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Figure 3. Schematic view of a simple Vanilla type Convolutional Neural Network,
the most common approach for binary, multi-class classification and regression in
extragalactic imaging. The input, which is typically an image is fed to a series of convo-
lutional layers. The resulting embedding is used an input of a Multi-Layer Perceptron
which outputs a float or array of floats. If the problem is a classification, the standard
loss function is the cross-entropy (H), while if it is a regression the quadratic loss (L,) is
usually employed.

It demonstrates that deep learning has fast become the state-of-
the-art approach to estimate galaxy morphology in big datasets.
Figure 3 illustrates the most common approach used for morpho-
logical classification. Images are fed into a series of convolutional
layers which extract some summary statistics. The extracted statis-
tics are then fed into a Multi-Layer Perceptron which maps them
into a class. The employed loss function is usually a cross-entropy
loss. We notice that in the original approach by Dieleman et al.
(2015), a series of siamese networks were introduced to add rota-
tional invariance. This approach has not been used in other works.
Doménguez Sanchez et al. (2018) revisited the proof-of-concept
work by Dieleman et al. (2015) by carefully cleaning the train-
ing sets and released the first deep learning catalog of galaxy
morphologies in SDSS. Ghosh et al. (2020) explored the classi-
fication of distant galaxies from the CANDELS survey based on
their bulge-to-total ratios. Goddard & Shamir (2020) applied a
similar strategy for Pan-STARRS. Vega-Ferrero et al. (2021) and
Cheng et al. (2021b) used CNNss to classify galaxies in the Dark
Energy Survey. Bom et al. (2021) followed a similar strategy for
the S-PLUS survey and Walmsley et al. (2022) classified galaxies in
the DECALS survey. In addition to observations, CNNs have also
been extended to classify images from cosmological simulations
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in order to assess the realism of galaxy morphologies (Huertas-
Company et al. 2019; Varma et al. 2022). In such applications, the
CNN is trained on labelled observations and then applied to mock
images. In addition to global morphology, Tadaki et al. (2020) used
also a similar supervised CNN setting to classify spiral galaxies
based on their resolved properties (i.e. type of spiral arms).

3.1.2. Radio galaxy morphology

In addition to the Optical and Near-Infrared domains, the radio
astronomy community has also been very active in developing
and testing deep learning techniques for the classification of radio
galaxies. These efforts are motivated by the forthcoming arrival
of new radio facilities such as SKA® that will change the land-
scape by detecting hundreds of thousands of new radio galaxies.
Similarly to what happened in the optical, the availability of large
datasets with labels has enabled the community to extensively test
deep learning for classification. The Radio Galaxy Zoo project
(Banfield et al. 2015) used indeed citizen science to determine the
host galaxy of the radio emission and the radio morphology of
~170 000 galaxies. This therefore constitutes an excellent database
for applying neural networks. It highlights the importance of the
preparatory work done by the community for accelerating the
adoption of deep learning techniques.

The first work exploring CNNs for classification of radio galax-
ies is Aniyan & Thorat (2017). They use a simple sequential CNN
(Figure 3) and conclude that an accuracy up to ~95% can be
achieved in classifying galaxies in three main classes—Fanaroff-
Riley I (FRI), Fanaroff-Riley II (FRII) and bent-tailed galaxies.
A number of works have followed. Alhassan, Taylor, & Vaccari
(2018) also reported similar accuracy when using CNNs to clas-
sify compact and extended radio sources observed in the FIRST
radio survey (see also Maslej-Kresndkova, El Bouchefry, & Butka
2021 for similar conclusions). Lukic et al. (2018) explores dif-
ferent network configurations and concludes that a three layer
network is typically enough to reach more than 90% accuracy. Wu
et al. (2019) explored Faster Region-based Convolutional Neutral
Networks to detect and classify radio sources from the Radio
Galaxy Zoo project.

3.1.3. Strong lenses

Deep Learning based supervised classification has been widely
extended to other extragalactic classification tasks. An example of
application which has significantly benefited from the advent of
deep learning is the detection of strong gravitational lenses (e.g.
Jacobs et al. 2017; Petrillo et al. 2017; Lanusse et al. 2018; Davies,
Serjeant, & Bromley 2019; Schaefer et al. 2018; Metcalf et al. 2019;
Petrillo et al. 2019; Jacobs et al. 2019; Li et al. 2020b; Huang et al.
2020). Gravitational lenses produce characteristic distortions of
the light of background sources, caused by the presence of a fore-
ground massive galaxy or cluster in the same line of sight. The
analysis of strong lenses provides information about the total mat-
ter distribution of the foreground system. Strong lenses provide
therefore a unique probe of the dark matter distribution in galax-
ies. The first step consists in identifying the lenses on large samples
of galaxy images.

Similarly to what has been described for galaxy morphology,
the usual method to identify lenses is through Convolutional
Neural Networks as done for galaxy morphology (Figure 3).

Phttps://www.skatelescope.org/the-ska-project/.
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However, there are some specific issues related to strong lensing
detection since the problem is severely unbalanced. The number
densities of strong lenses are indeed several orders of magnitude
smaller than the ones of regular galaxies. This poses two main
problems. First, it is impossible to build a large enough training
sample of observed lenses. Second, in order to be scientifically
useful, the classifier needs to reach extremely high purity values
because even a small contamination from negative examples pro-
vokes that the sample of lenses is dominated by false positives. The
community has proposed two sorts of solutions to these problems
which appear in most of the works. To cope with the lack of train-
ing examples, the CNNs are usually trained on simulations. The
physics of strong lenses is sufficiently well known so that lenses
can be simulated with some degree of realism (see Figure 4). This
practice is rather common in astrophysical applications as we will
describe in the forthcoming sections and especially in Section 7. It
does not come free of biases though. The work by Lanusse et al.
(2018) highlights the importance of using realistically complex
simulations for training in order to limit the potential biases.

The problem with false positives is in general more difficult to
solve. The usual solution consists in visually inspecting the strong
lenses candidates to remove the false positives. In that context,
deep learning helps to reduce by several orders of magnitude the
amount of required visual inspections but does not completely get
rid of them.

Despite these issues, deep learning has rapidly become the
state-of-the-art technique to find strong lenses in large surveys. It
has been successfully applied to multiple imaging surveys follow-
ing very similar strategies as just described. The first work using
CNNss for identifying lenses focused on the CFHTLS survey is
Jacobs et al. (2017). Petrillo et al. (2017) and (2019) applied a sim-
ilar strategy for KIDS galaxies and Jacobs et al. (2019) extended
the approach to DES. Huang et al. (2020) focused on the DECALS
datasets. Some other works focus more on simulations only in
view of preparing future surveys. Lanusse et al. (2018) demon-
strated the performance of CNNs to detect lenses in LSST images
and Davies et al. (2019) focused on Euclid.

Overall, the conclusions are shared among all different works.
Deep learning approaches are shown to improve more traditional
techniques and therefore will likely be used on future surveys. In
support for this, the work by Metcalf et al. (2019) shows the results
of a strong lensing detection challenge in the framework of the
Euclid survey where the five best algorithms were based on CNNs.

3.1.4. Open issues

In summary, deep learning techniques have rapidly replaced tradi-
tional approaches for classification of astronomical images to the
point that it will most likely be the adopted approach to classify
galaxies in forthcoming surveys across the electromagnetic spec-
trum. The main advantages are speed and accuracy. Convolutional
Neural Networks in particular have demonstrated to be more
accurate for these classification tasks than other feature-based
automated methods as seen in other disciplines. Classification is
also one of the less risky applications in the sense that it is—in
most cases—very close to the application of deep learning in the
computer vision community. Some open issues remain still.

Beyond vanilla CNNs Even though standard vanilla CNNs pro-
vide in general accurate results, several works have explored
more complex configurations commonly used in computer vision
such as ResNets (e.g. Zhu et al. 2019; Kalvankar, Pandit, &
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Figure 4. Example of two different simulated samples of strong lenses used for training a CNN. These simulations were used to detect strong lenses in the CFHTLS survey. Figure

adapted from Jacobs et al. (2017)

Parwate 2020).Overall, the results are promising but do not sig-
nificantly improve over approaches based on simpler CNNs.
Some works have systematically compared different neural net-
work architectures on the same dataset (e.g. Fielding, Nyirenda,
& Vaccari 2021; Cavanagh, Bekki, & Groves 2021). The gen-
eral conclusion is that, even if there are some differences in
accuracy and in efficiency, all architectures fall in the same ball-
park. A possible explanation for this is that astronomical images
present in general less diversity than natural ones and hence rel-
atively simple CNNs suffice to extract the relevant information.
The works by Katebi et al. (2019) and Lukic et al. (2019) are
among the few works in astronomy exploring the use of Capsule
Networks (Sabour, Frosst, & E Hinton 2017). Capsule Networks
are proposed as an alternative to CNNs that incorporates spa-
tial information about the features present in the images. Very
briefly, it uses a sort of inverse rendering to encode the presence
of a given object in an image. It therefore encodes information,
not only about the presence or not of a given object—which is
what a CNN would do—but also information about where the
object is and how it is oriented. We do not provide a detailed rep-
resentation of the architectures given that this type of approach
has only been marginally used. The conclusion of the work by
Lukic et al. (2019) is that, in the case of radio galaxy classi-
fication, Capsule Networks perform less well than more stan-
dard CNNs, reaching only an accuracy of ~75% (Figure 5).
One possible explanation for that is that Capsule Networks were
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Figure 5. Comparison of Capsule Networks and CNNs applied to classify morphologies
of radio galaxies. The ROC curves show the different performances. Capsule Networks
do not offer a significant gain in this context. Figure adapted from Lukic et al. (2019)

initially thought to identify scenes which do not look realistic.
For example a CNN would learn to recognise faces based on fea-
tures like eyes or noses. However, they do not take into account
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the position of these features in the image. Capsule Network do,
but this is not a common issue for astronomical imaging. This
might be one of the reasons why Capsule Networks have not been
very used in astronomy so far. Becker et al. (2021) did the exer-
cise of systematically testing the performance of CNNs for radio
galaxy classification using multiple performance metrics such as
inference time, model complexity, computational complexity, and
mean per class accuracy. They report three main types of archi-
tectures that perform best but they are all variations of sequential
CNNs. In a recent work, Tang et al. (2021) explores the use of
multi-branch CNNs to simultaneously learn from multiple survey
inputs (NVSS and FIRST). Interestingly they confirm that includ-
ing multi-domain information allows to reduce the number of
miss classifications by ~40%.

Labelled data A common bottleneck for deep learning based
classification is the availability of labelled samples to train the
supervised algorithms. In astronomy this is particularly delicate
since the data properties (e.g. noise, resolution) change from one
dataset to another so in theory the labelling process should be
repeated for every new dataset. A number of works have addressed
this issue with different approaches. The work by Walmsley et al.
(2020) explores Active Learning as a way to reduce the amount of
required examples for training. Active learning allows one to select
the most informative examples for the model which are the ones
showed to human classifiers. The work by Walmsley et al. (2020)
is also the first to explore Bayesian deep learning as a way to both
estimate uncertainties an also identify the most informative exam-
ples (Figure 6). Dominguez Sanchez et al. (2019) and Ghosh et al.
(2020) explored transfer learning, which consists on refining the
weights of a neural network trained on a similar labelled dataset to
reduce the need of large training samples (Figure 7). They showed
that the amount of labelled examples can be reduced by a factor
of a few with this approach. The issue of the size of the training
set that is needed is also investigated by Samudre et al. (2022).
The authors explore whether reliable morphological classifications
can be obtained with a small sample of 2 000 labelled images. They
namely test transfer learning but also few-shot learning techniques
based on twin networks. The conclusion is that even with small
datasets, reliable classifications can be obtained using CNNs, with
an adapted training strategy. The recent work by Walmsley et al.
(2021) explores another version of transfer learning. They show
that the features learned by the CNNs for a given task can be
recycled to estimate other morphological properties. Vega-Ferrero
et al. (2021) used instead a simulated training set built from an
observational sample from SDSS to classify more distant galaxies
from the Dark Energy Survey.

Despite some remaining issues, some of which are common
to most of deep learning application—see Section 7 for a more
detailed discussion—it is probably safe to argue that the commu-
nity has accepted that deep learning will be employed to classify
galaxies from future surveys such as LSST and Euclid.

3.1.5. Transient astronomy

The field of transient astronomy is about to change dramatically
with the arrival of synoptic sky surveys such as the LSST survey
by the Rubin Observatory, which will observe large areas of the
sky with an unprecedented frequency to find variable and tran-
sient astronomical sources. The number of detections per night
is expected to easily exceed several thousands. The community
has seen in machine learning techniques and particularly in deep
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Figure 6. Example of posterior distributions of morphologies estimated from the votes
of different classifiers. The leftmost column shows an image of a galaxy. The mid-
dle column shows the posterior predicted by a single network (black), while the right
column shows the posterior averaged over 30 Monte Carlo dropout approximated net-
works. The red vertical lines indicate the ground truth value, which generally shows
a good overlap with the posterior distribution. Figure adapted from Walmsley et al.
(2020)

learning a promising way of classifying the detected objects and
filtering the most potentially (unknown) interesting candidates
(see the report by Ishida 2019). We will address the discovery
of new types of transients in Section 5. We focus here one the
supervised classification of variable sources.

One key science topic for cosmology is the detection and
characterisation of SuperNovae light curves. There are different
types of Supernovae and not all are useful for the same purposes.
For example, SNIa are used for cosmology. Rapidly identifying
the type of object saves—among other things—telescope time.
Although this is ideally done with spectroscopy, it is unfeasible to
perform a spectroscopic follow-up of all the sources that will be
detected. Therefore the community started as early as 2010 to pre-
pare for this data deluge with the creation of simulated datasets
such as the Supernovae Photometric Classification Challenge
(SPCC) or the Photometric LSST Astronomical Time-Series
Classification Challenge (PLASTiCC).© Because of these early
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Figure 7. Example of Transfer Learning adapted to galaxy morphological classification
exploring how to use a CNN trained on SDSS to the DES survey. Each panel shows a
different morphological feature (smooth/disk, bars from top to bottom). The different
lines show the ROC curves using different training models and test sets. The work con-
cludes that when using a small subset of DES galaxies to refine the weights of a CNN
trained on SDSS, the accuracy of the classification becomes optimal (red solid lines
compared to blue dashed lines). Figure adapted from Dominguez Sanchez et al. (2019)

efforts, there exists a consequent literature using pre-deep learning
machine learning methods (e.g. SVMs, RFs and ANNG) to address
the problem of SN light curve classification (e.g. Lochner et al.
2016; Villar et al. 2019; Hosseinzadeh et al. 2020; Vargas dos
Santos, Quartin, & Reis 2020).

The first work to use deep learning for SN light curve classi-
fication is by Charnock & Moss (2017). They use to that purpose
Recurrent Neural Networks (RNNs), which are a type of Neural
Network architecture designed to handle sequences of variable
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Figure 9. RNNs used for SN photometric light curve classification. The figure shows
an example of light curve in five photometric bands (top panel) and the probability of
classifications as a function of the time step (bottom panel). After roughly 50 d, the
supernova type is classified with high confidence. Figure adapted from Charnock &
Moss (2017)

length (see Figure 8 for a simple illustration). They are called
recurrent because they keep a memory of the previous informa-
tion in the sequence and use it to make the predictions. They are
typically used for language modelling. The authors report an aver-
age accuracy above 90% for the classification of light curves in
three types—supernovae types I, I and III—on the simulated sam-
ple from the Supernovae Photometric Classification Challenge
(Figure 9). Despite the small training set of a hundred data points,
RNNSs achieved state-of-the-art results compared with a combi-
nation of template fits and boosted decision trees (Lochner et al.
2016). In addition of not requiring feature engineering, one advan-
tage of RNNs is the ability to classify incomplete light curves.
Moss (2018) also explores RNNs on the same simulated dataset.
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Figure 10. Example of typical transformer architecture for the classification of light
curves. A Gaussian Process is first used to homogenise the time sampling and the
resulting sequence is fed into a CNN for feature extraction. The attention modules are
used to extract the final features which are used to classify.

They propose some improvements such as a stronger data aug-
mentation process to mitigate the effects of small samples and
reach >95% accuracy. A similar conclusion is reached by Moller &
de Boissiére (2020) who also explored RNNs. They report a sim-
ilar accuracy also on realistic simulations and confirm accuracies
above 85% for incomplete light curves. See also Burhanudin et al.
(2021) for similar conclusions. This latter work proposes handling
imbalance with a focal loss function.

The processing of data in the form of sequences has expe-
rienced significant breakthroughs in the machine learning
community over the past years. In particular, the so-called atten-
tion methods which identify the region of the sequences that
contain the most relevant information have been demonstrated
to be very powerful for sequence to sequence tasks such as
translation and for classification of time series (Vaswani et al.
2017). This type of attention based architectures are commonly
known as Transformers (see Figure 10). The application of
Transformers to astronomy is still rather limited. However some
works have already explored their performance for SN light curve
classification and other types of transients. Allam & McEwen
(2021) use a variation of the original Transformer architecture to
classify photometric light curves from the PLAsTiCC simulated
dataset. The authors demonstrate they achieve state-of-the-art
accuracies. They claim the Transformer is able to deal with very
unbalanced classes without need of augmentation, achieving
the lowest logarithmic loss to date (Figure 11). However, as the
authors emphasise, the comparison with other methods is not
straightforward given that they are evaluated under different
conditions. This highlights a general problem for the comparison
of different works performing classification. Astronomy lacks
in general of standardised datasets on which algorithms can
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Figure 11. Transformer applied to SN photometric light curve classification. The figure
shows a confusion matrix on the PLAsTICC simulated dataset. Most of the classes are
identified with accuracies larger than 90% as seen in the diagonal of the matrix. Figure
adapted from Allam & McEwen (2021)

be consistently tested (see Section 7 for a general discussion).
Pimentel, Estevez, & Forster (2022) is a second work exploring
the use of attention mechanisms. They apply their method to
real data after a first training on simulations and a fine tuning
step. They also conclude that the attention network outperforms
classical approaches based on RFs and also RNNs especially for
late-classification and early-classification of light curves.

In addition to purely photometric data, the classification of
variable sources can also be performed on images. This is tradi-
tionally done by subtracting images from different epochs. Several
works have explored the use of deep learning to work directly
in the image sequences. Carrasco-Davis et al. (2019) used for
example Recursive Convolutional Neural Networks (RCNNs) to
identify real transients from artefacts. Gémez et al. (2020) extend
the use of RCNNs to a multi-class classification of transients. They
also use RCNNs to extract information from both temporal and
spatial correlations.

In summary, deep learning approaches have naturally incorpo-
rated to other ML approaches to classify photometric light curves.
In particular RNNs and more recently Transformers provide com-
petitive results. However, for this particular task, deep learning
does not seem to have dramatically improved previous techniques
as it is the case for image classification. The work by Hlozek et al.
(2020) summarises the results of the PLAsTiCC challenge organ-
ised in the Kaggle Platform. It can clearly be seen that both classical
and deep learning approaches provide competitive results.

3.1.6. Other classifications

Similar supervised approaches for other classification tasks have
been tested over the past years, reaching also similar conclu-
sions and facing similar challenges. Kim & Brunner (2017) used
convolutional neural networks for separating stars from galaxies.
Star-galaxy separation is a classical task in the analysis of deep
surveys. As for other classification tasks, the advantage of CNNs
is that they use the pixel-level information and do not rely on
summary statistics. The general conclusion however is that CNNs
offer a marginal gain over more ML feature-based approaches
for this classification problem. Ono et al. (2021) used CNNs to
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distinguish between real Lyo emitters (LAEs) and contaminants
using imaging data in six narrow band filters. Ackermann et al.
(2018) made the first tests to classify galaxy mergers trained on
Galaxy Zoo and reported significant improvements over state-of-
the-art approaches (the case of galaxy mergers is extensively dis-
cussed in Subsection 4.2). Walmsley et al. (2019) and Tanoglidis,
Ciprijanovié, & Drlica-Wagner (2021b) explored the use of CNNs
for the classification of low surface brightness (LSB) structures in
deep imaging surveys. The systematic exploration of the low sur-
face brightness universe will be enabled by future surveys such
as LSST or Euclid. Automatically identifying and classifying LSB
structures is therefore a new challenge. The authors test a CNN
model on the Dark Energy Survey data and report a ~95% accu-
racy in separating artefacts from real LSB structures. Only a few
works have explored this science case, probably due to the lack of
proper labelled datasets.

3.2. Segmentation, deblending and pixel-level classification

Object detection and deblending is another problem on which
deep learning techniques have been extensively tested in these
past years. The detection of sources to build catalogs with some
measured properties is a first standard step in the processing of
imaging from deep surveys. In image processing this typically fits
into the field of image segmentation, which is precisely the task of
identifying the positions and boundaries of different objects in an
image. The type of segmentation can be semantic, if the objects
belong to different classes, or instance if we aim at detecting
objects of the same type.

Since the popularisation of CCDs, object detection in
astrophysics is generally done through the software called
SEXTRACTOR, which implements an advanced multi threshold-
ing technique to detect and separate objects. Although it has been
extensively used over the past years, the limitations become more
obvious with the advent of deeper surveys in which the confusion
between sources becomes very common. It is estimated that ~80%
of galaxies will be affected by some sort of overlapping or blending.
Given that blending can severely affect the scientific conclusions, it
is important to have reliable methods for detection and deblending
(see Melchior et al. 2021 for a review on deblending).

Over the past years, there has been significant progress in the
computer vision community on image segmentation by applying
deep learning networks. Therefore, similarly to what happens for
classification, deep learning segmentation techniques developed
for general purpose computer vision applications are available. An
out-of-the box implementation is thus expected to provide reason-
able results. Astrophysical data has however some key properties
which are not found in other types of images. The dynamic range
is very large, typically spanning several orders of magnitude from
the centres of the objects to the outskirts. Objects do not have
clear edges. This is a fundamental difference with respect to natu-
ral imaging applications, which makes the segmentation task with
neural networks more challenging.

A first very popular approach for object detection is the use
of encoder-decoder networks. Unets (Ronneberger, Fischer, &
Brox 2015), which incorporate skipped connections between the
encoder and decoder branches, and have emerged as one of the
state-of-the-art segmentation networks (see Figure 12). Originally
designed for medical imaging, they have been commonly applied
to astrophysics for detection over the past years. Boucaud et al.
(2020) first applied a Unet to detect objects in image stamps
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Figure 12. Schematic representation of a Unet type of architecture. This is typically
used for addressing image to image problems (e.g. segmentation, galaxy properties in
2D). Afirst CNN (encoder) encodes information into a latent space (z), which is then fed
to another CNN (decoder) which produces an image. One particularity of the Unet is
the presence of skipped connections between the encoding and decoding parts which
have been demonstrated to provide higher accuracies.

and measure the photometry of overlapping sources. In this
proof-of-concept work, it is shown that the measured photome-
try of pairs of galaxies is improved with respect to the standard
SEXTRACTOR based approach (Figure 13).

However, this was tested in an idealised setting where the
stamps only contained two images with one galaxy at the cen-
tre. Paillassa, Bertin, & Bouy (2020) explored a similar type of
architecture, in a more realistic setting, to identify and classify
artefacts in CCD images. In that case, classification and segmenta-
tion are performed simultaneously at the pixel level. The proposed
approach successfully identifies multiple types of artefacts in an
image (Figure 14).

A similar approach is explored by Hausen & Robertson (2020)
combining this time object detection and morphological classifica-
tion of galaxies at the pixel level. Using a sliding window, the Unet
successfully classifies every pixel of the CANDELS survey in five
morphological classes (Figure 15). Huertas-Company et al. (2020)
used a similar type of architecture to study the resolved prop-
erties of galaxies by detecting giant star-forming clumps within
high redshift galaxies in the CANDELS survey. Burke et al. (2019),
Farias et al. (2020), Tanoglidis et al. (2021a) explored an alternative
approach based on region based CNN architectures such as Mask
RCNNs to perform similar tasks, that is, detection, deblending and
classification.

Opverall, these applications all show very promising results and
clearly improve on more traditional methods both in terms of
speed but also in accuracy, especially when combined with pixel-
level classifications. In most cases, the application of out-of-the
box architectures is enough to provide accurate results, once the
input data are properly rescaled to limit the effect of the dynamic
range. However, until now, and with the exception of the work
by Hausen & Robertson (2020), the majority of the works have
focused more on testing and demonstrating the performance of
these deep learning based approaches. The application to real
data to produce scientifically exploitable data products remains
very moderate. These approaches suffer from similar limitations
as the classification tasks, that is, training sets and uncertainty
quantification (see Section 7). Finding suitable training sets is
more challenging in this case as one need to both label and iden-
tify the boundaries of the objects. In astronomy, the definition
of object boundaries strongly depends on the noise levels. The
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Figure 13. Comparison between the photometry measured with the Unet and with SEXTRACTOR. All panels show a comparison between input and recovered photometry. The top
row shows the central galaxy in the stamp while the bottom row is the companion one. The two leftmost panels show two different deep learning architectures. The rightmost
panel shows the results of the baseline SEXTRACTOR. Both dispersion and bias are improved with deep learning. Figure adapted from Boucaud et al. (2020)

Figure 14. Unet used to segment different types of artefacts on CCD images. The left-
most figures show a field containing different artefacts. The middle panel shows the
ground truth and the rightmost panels the predictions obtained by the Unet. Figure
adapted from Paillassa et al. (2020)

adopted solutions so far are either training on simulations or rely-
ing on previous detections. None of them seems fully satisfactory.
Simulations are usually too simplistic and the generalisation to
data can induce unexpected behaviours. Using outputs from other
software packages tends to propagate the existing biases. Possible
solutions include the generation of more realistic training sets with
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generative models (e.g. Feder, Berger, & Stein 2020; Lanusse et al.
2021; Bretonniére et al. 2022). We will discuss this in more detail
in Subsection 3.4. Recent works have also started to explore the
implementation of uncertainties in the produced segmentation
maps (Bretonniére, Boucaud, & Huertas-Company 2021) which
seems a promising way to limit the impact of possible catastrophic
failures when changing domain from simulations to observations.
However, all these works remain at the proof-of-concept stage.

In addition to these segmentation based approaches, other
groups have attempted to go a step forward by reconstructing the
surface brightness profiles of overlapping galaxies. This implies
moving from a classification to a regression problem, since the
output of the networks is the flux at a given pixel. This task typ-
ically requires the use of generative models to learn the diversity
of galaxy shapes in a data-driven way and then being able to gen-
erate likely solutions. Reiman & Gohre (2019) first explored the
use of Generative Adversarial Networks (GANSs) for this purpose
(see Figure 16). In that case, the network input is a stamp of two
overlapping galaxies and the output are two images containing
each of the two galaxies separately. An adversarial loss is employed
to ensure that the two produced galaxies are realistic and indis-
tinguishable from observed galaxies (see Figure 17). Following a
similar goal, Arcelin et al. (2021) used Variational Autoencoders
(VAEs) to reconstruct the light distribution of blended galaxies
applied to simulations of the LSST survey. Recently, Hausen &
Robertson (2022) attempted an intermediate solution in between
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Figure 15. Example of pixel-level classification of a region in the CANDELS survey using a Unet. The leftmost image shows the original field. The six smaller images show different
channels with different morphological types and the rightmost image is the combination of all channels with a pixel-level morphological classification. Figure adapted from

Hausen & Robertson (2020)
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Figure 16. Schematic representation of a standard Generative Adversarial Network
(GAN). It has been used as a generative model for deblending, identifying outliers as
well as for accelerating cosmological simulations among others. A first CNN (generator)
maps a random variable into an image, which is then fed to a second CNN (discrimina-
tor) together with realimages to distinguish between both datasets. The generator and
discriminator networks are trained alternatively.

full reconstruction and detection. They proposed a novel approach
based on Partial-Attribution Instance Segmentation to estimate
the fraction of fluxes in each of the galaxies from the blended
system. This is interesting as it provides a solution specifically
designed for the astrophysical problem, which remains rare in
deep learning applications.

Works attempting this task are still at the exploration level as
well, even though the results seem very promising (e.g. Figure 17).
Reiman & Gohre (2019) used very simple simulations by just
adding two SDSS images; Arcelin et al. (2021) employed analyt-
ical simulations. As all other deblending efforts, this approach
suffers from finding a suitable training set which is close enough
to observations without being too simplistic. Arcelin et al. (2021)
showed that transfer learning from a network trained on simu-
lations is a promising approach. More important, the statistical
versus individual accuracy problem becomes more dramatic when
generating images instead of masks. Generative Models produce
realistic images in a statistical sense, that is, arising from the same
probability density function than observations. However, on an
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Figure 17. Example of galaxy deblending using GANs. The central images show three
overlapping galaxies. On each side of the big images, the original (left) and recon-
structed (right) images of the pair of galaxies are shown. Figure adapted from Reiman
& GOhre (2019).

individual basis, artefacts might appear on the generated images.
These are in general very difficult to track down and can therefore
induce significant biases. This individual versus statistical accu-
racy is an inherent problem to machine learning which needs to
be taken into account when using ML predictions for scientific
analysis.
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In order to limit the black-box effect, an interesting approach
is proposed by Lanusse, Melchior, & Moolekamp (2019). The
authors use an hybrid model that combines a physically moti-
vated model with analytic expressions for known terms, with a
data-driven prior for galaxy morphology learned with a genera-
tive model. In this approach, the output of the generative model
is only used as a prior of the inverse problem, and therefore
the impact of unexpected artefacts is reduced. The combination
of physically motivated models with data-driven ones appears as
an appealing solution which will likely become important in the
future.

3.3. Improving data quality

Deep learning has also been explored to improve the quality of
data, that is, denoising and deconvolution. Astronomical images
are usually noisy and blurred by the effect of the Point Spread
Function (PSF), which for ground based data includes both the
telescope impulse response and the effect of the atmosphere.
The processes of denoising and deconvolution aim therefore
at recovering the information before degradation. This is typi-
cally a challenging inverse problem which needs significant reg-
ularisation. Data-driven approaches have emerged as alternative
solutions to more classical deconvolution techniques. Schawinski
et al. (2017) first explored the use of Generative Adversarial
Networks (Figure 16) to deconvolve images from SDSS. They
show that GANSs can recover features even after degradation. This
remains however a simple experiment since galaxies were pre-
viously degraded. Gan, Bekki, & Hashemizadeh (2021) built up
on a similar idea using GANs to translate between ground and
space based observations. Jia et al. (2021) proposes an improved
solution based on two different GANs which reduces the need
of large amount of paired images with and without degradation.
Lauritsen et al. (2021) extended the idea to the sub millime-
tre regime by using Variational Autoencoders instead of GANs.
Encoder-Decoder networks can also be used for denoising, and
some works have explored this for astronomy. Vojtekova et al.
(2021) showed that Unets can effectively increase the exposure
time by a factor of two.

Generally speaking all the attempts show impressive results in
solving the long standing problem of deconvolution. They remain
however at the proof-of-concept stage and have not been applied
for scientific analysis. Similarly to what happens with deblend-
ing, the main limitation is robustness. Generative Models such as
GANSs produce very realistic images but can also introduce arte-
facts which are statistically meaningful but not necessarily on an
image per image basis. These artefacts can introduce uncontrolled
biases in the scientific analysis.

3.4. Emulating astronomical images

In a number of applications, the ability of simulate survey data
is very valuable, for instance to test and calibrate measurement
pipelines. One of the difficulties faced in simulations of upcoming
surveys such as LSST or Euclid is the relatively small set of deep
and high-resolution imaging data (essentially limited to HST sur-
veys such as COSMOS) that can be used to provide complex galaxy
light profiles as inputs. This is one of the motivations behind
the development of Deep Generative Models for galaxy morphol-
ogy, which can be trained on the existing data and then generate
significantly more examples realistic light profiles.
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Figure 18. Illustration of a Variational Autoencoder (VAE). This generative model has
been extensively used in astronomy for multiple emulation tasks. A first CNN maps the
input into a distribution, which is then sampled to provide the input to a second CNN
which reconstructs the input image. A regularisation term is added to ensure that the
latent distribution behaves close to a prior distribution.

In one of the first works following that direction, Ravanbakhsh
et al. (2017) demonstrated that training relatively simple GANs
(Figure 16) and a Variational Autoencoders (see Figure 18) on
HST COSMOS postage stamps successfully captured most of the
relevant population-level parameters, such as size, magnitude, and
ellipticity. In subsequent work, Lanusse et al. (2021) extended that
model to explicitly account for the PSE, and proposed a hybrid
Normalising Flow (see Figure 19) and VAE architecture which
allowed to achieve diverse and high quality samples, while also
making it possible to condition the light-profile generation on
galaxy properties. Normalising Flows are a type of generative mod-
els which, as opposed to GANs or VAEs, allow the exact evaluation
of the likelihood p(y) and therefore, their weights can be directly
learned by maximising the log likelihood of the training dataset.
The idea is to construct a bijective mapping f such that y = f(z)
where z is a variable with a simple base density p(z), typically a
Normal distribution. As f is invertible one can evaluate the density
y using the change of variable theorem, that is, simply inverting
f and keeping track of the Jacobian of the transformation (see
Figure 19). Bretonniére et al. (2022) used that generative model to
create simulations of the Euclid VIS instrument on a 0.4 deg” field
with complex galaxy morphologies and used those simulations
to assess the magnitude limit at which the Euclid surveys (both
deep and wide) will be able to resolve the internal morphological
structure of galaxies.

One of the limitations of standard GANs and VAEs for the
simulations of such galaxies is that it quickly becomes difficult
to generate high quality samples on large stamps. To address
these technical difficulties, Fussell & Moews (2019) developed for
instance a StackGAN approach in which a first GAN is trained
to generate a low-resolution image (e.g. 64 x 64), which is then
up-sampled by a second GAN (e.g. to 128 x 128). Smith & Geach
(2019) proposed to use a GAN variant, known as a Spatial-GAN
(SGAN) to generate no longer only postage stamps, but entire
fields of arbitrary size through a purely convolutional architecture.
The authors demonstrated the ability to sample a 87 040 x 87 040
pixels image emulating the HST eXtreme Deep Field (XDF). More
recently, Smith et al. (2022) explored applying a Denoising Score
Matching approach (Song & Ermon 2019) and were abltexte to
generate large high-resolution postage stamps of size 256 x 256 of
remarkable quality.
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Summary of deep learning for computer vision

e Deep learning has rapidly emerged as a solution for the classi-
fication of objects in large surveys. Galaxy morphology, strong
lenses, and also light curves constitute the main applications.
Deep learning based catalogs, especially for galaxy morphology,

exist and are being used for scientific analysis.

e The most common approach for classification are supervised
Convolutional Neural Networks with different degrees of com-

plexity.

e Overall, CNNs achieve higher accuracy than previous

approaches and are also faster.

e The lack of labelled training sets is a common bottleneck.
Solutions involving Transfer Learning and/or the use of sim-
ulated training sets have been proposed. This implies some

additional challenges which we discuss in Section 7

e False positives in the case of very unbalanced samples (e.g. for
strong lensing) is also a commonly encountered problem. No
satisfactory solution has been found to date apart from visual

inspection.

e Standardised datasets to consistently compare the perfor-
mances of different classification approaches are not common
in astronomy which limits the possibility of comparing differ-

ent approaches (see Section 7).

e Deep learning has also been explored for object detection and

segmentation in images.
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e The most popular approach for segmentation are convolu-
tional encoder-decoder networks such as Unets, although more
complex architectures have been also employed.

e Overall, the results are promising and tend to outperform pre-
deep learning approaches for detection.

e Most of the works remain still at the proof-of-concept stage.
Until now, there are no deep learning based catalogs in major
deep imaging surveys. The robustness of such approaches is still
a concern, especially for deblending. Physics informed models
could be a solution to explore in the future.

4. Deep learning for inferring physical properties of galaxies

4.1. Neural networks as fast emulators

We now move to address the efforts done in the past years to
estimate the physical properties of galaxies using deep learning.
Compared to the previous section where we described com-
puter vision tasks, these applications are typically more domain
specific since they target physical quantities of galaxies from
a regression point of view. The general approach followed by
the community has been to test neural networks to emulate—
replace—more specific tools, developed over the years, which are
usually slow or not fast enough to deal with future big data
surveys.
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4.1.1. Photometric redshifts

All modern cosmological surveys require a more or less pre-
cise estimation of redshifts. When spectroscopy is not available,
which is the case for most deep surveys, photometric redshift
estimation is the standard way to proceed to measure distances
of large numbers of galaxies using a combination of broad and
narrow band photometry. Photometric redshift estimation is
therefore a non-linear mapping between a set of photometric
points and a real number measuring the redshift. The standard
way to approach the problem is through the fitting of Spectral
Energy Distributions generated from Stellar Population Models
(e.g. Benitez 2000; Bolzonella, Miralles, & Pell6 2000). However,
since it is—in theory—a well defined problem, it is among the
most popular applications of deep learning supervised regression
in astrophysics. The first attempts of estimating photometric red-
shifts with neural networks start well before the deep learning
boom, in the early 2000s (Collister & Lahav 2004; Vanzella et al.
2004). These methods already relied on the idea of learning the
mapping between photometry and redshift from data through
a Multi-Layer Perceptron trained under a Mean Squared Error
(MSE) loss. The only difference with a modern architecture would
be in the depth of the model and the choice of activation function.
Perhaps the most successful of these early neural methods for pho-
tometric redshifts, ANNz (Collister & Lahav 2004) has continued
to evolve over time, with ANNz2 (Sadeh, Abdalla, & Lahav 2016)
including some quantification of epistemic uncertainties through
an ensemble of randomised estimators techniques reminiscent of
modern deep ensembles.

Two significant evolutions of these methods appeared in recent
years with the generalisation of deep learning: 1. probabilis-
tic modelling of the redshift distribution to estimate posterior
probabilities; 2. pixel-level models based on CNNs, thus going
beyond photometric information and able to use morphology
as well.

Probabilistic Modelling of Photometric Redshifts Going beyond a
regression task, Bonnett (2015) proposed to use a neural network
(still an Multi-Layer Perceptron—MLP), which for a given pho-
tometry would output a distribution in the form of a discretised
probability density function (PDF). The model would then be
trained with a standard cross-entropy loss to predict the redshift
bin in which a given galaxy should fall, which in fact mathe-
matically corresponds to estimating the posterior distribution of
redshifts given photometry, under a prior given by the selection
of the training set. This approach was subsequently reused to
train other, more complex, neural networks for photometric red-
shifts (Pasquet-Itam & Pasquet 2018; Pasquet et al. 2019), but can
potentially suffer from the discretisation needed to represent the
PDF. Indeed, the network has no built-in notion that classes with
adjacent indices actually correspond to adjacent bins.

Another approach to model distributions at the output of a
neural network is to use a Mixture Density Network (MDN Bishop
1994). MDNs use an MLP to predict the parameters of a mixture of
probability densities, and thus provide an analytic and continuous
PDF model for a given input (see Figure 20). This approach was for
instance proposed in D’Isanto & Polsterer (2018), where the neural
network outputs are the mean, variance, and weights for a mixture
of n one dimensional Gaussians. Overall, the general consensus, is
that, when only using photometry as input, neural networks do
not provide specially more accurate results than other template
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based approaches (see e.g. Schmidt et al. 2020). One important
challenge is that training sets are generally biased as we will discuss
in Subsection 7.3.

Convolutional Photometric Redshift Estimators The second major
evolution of neural network-based photometric redshifts has of
course been the introduction of CNNss to build a pixel-level model
capable in principle of using the entire information content of a
multi-band galaxy image to refine a redshift estimate. In the first
instance of this approach, Hoyle (2016) used the state-of-the-art
model at the time, AlexNet (Krizhevsky et al. 2012), to build a 5-
layers deep CNN model taking as inputs a combination of r,g,i,z
images of a given galaxy and trained to classify that galaxy into a
discrete redshift bin. Interestingly, in this initial study performed
over a set of 60000 SDSS images, no significant improvements
in redshift prediction accuracy were reported when compared to
a more traditional photometric feature-based AdaBoost machine
learning model. It would take a couple more years for a broader
development of CNN-based methods, starting with D’Isanto &
Polsterer (2018) which proposed to combine a simple 3-layers
deep convolutional architecture with a mixture density output,
but again reported only a mild improvement in terms of accuracy
compared to a feature-based approach on an SDSS sample.

The benefits of a convolutional approach started to become
clear with Pasquet et al. (2019), which used a much deeper con-
volutional network, comprised of one input convolution layer and
5 inception blocks, trained under a redshift bin classification loss.
These inception blocks (Szegedy et al. 2014) essentially replace
one convolutional layer by multiple parallel convolutional layers
with different kernel sizes, the output of which are concatenated
back into a single tensor at the end of the block. This study, based
again on galaxies from the SDSS Main Galaxy Sample using ugriz
images, illustrated in particular how the CNN is able to automat-
ically make use of pixel-level data to extract information beyond
colours, improving redshift estimation. In particular, the bottom
row of Figure 21 shows the comparison between the photometric
redshift bias of a standard colour-based k-NN photometric red-
shift estimate and the proposed CNN approach as a function of
galaxy ellipticity (proxy for galaxy inclination) for star-forming
galaxies. As can be seen, the colour-based approach exhibits a
strong inclination-dependent bias caused by the various amounts
of dust attenuation as a function of the viewing angle. The CNN
shows however comparatively very little bias, indicating that the
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Figure 21. Comparison of photometric redshift performance between a deep CNN and a colour-based k-NN (B16) method reported in (Pasquet et al. 2019). The top row shows the
predicted redshifts vs spectroscopic redshifts for the CNN (left) and the k-NN method (right). The distribution is noticeably tighter for the CNN with smaller overall bias, scatter,
and outlier rate. The bottom row show the photometric redshift bias Az for the two methods, as a function of extinction (left panel) and disk inclination (right panel) of galaxies
classified as star-forming or starbust. Having access to the whole image information, the CNN is able to automatically account for the reddening induced by looking at galaxies
with high inclination, whereas the k-NN method only using colour information is blind to this effect and exhibit a strong bias with inclination.

model is able to automatically estimate and account for inclina-
tion in its prediction by directly drawing that information from
the postage stamps. This example illustrates the main advantage
of a deep learning approach, it alleviates the need for handcrafted
features, leaving it to the model to identify from the data itself the
relevant information.

Pasquet et al. (2019) highlight however an important consider-
ation when using a CNN approach. Whereas flux measurements
can be standardised to account for varying noise and PSE, a CNN
based only on the raw postage stamps, without additional infor-
mation, is blind to these observing condition factors. The authors
report for instance a noticeable bias as a function of seeing for the
CNN, and mention the fact that this information could be pro-
vided to the model in future work to let the model compensate for
these factors.

In a number of subsequent works (Menou 2019; Henghes et al.
2021; Zhou et al. 2021), it was proposed to extend this pure con-
volutional approach to photometric redshift estimation to hybrid
models, combining an MLP branch tasked with processed photo-
metric features (e.g. colours) and a CNN branch having access to
the full image of the galaxy. It was found in these multiple studies
that directly providing the model with highly informative features
through the MLP branch improved the overall accuracy. Although
all the relevant information is in principle already included in the
images themselves, this approach reduces the amount of auto-
matic feature extraction that the convolutional branch needs to
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perform. In all cases, the best results are achieved when both
photometric features and images are provided jointly to the model.

Improving Scaling with Size of Training Set One particular aspect
that may limit the applicability of these deep learning meth-
ods is the need for large training samples, and so in this case
the need for large (expansive) spectroscopic samples to properly
train these supervised methods. As a possible mitigation tech-
nique for this issue, Hayat et al. (2021) demonstrated that a self-
supervised encoding provided by contrastive learning retained
significant redshift information. We direct the interested reader
to Section 5 for more details on contrastive learning. Here, the
authors proposed a two-step approach, first training in complete
self-supervision (without needing any spectroscopic redshifts) a
1d encoding of galaxies postage stamps. And in a second step,
training in a supervised way a shallow MLP to predict redshifts on
a small training set of available spectroscopic redshifts. They find
two surprising results: 1. This fine-tuned self-supervised approach
always outperforms a conventional supervised training, 2. The
accuracy of self-supervised estimated redshifts scales very well
into the low-data regime. They find for instance that their self-
supervised approach using 20% of labelled data achieves similar
accuracy to a fully supervised training using labels for the entire
dataset.

With a different strategy for limiting the amount of data
needed, Dey et al. (2021) proposed to replace a conventional
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convolutional architecture by deep capsule networks. Compared
to CNNs, capsule networks are robust to rotations and changes
in viewpoints and thus provide a more natural representation for
randomly oriented objects like galaxies (see also Section 3). The
hope is therefore to not require as much training data if the model
already provides the built-in invariances of the problem. In their
proposed architecture, the capsule network generates alow dimen-
sional encoding of the input image, which is then used to perform
two tasks jointly: reconstructed in the input image with a CNN,
and estimating the redshift of the galaxy with an MLP. In addition,
their model also classifies, at the level of the capsule outputs, the
morphology type of the galaxy (elliptical or spiral). The authors
find that this approach leads to a better scaling with size of the
training set than (Pasquet et al. 2019), especially at very small
training set sizes, but the benefits are not as significant as the ones
offered by the self-supervised approach of Hayat et al. (2021).

Another complementary approach to reduce the dependence
on large spectroscopic datasets is to use transfer learning, to build
amodel on simulated data, and fine-tuning it on survey data. This
approach was for instance explored in Eriksen et al. (2020) using
a MDN trained on a combination of FSPS simulations and data
from the PAU Survey. Using a pretraining on simulations was
found to reduce the photo-z scatter by as much as 50% for faint
galaxies.

Finally, the question of robustness and stability of these deep
neural networks was investigated in Campagne (2020) which high-
lighted that inception models like the one proposed in Pasquet
etal. (2019) can be highly sensitive to adversarial attacks. Although
these attacks are unlikely to happen on astronomical data (see
however Ciprijanovi¢ et al. 2021a), this result underlines again the
fact that these black-box methods are not as interpretable as more
conventional approaches like template-fitting (interpretability is
discussed in Section 7.3).

4.1.2. Galaxy structural parameters

In addition to classification, galaxy morphology can be also quan-
tified with some parameters that define an analytical description
of the surface brightness distribution of galaxies. The so-called
Sersic models are defined by three quantities: the effective radius
(r.), the Sersic index (n) and the axis ratio (b/a). By combining
these parameters with a normalisation factor to account for the
different galaxy luminosities, one can describe most of the surface
brightness distributions of galaxies. The standard way to measure
these parameters is by fitting PSF convolved analytic models to
the 2D surface brightness distributions of galaxies. The task can
be formulated as a mapping between pixel values and real num-
bers, which characterise the galaxy shape. It is therefore well suited
for a supervised regression problem, provided that a reliable train-
ing set is available. Given that the input data are galaxy images,
Convolutional Neural Networks are the most common approach.
Tuccillo et al. (2018) first used a CNN to estimate galaxy structural
parameters. In this first work, the authors used a simple training
set made of analytic profiles with noise added and demonstrated
that CNNs achieve comparable or better performance than stan-
dard methods, with the key advantage of being a factor of ~50
faster. As previously said, computational efficiency is one of the
main motivations behind these works aiming at emulating exist-
ing software. Tuccillo et al. (2018) also attempted to apply the
trained CNNs to observed galaxies with HST. However, because
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the training set was too simple, the results did not appear to be
satisfactory. In particular, the authors did not include foreground
and background galaxies in the training set which constitutes an
important difference with observations. The authors proposed a
transfer learning step using measurements performed with stan-
dard approaches. Although the results quickly improve, the final
results necessarily propagate the systematics of existing software,
which cannot be improved by construction. In that respect, the
main gain is speed. Ghosh et al. (2020) built on this and showed
that with a transfer learning step, CNNs can provide reliable struc-
tural parameters for both low and high redshift galaxies. The
authors estimate structural parameters for ~120 000 galaxies in
the SDSS and CANDELS surveys.

More recently, Li et al. (2021) attempted a similar approach
applied to ground-based observations. The training is still done on
simulations but with realistic backgrounds. Additionally, the PSF
is included as an input to the CNN, so that the networks can learn
the effects of varying PSFs across the field of view. The authors
show, that by including these improvements, the CNNs generalise
well to observations without need of transfer learning and achieve
comparable results to standard approaches, with the advantage of
being ~3 times faster (see Figure 22). Other works have attempted
to decompose the galaxies into bulges and disks. This is an equiv-
alent problem but the number of parameters is increased by a
factor of two. Grover et al. (2021) showed that CNNs can esti-
mate the bulge-to-disk ratio—that is, luminosity ratio between the
bulge and the disk components—of 20 000 galaxies in less than
a minute. The main motivation is, once more, a gain in com-
putational time. Tohill et al. (2021) explored the use of CNNs
to estimate other morphological parameters of galaxies which
quantify the distribution of light (i.e. Concentration-Asymmetry-
Smoothness—CAS—system; Conselice 2003). The conclusion is
very similar; neural networks accurately reproduce measurements
compared with standard algorithms, but faster. Interestingly, they
also show that using CNNs makes the measurements more robust
in the low signal-to-noise regime, which is one of the main issues
of the CAS system.

Overall, these approaches look very promising to deal with
large amounts of photometric data such as the datasets that will be
delivered by Euclid and the Rubin Observatory for example. The
limitations are similar to other problems. The networks need to
be trained on simulations by definition. The extrapolation to real
observations is always complicated as one needs to make sure that
the training set covers all the observed parameter space. As this is
a common challenge, we discuss it in Section 7. This is particularly
challenging for space based observations in which the enhanced
spatial resolution increases the differences between the simulated
datasets used for training and the observations. A possible solution
is the inclusion of some sort of uncertainty estimation which could
help identifying failures. This has been recently done by Ghosh
et al. (2022) who showed that a combination of MDNs and Monte
Carlo Dropout can provide well calibrated uncertainties of galaxy
structural parameters. Aragon-Calvo & Carvajal (2020) explored a
self-supervised approach to avoid using a fully supervised training
based on simulations. However, the approach has not been applied
so far to large samples of galaxies. In addition, since the inference
time is very short, the bottleneck of this type of approaches is in
the training. In current approaches, a specific training set needs
to be built for every different application which is not an optimal
solution.
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Figure 22. Convolutional Neural Network to measure galaxy structure. The left column shows the difference between true and estimated radius. The right column is the same for
Sersic index. Top row shows the results as a function of magnitude while the bottom row is as a function of radius. Figure adapted from Li et al. (2021).

4.1.3. Stellar populations, star formation histories

A similar type of application of deep learning is to derive the
properties of the stellar populations of large samples of galaxies.
This is also a regression type of application, in which a map-
ping between the galaxy photometry and properties like the stellar
mass, the metallicity or stellar age, is sought. As for the previ-
ous applications, it exists a standard approach based on the fitting
of the Spectral Energy Distributions (SEDs). However, it is typi-
cally slow and not adapted to the large volumes of data that will
be delivered by future surveys. Deep learning is thus used as an
accelerator. Most of the published works so far follow a similar
approach. A supervised Neural Network is trained for regression
between photometric values and stellar population properties. For
example, Surana et al. (2020) used fully connected Artificial Neural
Networks applied to data from the GAMA survey to derive stel-
lar masses, star formation rates and dust properties of galaxies.
The training is performed on stellar population models and the
results are compared to standard approaches. The conclusions are
also very similar to other applications falling in the same cat-
egory. Deep Learning performs similarly to standard methods,
but a factor of a few faster. Similarly, Simet et al. (2019) used
neural networks to estimate the stellar population properties of
high redshift galaxies from the CANDELS survey. The training
is in this case performed on semi-analytical models. The con-
clusion is that galaxy physical properties can be measured with
neural networks at a competitive degree of accuracy and preci-
sion to template-fitting methods. It is worth noticing that Neural
Networks are not the only approach to address this problem,
although in this review we primarily focus on deep learning tech-
niques. As this is essentially a mapping between two sets of real
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numbers, other Machine Learning techniques can be employed—
Gilda et al. (2021), Davidzon et al. (2019) used for example
Boosting Trees and SOMs respectively for a similar task.

In a recent work, Buck & Wolf (2021) pushed this idea further
by trying to predict resolved stellar population properties instead
of integrated quantities (Figure 23). In that case, the mapping is
made between broad band photometric images of galaxies and
2D maps of stellar mass, metallicity and other stellar population
properties. This is equivalent to a regression at the pixel level. The
architecture for this type of work is en encoder-decoder Unet type
of network as the ones used for segmentation (see Section 3 and
Figure 12) but with a mean square error loss to work in regression
mode.

In addition to stellar population properties at the time of obser-
vation, one can use the photometry of galaxies to infer the star
formation histories (SFHs), that is, the star formation rate as a
function of cosmic time. There are several established approaches
using either parametric or non-parametric methods. However, the
problem is known to be significantly degenerate and the star for-
mation activity at early times is in general poorly constrained.
Therefore the final estimation heavily relies on established priors.
Lovell et al. (2019) first attempted to use CNNs in a supervised
regression setting to estimate the SFHs of galaxies in the EAGLE
cosmological simulation (Figure 24). One advantage of training
on hydrodynamic simulations is that the prior is learned in a
data-driven way by using fairly realistic distributions from the
simulations. The authors of this first work show a reasonable
reconstruction of the SFH and a decent robustness to domain
changes. Qiu & Kang (2021) uses CNNs for the opposite task,
that is, estimate the galaxy SED from the galaxy SFH taken from
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simulations. In this case deep learning acts as an emulator of
radiative transfer codes.

As other applications of this kind, the results strongly rely on
simulated training sets and on the implicit assumption that the
simulations properly cover the observed parameter space. This is
particularly critical here since the mocking from numerical sim-
ulation is usually done with existing stellar population models
which are unavoidably a simplification of reality. Another impor-
tant limitation is that, up to now, none of the published works
on this front properly accounts for uncertainties, even though
uncertainty estimation is far from being a solved issue with tra-
ditional methods. Both uncertainty estimation and domain shift
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4.1.4. Strong lensing modelling

Another science case in which deep learning techniques have been
extensively tested over the past years is the modelling of strong
gravitational lenses—the formation of multiple images of distant
sources due to the deflection of their light by the gravity of inter-
vening structures. In Subsection 3.1 we have discussed efforts done
to find these lenses on large datasets. The goal here is to char-
acterise the lenses. This generally means quantifying image dis-
tortions caused by strong gravitational lensing and estimating the
corresponding matter distribution of these structures (the ‘gravita-
tional lens’). Similarly to the previous applications in this category,
there exists a method to perform this analysis, based on maximum
likelihood modelling of observations. The process is however time
consuming requiring complex dedicated software. Deep learning
appears therefore as an appealing approach for accelerating the
inference. The first work in exploring this is by Hezaveh et al.
(2017). The authors test CNNs to estimate the lensing parame-
ters from the images—Einstein radius, complex ellipticity, and the
coordinates of the centre of the lens. They show that CNNs can
recover the parameters with similar accuracy than standard meth-
ods but ten million times faster (Figure 25). An obvious caveat
of the deep learning approach for inference is the lack of reli-
able uncertainties. Perreault Levasseur et al. (2017) is one of the
first works exploring Bayesian Neural Networks to estimate uncer-
tainties in the modelling of strong lenses, and in astrophysics
in general. They use the technique of Monte Carlo dropout to
approximate Bayesian Neural Networks (Gal & Ghahramani 2015;
Charnock, Perreault-Levasseur, & Lanusse 2020) and show that, in
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Figure 25. Estimation of strong lensing parameters with CNNs. Each panel shows a different parameter (ground truth versus CNN estimation). Figure from Hezaveh et al. (2017)

that particular case, it results in accurate and precise uncertainty
estimates, significantly faster than Monte Carlo Markov Chains.
These two pioneer works have set the route for a fair amount
of publications exploring the use of deep learning for lens mod-
elling along similar lines. The most typical approach is the use
of CNNs on images with an approximate Bayesian component
to estimate uncertainties. For example, Madireddy et al. (2019)
proposed a complete deep learning based pipeline including detec-
tion and classification of lenses followed by a modelling phase.
Bom et al. (2019) apply Residual Neural Networks to simulated
images of the Dark Energy Survey to predict Einstein Radius,
lens velocity dispersion and lens redshift within ~10-15%. See
also Schuldt et al. (2021) for similar conclusions on simulated
Hubble Space Telescope and Hyper Suprime-Cam Survey images.
Pearson, Li, & Dye (2019a) applied CNNs to simulated LSST and
Euclid images. They find that including colour information results
ina~20% increase in accuracy compared to single band estimates.
In a follow-up paper, Pearson et al. (2021) perform a system-
atic comparison between CNN-based estimation and conventional
parametric modelling on increasingly realistic datasets going from
smooth parametric profiles to real observations from the Hubble
Ultra Deep Field. The main conclusion is that CNNs outperform
traditional methods not only in terms of speed but also in accu-
racy by ~20%. However, the work also concludes that combining
both approaches reduces further the errors. In addition, the use of
CNN priors reduces the computational time of parametric mod-
elling by a factor of ~2. Chianese et al. (2020) goes a step further by
proposing a fully differentiable framework for lensing modelling.
The pipelines combines a data-driven model based on a VAE for
the source and a physical model for the lens which allows a forward
modelling of the system to be compared with the observations.
The main novelty, is that thanks to the differentiable program-
ming framework, it becomes possible to compute the derivatives
of the likelihood function with respect to both the parameters of
the source and the lens, allowing for fast inference (Figure 26).
Along similar lines, Morningstar et al. (2019) combines a physical
model with a Recurrent Neural Network to iteratively reconstruct
the lens model which is then fed to a CNN to estimate the lens
parameters. Morningstar et al. (2018) applies the same methodol-
ogy to analyse interferometric data. The modelling of lenses can
be combined with a direct inference of cosmological parameters
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et al. (2020)

such as the Hubble constant (Park et al. 2021). We will address
these applications in more detail in Subsection 6.2. Maresca, Dye,
& Li (2021) proposed to use CNNs, not for reconstruction, but to
identify unphysical models from parametric fitting.

4.1.5. Other properties

Deep learning has also been applied to measure other galaxy prop-
erties, in addition to the major categories described in the previous
subsections. Stark et al. (2018) used a Generative Model to mea-
sure the photometry of AGN hosts. The neural network is used in
this case to separate the light of the quasar from the emission of the
host galaxy. In that respect it is similar to a deblending problem
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discussed in Section 3. In line with works under the same cate-
gory, the authors demonstrate that their approach is more than
40 times faster than standard model fitting approaches. Yao-Yu
Lin et al. (2021) also addressed the issue of AGN quantification
by inferring the mass directly without going through photome-
try. The input in this case are quasar light time series. The work
shows that neural networks reach similar accuracy than traditional
methods that use SDSS spectra which are more time consum-
ing to obtain. Also within the time domain community, Stahl
et al. (2020) developed a deep learning framework to measure
the phase and the light curve shape of Type Ia supernova from
an optical spectrum. Cabayol-Garcia et al. (2020) and Cabayol
et al. (2021) explored CNNs to systematically measure photome-
try on the narrow band PAU survey. They find in this case that the
deep learning approach improves the photometric accuracy by up
to ~40%.

4.2. Galaxy physical properties from simulations

In the previous section we have discussed applications where deep
learning is used as an accelerator to replace existing methods. The
main motivation of these works is therefore efficiency for dealing
with large amounts of data. Because neural networks are universal
approximators they can also be used to unveil new correlations
between observables and physical quantities. In this case, deep
learning is not replacing existing methods, but rather used as an
exploration tool to unveil new patterns in the data which can
be informative about underlying physical processes and/or about
physical properties of galaxies from simulations.

4.2.1. Physical processes of galaxy formation

Deep Learning offers a new way of establishing correlations
between image features and physical processes driving galaxy for-
mation in general. The general procedure is that simulations are
used to identify a physical process without ambiguity. For exam-
ple, galaxy mergers are straightforward to identify galaxies in a
simulation but challenging to find in observations. Mock obser-
vations can therefore be produced to train a CNN at identifying
the physical process. The advantage is that the network is let free
to identify the optimal features that characterise a physical process
given the observables. This way of proceeding is partly new. It has
been driven by both the emergence of deep learning techniques
and large sets of numerical simulations.

Galaxy mergers A central example of this type of application which
has caught the attention of many groups in the past years is
the characterisation of galaxy mergers. Mergers of galaxies are
arguably a key driver of stellar mass assembly in galaxies across
cosmic time. Identifying and characterising the properties of large
samples of mergers to assess their impact on diverse assembly
processes has remained a key open issue in the field of galaxy for-
mation for many years. The precise measurement of the merger
rate—number of mergers per unit time and unit volume—is also
an indirect probe of the cosmological model. Since galaxy merg-
ers tend to disrupt the surface brightness distribution of galaxies
because of the gravitational interaction, it is an old idea to use
measurements of perturbations in the luminosity profiles of galax-
ies as indicators of a merger activity. A popular approach in the
early 2000s was to measure some moments of light that are sensi-
tive to asymmetries in the light distribution (e.g. Conselice 2003).
The problem is that the link between these perturbations and the
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actual merger activity is loose. The observability timescale of a
given feature such a tidal structure depends on the type of merger,
the cosmic epoch and other properties, which makes it very diffi-
cult to establish a direct link between image features and merger
status.

In that context, numerical simulations offer an attractive way
of connecting measurements on images to a phase in the merger
since the dynamical process of merger can be entirely tracked
down in the simulation. Early efforts had indeed tried to estab-
lish some first order calibration using numerical simulations of
galaxy pairs (e.g. Lotz et al. 2008). The work by Lotz et al. (2008)
associated variations in the moments of light—concentration,
Gini, asymmetry also known as CAS parameters—with the merger
phases. However this was done manually and with a limited set of
simulations. Snyder et al. (2019) improved on these early works by
exploring Random Forests applied to moments of light on numer-
ical simulations. More recently Whitney et al. (2021) used galaxies
from the TNG simulation to calibrate the observability timescale
of the so-called CAS parameters.

Deep learning offers however a new way of looking at this
problem of detecting and characterising galaxy mergers by
bypassing summary statistics and manually engineered features.
Pearson et al. (2019b) first applied a CNN to the identification of
galaxy mergers using a training set of mergers from the EAGLE
simulation mimicking the SDSS observational properties. The
key difference with previous works is that no manual features
are extracted; the images of the different mergers are provided as
input. In this first work, they found that CNNs did not achieve
very high performance which is interpreted as a signature that
the images used did not present significant perturbations. One
possible reason for this poor performance is that mergers were
selected in an non-homogeneous way over a large range of times.
The importance of the training set was carefully analysed in the
work by Bottrell et al. (2019). The authors explored how the
performance of CNNs changed depending on the realism of the
training set used for training. The main conclusion is that it is
more important that images used for training reproduce the obser-
vational properties of the sample to be analysed, that is, PSE, noise,
background sources, than using full radiative transfer to improve
the conversion from stellar particles to light. Ferreira et al. (2020)
followed up on this idea and used deep learning for the first time
to compute the merger rate up to z ~ 3. They trained a supervised
CNN to identify mergers labelled in the TN300 simulation and
selected over a fixed time window of ~1 Gyr. They showed that
the CNNs can distinguish mergers from non-mergers based on
multi-wavelength imaging with an accuracy of ~90%. When
applied to data from the CANDELS survey, their results reconcile
measurements of the merger rate performed with pair counts and
photometry (see Figure 27). These results confirm that the discrep-
ancy between the two approaches was caused mainly because of
calibration issues. Using deep learning on simulation allows one to
properly calibrate the observability timescale based on the simula-
tion metadata and therefore obtain a more reliable measurement
of the merger rate. A similar approach was followed by Bickley
et al. (2021), who trained a CNN to focus only on post-mergers
identified in the TNG simulation. They confirm that deep learning
techniques outperform moment based identifications of post-
mergers and applied their model to the CFIS survey. However,
the authors highlight a common problem with very unbalanced
classification problems as this one. Since the number of post-
merger galaxies is very small compared to the global population of
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Figure 27. Supervised deep learning trained on simulations used to infer galaxy merger rates. The panels show the inferred merger fractions (left) and merger rates (right) with
deep learning as compared to other independent techniques. Figure adapted from Ferreira et al. (2020)

galaxies, even a small fraction of false positives, strongly impacts
the purity of the post-merger sample (see Subsection 3.1.3).

Because neural networks are very flexible, they can be eas-
ily used to combine the information of different types of inputs
which is more difficult with other techniques. Bottrell et al. (2021)
recently explored the combined information provided by photom-
etry and kinematics to detect mergers. Both maps are fed into deep
learning network which combines the information in an unsuper-
vised way. Interestingly, the authors conclude that kinematics does
not bring significant additional information.

Other works have attempted to go beyond the classification and
use neural networks to regress on the properties of the mergers.
Koppula et al. (2021) used a residual deep neural network to esti-
mate the time to/from the first passage in a merger sequence. Using
information from the Horizon-AGN simulation, the authors pro-
duce a large sample of images of major mergers at different stages.
They show that, based on a single snapshot, the CNN is able to
recover the position of the stamp in the merger sequence with
an error of ~40 Myr. This is interesting because deep neural
networks are used to provide temporal constraints on phases of
galaxy formation, based on a single snapshot. A similar approach
was followed by Cai et al. (2020). They trained a combination of
Autoencoders and Variational Autoencoders to infer the proper-
ties of galaxy mergers. They conclude as well that with a single
image, the dynamical status of the mergers can be inferred, bypass-
ing dynamical modelling. Even more recently Eisert et al. (2022)
used an invertible neural network to infer several mass assembly
indicators of galaxies (i.e. mass of accreted stars, time since the last
major merger) using a variety of observable quantities from the
TNG simulation.

Other physical processes Huertas-Company et al. (2018) first
applied this idea to the identification of a physical process called
compaction or blue nugget phase. Several observational works
suggested that diffuse star-forming galaxies become compact star-
forming galaxies called ‘blue nuggets’ (BN) which subsequently
quench (‘red nuggets’) following a sudden gas inflow towards their
centre. The VELA zoom-in simulations (Ceverino et al. 2015)
show also rapid gas inflows leading to central starbursts, and
several mechanisms were identified that lead to this compaction
phenomenon including major gas-rich mergers or disk instabil-
ities often triggered by minor. The authors tested whether deep
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Figure 28. CNN applied to reconstruct to classify galaxies in different evolutionary
stages defined by cosmological simulations. Each column shows a different phase of
evolution as defined by the simulation. The top row is the high resolution from the sim-
ulation. The middle row shows the same galaxy with observational realism added. The
bottom row shows real observed galaxies identified by the CNN as being in one of the
three different phases. Figure adapted from Huertas-Company et al. (2018)

learning can detect the blue nugget phase of galaxy evolution
purely identified in the simulation metadata. Mock HST images
from the simulated galaxies were labelled according to their evo-
lutionary stage from the simulation metadata (before, during, or
after the BN phase), that is, the labelling is exclusively done based
on physics. The result is that galaxies can be successfully classified
into evolutionary stages without identifying specific features, that
is, just using the pixel space (see Figure 28).

Diaz et al. (2019) applied a similar idea to the classification
of formation mechanisms of lenticular galaxies. They identi-
fied different evolutionary tracks leading to the formation of SO
galaxies—isolated, tidal interaction in a group halo, and spiral-
spiral merger—and trained a CNN to identify them based on
stellar density and two-dimensional kinematic maps. They found


https://doi.org/10.1017/pasa.2022.55

Publications of the Astronomical Society of Australia

that the CNNs are able to distinguish the different formation sce-
narios and conclude about the potential of deep learning to classify
galaxies according to their evolutionary phases. Schawinski, Turp,
& Zhang (2018) used a Generative Adversarial Network to try con-
straining the physical processes leading to the quenching of star
formation in galaxies. Ginzburg et al. (2021) used a CNN trained
on zoom-in cosmological simulations to infer the longevity of star-
forming clumps in high redshift galaxies. Instead of relying on the
conversion between photometry and age of the stellar populations,
they defined two types of clumps—short and long lived—based on
the information from the simulation and trained a supervised neu-
ral network in a binary classification mode to distinguish between
the two types. This is yet another example where neural networks
are used as universal approximators to find not obvious links
between observables and physical properties.

Open issues Using deep learning trained on simulations to con-
strain the phases of galaxy formation is becoming increasingly
popular in the community and the example of mergers clearly
illustrates this. All these approaches suffer however from an obvi-
ous limitation, the so-called domain gap between observations
and simulations. As this is a recurrent problem, more informa-
tion is provided in Section 7. Since simulations do not perfectly
reproduce observations, applying a trained network on observa-
tions will induce some biases. Moreover, since observations are
generally not labelled at all, especially when trying to infer physi-
cal properties, it is impossible to evaluate the effect of the domain
gap and the results need to be accepted blindly. As already men-
tioned in previous sections, including uncertainty quantification
in the neural networks is an option to mitigate this effect. However
the error induced by changes in the domains is in general dif-
ficult to capture by uncertainty quantification methods. Other
options consist in performing the domain adaptation during train-
ing to ensure that the features learned by the neural networks
are not specific to the simulation domain. There are different
approaches to do so since it is a problem that exists in many
fields of application (see e.g. Wang & Deng 2018). In extragalactic
astronomy there has been limited exploration of these approaches.
Ciprijanovi¢ et al. (2021b) recently explored the impact of domain
adaptation during training for the identification of galaxy merg-
ers. They tested different domain adaptation techniques such as
Maximum Mean Discrepancy and Domain Adversarial Neural
Networks and concluded that including these leads to an increase
of target domain classification accuracy of up to ~20%. This
is a promising result for future applications of neural networks
trained on simulations. It is likely that future works will start to
incorporate these approaches more often.

4.2.2. Dark matter

In a similar spirit of finding new correlations, deep learning has
been increasingly used in the past years to estimate the dark matter
masses and properties of galaxies and clusters, based on observable
quantities.

Dynamical masses of clusters of galaxies The earliest applications
focused on galaxy clusters, which are the largest gravitation-
ally bound objects. This is because there exist alternative meth-
ods to measure dynamical masses of clusters. However standard
approaches are based on simple scaling relations based on the
virial theorem. The simplest approach is to use a power law rela-
tion between the dispersion of the line of sight velocities (LOS)
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and the cluster mass. This was indeed one of the first probes of
dark matter by Zwicky (1933). Other classical approaches con-
sist in using scaling relation between the X-ray luminosity of the
gas and the mass of the cluster or the Sunyaev-Zeldovich effect.
However, these scaling laws are all based on strong assumptions
about the physical status of the cluster, the most important being
that the system is in virial equilibrium. This entails some inherent
biases in the estimated cluster masses.

Deep learning and machine learning in general, calibrated on
simulations where dark matter properties are known, offer an
interesting approach to look for additional correlations which
could help in reducing the scatter in the dynamical mass esti-
mates. Early efforts were done before the emergence of deep
learning, especially in the works by Ntampaka et al. (2015, 2016).
The authors explored Support Distribution Machine class of algo-
rithms to predict cluster masses using LOS velocities and radial
positions of cluster members. They reported an improvement of
a factor of two (see also Armitage, Kay, & Barnes 2019 for similar
conclusions).

Ntampaka et al. (2019) applied CNNs to cluster mass esti-
mation in which is the first work using deep learning for this
purpose. The training is performed with mock 2D X-ray images
of Chandra observations. There is indeed a well known correla-
tion between X-ray luminosity and cluster masses. They report
a ~10% smaller scatter than standard luminosity based methods,
even without using any spectral information. Interpretability tech-
niques based on attribution methods, reveal that the CNNs tend to
ignore the cluster centres because they likely lead to more biased
estimates. This is another example of CNNs used to find new
correlations in the data and one of the few examples were basic
attribution techniques provide meaningful information. Similarly,
Yan et al. (2020) used a combination of feature maps (stellar mass,
soft X-ray flux, bolometric X-ray flux, and the Compton y param-
eter) and reach comparable results. This work illustrates another
advantage of deep learning over traditional approaches, which is
the possibility of combining multiple observables in a transparent
way.

Along the same lines, Ho et al. (2019) explored CNNs to esti-
mate cluster masses. The training is based on LOS velocities and
radial positions of galaxies in the cluster. They explored both 1D
and 2D CNNs. They also report a factor of ~2 improvement with
respect to power law-based estimates. Interestingly CNNs also
improve the results of more classical ML approaches explored in
previous works.

Convolutional Neural Networks have also been explored on
the third observable usually employed to infer cluster masses, the
Sunyaev-Zeldovich effect. de Andres et al. (2021) used CNNs on
mock maps of the Planck satellite from numerical simulations. The
advantage of using deep learning is again that no assumptions on
the symmetry of the cluster’s gas distribution nor on the cluster
physical state are made.

These previous works, although promising, remain at the
exploratory level and suffer from the same limitations than other
similar approaches. Namely, the results are restricted by the prior
inferred from the simulations and they usually lack of uncertainty
estimation with some exceptions. The works by Kodi Ramanah
et al. (2020), Kodi Ramanah, Wojtak, & Arendse (2021) make a
step forward to address some of these issues. In these works, the
authors explore, for the first time, flow based neural networks (see
Figure 19) trained of the phase space of cluster galaxies to infer
cluster masses (Figure 29). The key addition of their approach is
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Figure 29. The figure shows the predicted dark matter mass as a function of the true
mass along with uncertainties using a Normalising Flow. Figure adapted from Kodi
Ramanah et al. (2021)

that the network provides therefore a full probability distribution
of the cluster mass instead of a single point estimate, which can
therefore be used to account for uncertainties. This is a key step
forward towards an application of deep learning based approaches
for estimation of cluster masses in large surveys. The authors claim
a factor of 4 improvement compared to scaling relations based
estimations. They then apply their model to a sample of observed
clusters with well calibrated dynamical masses and show that the
neural network provides both unbiased measurements and well
calibrated uncertainties. Ho et al. (2021) also investigate the use
of Bayesian CNNs to include uncertainty measurements. They
show that BNNs recover well calibrated 68% and 90% confidence
intervals in cluster mass to within 1% of their measured value.

Halos of galaxies Deep learning can be also extended to estimate
dark matter halo masses of less massive galaxies than clusters.
In low mass halos, there are also less galaxies and therefore it
is more challenging to use LOS velocities. They do not present
any X-ray emission either. The most standard way to proceed is
by using Abundance Matching techniques. Abundance Matching
main assumption is—with some variations—a monotonic rela-
tion between the stellar masses of galaxies and dark matter halos.
By using dark matter halo mass functions from N-body simula-
tions, one can then assign halo masses to galaxies. In this context,
deep learning can be used to look for additional correlations
between galaxy properties and dark matter beyond simple abun-
dance matching assumptions. Calderon & Berlind (2019) explored
several machine learning algorithms, including neural networks,
for estimating the dark matter halo masses of galaxies in the
SDSS. They used ML to explore how much information about
halos is provided by several galaxy properties from synthetic cat-
alogs. They conclude that including more physical properties is
translated into a better accuracy than the one reached by abun-
dance matching. A problem with this approach, acknowledged
by the authors, is that secondary dependencies of halo masses
on galaxy properties might be very model dependent. This can
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Figure 30. Illustration of a Neural Flow for estimating posterior distributions. This type
of approach is starting to become common in simulation based inference approaches
for estimating cluster masses or cosmological parameters. A first Neural Network with
a standard L, loss is used to obtain some summary statistics of the data which are
then use as a condition for a Neural Flow mapping a simple distribution into an
approximation of the posterior.

therefore induce systematic biases in the inferred dark matter
masses which do not exist in simpler approaches. Shao et al. (2021)
investigated how sub-halo masses can be estimated using neural
networks trained on a number of physical properties of galaxies
(i.e. black hole mass, gas mass, stellar mass etc) from numerical
simulations. They used the CAMELS simulation suite which is a
series of numerical simulations performed with different codes
and cosmologies, specially designed for ML. We will describe the
simulations into more detail in Subsection 6.2. They found that
sub-halo masses can be predicted accurately (~0.2 dex) at any
redshift from simulations with different cosmologies, astrophysics
models, subgrid physics, volumes, and resolutions. The authors
argue that the neural networks might have found a universal rela-
tion, which turns out to be a generalised version of the virial
theorem involving radius, velocity dispersion and maximum cir-
cular velocity. This is a good example of deep neural networks
used to find hidden correlations which can be even translated into
analytical expressions. We will discuss this further in Section 5.
In a recent work, Villanueva-Domingo et al. (2021a) explored the
use of Graph Neural Networks (GNNs) to estimate halo masses of
galaxies. GNNs are a special type of neural networks that are built
on graphs, and therefore allow one to account for the relations
between neighbouring halos. The authors used the halos from cos-
mological simulations as nodes of the graphs and encoded the
gravitational interaction between them in the edges of the graph.
The nodes include the positions of the halos, the relative veloci-
ties, the stellar mass and the half-mass radius. They show that the
model is able to estimate halo masses with a ~0.2 dex uncertainty
(Figure 31). The model is also built to account for uncertain-
ties and is shown to generalise reasonably well between different
simulated datasets.

In a follow-up work (Villanueva-Domingo et al. 2021b), the
authors apply the trained GNNs to measure the halo Way and
Andromeda galaxies. They show that the inferred constraints are
in good agreement with estimates from other traditional methods.
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Figure 31. The top panel illustrates the accuracy obtained on simulations, when the
training and testing is done on datasets coming from the same underlying cosmolog-
ical simulation. The bottom right panel is when two different simulations are used
for training and testing respectively. Figure adapted from Villanueva-Domingo et al.
(2021a)

4.2.3. Deep learning generated observations

Some recent works have tried to push even further the ability
of neural networks to establish not obvious non-linear mappings
between domains to bypass telescope observations. Spectroscopic
observations are more expensive in terms of observing time
than imaging ones. However, spectroscopy is significantly richer
in terms of available information about astrophysical processes.
Some works have therefore explored if deep neural networks can
infer spectra from images without the need for observing time. Wu
& Peek (2020) showed that deep neural networks efficiently learn
a mapping between galaxy imaging and spectra. They showed that
SDSS spectra can be inferred from 5-band images with very high
accuracy. The authors argue that this approach could be used as
an exploration tool for future surveys such as LSST. Holwerda
et al. (2021) followed up on this work by applying the same net-
work to estimate the spectrum of an AGN and compare it to
existing spectra from the literature. Although the neural network
predicted spectrum is in overall good agreement with the observed
ones there are some differences in the strength of emission lines.
This suggests that the ML approach might be an interesting way
of identifying specific types of objects such as AGN and/or as
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a first order exploration. It is difficult to use the inferred spec-
tra to analyse the physical properties though. This is somehow
expected since spectra contain more information than imaging, as
previously stated. A similar experiment is performed by Hansen
et al. (2020) who infer kinematic information of galaxies (velocity
dispersion and rotation maps) from single band imaging.

Summary of Deep learning for inferring physical properties of
galaxies

e Over the past years, deep learning has been tested as a tool
to infer physical properties of galaxies in large surveys. The
most common applications are: photometric redshift estima-
tion, galaxy structure and stellar populations and strong lensing
modelling.

e The main motivation for using deep learning for these tasks
is computational speed. Deep learning is used here as a fast
emulator for existing methods. Overall, the most common
conclusion of these tests is that deep learning approaches
achieve state-of-the-art performance, several orders of magni-
tude faster.

e The typical approach used is a supervised regression (C)NN
trained on simulated datasets, for which the ground truth is

known.

e A major challenge of these applications is robustness. Since the
models are predominantly trained on simulations, the repre-
sentativity of the training set is a major issue. Extrapolation
with neural networks is in general problematic. Therefore,
making sure that the training samples properly cover the infer-
ence dataset is a key challenge.

e Uncertainty quantification is also particularly important for
this type of applications. Bayesian Neural Networks and
Density estimators are among the most commonly employed
solutions.

e As an extension to the derivation of physical properties, deep
learning has also been explored as a tool to identify new cor-
relations between observable and other physical properties
of galaxies, which are generally not accessible with existing
methods. Examples of this type of application include the infer-
ence of phases of galaxy evolution such as interactions, or the
estimation of the dark matter content of galaxies.

e The main motivation is that neural networks are universal
approximators. Deep learning is therefore employed to unveil
hidden correlations using simulation based inference. By defi-
nition, the training is performed on (cosmological) simulations
in which all the physical properties and evolutionary phases of
galaxies are accessible.

e A key challenge for these type of approaches is robustness
against the representativity of training sets and domain shifts.
The effect of these issues is particularly dramatic here since
cosmological simulations are known to be approximations to
the observed universe. Moreover, in general, pre-deep learning
approaches to compare with do not exist, as opposed to the
previous type of application.

e Because deep learning is typically used blindly informed
by simulations, interpretability becomes a key limitation.
Solutions based on saliency maps or symbolic regression—
when possible—have been explored. However these approaches
still present a limited informative power. There is significant
room for improvement in the future.
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5. Deep learning for discovery

In this section, we focus on efforts done by the community to use
deep learning as a discovery tool. Applications typically include
dimensionality reduction to visualise complex datasets and iden-
tify groups of objects, anomaly detection to automatically find
potentially interesting objects in large datasets and some early
efforts to automatically learn fundamental laws of physics.

5.1. Visualisation of large datasets

In addition of increasing in volume, datasets in astrophysics
are becoming increasingly complex and of high dimensionality.
Machine Learning can be employed to visualise datasets in a
low dimension space to look for trends and correlations in the
data, which otherwise are difficult to extract. It can also be used
to identify classes of objects that share some properties which
can help with the scientific analysis. These applications use typ-
ically unsupervised learning approaches, as opposed to what has
been previously discussed. In unsupervised learning, data is unla-
belled and therefore we seek a representation of the data instead
of a mapping between data points and labels. We emphasise
again that the present review focuses on deep learning applica-
tions and, therefore, we will not describe in detail works using
other ML approaches for data visualisation. There exist however
a large variety of techniques which do not involve neural net-
works and that have been applied to astronomy. For example,
Baron & Ménard (2021) used graph representations to find struc-
tures in imaging and spectroscopic data. The works by Hocking
et al. (2018) and Martin et al. (2020) also explore clustering cou-
pled with graph representations to group images of galaxies that
look similar. Self-Organising Maps have also been used to repre-
sent images of galaxies in the radio domain (see e.g. Galvin et al.
2020) and for spectral classification (e.g. Rahmani, Teimoorinia,
& Barmby 2018). Other non-neural network-based dimensional-
ity reduction techniques such as Principal Component Analysis
(PCA), t-SNE (van der Maaten & Hinton 2008) or UMAP
(McInnes, Healy, & Melville 2018) are also used in several works to
explore data.

Deep learning offers several approaches for dimensionality
reduction and visualisation. The most standard and widely used
are Autoencoders, a particular type of encoder-decoder architec-
tures (see Section 3 and Figure 12) in which the inputs and outputs
are identical. The networks therefore simply learn how to repro-
duce the input data. However, since these architectures—which
can be deterministic or probabilistic—typically present a bottle-
neck at the junction between the encoder and the decoder, they
naturally represent the data in a low dimension space. Exploring
the distribution in this bottleneck layer is useful to find structures
in the data. Ma et al. (2019) used a Convolutional Autoencoder
(CAE) to explore a sample of radio active galactic nuclei (AGNs).
By feeding the CAE with images of radio AGNs with hosts of
different morphologies, they showed that the network naturally
clusters similar objects together in the bottleneck. In that partic-
ular work, the low dimensional representation is also used for
a downstream supervised classification using the learned feature
space as input for a supervised network. This is also a com-
mon application of the dimensionality reduction approach. When
only a reduced subsample of labelled examples is available, the
reduced dimensionality space can be used to train a supervised
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network with smaller training sets. A similar approach was fol-
lowed by Cheng et al. (2020). They used a CAE to represent
images of galaxies in a low dimension space with the goal of
finding strong gravitational lenses. Since the samples of labelled
lensed systems are typically small (see Subsection 3.1.3 for more
details), unsupervised representation offers an alternative way to
find lenses without labels. The authors perform a clustering step
in the latent space learned by the neural network to automati-
cally find groups of objects which similar properties. They find
that the CAE based method successfully isolates ~60% of all lens-
ing images in the training set. In Cheng et al. (2021a) they extend
the same approach to the unsupervised exploration of galaxy mor-
phology. Using a modified version of a Variational Autoencoder,
they obtain an unsupervised representation of nearby galaxies
from the SDSS survey. They then perform a hierarchical clus-
tering in the latent space to conclude that the neural network
representations share some properties with the classical Hubble
sequence but provide a more meaningful representation, espe-
cially for ambiguous intermediate morphological types. See also
the work by Spindler, Geach, & Smith (2021) for an application of
VAEs to representation of galaxy morphology. A similar approach
is presented in the work by Zhou et al. (2021). The authors apply a
combination of CAE based representation with a multi-clustering
model to study the morphologies of high redshift galaxies from
the CANDELS survey. Portillo et al. (2020) also used the same
type of approach involving a Variational Autoencoder to represent
spectra of nearby galaxies. The authors projected SDSS spectra
into a latent space of 6 dimensions and showed that the different
types—that is, star-forming, quiescent—are naturally separated
without labelling (Figure 32). Interestingly, the non-linear com-
ponents of VAEs seem to enable a better separation than a simple
PCA decomposition if the latent space remains of dimension
lower than ~10. The conclusion is that dimensionality reduction
with neural networks is a sensitive way of exploring data of high
dimension. Notice however that they did not use convolutional
layers.

In a recent work, Teimoorinia et al. (2021) follow a similar
approach, but with additional layers of complexity, to explore
Integral Field Unit (IFU) data from the Manga survey. In their
approach, called DESOM, the authors propose to combine a con-
volutional Autoencoder and a SOM to represent spectra. The
spectra are fed to a CAE and projected into a latent space of lower
dimension. In the same training loop, the representations are used
to train a SOM that further clusters similar objects. That way, all
spectra of a galaxy can be passed into the machinery to obtain a fin-
gerprint for every object which corresponds to the final projection
into the SOM plane. The authors propose going a step forward by
passing again the obtained fingerprint into the DESOM to obtain
a single location for a galaxy based on the 2D distribution of all
spectra belonging to the same galaxy.

Other works have also applied deep learning based dimen-
sionality reduction to assess data quality. For example, Mesarcik
et al. (2020) used an Autoencoder to explore radio data and iden-
tify possible technical failures in the observations. This illustrates
another interesting use of deep learning dimensionality reduction
techniques to quickly explore complex datasets.

Another deep learning approach for dimensionality reduction
which is increasing in popularity in the recent years, is what is
generally known as self-supervised learning through contrastive
learning. As opposed to the Autoencoder approach, where the
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Figure 32. Variational Autoencoder for dimensionality reduction and data visualisation. The figure show how the different types of spectra (labelled with different colours)
populate different projections of the latent space. Figure adapted from Portillo et al. (2020)

projection depends on the architecture, in contrastive learning,
the computation of representations is more data oriented. The
general idea is to apply some perturbations to the input data so
that the networks learn to ignore those and cluster together data
points coming from the same parent input data. This is obtained
by what is called a contrastive loss term. We emphasise that it
is not the goal of this review the technical details of the differ-
ent deep learning approaches, but to review how they are being
used in astronomy. We refer the reader to Chen et al. (2020)
and references therein for more details (see Appendix A for ref-
erences on the different deep learning methods mentioned in this
review). Figure 33 shows a very schematic representation of a con-
trastive learning setting. The output is in essence similar to the
one obtained with an Autoencoder—that is, a representation of
data in a reduced latent space—but the underlying idea is sig-
nificantly different. One of the key advantages of a contrastive
approach is that the perturbations applied to the input data can
be tuned for a science case and turn the representations indepen-
dent to a known undesired effect. In astronomy, it can enable to
mitigate the effects of instrumental or selection biases for example.
Contrastive learning has only started to be applied in astrophysics
relatively recently. The first work exploring self-supervised learn-
ing is by Hayat et al. (2021). The authors used an existing network

https://doi.org/10.1017/pasa.2022.55 Published online by Cambridge University Press

to compute representations for multi-band SDSS images. Among
the perturbations applied to the images, they included standard
rotations and cropping, but also some adapted to astronomy, such
as extinction. They showed that the contrastive learning model
successfully clusters galaxies with similar morphological proper-
ties and therefore constitutes a promising way for data exploration
in astrophysics (Figure 34).

Sarmiento et al. (2021) also applied contrastive learning to
visualise data of nearby galaxies from the Manga survey. Instead
of images, they used post-processed maps of stellar populations
properties (metallicity, age) as well as stellar kinematic maps. They
also show that the self-supervised learning setting is able to con-
dense the information from this high-dimensional dataset into
a subset of meaningful representations which contain informa-
tion about the physical properties of galaxies. Interestingly, this
is a case in which other simpler dimensionality reduction tech-
niques such as PCA, or even Autoencoders, fail, given the large
amount of instrumental effects present in the data. The authors
show that more standard techniques tend to organise galaxies
based on properties of the instrument (i.e. fibre size) instead of
physical ones. Because the contrastive setting allows one to tune
the augmentations to a specific problem, it can be trained so that
the representations become independent of instrumental biases
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Figure 33. Illustration of a self-supervised contrastive learning architecture. Multiple
random augmentations of the same image (positive pairs) are fed to two different
CNNs which map them into a latent representation space. Also during training, pairs
of completely different images (negative pairs) are also fed to the two CNNs. The con-
trastive loss is optimised to increase (decrease) the dot product of representations of
positive (negative) pairs. Contrastive learning is starting to be used for dimensional-
ity reduction and as a generalised feature extraction process for multiple downstream
tasks such as galaxy classification or photometric redshift estimation.

(Figure 35). The inferred representations can be used for exam-
ple to perform a clustering step and identify different classes of
objects. Sarmiento et al. (2021) show that well-known types of
galaxies appear naturally without any human supervision from a
data-driven perspective.

In addition to visualisation, a common application of self-
supervised representations is to use them as input for other down-
stream tasks. For example, the representations can be used for
a subsequent supervised classification. The fact that objects have
already been clustered together, helps to converge faster, which
makes it especially appealing when a small amount of labelled data
is available (see Section 3). Hayat et al. (2021) showed indeed that,
by using the latent space for morphological classification of galax-
ies, they can reach a similar accuracy as with a fully supervised
CNN but using >10 times less labelled data. In the follow-up work
by Stein et al. (2021a), they also explore how the self-supervised
representations can be used to find strong gravitational lenses
reaching similar conclusions. Similarly to the work by Cheng
et al. (2020), the representations are used with a small sample of
lenses to train a simple linear classifier and find new strong lenses
candidates.

5.2. Outlier detection

Anomaly or outlier detection is a fundamental aspect of discov-
ery in physical sciences. A fair amount of new results in astro-
physics have been triggered by serendipitous discoveries through
the exploration of observational datasets. With the arrival of new
big-data surveys, finding potentially interesting objects becomes
increasingly difficult with purely human-based approaches. In the
past year, unsupervised deep learning has been explored by several
groups as a way to assist astronomers in the search of potentially
interesting objects.
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An anomaly or outlier is usually defined as a data point
which properties deviate from the average properties of objects
in the sample, under some metric. The visualisation techniques
described in the previous subsection, which tend to cluster
together data points with similar properties, can therefore be
useful as well to identify deviant objects.

From a probabilistic point of view, an outlier can be also
defined as an object which probability of observation under the
probability density distribution of a data set is smaller than a
given €. In that context, modern generative models (e.g. VAEs,
GANs), can approximate the probability density function p(X)
of a dataset X with increasing accuracy. Therefore, they can be
employed to look for objects with a small probability of observa-
tion (see Chalapathy & Chawla 2019 for a generic review of deep
learning techniques applied to anomaly detection).

5.2.1. Transient astronomy

The field of transient astronomy has been particularly active in this
context. As previously summarised, the field is about to experi-
ence a data revolution. The forthcoming LSST survey will observe
all the Southern Hemisphere sky every ~2 — 3 nights, producing
an unprecedented real time movie of the night sky. The com-
munity expects to discover a significant amount of new types of
variable objects using this dataset (Li et al. 2022). Therefore there
have been over the past years a number of works exploring deep
learning and machine learning in general, to identify anomalous
light curves in preparation of LSST We emphasise again that deep
learning is not the unique machine learning approach to identify
anomalies. Malanchev et al. (2021) performed a comparison of
several anomaly detection algorithms—isolation forests, on-class
SVMs, Gaussian Mixture Models and Local Outlier Factor—to
identify outliers in the Zwicky Transient Facility (ZTF). See also
the work by Martinez-Galarza et al. (2021) which used deci-
sion trees and manifold learning. Pruzhinskaya et al. (2019) uses
Isolation Forests as well on a set of features derived from the
light curves using interpolation with Gaussian Processes. In the
following, we will however focus on efforts relying on deep
learning.

Villar et al. (2021b) used a Variational Recurrent Autoencoder
(VRAE) network described in Villar et al. (2020) to identify
anomalous light curves from the simulated PLAsTiCC dataset.
The proposed methodology is based on three main steps involving
three different ML algorithms. First the light curves are interpo-
lated using Gaussian Processes (GPs). The resulting interpolations
are then fed into a Variational Autoencoder. The temporal aspect
is encoded by appending the time step to the elements repre-
senting the time series. The low dimension representation of the
time series is finally passed through an Isolation Forest algo-
rithm to assign an anomaly score. As opposed to well defined
supervised problems, evaluating and comparing anomaly detec-
tion algorithms is always difficult since by definition the objective
is not well defined. In that particular work, the authors quote
a ~95% purity in identifying light curves others than the ones
generated by well-known types of objects. However, by defini-
tion the exercise is incomplete, since the sensitivity to unknown
unknowns cannot be assessed. This work illustrates an interesting
way of combining multiple ML approaches though. In particular,
the introduction of a GP for preprocessing turns the model agnos-
tic to the sampling frequency of the time series which is a very
interesting feature for astronomical applications. A Variational
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Figure 34. Self-supervised learning applied to multi-band SDSS images. The left panels shows a UMAP of the representations obtained with contrastive learning. The panels on
the right show the same UMAP colour coded with different galaxy properties. Similar images are clustered together. Figure adapted from Hayat et al. (2021).
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Figure 35. Representations of Manga maps using PCA and contrastive learning, and
projected into a UMAP. The two leftmost columns show the plane colour coded with
non-physical parameter (e.g. number of fibres in the IFU). The rightmost columns show
the same maps colour coded with physical properties. Self-supervised representations
cluster galaxies according to physical parameters while PCA focuses mostly on the
number of fibres. Figure adapted from Sarmiento et al. (2021).
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Recurrent Autoencoder is also used by Sanchez-Séez et al. (2021)
to identify changing-look Active Galactic Nuclei. The approach
is analogous but it is applied to real observations from the ZTF
survey. The VRAE is trained with light curves to obtain a rep-
resentation in a low dimension space and then Isolation Forest
is used to associate anomaly scores. Boone (2021) also employs
a VAE to learn how to reconstruct light curves and then uses the
latent space to assign anomaly scores to potentially deviant curves.
The architecture used is slightly different than in the previous
two works. Namely, they add a layer introducing some physical
information about the light curve so that the setting can also be
used for classification. However, the overall idea is analogous in
essence.

Muthukrishna et al. (2021) explored a different approach. They
trained instead an Autoregressive Generative Model to generate
three known types of light curves (SNIa, SNII, SNIb). They try
then to use the trained models to reconstruct other light curves
and use as anomaly score the x? difference between the input light
curve and the reconstructed one. The underlying idea is that com-
mon light curves will be well reconstructed by the Neural Network
if they have properly learned p(X)—the probability density func-
tion of the data distribution—while rare events will have larger
reconstruction errors. Interestingly, they find that Autoregressive
models used that way are not very efficient to identify outliers
as compared for example to a Bayesian reconstruction of light
curves. The explanation put forward is that neural networks are
too efficient and are therefore able to generate, with descent accu-
racy, even light curves which were not part of the original dataset
(Figure 36). This behaviour of AutoRegressive models has also
been reported in the ML community (Ren et al. 2019). These mod-
els are indeed able to easily reconstruct less structured data than
the data used for training, leading to small out-of-distribution
probabilities. Some solutions have been suggested, which will be
discussed in the following subsection.

Although these works are very recent and the community is
still at an exploration phase, they confirm that outlier detection
is in general a very complex task. Deep learning offers interest-
ing options, especially because of the potential it has to accurately
model the probability distribution of the data. However, there is
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Figure 36. Anomaly scores for different types of light curves obtained with deep
AutoRegressive Model (bottom panel) and with a Bayesian Reconstruction algo-
rithm (top panel). Unknown light curves not used for training have larger anomaly
scores when using the Bayesian method than with the Neural Network. Figure from
Muthukrishna et al. (2021).

still no satisfactory solution available and all require some level of
human interaction to identify the most interesting objects. This
is eventually a structural issue, since the definition of interest-
ing depends on the scientific case. Following these conclusions,
the group of M. Lochner and collaborators have created dedi-
cated tools to apply different outlier detection methods and enable
a human inspection of potentially interesting candidates (see
Lochner & Bassett 2021). One interesting feature this approach
puts forward is the fact that another layer of ML is added to adapt
the definition of interesting objects to each user.

5.2.2. Imaging and spectroscopic outliers

Anomalies can also be found in static data, that is, spectra or
images of galaxies. This is again specially relevant in the context of
future large imaging and spectroscopic surveys in which a manual
inspection of all data points is prohibitively time consuming.
Therefore the community has also explored several approaches to
identify outliers in large imaging surveys. The underlying idea is
analogous to what has been described for time series, that is, iden-
tifying objects which present some deviations from the general
properties of the sample. Here again, there exist a large number of
ML algorithms that can be employed; many of them not based on
deep learning. For example, the recent work by Shamir (2021) uses
a set of manually engineered features to find outlier candidates
in HST images. Dimensionality reduction techniques such as
Self-Organising Maps have also been explored as a way to identify
anomalous spectra (Fustes et al. 2013). Baron & Poznanski
(2017) used unsupervised Random Forests to isolate the rarest
spectra in the SDSS by using individual fluxes as input. As done
for the previous sections, we will focus here on deep learning
applications.
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Storey-Fisher et al. (2021) trained a Generative Adversarial
Network using postage stamps of observed galaxies from the
Hyper Suprime Cam (HSC) survey. They selected galaxies above
an apparent magnitude limit and trained a Wassertsein Generative
Adversarial Network (WGAN) to generate realistic images of
galaxies. The underlying idea is that the model will learn how to
accurately reproduce common galaxies but will fail when con-
fronted to objects which appear with a small frequency in the
training set. Once trained, WGANs do not provide an explicit
latent space to sample. In order to associate anomaly scores to
all galaxies, the authors perform an iterative search to identify
the closest object that the WGAN can generate. They compute
then an anomaly score based on a combination of the quadratic
difference between the real and reconstructed image and an addi-
tional L2 difference of the features of the last layer of the critic
network of the WGAN. They show that the framework is able
to identify potentially interesting objects. However, a significant
fraction of them are only image artefacts. The authors propose to
add another dimensionality reduction layer with a CAE trained on
the residual images (difference between the WGAN reconstruc-
tion and the original image). They show that, after this additional
step, the different types of anomalies cluster together and a visual
inspection is proposed to identify the most interesting anomalies
(Figure 37). Interestingly, the work also compares the anomalies
obtained with a less complex approach based on a CAE to reduce
the dimension of the data. The WGAN is able to find more subtle
anomalies because of the improved quality of the reconstruction.
However, Tanaka et al. (2021) showed on the same dataset, that
a Convolutional Autoencoder is also able to identify interesting
anomalies. They quantify the performance of the anomaly detec-
tion algorithm on a set of known extreme emission lines galaxies
and quasars. They report that ~60% of the objects belonging to
these under represented classes are identified.

Margalef-Bentabol et al. (2020) use the same WGAN approach
outlined in Storey-Fisher et al. (2021) but in a slightly different
context. In this work, the anomaly detection setting is used to
assess the realism of galaxies produced by cosmological simula-
tions. In that context the WGAN is trained with mock images from
simulations. The trained model is then confronted with real obser-
vations from the HST. The authors compare then the anomaly
scores from both datasets and conclude that the neural network
struggles to reconstruct some of the observed galaxies, meaning
that they do not exist among the simulated galaxies. Zanisi et al.
(2021) also explores whether anomaly detection approaches with
deep learning can be used to compare galaxy images from cosmo-
logical simulations to observations. They use however a different
approach based on the Autoregressive Model pixelCNN. Similar
to GANs, pixelCNN is a generative model which can be use to
learn the probability density function of data and generate new
samples. However it provides an explicit expression of the likeli-
hood function built in an Autoregressive fashion; that is, the values
of a given pixel are determined based on the values of the previous
ones. They apply the method to the comparison of SDSS and TNG
galaxies. Similarly to what was reported by Muthukrishna et al.
(2021) for time series, they find that the model can easily learn to
generate simple objects and therefore very smooth galaxy profiles
or even pure noisy images achieve high likelihoods of observation
under the regressive model. To correct for this effect, the authors
use instead the likelihood ratio presented in Ren et al. (2019) which
forces the metric to become sensitive to the fine grained structure
of galaxies. They can then show how the likelihood ratio metric is
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Figure 37. Example of anomalous objects identified with a combination of WGAN and a CAE applied to the HSC survey. The top panel shows the latent space from the image
residuals of the WGAN reconstruction obtained with the CAE. The images below show examples of different regions of the parameter space. Figure from Storey-Fisher et al. (2021).
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Figure 38. Distribution of likelihood ratios obtained with two pixelCNN networks of
observations (SDSS) and different models as labelled. The closer the histograms from
simulations are to the one from SDSS, the more realistic the simulation is. The unsu-
pervised model is able to capture the improvement of simulations with time. Figure
from Zanisi et al. (2021).

able to measure the improvement in the realism of cosmological
simulations from the first Illustris model to the updated TNG one
(Figure 38).

An additional way to identify outliers is through the represen-
tation space learned by contrastive learning, as one would do with
a latent space from an Autoeconder. Stein et al. (2021b) explored
this approach on images from the DESI survey and demon-
strated the efficiency of self-supervised representations to identify
outliers and perform similarity searches. See also the work by
Walmsley et al. (2021) which uses the tools developed by Lochner
& Bassett (2021) for similarity search and anomaly detection on
the representation spaces.

5.3. Discovery of physical laws

Arguably one of the final goals of science is to find universal phys-
ical laws which can explain a broad set of observations. As said
several times in the previous sections, deep neural networks offer
an excellent predictive power but their interpretability is low as
compared to model-driven approaches. Symbolic regression is the
general term employed for the ensemble of techniques that aim at
uncovering an analytical equation from data. They can be seen asa
generalisation of polynomial regression to the space of all possible
mathematical formulas that best predict the output variable taking
as input the input variables. See Schmidt & Lipson (2009) for more
details. One way to enable discovery with deep learning is there-
fore to apply symbolic regression techniques to the trained deep
neural network model. This is usually very challenging given that
neural network models are usually parametrised by a large number
of parameters. There is one work in astrophysics attempting this
by Cranmer et al. (2020). The authors train a GNN in a supervised
manner to predict the properties of some dataset encouraging a
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sparse representation by the neural network. They then apply sym-
bolic regression to the trained model (Figure 39). The authors
show that they are able to recover for example some known
Newtonian laws by predicting the movement of particles. More
interestingly, they discover a new analytic formula which can pre-
dict the concentration of dark matter from the mass distribution
of nearby cosmic structures. The formula is learned by applying
symbolic regression to a GNN which learned the properties of a
Dark Matter only simulation. In a follow-up work, Lemos et al.
(2022) apply a similar approach to study orbital mechanics.

Summary of Deep learning for discovery

e Deep learning has been explored as a discovery tool. The main
motivation is that future big data surveys are too large and too
complex for efficient human-based exploration. Deep learn-
ing is therefore mainly used for visualisation and anomaly—
outlier—detection. The transient astronomy community has
been a particularly active field on this front in preparation for
LSST.

e As opposed to previous applications, these applications rely
on unsupervised deep learning. There is a variety of different
approaches which have been tested: Autoencoders, Generative
Models—GANSs, VAEs, Autoregressive Flows. Self-supervised
approaches using contrastive learning have also started to be
used for this task.

e For visualisation, the usual approach is to use deep learning to
obtain a low dimensional representation of the data which can
be explored more easily.

e Anomaly detection implies learning a probabilistic description
of the data and identifying objects with low likelihoods, that is,
which can hardly reproduced by the trained models.

e A common result is that deep learning techniques correctly
identify some anomalies, however the quantification of per-
formance is challenging because by definition the problem is
ill-posed. Some works find that complex deep learning net-
works might not be the most efficient way of detecting outliers
because they are flexible enough to properly reproduce simpler
data than the data used for training.

e In addition, filtering out interesting anomalies from artefacts
remains an unsolved issue. Current solutions consists in pro-
viding anomalous candidates for further inspection.

e The issue of discovering physical laws from deep learning
models has been just recently explored by applying symbolic
regression methods on the trained models. It is difficult to gen-
eralise at this stage given the large amount of parameters of
current deep learning models and the limited interpretability.

6. Deep learning for cosmology

In addition to galaxy formation, a key goal of modern deep
surveys is to constrain cosmology. Deep learning is playing an
increasingly large and promising role in at least two fronts: accel-
erating simulations—which are needed for efficient cosmologi-
cal inference—and direct inference of cosmological parameters.
This section is focused on these applications. We first review
approaches aimed at producing simulations and then we move to
the inference of cosmological parameters.


https://doi.org/10.1017/pasa.2022.55

Publications of the Astronomical Society of Australia

Dataset

Model with
Graph Neural Network

33

Extract to
Symbolic Equation

>

L O~ .
&= L(l — Tij )iy
JFi

Known spring law

Encourage Low-Dimensionality

2.
¢ . \’, Predict Dynamics ::)
-3 @ b
Wiy
9
Simple Particles
P ® 0
Predict Properties C
= o oy
© -
o
@
Q
Detailed 0

Dark Matter Simulation

Representation

s ] 3 1 Cy+ M,
b =C+ L=
n - T G+ oM, 22 Ty + O )
J#
Unknown Dark Matter
overdensity equation

Figure 39. Cartoon illustrating the method to extract physical equation from a deep learning model applied to different datasets. Figure from Cranmer et al. (2020).

6.1. Accelerating simulations

Numerical simulations play an important role in our understand-
ing of galaxy surveys, from shedding light into the physics of
galaxy formation and evolution to the modelling of the large-scale
structure of the Universe and its connection to galaxies. Fast and
efficient simulations are needed to interpret the data. However, a
major bottleneck is computational type. Ideally one would like to
have high resolution and large volume simulations including both
N-body and hydrodynamics. However, this is usually prohibitively
time consuming and for that reason fast emulators are desirable. In
the past years, deep learning has appeared as a promising solution,
In this first subsection, we review how it has started to impact the
field of cosmological simulations.

6.1.1. Learning N-body simulations

We begin by reviewing different strategies to either partially or
entirely learn the physics of N-body simulations and to some
extent complement a physical model to provide a significant accel-
eration compared to a full simulation. We will split these methods
into two categories, depending on whether they act on and model
matter density fields, or Lagrangian particle displacements.

Lagrangian displacement models N-body simulations typically
model the matter distribution using tracer particles and evolv-
ing in time the position and velocity of these particles under the
effect of gravitational forces. In this Lagrangian approach, the full
output of a simulation can be seen as the displacement that each
particle has undergone from its initial position on a regular lattice,
along with its final velocity. The methods described here all aim at
modelling this displacement field and therefore are not acting on
3D density fields, but on this displacement sampled at the initial
particle positions on a regular grid.

Modelling residual displacements against fast simulation: In
Dai, Feng, & Seljak (2018), the authors propose a physically
motivated post-processing technique, dubbed Potential Gradient
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Descent (PGD), able to recover the small scales of fast Particle-
Mesh (PM) simulations, and mimic the output of high-resolution
N-body simulations, or even mimic the baryonic feedback from
hydrodynamical simulations. The advantage of these fast PM
simulations (such as FastPM Feng et al. 2016 or COLA Tassev,
Zaldarriaga, & Eisenstein 2013) is that they can be run inexpen-
sively on very large comoving volumes, but their lack of force
resolution and their coarse time stepping limit their resolution,
typically leading to a lack of power on small scales and inaccu-
rate halo profiles. The method proposed in Dai et al. (2018) is
to learn an additional displacement of the particles, moving them
deeper into their local gravitational potential, which has the effect
of sharpening the halo profiles. To compute this displacement,
instead of using Convolutional Neural Networks, the authors use
a physically motivated parameterisation in Fourier space, defined
by an overall amplitude and a band-pass filter applied to the
gravitational potential for a total of only 3 parameters, which
respects the translational and rotational invariance of the prob-
lem. Training of the parameters of this model is done by either
minimising the Mean Square Error (MSE) on the power spectrum
or on the density field between a reference simulation and a fast
simulation ran from the same initial conditions. With this sim-
ple, yet powerful, scheme the authors can emulate to within 5%
accuracy the Illustris-3 simulation from only a 10 step FastPM
simulation.

In one of the first works applying deep learning to N-body sim-
ulations, He et al. (2018) proposed a model based on a 3D convolu-
tional U-Net (see Subsection 3.2) that learned to predict full non-
linear particle displacements given as an input analytic Zel'dovich
Approximation (ZA) displacements (which corresponds to a sin-
gle step of a FastPM algorithm). The 3D CNN takes as inputs a
3-channel 3D field providing this ZA displacement field sampled
at the initial particle positions, and outputs the final displacement
vector, still as a 3-channels 3D field. The model is then trained
by Mean Squared Error loss on the reference displacement field
provided by a FastPM simulation. An important realisation from
that work was that a 3D CNN was able to accurately model this
displacement field. Figure 40 illustrates the approximation error
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Figure 40. Illustration of learned displacement field in an N-body simulation from He et al. (2018). The first column is the reference simulation (FastPM), the second column shows
a simple linear displacement (ZA), the third column shows a second order Lagrangian Perturbation Theory displacement (2LPT) and the last column shows the output of the 3D
U-Net (D3M). The top row shows final particle positions, the bottom row shows the final displacement field. The colour scale shows the error in position or displacement vectors

between each approach and the reference FastPM simulation.

of this method (right column) compared to other fast approxima-
tions for the displacement field. It is found to be significantly more
accurate than analytic solutions.

With a similar model, Giusarma et al. (2019) showed that it was
possible to learn the residual displacements between a ACDM N-
body simulation and a simulation with massive neutrinos. They
used a modified version of D*M to learn this residual displacement
at z = 0 between the two sets of simulations, and found excellent
results down to k < 0.7h Mpc™.

Upsampling the displacement field from a low-resolution sim-
ulation: Recognising that upsampling the displacement field is
equivalent to increasing the number of particles in a simulation,
Li et al. (2020a) proposed a Super-Resolution technique based on
a conditional GAN directly inspired from a StyleGAN2 (Karras
et al. 2019) architecture. The generator takes as an input a low-
resolution displacement field, and outputs an upsampled high-
resolution displacement field. This approach achieves impressive
results up to an upsampling factor of x8 translating into a direct
computational speedup of a factor x1000 in a setting where the
goal would be to produce a 100k~ Mpc simulation with 512* par-
ticles. A visual illustration of this model is shown on Figure 41
where the rightmost panel is the output of the model. As a fur-
ther extension of this approach Ni et al. (2021) trained a similar
Lagrangian conditional GAN to model not only displacements but
also velocities, yielding a full phase-space information that a real
N-body simulation would produce. They further tested this model
to demonstrate accurate matter power spectrum recovery up to
within 5% up to k > 10 h~' Mpc for an upsampling factor of
x8 of a 100 h~! Mpc box, and validated the recovery of halo and
sub-halo abundance.

Density field models The first method for simulation super-
resolution, proposed by Ramanah et al. (2020), relied on a 3D
Convolutional WGAN with a generator taking as inputs the
density field from a low-resolution simulation run and a high-
resolution set of initial conditions, and tasked with outputting
a high-resolution final density field. The 3D convolutional dis-
criminator compared the high-resolution density fields from the
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Figure 41. Illustration of N-body simulation super-resolution from Li et al. (2020a)
showing from left to right, the Low-Resolution (LR) input, High-Resolution (HR) target,
and Super-Resolution output of the model. The bottom row is a zoom-in on the region
marked A.

full simulation to the generator output. With this approach, the
authors were able to upsample by a factor of 2 the resolution of
the final density field, while reproducing faithfully a number of
field properties including the power spectrum, the density contrast
probability density function, and the bispectrum. This upsampling
ratio represented a computational speedup of about x11 for a 1
h~'Mpc and 5127 particles simulation. More recently, Schaurecker
et al. (2021) proposed a similar model acting directly at the level
of the density field, but only using the low-resolution final den-
sity field as an input (without needing the high-resolution initial
conditions of Ramanah et al. 2020).

6.1.2. N-body emulation by deep generative modelling

All of the models from the previous section had the particularity of
trying to model the residuals compared to a physical model instead
of completely supplanting the physical simulation. In this section,
we now cover the works that have taken the approach of trying to
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Figure 42. Sequential generation and upsampling strategy of the scalable GAN for
N-body modelling presented in Perraudin et al. (2019a) scaling up to 2562. The left illus-
tration shows how the sequential generation of a large volume would proceed. The
right plot illustrates the proposed architecture where the generator is conditioned on
both neighbouring patches, and on the lower resolution patch, which at sampling time
would be generated by a separate GAN trained on coarser volumes. Distribute under
the Creative Commons CC BY licence (http://creativecommons.org/licenses/by/4.0/).

learn from scratch the entire simulation using a Deep Generative
Model.

A number of works started to apply to the emulation of cosmo-
logical fields the new Deep Generative Models that were gaining in
popularity at the time, and especially GANs. In the first instance of
such an application, Mustafa et al. (2019) applied a conventional
DCGAN to the modelling of weak-lensing convergence maps and
demonstrated that the model was able to accurately reproduce a
number of statistics of these fields, including their power spectra
and Minkowski functionals. Shortly after, Rodriguez et al. (2018)
presented a similar application of using a DCGAN to model slices
of N-body simulations with results demonstrating that these mod-
els were able to capture most of the relevant statistics of the cosmic
web.

These early works on generative modelling for cosmologi-
cal fields were quickly confronted to the difficulty of building
high quality models for very large or even 3D fields. Perraudin
et al. (2019a) explored more in depth the limitations of simple
DCGANSs for generating large 3D N-body volumes and high-
lighted two key strategies enabling high quality results in this set-
ting: 1. generating the field by patches, 2. using a multi-resolution
approach based on a Laplacian pyramid. To generate N-body
meshes of size 256, their proposed model uses 3 independent
GAN:Ss that are trained on 3 increasingly high data resolution (32°,
643, 256°). The first model trained on the coarsest resolution is a
conventional DCGAN while the other models are conditioned on
lower resolution inputs. In addition, the GANs are made condi-
tional on the neighbouring patches in the simulation, which allows
at inference time to generate a large volume patch-by-patch in a
sequential fashion, thus avoiding the need of storing the entire
volume in GPU memory. Figure 42 illustrates the proposed strat-
egy, which is shown in the paper to be able to recover both the
power spectrum and peak counts to satisfying levels whereas a
non-multiscale approach fails significantly.

Additional works have investigated other possible improve-
ments to GANs for N-body simulations. In particular Feder et al.
(2020) proposed modelling the latent space prior of a DCGAN
with a heavy-tailed distribution instead of a Gaussian. In that
work, using a Student’s t-distribution is shown to improve the
model’s ability to capture the sampling variance of the peaks in the
dark matter distribution, and overall improves power spectrum
recovery on all scales.

These generative models of the matter distribution start to
become useful when they are made conditional on some external
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parameters, for instance cosmological parameters or redshifts. The
GAN model proposed in Feder et al. (2020) was for instance made
conditional on redshift by simple concatenation of the conditional
variable to the latent vector of the GAN, allowing the authors
to generate volumes at intermediate redshifts, which would be
useful to create lightcones. Perraudin et al. (2020) proposed a
conditional GANs to produce 2D weak-lensing mass-maps con-
ditioned on (o3, €2,,) through a remapping of the latent vector
of the GAN by a function that rescales the norm of that vector
based on the conditional variable. More recently, Wing Hei Yiu,
Fluri, & Kacprzak (2021) extended that work to the sphere, using
a DeepSphere (Perraudin et al. 2019b) graph convolutional archi-
tecture, to emulate the KiDS-1000 survey footprint as a function
of (o3, ).

While conditional GANs could be useful as emulators, they
however cannot be directly used for cosmological inference due to
the fact that GANs do not possess tractable likelihoods. One sig-
nificantly different approach to generative modelling of the dark
matter distribution proposed in Dai & Seljak (2022) relies on a
Normalising Flow approach instead of a GAN to model explic-
itly the conditional distribution p(x|0) where x is the dark matter
distribution, and 6 are cosmological parameters. Once trained,
such a model can directly be used as the likelihood function
of the high-dimensional data in a Markov-Chain Monte Carlo.
In this paper, the authors introduce a Translation and Rotation
Equivariant Normalising Flow (TRENF) model. It builds an n-d
normalising flow based on learning filters and performs convo-
lutions in Fourier space which impose by construction trans-
lation and rotation equivariance. The authors demonstrate that
this approach accurately captures the high-dimensional likelihood
of dark matter density fields and that it can be used not only
for generating these fields, but also for inferring cosmological
parameters.

6.1.3. Finding dark matter halos

In the pipeline needed to go from N-body dark matter simulations
to observable galaxy distributions, a typically essential step is the
identification of dark matter halos, which can then be populated
with galaxies under a variety of techniques (e.g. HOD or SHAM).
In this section, we review the various approaches which have been
proposed to go from the dark matter density field to dark matter
halos.

One of the first approaches to learn this connection was pro-
posed in Modi, Feng, & Seljak (2018), and assumed a shallow
neural network mapping between the local 3D dark matter den-
sity and ‘halo mask’ and ‘halo mass’ fields. The binary halo mask
field was essentially used to model whether a given voxel actu-
ally contained a halo, while the halo mass field was predicting in
each voxel a likely total halo mass. Given this model, a halo field
could be recovered by multiplying these two outputs of the neu-
ral network. The actual neural network was based on a simple
MLP taking as inputs a 3 x 3 x 3 voxel region of the dark mat-
ter density field itself, the field smoothed on a given scale, and the
difference between the field smoothed on two difference scales.
The authors find that the predicted halo mass field exhibits over a
95% correlation with the true field up to k= 0.7AMpc™". Perhaps
most interestingly, this model provided effectively a differentiable
mapping between dark matter and halos, a differentiable halo
finder, and the authors demonstrated that this mapping could
be used in a reconstruction scheme to infer initial conditions
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Figure 43. Illustration of an application of differentiable neural mapping between the
dark matter density and dark matter halo fields from Modi et al. (2018). The top row
shows the initial conditions dark matter field, final dark matter field (at z=0), and
the dark matter halo field obtained by a FoF halo finder. The bottom row shows the
result of a reconstruction by gradient descent of these initial conditions, using a neural
network to provide the mapping between the final density field and the halo field.

from a halo field by gradient descent through the neural net-
work and a differentiable N-body simulation as illustrated on
Figure 43.

Charnock et al. (2019) proposed a different approach to the
same problem, building a probabilistic model based on a Mixture
Density Network for the halo mass distribution in each voxel con-
ditioned on the underlying dark matter density. The overall goal of
the authors in that paper was to make the model minimalistically
parametric while respecting the important physical properties of
the problem, namely that the halo bias should be globally rota-
tional and translational invariant. To reach this goal, instead of
relying on standard CNNs, the authors proposed a model they
refer to as the Neural Physical Engine (NPE), which applies a
set of convolutional kernels parametrised to exhibit by design the
desired symmetries. This leads to a reduced number of parame-
ters compared to a similar 3D CNN. They apply this NPE on the
dark matter density field, and use its output to condition a simple
Gaussian MDN tasked with representing the local halo mass dis-
tribution. They demonstrate that a minimal model with only 17
parameters is able to accurately capture the halo mass distribution
and its dependence on local environment, and further present an
application where the model is used as part of a Bayesian recon-
struction of initial conditions in a simulation from a given halo
distribution.

Going in a deeper direction, a number of papers have looked
into identifying dark matter halos, not from Eulerian space, but
directly as Lagrangian patches at the level of the input density
field of the simulation using a deep CNN model. Berger & Stein
(2018) introduced the first deep CNN model to identify dark mat-
ter halos with this approach, relying on V-net model illustrated in
Berger & Stein (2018). They used as a training set simulated ini-
tial density fields of size 128% with a 1 Mpc voxel resolution,
along with a binary 128° segmented map indicating the posi-
tion of Lagrangian patches identified as proto-halos by the Peak
Patch semi-analytic code (Stein, Alvarez, & Bond 2019). The net-
work is then trained with a binary classification loss to predict
the presence or not of a halo in a given voxel. To build an actual
halo catalog given a segmented volume outputted by the trained
model, the authors then use a hierarchical Lagrangian halo-finding
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procedure that ultimately returns a list of halos. This entire proce-
dure is found to lead to a halo mass function and power spectrum
within 10% of the ground truth simulation. As a variation of this
approach, Bernardini et al. (2019) proposed to replace a binary
segmentation by a regression problem, where the target value cor-
responds to a normalised distance to the centre of the halo, leading
to similar performance but with a smaller model.

In related work, Lucie-Smith et al. (2020), Etezad-Razavi et al.
(2021) propose to use a 3D CNN to predict from a initial condi-
tions centred on the location of halos, the mass of the collapsed
halos at z=0. They use these models to investigate the rela-
tive importance of various properties of the initial conditions for
halo formation. Lucie-Smith et al. (2020) reports for instance that
removing anisotropies in the initial conditions does not signifi-
cantly affect the masses predicted by the model, hinting that initial
shears may not be a significant factor in the halo formation pro-
cess. Etezad-Razavi et al. (2021) reports that velocity information
becomes more important to accurately predict masses at lower
values of A,.

6.1.4. Painting baryons on N-body simulations

As a way to bridge the gap between full hydrodynamical sim-
ulations and cheaper Dark Matter Only (DMO) simulations, a
number of works have investigated the possibility of ‘painting’
baryons on top of DMO simulations.

A first category of papers proposed to model this mapping
between dark matter density and baryonic fields in a probabilis-
tic fashion to account for the inherent uncertainty. In the first
work to attempt such modelling, Troster et al. (2019) investigated
the use of both conditional VAEs and conditional GANs to learn
from 2D dark matter density slices a probabilistic map to 2D
thermal Sunyaev-Zeldovich (tSZ) maps, which capture the elec-
tron pressure. They found excellent agreement with ground truth
simulations, at different redshifts, indicating that this approach
was very promising, but did report a tradeoff of GANs leading
to more accurate results but being harder to train and less stable
than VAEs.

More recently, Bernardini et al. (2021) explored the use of a
conditional WGANSs to learn a similar mapping to predict gas
and H; density on 2D maps. To achieve the generation of high-
resolution and large maps, the authors adopt a multi-resolution
strategy in which a U-Net generator outputs maps at 3 differ-
ent resolutions that the critic compares to similarly downsampled
versions of the target fields. This strategy allows them to success-
fully train the model on images of size 5122, but after training this
purely convolutional model can be applied on much larger fields.
The authors report accurate H; power spectra to within 10% accu-
racy up to the 10 kpc scales while being able to map simulation
boxes of 100 4~ Mpc on the side.

Extending these conditional generative approach to 3D fields,
Horowitz et al. (2021) proposed a conditional VAE with a cus-
tomised U-Net architecture. Contrary to a standard conditional
VAE, this model features skip-connections between the condi-
tional branch (the dark matter encoder) and the generative branch
(the hydrodynamics decoder) which create a U-Net structure. It
remains however probabilistic thanks to the variational bottleneck
block which contains stochastic latent variables capable of cap-
turing the aleatoric nature of the mapping. The resulting model
inherits from the stability and robustness of VAEs but also bene-
fits from this U-Net structure to enable high-resolution mapping.
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Again, the model is kept strictly convolutional to make it insensi-
tive to the size of the input field, so that it can be applied on larger
volume than it is trained on. This model can also be made condi-
tional on redshift and the authors demonstrate the possibility of
generating lightcones with this approach.

A second class of papers propose similar but deterministic
mappings, using 3D U-Nets trained to regress particular bary-
onic fields. Thiele et al. (2020) proposed a 3D U-Net to learn a
similar mapping, although no longer probabilistic, between the
3D dark matter field and electron density, momentum, and pres-
sure. This work reports two significant challenges in learning this
mapping in 3D, one being the sparsity of interesting voxels (as
in 3D most of the voxels are in empty regions), and the other
being the high dynamic range of the fields to model. They address
these challenges by biasing the loss function towards high den-
sity regions, and applying range-compression schemes. Overall
they report better agreement with the reference simulations com-
pared to semi-analytical models. In similar work, Wadekar et al.
(2020) trained a U-Net to output H; density maps and again
reported better quality results than a standard HOD approach,
while Harrington et al. (2021) used a U-Net to predict hydrody-
namical fields (density, temperature, velocity) subsequently used
to model Lya fluxes with a physical prescription. Zhang et al.
(2019) proposed a two-step approach to map the dark matter field
to a 3D galaxy distribution, where a deep 3D CNN would predict
a mask of the likely non-empty voxel, and a second CNN would
regress the number of galaxies in these regions. They find that
their CNN model is able to predict a galaxy distribution recov-
ering the expected power spectrum to within the 10% level up to
k=10h Mpc™! scale.

Finally, a singular approach was proposed in Dai & Seljak
(2020) which extended the PGD method of Dai et al. (2018)—
mentioned in the previous section—to parametrise a mapping
between a dark matter only simulation and various fields acces-
sible in hydrodynamical simulations using a combination of par-
ticle displacements and voxel-wise non-linearities. This method,
dubbed Lagrangian Deep Learning, reused the same Fourier-
based parametrisation to displace particles from a dark matter
only simulation (e.g. FastPM), thus using a very small number
of parameters (order 10) and providing translation and rota-
tion equivariance, before painting them on a 3D mesh and
applying a non-linear transform. The few parameters can be fit-
ted by gradient descent on a single pair of dark matter only
and hydrodynamical simulations. This scheme was successfully
demonstrated to reproduce a range of maps from IllustrisTNG,
including stellar mass distribution and electron momentum and
pressure.

6.2. Deep learning for cosmological inference

In this section we will review in particular how emulators and
Likelihood-Free Inference techniques are enabling the inference
not only of cosmological parameters but also of cosmological

fields.

6.2.1. Field-level cosmological constraints

Weak Gravitational Lensing It was realised early on that given
access to simulations to act as a training set, neural networks
can be used to extract cosmological information from high-
dimensional data such as maps of weak gravitational lensing maps.
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The first example, presented in Schmelzle et al. (2017), demon-
strated that a CNN-based classification model could discriminate
between different discrete cosmological models, especially along
the o5 — ,, degeneracy that conventional 2pt correlation func-
tions are unable to resolve. Similar results in Peel et al. (2019),
Merten et al. (2019) showed that a CNN classifier was able to dis-
tinguish between ACDM, modified gravity and massive neutrinos
models from weak-lensing maps, with better discriminating power
than more conventional higher-order statistics such as peak statis-
tics. These results sparked a lot of interest into the potential use
of CNNs to extract cosmological information from weak-lensing
surveys, which resulted in a number of subsequent publications
with the ultimate goal of yielding proper Bayesian posteriors on
cosmological parameters.

Going beyond a classification task between discrete models, a
second class of papers (Gupta et al. 2018; Fluri et al. 2018; Ribli
et al. 2019b) built CNN regression models where the network is
tasked with directly predicting (o3, £2,,), either using a Maximum
Absolute Error (MAE) loss (Gupta et al. 2018; Ribli et al. 2019b),
or Gaussian-parameterised negative log likelihood loss (Fluri et al.
2018). It is important to note, as reported in all these papers, that
the output of the network trained for regression will not be an
unbiased estimator for the cosmological parameters, but should
be interpreted as a low-dimensional summary statistic, which can
then be used for inference in a second step, independent from
the network training. To retrieve cosmological parameters, these
papers assume a Gaussian likelihood on the output of the network
and characterise the mean and covariance of that likelihood on a
set of simulation, similarly to what is conventionally done for peak
count statistics or other Higher-Order Statistics without an ana-
Iytic likelihood. With this approach, all these papers reported the
ability to extract more information than a 2pt function analysis,
even on realistically noisy data, with Ribli et al. (2019b) reporting
a factor of ~2 smaller contours on (o3, 2,,) in a Euclid or LSST
setting.

Building on these promising results, the next phase of papers
deployed these approaches to actual survey data. Fluri et al.
(2019) followed a similar strategy to Fluri et al. (2018) and
trained a ResNet model, on a suite of tomographic lensing sim-
ulations mimicking the KiDS-450 survey and spanning a range
of (03, 2, A1) values, where A, is the amplitude of the intrin-
sic galaxy alignment signal. This study found constraints broadly
consistent with the fiducial 2pt function analysis of KiDS-450
(Hildebrandt et al. 2017) but when compared with an internal
power-spectrum analysis yielded a 30% tighter posterior. In the
most recent extension of that work, Fluri et al. (2022) performed
a wCDM analysis of the KiDS-1000 weak-lensing maps including
a large number of refinements. In particular, they used a spher-
ical CNN architecture, DeepSphere (Perraudin et al. 2019b), in
order to process spherical fields and extended their simulation
suites to include a baryonic prescription, and left the dark energy
equation of state parameter wy free to vary along with 5 other
cosmological parameters. They find again broad agreement with
KiDS-1000 wCDM, and internally consistent results with a power
spectrum analysis, but with only a meagre 11% improvement on
S8 constraints. The most likely reason for the limited constrain-
ing power of the CNN analysis comes from the low-resolution of
maps used in the analysis (HEALPix nside=1024), but available
non-Gaussian information content when baryonic systematics are
taken into account is also an open question discussed below.
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Jeffrey, Alsing, & Lanusse (2021) performed an analysis of
the DES Science Verification (SV) data using a slightly differ-
ent approach to previous works. Instead of training a CNN for
regression, the authors introduced an information loss which
explicitly trains the network to compress the input lensing maps
into a low dimensional (asymptotically) sufficient statistic, that
can further be used for inference with a Likelihood-Free Inference
approach. More specifically, they used a Variational Mutual
Information lower bound to train the model, which relies on using
a Normalising Flow (NF) to approximate the posterior distribu-
tion on cosmological parameter from the low dimensional output
of the convolutional compressor network, and training both mod-
els jointly as to minimise the negative log likelihood of the NF
(Figure 30). Once trained under this information loss, the model
can be applied to data, and a robust estimate of the posterior
was achieved by Neural Likelihood Estimation using the pyDELFI
package (Alsing et al. 2019). Compared to previous papers, this
approach has asymptotic optimality guarantees, and does not rely
on any Gaussian assumptions for the likelihood of the summary
statistic. In this paper, the authors found consistent but tighter
constraints with this approach compared to a power spectrum
analysis, but the constraints remained very large due to the small
size of the SV dataset.

One question remains unclear, however, regarding the amount
of additional information deep learning can extract over the power
spectrum or simpler higher-order statistics, when systematics like
baryonic effects are taken into account. Lu, Haiman, & Matilla
(2022) investigated this question using a simple baryonic cor-
rection model (BCM Arico et al. 2020) for dark matter only
simulations and trained a deep CNN to infer both cosmology
and baryonic parameters from simulated lensing maps under a
realistic HSC-like setting. The authors find that using a CNN
instead of a power spectrum (100 < ¢ < 12000) improves the
constraining power on (£2,,03) (in terms of 1-sigma area) by
a factor of a few if the astrophysical parameters are kept fixed.
However, the improvement degrades significantly when marginal-
ising over astrophysical parameters. Indicating that there is some
amount of non-Gaussian information left even after marginalising
on baryons, but how sensitive are the resulting constraints to the
specific baryonic model assumptions is uncertain.

With the success of these methods, several papers have
attempted to introspect the CNN trained on weak-lensing maps,
to try to identify or recognise what features of the data are being
used to extract the cosmological information. Ribli et al. (2019a)
proposed using at the first convolutional layer of the model a large
7 x 7 kernel, and recognised after training that this first layer was
learning a kernel close to a Laplace operator and concluded that
this operator allowed the network to be sensitive to the steepness
of the peaks in convergence maps. Building on that insight, the
authors handcrafted a new summary statistic based on histograms
of Sobel-filtered lensing maps, which are sensitive to peak steep-
ness. This simple statistic was found to outperform a deep CNN
on noiseless data, while deteriorating in the presence of noise, but
still outperforming conventional peak counts.

Using a different methodology, Matilla et al. (2020) performed
a similar study using saliency methods to identify the features
of the lensing maps relevant to the cosmological inference task.
They found that in all cases, the most relevant pixels in the
input maps were the ones with extreme values. In noiseless maps,
regions with negative convergence accounted for the majority of
the attribution, while on realistically noisy maps, the high value
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convergence regions (positive peaks) account for the majority of
the attribution.

Large-Scale Structure Although not as actively researched, cosmo-
logical information can also be extracted from the galaxy distribu-
tion with deep learning. This was first illustrated by Ravanbakhsh
etal. (2017) which used a 3D CNN to regress cosmological param-
eters (o, 2,,) from the 3D dark matter density in a suite of
N-body simulations. Although not directly applicable to actual
surveys, this work demonstrated that convolutional approaches
where able to retrieve cosmological information from the 3D
large-scale structure. Addressing the same problem, but with the
computational aspects of training 3D CNNs on large-scale High
Performance Computing (HPC) systems in mind, Mathuriya et al.
(2018) presented a similar result on cubes of size 128%, and show-
casing distributed training on 2048 and up to 8192 CPU nodes on
the NERSC Cori machine.

Going further in that direction, Ntampaka et al. (2019) pre-
sented a 3D CNN model acting this time on the 3D distribution
of galaxies, with spectroscopic surveys in mind. This work relied
on a suite of 40 dark matter simulations, populated with galaxies
with a range of various HOD models (15 different models) as a
way to marginalise over uncertainties on the galaxy-halo connec-
tion. Galaxies in a given comoving volume were painted on 3D
slabs of size 550 x 550 x 220 h~!Mpc to estimate a galaxy density
field. A 3D CNN was then tasked with outputting (o3, 2,,) and
the model was trained by Maximum Absolute Error. The authors
also proposed a variants on that model, with an MLP branch tak-
ing directly as an input the power spectrum of the volume, and
combined or not with the CNN branch to provide the cosmo-
logical parameter estimates. The main takeaways of that paper
were that the CNN was able to extract more information than the
power spectrum alone, and that the model trained in this fashion
generalised well to unseen HOD models.

Robustness to Baryonic Effects Because deep learning-based cos-
mological inference schemes remain opaque, one important ques-
tion is how to robustify such an analysis to modelling uncertainties
and systematics. Just like in modern 2 point function analy-
ses, one of the most prominent questions is how to account for
uncertainties in Baryonic physics.

Answering this question is one of the motivations for the
Cosmology and Astrophysics with Machine-learning Simulations
(CAMELS) suite (Villaescusa-Navarro et al. 2021b), a set of about
4000 simulations of 25(h~'Mpc)® volumes which break down
into 2000 dark matter only simulations, 1000 hydrodynamical
simulations following the IllustrisTNG model, and 1000 hydro-
dynamical simulations using the SIMBA model (Davé et al. 2019).
Each of these 2 different hydrodynamical sets of simulations varies
not only cosmological parameters (£2,,, 0g) but also astrophysical
parameters, namely (Asy1, Asnz) which regulate supernova feed-
back and (Axgn1, Aagnz) which parameterise AGN feedback. This
suite of simulations therefore not only allows the study of the
dependency between cosmological parameters and a given set of
astrophysical systematics, but also can be used to check the robust-
ness to an assumption of a particular baryonic feedback model
(IlustrisTNG or SIMBA). On this dataset, the authors demon-
strated that not only does the total matter distribution contain sig-
nificant cosmological information accessible by deep neural net-
works, but also baryonic fields such as the H; density (Villaescusa-
Navarro et al. 2021a), and that even individual galaxies bare some
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imprints of cosmological parameters (Villaescusa-Navarro et al.
2022). The question however is: can this information be retrieved
under the uncertainties of the baryonic model?

In Villaescusa-Navarro et al. (2020), the authors illustrated on
an analytically tractable toy model that a Neural Network can
be trained to optimally marginalise over baryonic effects as long
as the training data left the associated parameters free to vary
according to a given prior. While promising, this result didn’t nec-
essarily imply that this implicit marginalisation would be robust to
a change in baryonic model. To investigate precisely this question,
Villaescusa-Navarro et al. (2020) trained a CNN on 2D projected
density fields from the CAMELS dataset to regress (£2,,, o). They
showed that models trained on IustrisTNG lead to almost unbi-
ased results on SIMBA and vice-versa, implying that in the process
of learning a summary statistic that marginalises over baryonic
effects, the neural networks are discarding the part of the signal
affected by baryons, and are therefore no longer extremely sen-
sitive to the details of the modelling of those effects. This result
remains of course limited, but is very encouraging for the analysis
of data.

6.2.2. Dark matter substructures from strong gravitational
lensing

In previous sections we have described how deep learning has sig-
nificantly impacted the detection and characterisation of strong
gravitational lenses. Strong lensing systems can be used as well to
constrain the substructure of dark matter on extended arcs which
contains a wealth of information about the properties and distri-
bution of dark matter on small scales and, consequently, about
the underlying nature of the dark matter particle. The information
can therefore be used to distinguish between various dark matter
models—warm or cold dark matter for example.

However, probing this effect is challenging since the likelihood
function for realistic simulations of population-level parameters
is intractable. Alexander et al. (2020) followed a simple approach
which consists in converting the inference problem into a clas-
sification of CNNs in classification mode to distinguish various
types of dark matter models. They show they can reach AUC
scores above 90%, for images with no substructure, spherical sub-
halos, and vortices on idealised simulations. Varma, Fairbairn, &
Figueroa (2020) also used a CNN for multi-class classification in
seven different categories corresponding to different lower mass
cut-offs of the sub-halo mass function. They report being able
to correctly identify the lower mass cut-off within an order of
magnitude to better than ~90% accuracy.

Other works have attempted to go a step beyond by estimat-
ing the parameters describing the dark matter substructure in
a regression mode using simulation based inference with deep
learning. The first work exploring this is by Brehmer et al. (2019).
The authors characterise substructure with a set of parameters
and show, in a proof-of-concept application to simulated data,
that neural networks can be trained to accurately estimate likeli-
hood ratios associated to the dark matter substructure parameters
(Figure 44). They conclude that ~100 strong lenses might be
enough for characterising the abundance of substructure down to
~10%. Coogan, Karchev, & Weniger (2020) also used a likelihood-
free approach to infer posterior distribution of the mass and posi-
tions of sub-halos in simulated systems. Vernardos, Tsagkatakis, &
Pantazis (2020) applied a similar approach combining a simulator
based on Gaussian Random Fields for the potential but combined
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with images of real galaxies for the lensed source and show they
can also constrain the substructure parameters.

6.2.3. Reconstructing cosmological fields

Applications in cosmology also go beyond cosmological parame-
ter estimation, and an increasingly large number of works explore
applications of deep learning for inferring latent cosmological
fields from observations.

Weak-Lensing Mass-Mapping One active research question in
weak gravitational lensing is the reconstruction of the matter dis-
tribution that gives rise to the measured lensing effect, a task
known as mass-mapping. This problem is made particularly dif-
ficult by the noisy nature of the observations (intrinsic galaxy
ellipticities being much larger than the weak gravitational shear)
and the need to invert a linear operator mapping shear to pro-
jected mass (also known as convergence) which becomes ill-posed
in the presence of survey masks. This is therefore an instance of an
ill-posed inverse problem, which does not have any unique solu-
tion, in the sense that different mass-maps can lead to a shear
signal equally compatible with the data. For these problems, the
hope of Deep Learning approaches is that they can learn, implic-
itly or explicitly, a prior on the signal to recover from training
data, and use that prior to solve the inverse problem in an optimal
fashion.

The first class of methods, explored in Shirasaki, Yoshida, &
Tkeda (2019), Shirasaki et al. (2021), used a conditional adversar-
ial network adapted from the pix2pix model (Isola et al. 2016)
for image-to-image translation. In this approach, a first network
with a U-Net structure is tasked with taking a noisy convergence
obtained by a rough direct inversion of the shear field as an input,
and outputting an estimate of the true convergence map. To train
this denoiser, a second network is introduced to act as a discrim-
inator, taking as an input both noisy and denoised convergence
maps, coming either from the denoiser or from the training set,
and outputting a probability between 0 and 1 of the denoised
image being real. The model is then trained with a combina-
tion of a standard adversarial loss and an 11 loss between the
recovered denoised mass-map and the truth from simulations. It
is to be noted here that this adversarial model is not a generative
model, the denoiser does not take random variables as an input
and is therefore deterministic. Instead the adversarial loss can be
understood as a learned similarity metric to compare recovered
to true map. Training such a model typically requires a set of
ray-traced lensing simulations, that are corrupted to include the
same noise properties and masks as present in the data. Shirasaki
et al. (2021) generated mock HSC observations including photo-
metric redshift uncertainties, shape measurement uncertainties,
realistic galaxy ellipticity noise and distribution on the sky, and
actual HSC survey masks. On simulations the authors find that
about 60% of the peaks identified on the denoised maps have
significant clusters counterparts, against about 85% of positive
matches on true maps, highlighting that the recovered map still
correlate well with real structures, and the authors further show
that the 1-point statistics of the recovered map shows stronger
cosmological dependence than the noisy maps, hinting at interest-
ing applications in constraining cosmological parameters. While
this approach provides empirically good results, one drawback of
this pix2pix training is that the recovered map does not have a
clear Bayesian interpretation. As we will see below, subsequently
developed techniques abandon this effective adversarial training
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Figure 44. Illustration of lensed systems and the corresponding likelihood ratio maps estimated with simulation based inference and deep learning. The black crosses show the

true values. Figure from Brehmer et al. (2019).

but gain a proper Bayesian interpretation of the output of the
models.

In Jeffrey et al. (2020), the authors introduce a method, called
DeepMass, using a similar Unet architecture but trained under a
simple Mean Squared Error loss between true convergence map
and output from the Unet. As highlighted by the authors, a regres-
sion model trained under an MSE implicitly learns to predict the
mean of the posterior distribution of the target given the input. In
the present case, the authors generate a suite of ray-tracing lens-
ing simulations matching the DES Science Verification setting,
the noiseless convergence maps from these simulations provide an
implicit prior, while the simulated shear observations (including
realistic noise and masks) provide an implicit likelihood. By train-
ing the model to reconstruct the true convergence given simulated
shear data under an MSE loss, the model will therefore learn to
output the mean posterior convergence map, under the implicit
prior and implicit likelihood that are provided by the training set.
In this DES SV setting, the authors demonstrate that this approach
leads to an 11% improvement in MSE evaluated on simulations
compared to a standard Wiener filter approach.

While Jeffrey et al. (2020) had the benefit of providing a
Bayesian understanding of the network output, it did not provide
any sort of uncertainty on the recovered map, which makes the
interpretation and scientific exploitation of these results difficult.
To overcome these limitations, Remy et al. (2022) introduced an
approach allowing to sample from the full posterior distribution of
the mass-mapping problem. They proposed to use a similar U-Net
architecture, not to directly estimate the convergence map, but to
learn from simulations a generative prior on convergence maps
using a Denoising Score Matching technique (Song & Ermon
2019). With this approach, it can be shown that a neural network
trained as a Gaussian denoiser under a simple MSE loss will actu-
ally learn the score of the data distribution, that is, the gradient
of the log likelihood of the data. Once trained on simulations,
this U-Net gives explicit access to the prior. The authors show
that it is possible to combine this learned prior with an explicit
data likelihood in an Hamiltonian Monte Carlo sampling proce-
dure to sample from the full posterior distribution of the problem.
Figure 45 illustrates on the bottom row posterior samples achieved
with this method on a simulation of the HST/ACS COSMOS field,
compared to the ground truth (top left). Most interestingly, it is
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shown that the mean of the posterior samples indeed converge to
the same solution as the DeepMass estimate.

Initial Conditions Reconstructions One particularly interesting
problem for the analysis of galaxy surveys is the reconstruction of
the initial density field from the observed Large-Scale Structure.
This can for instance be used to refine Baryonic Acoustic
Oscillations (BAO) measurements (e.g. Schmittfull, Baldauf, &
Zaldarriaga 2017), or part of a Bayesian forward modelling infer-
ence scheme (Seljak et al. 2017).

In a first example of applying deep learning to this problem,
Mao et al. (2020) proposed a 3D CNN trained on N-body sim-
ulations to recover the initial density field at z=10 given the
final density field at z = 0 under a density weighted mean squared
error loss. They find that their convolution model is capable of
beating a standard linear reconstruction on scales smaller than
k < 0.2h Mpc™!, but under performs on larger scales. Interestingly
they find that their learned inversion can extrapolate to some
extent to other cosmological parameters; a model trained on
WMAP7 cosmology is capable of reconstructing initial conditions
on WMAPS5 simulations that lead to a slightly biased BAO sig-
nal, but still significantly different from the WMAP7 signal of the
training data.

Going beyond a direct inversion method, Modi et al. (2021a)
proposed an iterative reconstruction scheme based on Recurrent
Inference Machines (RIM, Putzky & Welling 2017). This approach
can be thought of as a learned iterative reconstruction algorithm.
At each iteration a recurrent neural network proposes an update
of the current reconstruction based on the knowledge of previous
iterations and on the gradient of an explicit data likelihood term.
In the absence of this neural network, the algorithm would result
in a standard gradient descent scheme leading to a Maximum
Likelihood Estimation of the initial conditions. By training the
Neural Network to minimise at each iteration the Mean Squared
Error between the current solution and the true initial conditions,
the network will learn both an implicit prior, and a fast infer-
ence scheme to minimise the number of updates needed. The
result will therefore be a fast convergence towards the mean poste-
rior solution. Most interestingly, in order to compute this explicit
likelihood, a differentiable forward model is needed, that is, in
this case an N-body simulation. The authors make use of the
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Figure 45. Illustration of weak-lensing mass-map reconstructions in a simulated COSMOS survey setting with the posterior sampling method of Remy et al. (2022) and the
DeepMass direct posterior mean estimation method of Jeffrey et al. (2020). As can be seen, individual posterior samples (bottom row) are visually similar to a real convergence
map (e.g. ground truth at the top left) but exhibit variability on structures not strongly constrained by data (e.g. outside of the survey region marked by the white contours). The
top row illustrates that the DeepMass estimate indeed recovers the Bayesian posterior mean.

FlowPM TensorFlow-based fast N-body code (Modi, Lanusse, &
Seljak 2021b) for this likelihood which becomes just a layer within
a neural network (Figure 46). The authors propose to initialise
the reconstruction at the standard linear reconstruction, and show
that in only 10 iterations this method yields a better solution than
an iterative reconstruction based on 400 iterations of an LBFGS
minimiser.

Summary of Deep learning for Cosmology

1. Emulation

e The main motivation for using deep learning in simula-
tions is to bypass some of the expensive computational
steps needed to generate large volume and high-resolution
simulations needed to model modern surveys. Applications
have targeted in particular: emulating N-body simulations,
enhancing the resolution of existing simulations (super-
resolution), and learning mappings between the 3D dark
matter distribution and dark matter halos or a range of
hydrodynamical fields.

e Despite many impressive results, these methods have not
yet been used for scientific applications. The main difficulty
is that deep models can only be used within their training
regimes (defined by specific training resolution, specific sets
of cosmological parameters, or specific hydrodynamical run),
and thus it is unclear whether they will bring concrete com-
putational gains when the cost of the training sets are taken
into account.
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Figure 46. CosmicRIM initial conditions reconstruction technique of Modi et al. (2021a)
based on a 3D LSTM recurrent neural network and includes explicitly at each iteration
the gradients of the data likelihood. The plot shows a given ground truth initial condi-
tion field (top left) and associated final field (bottom left), along with the reconstructed
initial conditions (top right) and reconstructed final field (bottom right).

e An alternative class of models, which so far as attracted
limited attention, aims instead for a minimal set of param-
eters, building upon known symmetries and physical insight,
greatly reducing the amount of training simulations needed
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Table 1. Overview of the different deep learning techniques used in the fields of galaxy formation and cosmology, divided by type of

application (see text for details).

Model CNNs| Enc. | Genel BNN| RNN | Trans| GNN
Application
1. Computer Vision Classification ~ Morphology v v
Strong Lenses v
Transients VHH)
Segmentation VR K
2. Galaxy Properties Photoz v’ v’
Structure V¥
Stellar Populations v
Lensing NG v
Physical Processes v *
Dark Matter NG NG NG
3. Discovery Visualization v’ v Vv
Outliers v’ v N g
Laws | | | N
4. Cosmology Emulation N
Cosmological inference | v * ‘ v UF

CNNs: Standard classification and regression Convolutional Neural Networks including modern architectures such as ResNets. Enc: Encoder-Decoder networks
and variants. Gene: Generative Models. BNNs: Bayesian Neural Networks; we also include Mixture Density Networks. RNNs: Recursive Neural Networks. Trans:
Transformers. GNNs; Graph Neural Networks. A blue (red) background indicates supervised (unsupervised) learning. The star symbol highlights applications
which require simulations to train the neural networks. The bracket after the star symbol indicates that the use of simulations is not always mandatory.

and even opening the possibility of inferring these parame-
ters from the data itself.

2. Cosmological Inference

e Deep learning is opening a new way of comparing observa-
tions to theory: 1. it allows for the automatic extraction of
cosmological information from high-dimensional data with-
out requiring analytic summary statistics; 2. Neural Density
Estimation makes it possible to perform Bayesian inference
by leveraging numerical simulations.

e Although in theory a deep learning approach is statistically
sound, it assumes that the simulators provide an accurate
physical model of the observations. Any unaccounted for
systematics may result in biases, which due to the black-
box nature of deep neural networks are difficult to test/
detect.

e A number of papers are starting to apply these methodol-
ogy on data. In weak-lensing, the gains compared to a more
standard power spectrum analysis have remained limited on
current generation surveys when systematics are included
and marginalised over in the analysis.

e A few applications have proposed to perform high-
dimensional inference of cosmological fields (e.g. dark mat-
ter maps, reconstructing initial conditions). These works
however do not yet attempt joint inference of fields and
cosmological parameters.
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7. Final thoughts: Assessing the present and future of deep
learning for galaxy surveys

This final section is devoted to extract some indicators about the
impact that deep learning has had in the analysis of galaxy sur-
veys. We also attempt to highlight some of the key challenges these
methods are facing, which in some cases might prevent or delay
the general deployment of deep learning for scientific analysis.
Some of these challenges have already been highlighted in the pre-
vious sections, but this section tries to extract the most commonly
encountered

7.1. On the penetration of deep learning techniques in
astronomy

We start by questioning what are the deep learning techniques
most commonly used in astronomy and how efficiently the rapid
progresses made in the ML community reach our community. In
the previous sections, we have described different applications of
deep learning making use of a variety of techniques. We sum-
marise in Table 1, the broad type of neural network architectures
used in the four categories of scientific applications we defined in
this review. We have divided the neural network models in seven
big groups. CNNs encapsulates all variants of convolutional neu-
ral networks, from Vanilla to more complex Residual Networks.
The second group contains, generally speaking, image to image
networks such as Encoder-Decoders, Autoencoders but also seg-
mentation specific networks such as Mask RCNNs or YOLO.
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The third family of models are Generative Models which include
Variational Autoencoders, Generative Adversarial Networks and
also Autoregressive models. We then include Bayesian Neural
Networks which allow for uncertainty quantification (Mixture
Density Networks and Flow models are also included in this
category), Recursive Neural Networks and Transformers mostly
suited for sequences. The last group is made of Graph Neural
Networks. The table first shows that applications in astronomy
cover a wide range of deep learning techniques. Although stan-
dard CNNs are the most commonly used—probably because it is
the most established approach and because imaging is the most
common type of data—other more recent models are regularly
applied to astronomical data. On the one side, this reflects the
fact that astronomical data is rather diverse—including images,
but also spectra, time sequences, simulations and observations. On
the other hand, it suggests that the penetration of new ML tech-
niques is efficient. State-of-the-art methods are rapidly applied
to astronomy. This is likely a consequence of the fact that, even
advanced ML methods are becoming increasingly easy to use for
non-experts. It is almost straightforward to test a new technique
on an astrophysical problem with current high level implementa-
tions. The downside is that, generally speaking, the methods are
often applied blindly off the shelf, with little domain specific adap-
tation. Consequently, a feature that is still lacking in a fair amount
of the applications of deep learning to astronomy is the inclusion
of previous physical knowledge into the data-driven models. This
can be done by adapting the loss functions or by modifying the
neural network architectures to incorporate known symmetries
(see work by Villar et al. 2021a; Bowles et al. 2021). It obviously
requires deeper knowledge of the machine learning aspects which
is something that will likely take more time.

Another interesting feature that emerges from Table 1 is that
training on simulations is the most common approach in astron-
omy. Almost all supervised approaches rely at some stage on
simulated data. It reflects that the samples of labelled data remain
small and/or that the measurements in observations are noisy.
Relying on simulations to train the models adds however an
important element of uncertainty to all applications. Machine
learning approaches are indeed very sensitive to domain shift
issues. According to Table 1, almost all recent applications are
affected by those at some extent. We will discuss this further in
Subsection 7.3.

7.2. Measuring the impact of deep learning

We now move to measuring the impact of works using deep
learning in the astronomical literature. We have seen in the intro-
duction that the number of papers making use of neural networks
has increased exponentially over the past half decade. In this sub-
section, we try to measure the impact of these works with some
standard metrics. Figure 47 shows the evolution of the number
of papers, number of citations and average citations per paper
in the period 2015-2021. The publications are divided in the
four different categories defined in this review, that is, computer
vision, galaxy properties, discovery and cosmology. We have only
included in the figure the works explored for this work. As a conse-
quence, it is very likely that the figure is not complete and that the
numbers presented are closer to a lower limit. However, it should
provide a good overview of the general trends and represents a
more controlled experiment than a purely automatic search. We
also emphasise that the division in categories is a choice by the

https://doi.org/10.1017/pasa.2022.55 Published online by Cambridge University Press

43

authors of this review. Therefore, there is some obvious overlap
between the different types of applications.

Nevertheless, the figure reveals some interesting behaviours.
We first confirm the global increasing trend of the number of
papers using deep learning for galaxy surveys. Since 2015 there
is a clear exponential increase. In 2021, there are at least 70 papers
using deep learning in the context of galaxy surveys, while there
were less than 5 in 2015. This is factor of ~15 increase and implies
more than a paper per week on average. If we look at the divi-
sion per type of application, we see that computer vision type
of applications (i.e. classification, segmentation) concentrate the
largest fraction of publications. All the other remaining classes
share similar fractions. However, there is clearly a decreasing
trend of the relative importance of classification and segmenta-
tion applications. While the fraction of these papers was around
70-80% in 2015-2017, it is only of ~20% for papers published in
2021. The trends seem to suggest a diversification of the applica-
tions of deep learning to astronomy moving from computer vision
tasks—mainly classification and segmentation—to a large variety
of different applications. The number of yearly works for data pro-
cessing seems to flatten indeed after 2019, while other applications
like data exploration (discovery) rapidly rise.

A similar behaviour is observed in terms of citations. In 2016,
roughly 80% of the citations are for papers using deep learning for
computer vision tasks. The fraction is steadily decreasing, but still
remains close to ~50% in 2021 even though the number of papers
is only 20%. It probably reflects a delay between the publication
time and the time papers start to be cited.

We attempt to remove this effect in Figure 48. We plot the
number of papers per year as a function of the number of cita-
tions per paper and per year, averaged over the time elapsed since
the first citation in a given group. That way, for papers focus-
ing on computer vision, the time window is set to 6 years, while
for the others, we consider 4 yr. We also show in the figure, for
reference, the location of publications flagged with the keywords
galaxy evolution, according to the NASA ADS search engine. Using
this normalisation, we observe several interesting trends. Works
using deep learning for galaxy surveys, represent roughly >5% of
all works focusing on galaxies. This is not a large fraction but it
is still remarkable given the relatively recent emergence of deep
learning. They receive on average ~1.5 times less citations per
publication. It suggests that the impact of deep learning papers
remains moderate as compared to the average. We might spec-
ulate about possible reasons. One possibility is that most of the
works making use of deep learning are thought in preparation of
future big data surveys which have not arrived yet (e.g. Euclid,
LSST). The works are therefore more a demonstration of feasi-
bility. It could be argued that existing surveys such as DES or
SDSS for example are already good targets for data-driven sci-
ence. This is certainly true, and as we have seen in this review,
there are many works targeting these surveys. However, the sizes
and dimensionality of current surveys still allow one to use rel-
atively optimised codes and leave some room for some manual
checks. This is also supported by the trends observed when the
deep learning papers are divided by topic. The highest citation rate
is measured for works focusing on simulation (i.e. emulation of
cosmological simulations), which by definition do not require new
observational data. Publications focused on unsupervised discov-
ery, which strongly rely on new data being available, present the
lowest impact, although they show a strong increase in numbers
(Figure 47). It could also be that the technology is still too young,
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Figure 47. Impact of works using deep learning for galaxy surveys. Each symbol shows a different class of application as labelled (see text for details). The top left and right panels
show the number of papers and number of citations as a function of time respectively. The bottom left and right panels show the fraction of papers and citations in each class of

application.

and it is just a matter of time that the impact increases. The major-
ity of the works are still at the proof-of-concept stage and have
not reached the deployment stage. This could also mean even-
tually that there are some challenges/limitations which have not
been deeply explored yet and that prevent these new methods to
be fully adopted by the community. We explore these challenges
more carefully in the following section.

7.3. Challenges

We list in Table 2 what we think are some of the major challenges
that deep learning works face and which need to be addressed
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in the coming years by the community based on the works
reported in this review. Some of these challenges are not specific
to the astronomical community and can benefit from solutions
arising from the field of Machine Learning. However, in some
cases, the requirements are more strict in astronomy. The table
also provides some possible solutions along with some list of—
non-exhaustive—references which have explored these solutions.

7.3.1. Small (and biased) labelled datasets

A major challenge in applications of deep learning for astronomy
is the lack of large enough labelled data sets to train supervised
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Table 2. Major challenges that deep learning works applied to astronomy might suffer and that will need to be addressed in the coming
years. We also provide elements of solutions already being explored along with the corresponding references.

Challenge 1 Small (and biased) labelled datasets

Solution 1.A Transfer Learning
Solution 1.B Simulated dataset
Solution 1.C Self-supervised learning

Solution 1.D Active Learning and similar

Dominguez Sanchez et al. (2019), Samudre et al. (2022), Lukic et al. (2019)
Jacobs et al. (2017), Vega-Ferrero et al. (2021)

Hayat et al. (2021)

Walmsley et al. (2020)

Challenge 2 Uncertainty

Solution 2.A Bayesian approximations

Solution 2.B Density Estimators

Walmsley et al. (2020), Perreault Levasseur et al. (2017)
Kodi Ramanah et al. (2020)

Challenge 3 Interpretability

Solution 3.A Saliency maps and similar
Solution 3.B Symbolic regression

Solution 3.C Physics informed

Huertas-Company et al. (2018), Bowles et al. (2021), Bhambra et al. (2022)
Cranmer et al. (2020)
Scaife & Porter (2021), Villar et al. (2021a), Charnock et al. (2019)

Challenge 4 Domain shift

Solution 4.A Transfer Learning

Solution 4.A Domain Adaptation

Tuccillo et al. (2018), Dominguez Sanchez et al. (2019), Ghosh et al. (2020)
Ciprijanovi¢ et al. (2021b)

Challenge 5 Benchmarking

Solution 5.A Standardised datasets

PLASTICC, SKA data challenge, Galaxy Zoo
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deep learning models. This issue has been highlighted multiple
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Figure 48. Number of citations normalised by the number of papers and years (from
the first publication in that category) as a function of the number of papers per year.
Each symbol shows a different category as defined in this work (see text for details).
The ‘all galaxy evolution’ group includes an automatic search of all publications in the
field of galaxy formation (with or without deep learning).
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et al. 2018; Walmsley et al. 2019) have demonstrated that reli-
able results can be obtained with small training samples. This is
probably a consequence of the relatively limited complexity of
astronomical images compared to natural images.

Nevertheless, reducing the amount of labels is usually desir-
able for most supervised applications. There exist several types
of solutions listed in Table 2. An obvious one is to manually
label more data. It is however very time consuming and can-
not be done for every new survey. Active learning approaches
allow to label only the more informative examples for the deep
learning model, hence reducing the needed time. Active learn-
ing has been particularly explored in the framework of galaxy
morphology (e.g. Walmsley et al. 2020). Another fairly straight-
forward solution is Transfer Learning. This is usually done by
training a model in a similar dataset to the target dataset for which
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labelled data exist. The neural network weights are then refined
with a small sample of labelled examples from the target sample.
Transfer learning has also been explored for galaxy morphology
(e.g- Dominguez Sanchez et al. 2019). Other works use simulations
to overcome the lack of labels. As seen in the previous section,
using simulations is a fairly common approach in astronomy.
This is probably because the complexity of astronomical objects—
especially images—allows one to obtain quite realistic simulations
with fairly simple approaches. This is the case, for instance, for
the classification of strong lenses, which exclusively rely on sim-
ulated training sets. Although this is a very efficient approach,
it also implies some potential issues related to the change of
domain. This is a general challenge which we have grouped into
Challenge 4 in Table 2. Finally, the ML community has recently
started to explore the so-called self-supervised approaches to
reduce the amount of labelled examples. The underlying idea is
to first compute some meaningful representations of the data in
an unsupervised way and then use the obtained representations
to train a supervised network. Because the self-supervised step fil-
ters out non-informative features, the amount of needed examples
for training is reduced. Hayat et al. (2021) and Sarmiento et al.
(2021) have recently explored self-supervised learning for galaxy
morphology, photometric redshifts and galaxy kinematics respec-
tively. Contrastive self-supervised learning can also be potentially
employed to reduce the gap between simulations and observations
as well as Autoencoder representations.

In addition to the size of the labelled datasets, a major challenge
is how representative are those. A common problem in astronomy
is that the sample for which labels are available does not always
overlap with the inference datasets. This typically could happen
because it is easier to obtain labels for a sub population of objects.
The extrapolation of the trained neural network results to a dataset
which was not exactly used for training is usually a problem. This
issue has become very obvious for photometric redshift estimation
(see Section 4) in which ML approaches tend to fail for examples
poorly represented in the training. The only solution adopted by
the community has been to obtain more training data.

7.3.2. Uncertainty

Uncertainty quantification is a major challenge for applications
of deep learning to physical sciences. This is a major differ-
ence with respect to standard computer vision applications on
natural imaging, which usually do not require well calibrated
uncertainties. Therefore, standard deep learning methods directly
exported to astronomy do not quantify uncertainties and this is
generally not acceptable for scientific applications. Some tasks
such as classification can sometimes be accepted without pre-
cise uncertainty and rely on statistical measurements (i.e. ROC,
Precision-Recall curves). However, if deep learning is intended
to be used for accurate measurements of galaxy properties or to
constrain models, they need to incorporate error measurements.
We see a changing trend in the community. The early efforts
did not include uncertainty estimation; however more and more
works are introducing at least some quantification of errors. The
community has explored several solutions, but the problem is far
from being solved. A promising approach are Bayesian Neural
Networks (BNNs) which aim at measuring posterior distributions
from a Bayesian perspective. Several approaches have been pro-
posed over the past years and the implementation has also become
more straightforward, which favours the use by non-experts. For
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example BNNs are the common approach for the modelling of
strong lenses for example (e.g. Perreault Levasseur et al. 2017).
However, one need to keep in mind that BNNs compute an
approximation of the true posterior distributions which some-
times might not be accurate enough (see review by Charnock
et al. 2020). Density Estimator networks such as Regressive Flows
or Mixture Density Networks are another approach to sample
from complex posterior distributions. Although several works in
astronomy pay careful attention to the quantification of uncertain-
ties, they represent still a minority of the deep learning literature
in astronomy. We believe this is a major challenge for the future
deployment of deep learning in the analysis of deep surveys.

7.3.3. Interpretability

Related to the problem of uncertainty quantification is inter-
pretability. By moving to a data-driven approach to data analysis,
we unavoidably loose some control on what type of information
is extracted and used by the neural network models. This effect
is sometimes referred as the black-box effect. Deep learning mod-
els are in general opaque black boxes which perform complex
non-linear mappings, difficult to unveil. Although this might be
a problem for most applications, it is particularly worrying for sci-
entific ones, and therefore constitutes a major challenge for the
acceptance of deep learning by the astronomical community. For
example, not properly understanding the information used can
generate some biases, as demonstrated by Dhar & Shamir (2022)
which show that deep learning based classifications are sensitive
to the location of the galaxy in the sky. The field of interpretabil-
ity of deep neural networks is even less developed than the one
of uncertainty estimation and in general the techniques employed
provide a limited amount of information. A common approach
is to identify the regions of the input data that provide most of
the information for the network decisions. These methods can be
generally useful to identify biases—for example, the neural net-
work model focuses on background noise—but are still far from
providing any physical interpretation of what is being measured.
Some works have looked at ways of enhancing the explainabil-
ity (Huertas-Company et al. 2018; Bhambra, Joachimi, & Lahav
2022) but the amount of extracted information typically consists
on the identification of pixels in the input images which con-
tribute most to the decision. Although this is certainly valuable
information to identify biases in particular, it does not provide a
true explainability in terms of physical meaning. Interpreting the
results is easier when the inputs are parameters instead of raw
pixel values. In such cases, there exists the possibility of perform-
ing symbolic regressions to try to dig into the relations learned by
the neural networks (e.g. Cranmer et al. 2020; Villaescusa-Navarro
et al. 2022). An interesting research line to ease interpretability is
the inclusion of prior physical constraints in the neural network
model. Architectures that preserve known symmetries of the phys-
ical problem are for example an interesting way to keep a control
on what the networks are extracting (e.g. Scaife & Porter 2021;
Villar et al. 2021a; Bowles et al. 2021).

7.3.4. Domain shift

Another key challenge faced by deep learning applications to
astronomy is related to the change of domains between the train-
ing and the inference steps. As highlighted in Table 1, a majority
of the applications of deep learning to astronomy rely on simu-
lations for training the models. This is typically justified because
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the availability of labelled samples is limited (see Subsection 7.3.1),
because we aim at accessing information that is only available on
simulations, for example, galaxy mergers, dark matter or infor-
mation about the cosmological model or because the likelihood
is intractable but we have an idea on how to simulate the data
(see review by Cranmer, Brehmer, & Louppe 2019). For exam-
ple, the work by Bottrell et al. (2019) examines very carefully the
impact of using more or less realistic simulations for training. The
community has explored several solution to mitigate the impact
of training on simulations and apply to data. A simple approach
is to use transfer learning. This is only possible when there exist
some measurements in observations which can be used to fine
tune the weights from the neural network model trained on sim-
ulations (e.g. Tuccillo et al. 2018). This is not always possible
though, especially when we try to infer the parameters of a model
and has also the problem of propagating the biases of any existing
method previously applied to observations. Domain adaptation
techniques are another alternative approach which attempt the
make the features learned by the model agnostic to the differences
between domains. As opposed to transfer learning, this is done
during training so that no domain specific features are learned.
Ciprijanovi¢ et al. (2021a) have recently quantify the gain of such
techniques for the identification of galaxy mergers. It remains
however an open issue for the future.

7.3.5. Benchmarking and deployment

A final challenge which has not been discussed much in the lit-
erature so far is related to how the different approaches can
be robustly compared. As we have thoroughly described in this
review, the past years have witnessed an emergence of a large
number of deep learning methods applied to a diversity of sci-
entific topics. In many cases, the results are shown for a specific
dataset, with a specific configuration, which makes it hard to com-
pare with existing approaches. The ML community has been using
since many years, what is called standardised datasets. These are
common datasets which are publicly shared and on which any
new approach is usually tested. This benchmarking approach has
been an important channel for progress in the community. The
astronomical one is not used to this type of approach and there-
fore, with some noticeable exceptions (e.g. PLASTiCC, Galaxy Zoo
for classification), we lack of a coherent way of comparing meth-
ods. We argue that this is an important aspect on which to work
as a community to boost progress. Having standardised datasets
on which test models can not only help comparing methods but
also identify pitfalls and biases and therefore contribute to make
the neural network models more robust. This is an important
step towards a full deployment of these approaches into scientific
pipelines.

8. Summary

This work reviews the use of modern deep learning techniques for
the analysis of deep galaxy surveys. Although machine learning
has been used in astronomy for several decades, the recent deep
learning revolution as induced an unprecedented number of new
works exploring the use of these novel techniques in astronomy.
The purpose of this review is to assess how deep learning has been
used in astronomy and what are the key achievements and chal-
lenges. We do not describe however the technical aspects of deep
learning techniques.
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We have divided deep learning applications in four broad cat-
egories defined by the type of application: 1—computer vision,
2—galaxy properties, 3—discovery and 4—cosmology. The first
sections of these review (Sections 3-6) describe the most rel-
evant works in each category. A summary of the main points
for each type of application is included at the end of the corre-
sponding section. The first category (Section 3) includes general
computer vision applications such as classifications and object
detection. The second (Section 4) is related to measure galaxy
properties, deep learning acts as a fast emulator and as univer-
sal approximator. The third category (Section 5) illustrates all
efforts related to visualisation and identification on new types
of objects. The fourth group (Section 6) contains publications
which use deep learning for cosmology. Namely we include two
main applications: more efficient simulation and cosmological
inference.

The last section (Section 7) focuses on extracting some lessons
about the use of deep learning techniques in astronomy, on the
impact they have had so far and on what are—in our humble
opinion—the key challenges that will need to be addressed in
the near future. We list below key take away messages from this
analysis:

e The first work using deep learning in astronomy is from 2015.
Since then, the number of works using deep learning for galaxy
surveys has increased exponentially. There is factor of ~15
increase between 2015 and 2021.

e The most common deep learning method used are sequen-
tial Convolutional Neural Networks with different degrees of
complexities. However, there is a good variety of techniques
which have been tested for astronomy including recent devel-
opments such as Transformers or self-supervised approaches.
This reflects a democratisation of these techniques which are
becoming increasingly easy to use. However, the methods are
often applied with a limited amount of physically driven mod-
ifications. The combination of previous physical knowledge
with data-driven models is still an open issue, even if it is a
rapidly changing field.

e The majority of the works (>50%) focus on what we call
computer vision applications—which essentially include clas-
sification and segmentation. This is also the field in which deep
learning has brought the most important breakthroughs. These
are applications which are more prone to a direct import from
the ML community. However, we measure a diversification of
the applications which span a variety of topics such as the accel-
eration of cosmological simulations, the inference of galaxy
properties or constraints on cosmology.

e The works using deep learning represent ~5% of all works
on galaxy formation which is remarkable. The receive how-
ever ~3 citations per paper and per year on average. This is
roughly ~1.5 times less citations than publications on galaxies
for example, although computer vision applications also per-
form better in this front. It suggests a moderate impact of deep
learning so far which might be explained because most of the
works are still at the exploratory stage.

e We have identified a set of 5 major challenges which frequently
appear in deep learning applications and that we believe
need to be addresses in the nearby future. 1—Small labelled
datasets; 2—Uncertainty estimation; 3—Interpretability; 4—
Domain shift and 5—Benchmarking.
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A. Acronyms

We summarise in this appendix the acronyms used for designating
types of deep learning methods, galaxy surveys as well as simu-
lated datasets. For every method we also indicate a reference where
more details can be obtained.

Machine Learning;

o ANN: Artificial Neural Network

e ARF: Auto Regressive Flow—Papamakarios, Pavlakou, &
Murray (2017)

e BNN: Bayesian Neural Network—Charnock et al. (2020), Goan
& Fookes (2020)

e CAE: Convolutional Autoencoder
e CNN: Convolutional Neural Network
e DT: Decision Tree

o (W)GAN: (Wasserstein) Generative Adversarial Network—
Goodfellow et al. (2014), Arjovsky, Chintala, & Bottou
(2017)

e GNN: Graph Neural Network

e Mask R-CNN: Mask Region Convolutional Neural Network—
He et al. (2017)

e MLP: Multi-Layer Perceptron
e MDN: Mixture Density Network—Bishop (1994)
e RF: Random Forest
e RNN: Recursive Neural Network
e SOM: Self-Organising Map
e SVM: Support Vector Machines
o VAE: Variational Autoencoder—Pu et al. (2016)
e YOLO: You Only Look Once—Redmon et al. (2015)
Deep galaxy surveys where deep neural networks have been
applied:

e CANDELS: Cosmic Assembly Near-Infrared
Extragalactic Legacy Survey; Koekemoer et al. (2011)

Deep

e DECaLS: The Dark Energy Camera Legacy Survey; Dey et al.
(2019)

e DES: The Dark Energy Survey; Dark Energy Survey
Collaboration et al. (2016)

e Euclid: Laureijs et al. (2011)
e HSC: Hyper Suprime Cam; Aihara et al. (2018)

e MaNGA (SDSS IV): Mapping Nearby Galaxies at APO; Bundy
etal. (2015)

e Pan-STARRS: Panoramic Survey Telescope and Rapid
Response System; Chambers et al. (2016)

e PAU: Physics of the Accelerating Universe;
e SDSSI/II Legacy Surveys: Sloan Digital Sky Survey;
e LSST: Legacy Survey of Space and Time; Ivezi¢ et al. (2019)

e S-PLUS: Southern Photometric Local Universe Survey;
Mendes de Oliveira et al. (2019)

e GAMA: Galaxy and Mass Assembly; Driver et al. (2011)
e ZTF: Zwicky Transient Facility; Bellm (2014)
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Simulated datasets used to train deep neural networks:
CAMELS: Villaescusa-Navarro et al. (2021b)

PLASTiCC: Photometric LSST Astronomical Time-Series
Classification Challenge

IustrisTNG: Pillepich et al. (2018)

EAGLE: Schaye et al. (2015)

SIMBA: Davé et al. (2019)

VELA: Ceverino et al. (2015)

Horizon-AGN: Dubois et al. (2014)
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