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Quantum chromodynamics: spin 
in the world of massless partons 

Quantum chromodynamics (QCD) is the beautiful theoretical structure 
believed to control the strong interactions of elementary particles. On 
the one hand, being a theory of strong interactions it is surprising that 
one can attack certain problems by perturbative methods, and where this 
has been done the agreement between theory and experiment is generally 
impressive. On the other hand a number of non-perturbative problems, 
which used to seem intractable, are now being attacked by lattice methods, 
but it is too early to say how significant the results are vis-a-vis experiment. 

Because the theory deals with partons (quarks and gluons), whereas ex­
periments are performed with hadrons, there is always some uncalculable 
piece in any theoretical treatment of a reaction. Consequently there is, to 
date, no single crucial experiment, which, analogous to the Lamb shift in 
QED, could be said to prove or disprove the validity of QCD. It is thus 
important to test the theory in as many ways as possible. 

Historically, spin-dependent experiments have played a seminal role in 
verifying or falsifying theories. QCD has a very simple and clear-cut spin 
structure, so that the study of spin-dependent reactions should provide an 
excellent way to probe and test the theory further. In fact, as we shall see 
in Section 14.3 there is apparently serious disagreement between theory 
and experiment in several reactions, but it is now believed that this is 
a result of the naivety of the calculations. The situation is nonetheless 
tantalizing and should be resolved when results from the giant pp collider 
RHIC at Brookhaven, with polarized proton beams, start to emerge in a 
year or two. 

10.1 A brief introduction to QCD 

QCD is a non-abelian gauge theory describing the interaction of massless 
spin-1/2 objects, the 'quarks', which possess an internal degree of freedom 
called colour, and a set of massless gauge bosons (vector mesons), the 
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1 0.1 A brief introduction 259 

'gluons', which mediate the force between quarks in much the same way 
that photons do in QED. Loosely speaking, the quarks come in three 
colours and the gluons in eight. More precisely, if qa(x), a = 1, 2, 3 and 
At(x), b = 1, ... , 8, are the quark and gluon fields respectively then, under 
an SU(3) transformation acting on the colour indices, q and A are defined 
to transform as the fundamental (.3_) and the adjoint (B_) representations 
of SU(3) respectively. These SU(3) transformations, acting solely on the 
colour indices, have nothing at all to do with the usual S U(3) that acts 
on the quark flavour labels; in what follows it must be understood that 
these flavour labels play no role in QCD since the gluons are taken to 
be flavourless, i.e. to be singlets under S U ( 3) f, and electrically neutral, so 
they will not be displayed unless specifically needed. 

The theory is known to possess the remarkable property of 'asymptotic 
freedom' and is supposed to possess the property of 'colour confinement'. 
The former implies that for interactions between quarks at very short 
distances, i.e. for large momentum transfers, the theory looks more and 
more like a free-field theory, without interactions. This, ultimately, is the 
justification for the parton model and for the use of perturbative methods 
for large momentum reactions. The latter means that only 'colourless' 
objects, that are colour singlets, can be found existing as real physical 
particles. In other words the forces between two coloured objects grow 
stronger with distance, so that they can never be separated. This property 
of confinement is also referred to as 'infrared slavery'. The proof of 
confinement is still lacking and remains one of the most burning theoretical 
questions. 

The SU(3) non-abelian, gauge-invariant theory for an octet of mass­
less vector gluons interacting with a triplet of massless spin-1/2 quarks 
involves: 

(1) generalized field tensors (i.e. non-abelian generalizations of the electro­
magnetic F flV) 

(10.1.1) 

where A~ is the gluon vector potential, the label a = 1, ... , 8 being 
the octet colour label, and where !abc are the structure constants for 
SU(3); the group generators obey 

(10.1.2) 

Note that colour indices will, for convenience, sometimes be written 
as subscripts, sometimes as superscripts - there is no difference in 
meamng; 
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260 10 Quantum chromodynamics 

(2) quark spinor fields tpj, where j = 1, 2, 3 labels the quark colour. There 
will be a set of tp j for each flavour, but we leave out the flavour label 
to simplify the notation; 

(3) a covariant derivative operator: symbolically one has the operator 

DJl =all- igTaA~. (10.1.3) 

When acting on some given field that transforms according to a 
particular representation of the group, one replaces the Ta by the 
relevant representation matrices. Thus when acting on quark fields D!l 
is represented by 

(10.1.4) 

where the ta, a = 1, ... , 8 are 3 x 3 hermitian matrices that, for the triplet 
representation of SU(3), are just one half the Gell-Mann matrices ;.a. 

Acting on the gluon fields the Ta are represented by the structure 
constants (Ta)bc--+ -ifabc, so that DJl is represented by 

(DJlhc = ~bcOJl- gA~fabc· (10.1.5) 

The gauge-invariant interactions are described by the lagrangian 

fil = -iG~vGaJlv + iip;y!l(Dil);jlpj, (10.1.6) 

where the last term is in fact a sum of identical terms, one for each flavour, 
and where we have assumed massless quarks. 

It is usually assumed that there are no quark mass terms in the orig­
inal QCD lagrangian, so that it is perfectly flavour symmetric and chi­
rally symmetric. The flavour symmetry is presumably spontaneously bro­
ken, the quarks acquiring masses from the electroweak Higgs mechanism 
and/ or from non-perturbative spontaneous chiral-symmetry-breaking ef­
fects caused by non-zero vacuum expectation values of (OI'iPttptiO), where 
f is some fixed flavour. (For an introductory discussion, see Leader and 
Predazzi, 1996.) 

Since quarks are supposed not to exist as free physical particles their 
masses are not masses in the usual sense. The quark mass should be 
thought of simply as a parameter in the lagrangian, to be determined in 
principle from experiment. However, in perturbation theory, a quark prop­
agator has a pole at p2 = m2, whereas in the exact theory it presumably 
has no pole at all. So perturbative calculations are only considered reliable 
in kinematics regions where the momentum transfers, energies etc., are all 
large compared with m, which can then be neglected. Thus, determination 
of quark masses must come from non-perturbative studies such as current 
algebra or QCD sum rules. (A comprehensive review is given in Gasser 
and Leutwyler, 1982.) One finds that u and d have masses of a few MeV 
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only (mu ,...., 4 MeV lc2, md,...., 7 MeV lc2) and that ms,...., 125-150 MeV lc2 ; 

these are referred to as 'current quark masses' and should not be confused 
with the 'constituent quark masses' that are used in the non-relativistic 
treatment of hadron spectroscopy. 

The field theory, not surprisingly, is riddled with infinities and has to 
be renormalized. In the renormalization the bare coupling constant g in 
the lagrangian, hidden in the (Dil)ij of (10.1.6), becomes replaced by the 
renormalized coupling, which has to be measured by comparing theory 
and experiment. 

It turns out that there is a certain freedom in carrying out the renor­
malization, but physical quantities must be invariant under changes of the 
renormalization scheme. This leads to the concept of the renorma1ization 
group, under whose transformations the physics is invariant. (See, for ex­
ample, Chapter 20 of Leader and Predazzi, 1996.) The main consequence 
for our discussion is that one can 'renormalization-group-improve' a per­
turbative calculation by replacing the strong coupling IXs = g2 I 4n by an 
effective or running coupling o:5 (Q2), where Q is some characteristic energy 
or momentum scale of the process one is studying. The variation of o:5 (Q2) 

with Q2 is determined by the QCD renormalization group, and to lowest 
order 

2 12n 
1Xs(Q ) = (33- 2NJ) ln(Q2 I A2) 

(10.1.7) 

where NJ is the number of quark flavours and A (often written AQcD) 
has to be determined by experiment (strictly speaking it should be called 
A(0l because (10.1.7) is only a lowest-order result) and one has A~ 200 
MeV. 

In higher orders o:5(Q2) and therefore A become scheme dependent (see 
Section 11.7) and require a label to indicate the scheme. And NJ is, strictly, 
not the total number of flavours but the effective number that is relevant, 
i.e. the number playing a role at the scale Q. 

The power of using o:5(Q2) is that o:5(Q2) ~ 0 as Q2 ~ oo (asymptotic 
freedom) so that for reactions at a large scale Q the effective coupling is 
small and one can justify a perturbative approach. 

When a reaction contains several widely disparate scales Q1, Q2, ... the 
above argument becomes ambiguous and there is no obvious rule about 
what value of Q2 to use in o:5(Q2). However, there are many important 
reactions where one large scale does exist, e.g. deep inelastic lepton­
hadron scattering at large momentum transfer (Chapter 11), hadron­
hadron scattering at large momentum transfer (Chapter 13), the Drell-Yan 
process 

hadron+ hadron~ [(1+1-),2°, w] +X 
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at large transverse momentum (Chapter 12) and e+e----+ hadrons at high 
energies (see Leader and Predazzi, 1996, Section 22.1), so there is a host 
of experimental data against which the theory can be tested. 

In summary we can apply perturbative QCD to hard processes where 
there is one energy or momentum scale sufficiently large to make o:s(Q2) ~ 
1. At these scales we can ignore mu, ma and ms and it is adequate to utilize 
the massless lagrangian (10.1.6). For the 'heavy' quarks t( !), b and perhaps 
c, one should modify !!! to include quark mass terms, but we shall not 
have space to discuss this. 

10.2 Local gauge invariance in QCD 

The QCD lagrangian is invariant under local S U(3) transformations. 
However, in order to do a concrete calculation one has to choose a definite 
gauge in which to work. In QED one often uses the covariant Lorentz 
gauge 811Ail(x) = 0. In QCD covariant gauges are more complicated and 
it is necessary to include a ghost propagator in diagrams involving closed 
loops. (The Feynman rules are given in Appendix 11.) The reason for this 
difference is linked to the question whether one may replace a polarization 
vector E' 11(k) by E' 11(k) + ck11 , c arbitrary, in the expression for a Feynman 
diagram involving external photons or gluons. 

In both QED and QCD the total amplitude for a reaction involving 
any number of external photons or gluons respectively has the structure 

A - * (k1 ) * (k1 )M(k' k' · k k )lll···lln;vl···vm 
- E' Ill 1 · · · E' !ln n 1 · · · n' 1 · · · m 

X E'v 1 (kt) ... E'vm(km) (10.2.1) 

where in this expression all 4-vectors ki, kj are on the mass shell, i.e. 

kt = (kj) 2 = 0. (In QCD M would also have colour labels.) 
In QED, either for the whole amplitude or for the amplitude arising 

from any local-gauge-invariant subset of Feynman diagrams, one has the 
remarkably powerful property that, for any of the momenta, 

(k'·) M(k' k' • k k )lll···llj···!ln;Vj ... Vm = 0 ]Jlj 1··· n' 1··· m 
M(k~ ... k~;k1 ... km)lll···Jln;VJ ... Vi···Vm(ki)vi = 0 

(10.2.2) 

irrespective of whether the ks in M are on or off the mass shell. 
Clearly, then, in QED one is free to replace any E' 11(k) by E' 11(k) + ck11 as 

long as one is working with either all the diagrams of a given order or 
some local-gauge-invariant subset of them. (Any single Feynman diagram 
is usually not invariant!) This, as will be seen, allows huge simplifications 
in the calculations. 

In QCD there is nothing like (10.2.2) involving just M itself. Instead, 
one gets the following rule. 
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• QCD local-gauge-invariance rule. In (10.2.1) we get zero if we replace 
one or more c111 (k1) by (k1)111 , provided that amongst these ks at most one 
is off shell, i.e. does not satisfy k2 = 0. (All the other ks in (10.2.1) are on 
mass shell, as previously stated.) 

Although much weaker than (10.2.2) this rule is sufficient to permit one 
to replace any E 11 (k) by E 11 (k) + ck11 in the expression for the amplitude 
arising from any set of local-gauge-invariant diagrams in QCD. A detailed 
derivation of these results is given in Section 21.3 of Leader and Predazzi 
(1996). 

The identification of local-gauge-invariant subsets of Feynman diagrams 
is relatively simple in QED. For the photon of interest, for which one 
wishes to replace c11(k) by c11(k) + ck11 , one takes the set of diagrams 
in which this photon is attached to a fermion line in all possible ways. 
For instance, in lowest-order Compton scattering (see Fig. 10.7) neither 
diagram is local gauge invariant, but their sum is. 

In QCD the identification is much more subtle and was solved in 
a classic paper by Cvitanovic, Lauwers and Scharbach (1981). In any 
reaction involving gluons and quarks the amplitude will be labelled by a 
colour label for each external parton, A(a, b, ... ; i, j, .. . ). In colour space 
there are invariant tensors F,(a, b, ... ; i, j, .. . ), r = 1, 2, ... , for example tf1, 

tf}fw !abc etc., which will emerge from any calculation of any individual 
Feynman diagram. These tensors are generally not independent and may 
be related through the fundamental structure relations of the Lie group, 
for example, 

[ a b] "f c t , t = l abet (10.2.3) 

or the so-called Jacobi identity 

fabefecd + fcbefaed + fabcface = 0. (10.2.4) 

By repeated use of these, one can eliminate various F, until one is left 
with a linearly independent set of tensors T,. Note that several different 
Feynman diagrams could give contributions proportional to some given 
T,. This set of tensors is called a colour basis for the given reaction. 

After grouping together all terms proportional to a given T, the ampli­
tude will take the form 

A(a,b, ... ;i,j, ... ) = L:T,(a,b, ... ;i,j, ... )d, (10.2.5) 

where the d, are functions of the momenta and helicities of the external 
partons. Since the QCD local-gauge-invariance rule applies to A, and 
since the terms in (10.2.5) are linearly independent, the rule must apply 
separately to each d,. Examples will be given in Section 10.11. 
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10.3 Feynman rules for massless particles 

Since perturbation methods can only be applied to 'hard' processes, in 
which energies and momenta are large compared with the scale of a 
typical nucleon mass, the quark-partons of QCD may in many cases be 
taken as massless. It then turns out that one can reformulate the rules so 
that calculating the helicity amplitudes from a Feynman diagram becomes 
much simpler than in the traditional approach. In fact for low-order 
diagrams these methods remain efficient even when generalized to allow 
for non-zero-mass quarks. In addition the methods are especially suitable 
for numerical computation. 

The existence of such methods is important because in a high energy 
collision of hadrons, final states with many jets or hadrons occur and these 
arise from partonic reactions involving a large number of partons. The 
number of Feynman diagrams for this kind of process, even in lowest order 
(known as Born or tree-level), is horrendous. For example for GG ~ 6G 
there are 34 300 diagrams! 

Although it is not easy to imagine studying such reactions in order to test 
QCD, it often happens that one is trying to look for 'new physics' reactions, 
involving, for example, a sequential decay of some new heavy particle and 
giving rise to a multijet, multiparticle final state. The identification of a 
new reaction is impossible without any accurate knowledge of the standard 
QCD background. 

The pioneering steps in this field were taken by De Causmaecker, 
Gastmans, Troos and Wu (De Causmaecker et al., 1981), and Farrar 
and Neri (1983), and there followed many calculations in QED by what 
became known as the CALKUL collaboration. Berends and Giele (1987) 
approached the massless spinor problem using the dotted and undotted 
spinors of Weyl and van der Warden and calculated the cross-section for 
2G ~ 4G. A further advance was due to Xu, Zhang and Chang (Xu et 
al., 1987), who simplified the form of the polarization vectors for gluons. 
Interesting applications have been made by Kleiss and Stirling (1985) 
to pp ~ W /Z +jets, by Mangano, Parke and Xu (1987) to multigluon 
scattering and by Kleiss (1986) to e+e- ~ e+e-y and e+e- ~ ffy (where 
f is a fermion). For a review of the subject see Mangano and Parke (1991) 
and for access to the latest literature see Mahlon and Parke (1997) and 
Bennet al. (1997). The reader is warned that in some of these papers the 
phase conventions do not correspond to the helicity convention utilized 
in this book and used widely in the literature. Also, in the CALKUL 
papers what is labelled as helicity ±1 corresponds to what is normally 
called helicity +1 respectively. However, since these papers calculate only 
cross-sections, i.e. sum over helicities, this does not affect their results. But 
there could be confusion regarding signs of polarizations etc. 
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10.3 Feynman rules for massless particles 265 

In the following we reformulate the approach with due care for the 
phase conventions and in such a fashion that it generalizes to the case of 
massive particles. 

10.3.1 The calculus of massless spinors 

The properties of massless spinors are derived in Appendix 12. Here we 
recall the most important results and introduce a new notation that takes 
advantage of these properties. As discussed in subsection 4.6.3, in the limit 
m ~ 0 the helicity states become states of definitive chirality (R or L) 
which we shall henceforth designate by + or -. We have then 

and eqns (A12.8) and (A12.29) become, for p2 = 0, 

u±(p)u±(P) = V±(p)v±(P) = 0 

u+(p)u+(P) + u_(p)iL(p) = p} 
v+(P)V+(P) + v_(p)v_(p) = p 

Also, from (A12.53) we have 

!(1 ± Ys)P = u±(p)u±(P) = v+(P)V+(p). 

(10.3.1) 

(10.3.2) 

(10.3.3) 

(10.3.4) 

In the Weyl representation (A12.43) we have a simple form for the 
spmors 

u+(P) = v_(p) = J2;o(X+6P)) 

u_(p) = v+(P) = {2;o (x_~p)) 
where the two-component spinors X±(P) are given in eqn (4.6.28). 

(10.3.5) 

We take advantage of the above by introducing the following notation 
(only when p2 = 0) 

(10.3.6) 

so that if the 4-vectors p, q are such that p2 = q2 = 0, Po > 0, qo > 0, we 
have the spinor product 

(10.3.7) 

where throughout this chapter A= ±1 is the chirality. 
From (A12.47) we have for A' =A 

(10.3.8) 
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266 10 Quantum chromodynamics 

The symmetry properties of the spinor product are very simple, and all 
spinor products can be expressed in terms of a basic one, say (q-ip+). 

If the vectors q, p have polar angles e, cjJ and e', ¢' respectively, then 
one finds explicitly 

[ ( ¢' - ¢ ) ( e' - e ) (q-ip+) = 2JPOiiO cos - 2- sin - 2-

+ i sin ( ¢' ~ cjJ) sin ( e'; e) J (10.3.9) 

= ~ei<Pqp. (10.3.10) 

The phase <I>qp is given by 

( c/J'- ¢) (e' +e)/ (e'- e) tan <I>qp = tan - 2- sin - 2- sin - 2- (10.3.11) 

and its quadrant is fixed by demanding that 

. [ . "' l . [ . ( ¢' - c/J ) . ( e' + e ) ] sign sm 'l'qp = sign sm - 2- sm - 2- . (10.3.12) 

It is important to remember that spinors are multivalued functions of 
the components of a vector, so care must be taken to specify polar angles 
in a consistent fashion. 

It is easy to demonstrate the following elegant properties of the spinor 
product. 

( 1) Reversal of chiralities: 

(q+IP-) =- (q-ip+)* · 

(2) Interchange of vectors: 

(p-iq+) =- (q-ip+). 

(3) Interchange of initial and final state: 

(P+iq-) = (q-ip+)* · 

Most importantly one finds that 

I (q-ip+) 1
2 = 2p · q. 

(10.3.13) 

(10.3.14) 

(10.3.15) 

(10.3.16) 

It follows that if q is a multiple of p, q = Cp, then (CP-IP+) = 0. Of 
particular importance is the case C = 1: 

(10.3.17) 

Let pf.l = (p, p) be a null vector with polar coordinates p = (p, e, cjJ ). We 
define the conjugate four vector pf.l by 

pf.l = (p, -p), (10.3.18) 
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where, in accordance with subsection 1.2.2, the polar coordinates of -p 
are given by 

(-p) = (p,n- 8,</J + n). 

Then from (10.3.9) we find 

(i'i-IP+) = -2ip = -iy'2p · p. 

Also if pll, q11 are any two null vectors then one finds that 

(11-IP+) =- (q-lp+)* = (q+IP-). 

Furthermore one may interchange the conjugacy: 

(q-liJ+) = (11-IP+)* =- (11+1P-) · 

(10.3.19) 

(10.3.20) 

(10.3.21) 

(10.3.22) 

One should beware of the fact that although f/ = pll the polar coordi­
nates of p are p, 8, <P + 2n, so that 

(10.3.23) 

When dealing with Feynman diagrams it will turn out that the vertices 
give rise to matrix elements of the form (qAiylllp.J} It is easy to demonstrate 
the following useful properties. 

(1) Reversal of chiralities: 

(q-ly 11 1P-) = (q+IY 11 1P+)*· 

(2) Interchange of initial and final states: 

(P+IY 11 1q+) = (q+IY 11 1P+)*· 

Combining these we have 

(10.3.24) 

(10.3.25) 

(10.3.26) 

In the expression for the amplitude of a Feynman diagram the yll in a 
vertex either will be contracted with the polarization vector of an external 
vector meson or will be linked via a vector meson propagator to some 
other vertex. We can choose from the outset to work in the Feynman 
gauge (see Appendix 11), so that the propagator contains only the term 
gw and we end up with contractions of the form 

or 

To evaluate these we use (A12.56): 

2ib+)(a+l = (a+IY 11 Ib+) Y111(1- Ys). (10.3.27) 

Multiplying on the left by (c_l and on the right by ld-) yields 

(a+IY 11 Ib+) (c_ly11 ld-) = 2 (a+ld-) (c_ib+). (10.3.28) 
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For the other possibility we use (10.3.26): 

(a+IYillb+) (c+IYilld+) = (a+IY!llb+) (d-lylllc_) 
= 2 (a+lc_) (d-lb+). (10.3.29) 

These are really just special cases of the Pierz rearrangement theorem 
(Appendix 12). 

There are some further useful rearrangement-type results. 
Let lb+), lc+) be independent in the sense that the scalar product b·c =I= 0. 

Then since the massless spinors are in essence two-component objects it 
must be possible to expand any Ia+) in terms of lb+) and lc+): 

Taking the spinor product with (b-1, (c_l yields 

Therefore 

(10.3.30) 

An analogous expansion holds for Ia-) with all chiralities reversed. 
Multiplying on the left by some (d-1, using (10.3.14) and relabelling 

into alphabetical order we get 

(10.3.31) 

Finally, for any 4-vector Pil we introduce the notation 

f±=!(l±ys)f. (10.3.32) 

If p2 = 0, p0 > 0 then from (10.3.4) we have that 

(10.3.33) 

10.4 The helicity theorem for massless fermions 

Because our primary interest is in QCD, QED and the V-A electro­
weak theory we consider massless fermions coupled to vector bosons 
(y,Z0, w±, G) via yil or yily5 vertices only. There follows a remarkable 
and powerful result. Consider any Feynman diagram, no matter how 
complicated, in which a fermion line enters in the initial state, continues 
through the diagram and emerges in the final state, as shown in Fig. 10.1. 
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10.4 The helicity theorem for massless fermions 269 

p', A.' 

p,A. 

Fig. 10.1 Arbitrary Feynman diagram with fermion line connecting 
initial and final states. 

Label the chiralities of the initial and final fermion f by A and A' and 
call the amplitude A;.,;.. We shall prove that 

A;.,;.=O if A'-=/= A. (10.4.1) 

Focus on the vertices attached to the fermion line under consideration, 
as shown in Fig. 10.2, where r11 is either yll or ylly5. 

Ignoring the denominators of the propagators, the fermion line has 
associated with it the expression 

(10.4.2) 

Now replace u and u using the fact that for chirality, see (4.6.52), 

u;.(p) = 1J;.ysu;.(p) 

fi;.,(p') = -1];.,fi;.,(p')y5 
'1± = ±1 (10.4.3) 

and commute the rightmost y5 through all the r11j and p j until it hits the 
leftmost ys, yielding y~ = 1. Now, Ys anticommutes with both Pj and yll 
or yllys so we end up with 

(10.4.4) 

where N is the number of commutations involved. It is easy to see that 

Fig. 10.2. Vertex structure along the fermion line in Fig. 10.1. 
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N is always an odd number, so that 

(10.4.5) 

implying 112'112 = +1 if L2'2 i= 0. 
Thus we can only have 

A'= A. (10.4.6) 

The same result holds for an antifermion passing through the diagram. 
For a fermion line that begins and ends in the initial state (i.e. JJ 

annihilation) or in the final state (i.e. JJ production), one finds that the 
amplitude is zero unless 

A'= -A. (10.4.7) 

The conditions for non-zero amplitude are summarized in the diagram 
in Fig. 10.3. 

10.5 Spin structure from a fermion line 

Consider the massless fermion line discussed in the previous section 
(Fig. 10.2) but with all vertices r.u representing y.u only. We define the 
spin string associated with it as the ordered product of spinors, propaga­
tor factors Jbj and vertices, leaving out all denominators and factors of i. 
We indicate such a string by the initial and final spinor involved, with a 
long dash between them. Thus for A = + 1 

ii+(p')-u+(P) = ii+(p')y.Un+l Pn · · · PtY111 U+(P) 

= ii+(p')y.Un+t ( 1 ~ Ys Pn) ... ( 1 ~ Ys Pl) y.U'u+(P) 

(10.5.1) 

Fig. 10.3. Helicity rules for fermion lines in an arbitrary Feynman 
diagram. 
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where we have used the fact that 

and [ 1 ] 2 1 2(1 + Ys) = 2(1 + Ys). (10.5.2) 

Thus 

(10.5.3) 

We note that each internal pj will generally not be a null vector. However, 
it will always be expressible as a sum of null vectors (in a trivial way in a 
tree diagram). So each Pj will give rise, via (10.3.33), to terms of the form 
lq+)(q+l with q2 = 0 and the spin string (10.5.3) will be made up of a sum 
of factors all of the form 

(10.5.4) 

with, of course, q2 = r2 = · · · = t2 = 0. 
For a string with A. = -1 we have an analogous expression, except that 

every factor (r+IY11 1s+) is replaced by (r-ly11 1s_). 
For an antifermion line, if the internal momentum labels refer to the 

flow of physical momentum and are thus directed opposite to the flow of 
fermion number, the spin string in Fig. 10.4 will be 

v;Jp)-v,!c'{p') = VA.(p)ylll(-pt)yll2(-p2) ... (-Pn)ylln+lvA.r(p'). 

Using (10.3.5) and (10.3.25) one finds 

by (10.3.21). 

VA.(p)-vA.'(p') =(-it [iLA.r(p')-u-A.(p)]* 

=(-it [uA.r(p')-uA.(P)], 

(10.5.5) 

(10.5.6) 

If some of the vertices, say m of them, are axial-vector, i.e. y11y5, then in 
( 1 0.5.6) there is an additional factor ( -1 )m. 

The above is sufficient to deal with all processes not involving external 
vector mesons. We shall illustrate the simplicity of the approach by an 
example. 

Fig. 10.4. Antifermion line giving rise to the spin string of (10.5.5). 
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10.6 Example: high energy e- + !A-- ~ e- + /A--

We work in the CM and ignore the lepton masses since it is assumed that 
E ~ m for all of them. The momentum vectors must be specified with 
care (see Section 4.1 ). For the initial particles we take P~Jectron = p11 = (p, p) 
with polar coordinates p = (p, 0, 0), and P~uon = (p, -p) = p11 , as defined 
in (10.3.18) and (10.3.19). For the final particles, P'::ectron = p'11 = (p,p') 

·th - ( ' e "') d ' 11 - ( ') - -lp WI p - p , , '+' an Pmuon - p, -p - p . 
The Feynman diagram is shown in Fig. 10.5. 
Firstly we take out a factor F coming from couplings, propagator 

denominators etc., using the standard Feynman rules for QED: 

F=(-ie)2 (-:2 ) = ~~· 
The Feynman amplitudes are then as follows: 

M++;++ = F(p~IY11 iP+)(fJ~IY11 iP+) 
= 2F (P~IfJ~) (fJ-IP+) by (10.3.29) 

= 2F(-2ip)*(-2ip) by (10.3.15) and (10.3.20) 

8ie2p2 s 
= -- = 2ie2 -

k2 t 

where, as usual, 

M+-;+- = F(p~IY11 iP+)(p~iY11 iP-) 
= 2F (P~IfJ-) (fJ~IP+) by (10.3.28) 

= - 2F (fJ~IP+) 2 

= - 2F(2ip cos e /2)2 

by (10.3.22) and (10.3.13) 

by (10.3.9) 

Fig. 10.5. Feynman diagram fore-+ fF ~ e- + fF. 

(10.6.1) 

(10.6.2) 

(10.6.3) 
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where 

u = (p- p')2 = -2p2(1 +cos 0). (10.6.5) 

The remaining non-zero amplitudes are, by parity invariance (see sub­
section 4.2.1), 

and M-+;-+ = M+-;+-· (10.6.6) 

It is then a trivial matter to compute cross-sections, polarizations, 
spin correlations etc. using (5.6.3) and (5.6.4). Note that if we are only 
interested in the cross-sections we can immediately use results such as 
I ('P~IP+) 12 = 2p · p', etc. 

Let us now consider reactions with external photons or gluons. To begin 
with, we return to massive spinors and relate them to massless ones. 

10.7 Massive spinors 

Let Pll = (E,p) be a time-like 4-vector with P 2 = m2 =!= 0. With Pll we 
associate two null vectors 

pll = (p,p) 

and its conjugate 

pll = (p, -p ), 

with polar angles as in (10.3.19). 
Then from (A12.44), in the Weyl representation, 

( A) 1 (E + m + pA) A 

u P,2 = ~2(E+m) E+m-pA X;.;2(p); 

here A= ±1 corresponds to helicity ±1/2. 
Now, for massless spinors 

IP+) = J2P(~)x1;2(p) 

I'P-) = V2P(~)x-1;2(-p), 
but from (A12.41) one finds 

X;.;2( -p) = iX_;.;2(p). 
Thus we can write 

(10.7.1) 

(10.7.2) 

(10.7.3) 

(10.7.4) 

(10.7.5) 

(10.7.6) 
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where 

10 Quantum chromodynamics 

E+m+p 
o:(p) = 2.Jp(E + m) 

E+m-p 
f3(p) = 2.Jp(E + m)" 

Similarly one finds 

u-1;2(P) = o:!p-) - if31P+) 

Vlj2(P) = o:\p_) + if31P+) 

v-1;2(P) = o:ip+) + i/3\p-). 
Note that forE~ m one has, to leading order in m/E, 

im 
u2;2(P) = IP2) - 2P IP-2) 

im 
V2j2(P) = IP-2) + 2p IP2) 

(p ~ m). 

(10.7.7) 

(10.7.8) 

(10.7.9) 

Using these results it is clear that the amplitude for any Feynman 
diagram can be expressed as a combination of amplitudes with massless 
external fermions. 

For present-day applications we are mainly interested in high energy 
collisions so that all external fermions can usually be taken to be massless. 
But care must be exercised in deciding whether the mass term in an 
internal fermion propagator is important. For example in the diagram in 
Fig. 10.6 for e-e+ ~ 2y, for small momentum transfer one should keep the 
full numerator p- ~ + m even at high energies. The term m will induce 
a non-zero amplitude for annihilation from states of equal helicity or 
chirality. 

10.8 Polarization vectors 

Consider a massive vector meson with 4-momentum KJ.I. = (w, k), K 2 = m2. 

As discussed in Section 3.4 the standard polarization vectors for helicity 

Fig. 10.6. Feynman diagram for e-e+ ~ 2y. 
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..1 = ±1,0 are 

E~(K) = ~(0, +cos e cos¢+ i sin¢, 

+ cos e sin¢ - i cos ¢, ±sin e) 
1 A 

E~(K) = -(k, wk) 
m 

275 

(10.8.1) 

(10.8.2) 

when k has polar angles e, ¢.These are the polarization vectors associated 
with an incoming vector meson. For outgoing mesons one uses E~. By going 

oil 
to the rest frame, where Kll = K = (m, 0, 0, 0), one can see how to write 

0 0 0 

the matrices I(K) in terms of products of the rest spinors u(K), v(K) 
etc. Then applying the helicity boost D[h(k)], see (A12.24), one eventually 
obtains an expression for I(K) in terms of massive spinors u(K), v(K) etc. 
One finds after some labour 

f).=±l (K) = ;m { u~c;z(K)vvz(K)- v_Jc12(K)fL~c;2(K)} (10.8.3) 

lo(K) = 2~ { ut;z(K)V_t;z(K) + u_t;z(K)vt;z(K) 

+v1;z(K)iL1;z(K) + v-1/Z(K)ftt;z(K)}. (10.8.4) 

Introducing as before the null vectors 

kll = (k, k) kll = (k, -k) (10.8.5) 

and utilizing (10.7.6) and (10.7.8) one eventually finds the very simple 
result 

fJc=±t(K) = ~k {lk}J(k~cl + iLJc)(LJci}. (10.8.6) 

For lo(K) it is simpler to write 

E~(K) = 2~k { (w + k)kll- (w- k)kll} (10.8.7) 

so that 

lo(K)= 2~k {(w+k)¥-(w-k)~}- (10.8.8) 

It is important to note that the above forms for /;, correspond to the 
expressions (10.8.1) and (10.8.2) for the standard E~. 

For the massless case, i.e. for a photon or gluon of 4-momentum kll = 

(k, k), there is of course no helicity-zero state but (10.8.6) continues to 
hold for helicities ±1. 

In this case, however, it is possible to make use of gauge invariance to 
choose other forms for Ell that simplify the calculations. 
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Let qll and q'll be any two null vectors such that q · k f. 0, q' · k f. 0. 
Then from (10.3.30) we can write 

_ ( q-tiL-t) ( k-tiL-t) 
IL-t) = (q-tiL-t) lk--t) + (k-tlq--t) lq--t) (10.8.9) 

- - ( q~lk-,t) I ( k-tiL-t). 
(k-tl - (k-tl (q~IL-t) + (q-tl (k-tlq~-t) , (10.8.10) 

substituting in (10.8.6) and using 

(10.8.11) 

we get, for A= ±1, 

In (10.8.12) let us first choose q'll = qll; then the second group of terms 
becomes 

i ( q,tlk-,t) i ( q,tlk-,t) 
- J'lk (q-tlk--t) (lk-t)(k-tl + lk--t)(L-tl) =- J'lk (q-tlk--t) ~ (10.8.13) 

by (10.3.33) and (10.4.1). It thus corresponds to a term proportional 
to kll and may be discarded if gauge invariance allows the substitution 
ell~ ell+ckll. When this is so we may therefore simply use the expression 

(10.8.14) 

where qll is any null vector for which q · k f. 0. In this expression q should 
be thought of as a reference vector specifying a family of equivalent 
polarization vectors. 

The polarization vector that corresponds to the expression (10.8.14) is 
clearly 

(10.8.15) 

There is a very useful form for the e'f.(k; q), which can be obtained via the 
relation 

e'f.(k; q) = { Tr [yll f,t(k; q)]. 
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Using (10.8.14) and (10.3.26) one finds 

Jl(k. ) - (qJc JyllJkJc) 
EJc 'q - J2 (kJcJq_;y 

(10.8.16). 

This is particularly helpful when evaluating scalar products of E~ with 
some other 4-vector. 

It follows that polarization vectors specified by different reference vec­
tors q differ only by a term proportional to the 4-vector k. 

It can be checked via (10.3.9) that 

(10.8.17) 

This implies that using the form (10.8.14) for fJc(k; q) is similar to 
working in an axial gauge A~qll = 0, which is convenient for ladder-type 
diagrams. Other useful properties are 

(10.8.18) 

or 

It is crucial, in a non-abelian gauge theory, where the gauge mesons 
couple to themselves, to remember that (10.8.15) or (10.8.16) must be used 
in conjunction with (10.8.14), if one wishes to work with the vector c~ 
itself. 

It is easily checked that, as usuai,i 

(10.8.20) 

We see now that the standard polarization vectors given in ( 10.8.6) just 
correspond to the 4-vector choice q = k in (10.8.14). 

The standard form (10.8.6) is adequate for all 2 ----+ 2 reactions. For 
multiparticle production a judicious choice of the reference vector q may 
simplify the calculation. 

Let us return now to the more general expression (10.8.12) in the case 
where q'Jl -=/=- qll. We cannot, in general, discard the second group of terms, 
since, via (10.3.33) and (10.3.32), it contains both¥ and y5¥ and thus does 
not correspond to adding a vector ckll to Ell. 

However, in massless QED, in any gauge-invariant subset of diagrams a 
given photon is attached to one single fermion line. In that case c~ enters 
only in the form fJc and the Ys is innocuous since it will act on a massless 

1 Note that contrary to all other textbooks on field theory, Mangano and Parke (1991) uses ~"!Jk) 
for outgoing photons and gluons. Moreover, in their phase convention (10.8.20) holds with a plus 
sign on the right-hand side. 
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spinor and convert itself into ±1. Thus in massless QED one can use a 
two-parameter family of polarization vectors 

(10.8.21) 

Spectacular simplifications ensue from a judicious choice of the 4-vectors 
q, q', usually from choosing q, q' equal to the initial and final momenta of 
the fermion line to which the photon is attached. 

Before looking at some examples we shall introduce a shorthand nota­
tion for the spinor products. 

10.9 Shorthand notation for spinor products 

To simplify the expressions that occur in the calculation of the amplitudes 
we introduce, for positive-energy null vectors a, b, c, ... , 

(ab) =(a-lb+) 

[ab] = (a+lb-). 

Equations (10.3.13) to (10.3.22) and (10.3.31) then become 

(ab) =- (ba) [ab] = -[ba] 

[ab] = (ba)* = -(ab)* 

(ab) [ba] = 2a · b 

(aa) = -2iao 

\ ab} = [ab] 

\ ab} = -[ab] 

(ab) (cd) = (ad) (cb) + (ac) (bd). 

For the polarization vectors (10.8.16) one has 

el1 (a· b)= (b+IYI11a+) 
+ ' J2[ab] 

el1 (a· b)= (b-ly111a-) 
-' J2(ab) 

and, for scalar products involving polarization vectors, 

(ac) [db] 
e+(a;b) · e+(c;d) = [cd][ab] 

(ad) [cb] 
e+(a; b)· c(c; d)= (cd) [ab] 

(10.9.1) 

(10.9.2) 

(10.9.3) 

(10.9.4) 

(10.9.5) 

(10.9.6) 

(10.9.7) 

(10.9.8) 

(10.9.9) 

(10.9.10) 

(10.9.11) 

(10.9.12) 

(10.9.13) 
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e (a· b). k = (ak) [kb] 
+ ' J2[ab] 

(10.9.14) 

( . b). k = [ak] (kb) 
e_ a, J2 (ab) . (10.9.15) 

We shall illustrate these techniques by two examples. 

10.10 QED: high energy Compton scattering 

The lowest-order diagrams are shown in Fig. 10.7. We work in the CM, 
hence lkl = IPI = k and we have the 4-vector association k = p, k' = p'. 
We take 

pll = (p, 0, 0, p) p'Jl = (p, p) with p = (p, e, 0). 

While neither diagram is gauge invariant, their sum is, so we may make 
use of our freedom in choosing the form of the polarization vectors. We 
may utilize the very general form (10.8.21), in which, with an eye to the 
structure of the diagrams, we take q'JI = pll, qll = p'JI. 

For the incoming photon we then have 

f;.(k) = f;.(k;p',p) 

= v'2 ( lk;.)(p;.l + IP~;.)(k-;.1) 
(k;.IP-;.) (k;.IP~;.) . 

(10.10.1) 

For the outgoing photon we must use 0*(k'). We shall denote yJier(k') by 
f;.(k'). Then via (10.8.20) 

f;.(k') = - f_;.(k') 

= -Jl (I~~~HP-;1 + ~~~)(k~~). (10.10.2) 
-;.IP;. -;.IP;. 

We may start with helicity +1/2 for the initial fermion, and we know 
from (10.4.6) that the final helicity must then be + 1/2 also. 

k=p k'=p' ~k'=p' 

p p' 

A 8 

Fig. 10.7. Feynman diagrams for Compton scattering in QED. 
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From diagram A we have 

Ml~;H = ( -ie)2 
2pi· k (p~if,t~(k')(l + ¥') t;Jk)IP+)· 

By (10.3.8) and (10.3.17) 

f_(k)IP+) = 0 (p~if_(k') = 0. 

(10.10.3) 

(10.10.4) 

Thus the only independent non-zero amplitude from diagram A is 

(-ie)22i [p'k'] (pk') [k'p'] (kp) 
M~A+)·,l+ = 

2p. k (k'p) [kp'] 

. 2 i [p' k'][k' p'] (k p) 
= (-ze) p. k [kp'] 

ie2 [p'p'][p'p'] (pp) 
- 2p2 [kp'] 

ie2 (2ip)(-2ip)(-2ip) 
- 2p2 ( -2ip cos() /2) 

by (10.9.3), (10.9.6), (10.9.8) and (10.3.9). Thus 

(A) - - le - . 2 s 2. 2 l!u 
Ml+;l+ - cos() /2 - - 2ze -u · 

by (10.9.3) 

(10.10.5) 

(The singularity at () = n is, of course, an artifact of our having neglected 
the fermion mass in the Feynman denominators.) 

From diagram B we have 

(10.10.6) 

and now we see that 

(10.10.7) 

So diagram B does not contribute to Ml+;l+; forB the only independent 
non-zero amplitude is 

2ie2 [p'k] (pk') [k'p'] (k'p) 
M~{+·,-1+ = 2p . k' (kp) [k' p'] 

ie2 [p'p] (pp') (p'p) 
p·k' (-2ip) 

-e2 ( _,)3 . 2 () 
= 2pp . k' pp = 2ze cos 2 

=2ie2j=f. (10.10.8) 
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The amplitudes for negative helicity fermions can be obtained by the 
parity rules in subsection 4.2.1. 

The above approach is much simpler and shorter than the conventional 
one, both for the cross-section and for spin-dependent observables. It is 
typical of the method that some helicity amplitudes receive contributions 
from one diagram only. 

10.11 QCD: gluon Compton scattering 

An important process is 

G+q ~ G+q, 

which is the QCD analogue of electromagnetic Compton scattering. There 
is now an extra diagram in lowest order arising from the triple gluon 
coupling, as shown in Fig. 10.8, where i,j and a,b are colour labels. 

The kinematic structure of Fig. 10.8, parts A and B, is exactly the same 
as in the QED diagrams A and B in Fig. 10.7. From Appendix 11 we see 
that 

where 

k,a 

p, i 

M~~D = (tbta)jiif(A) 

Mg~D = (tatb)jiif(B) 

if(A) = M~'idn(e2 ~ g2) 

k', b 

p, j p, i 

A 

k,a k', b 

p,i p', j 

c 

B 

Fig. 10.8. Feynman diagrams for gluon Compton scattering. 

(10.11.1) 

(10.11.2) 

(10.11.3) 

p',j 
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In QED, when Efl(k) is replaced by kfl the gauge invariance is achieved by a 
cancellation between M6'ilD and M~JD. Clearly, in the QCD case, because 
of the different colour structure this can no longer happen and gauge 
invariance is reinstated only when diagram C in Fig. 10.8 is included. 

The colour dependent factor in diagram C is fcbaW)Ji· But the funda­
mental Lie-algebra commutation relation is 

[ a b] 'j c t , t = l abet (10.11.4) 

so that we can make the replacement 

fcba(tc)ji = i(tatb)ji- i(tbta)ji· (10.11.5) 

The linearly independent invariant tensors in colour space may thus be 
taken as (tatb)Ji and (tbta)Ji; diagram C contributes to both. Writing 

M(C) = f cba( tc) jiM( C) ( 10.11.6) 

we have, for the total amplitude, 

M = (tbta)Ji [M(A)- iM(C)] + (tatb)Ji [M(B) + iM(C)] (10.11.7) 

and we may use different choices of polarization vectors in evaluating the 
combinations in the first and second pairs of square brackets. 

For the first term in (10.11.7) we use (10.8.14), with qfl = pfl for the 
incoming gluon and qfl = p'fl for the outgoing gluon. Let us call this 
gauge 1. Taking the quark helicity to be + 1/2, by methods similar to 
the above one finds that diagram A only contributes to Ml+;l+, and 
M- (A) 2' 2 8/2 1+;1+ = - lg cos . 

For the contribution of the three-gluon vertex in diagram C one has, 
from Appendix 11, aside from the factor gfcba, 

Vf,Jc = 2k1 • E;Jk)€~,*(k1)- (k +k1)fl€~,(k1 ) • E;,(k) 

+ 2k. €~,(k1 )€~(k) (10.11.8) 

leading to 
2 

M(C) - g ( I I y I ) 
Jc'+;H-- 2k. kl P+ Jc'Jc P+ ' (10.11.9) 

which, after some straightforward algebra, yields 

- (C) I 
M/c'+;).+ gaugel 

4g2p {sine /2 [ 1 * 1 1 l * } = k. k1 .J2 (j/c'lk · E'Jc(k;p)- (jJc1k · E'Jc'(k ;p) + p(cos8j2)€;" · €). 

= -2g2( cos 8 /2) [ Al5 Jc'l +A' (j Jcl + (j ).'-Jc + ( cot2 8 /2)(5 Jc.A.'] 

= -2g2( cos 8 /2) [ 2(5 .icl + cot2 8/2] (j ,U'; ( 10.11.10) 
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to obtain the penultimate expression we have used (10.8.1) for the polari­
zation vectors. 

Thus there is no gluon helicity-flip. For the 1 + ~ 1 + amplitude from 
diagram C we have 

Mi~·l+l = -2g2(cos8/2) (2+cot2 B/2). (10.11.11) 
' gaugel 

and the first term in (10.11.7) becomes 

b a . 2 cote /2 
(t t )ji2lg sine /2. (10.11.12) 

For the second term in (10.11.7) we choose polarization vectors with 
reference vectors q = p1 in c;Jk; q) and q = p in EJi(k1 ; q). Call this gauge 
2. Then diagram B does not contribute to 1 + ~ 1 +. For diagram C we 
now find 

- (C) I 4pg2 {sine /2 [ I I * I ] 
M.?c'+·.?c+ = k k1 .J2 t5.~c'-tk ·c.~c(k;p)-t5.~c-lk·c.~c'(k ;p) 

' ' gauge2 · 2 ' ' 

+p(cos8/2)c~, · c.~c} (10.11.13) 

where, via (10.8.15) we find that the polarization vectors in (10.11.13) are 
related to those in (10.11.10) as follows: 

Hence 

Jc 
c~(k;p1 ) = c~(k;p)- .jlk (tan8/2)P 

A' 
E~,(k1 ; p) = E~,(k1 ; p1) + f) (tan 8 j2)k111 • 

y2k 

cos B/2 sin2 B/2 · 

(10.11.14) 

(10.11.15) 

Thus, for the contribution to the amplitude 1 + ~ 1 +, the second term in 
(10.11.7) yields 

( a b) 2ig2 
- t t ji . 

cos e /2 sin2 e /2 
(10.11.16) 

The sum of (10.11.12) and (10.11.16) then gives the complete amplitude 
for 1+ ~ 1+. 

It is an interesting exercise to calculate M(A) in gauge 2. One finds 

2. 2 
- (A) I lg 

Ml+;l+ gauge2 =-cosB/2' (10.11.17) 
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Using (10.11.16) we can now calculate the first term of (10.11.7) in gauge 
2, finding for 1 + ---+ 1 + 

b a [ -2ig2 . -2g2 l b a 2. 2 cot8j2 
(t t )ji costJ/2 - 1cos8/2sin2 8j2 =(t t )ji zg sintJ/2 (10.11.18) 

exactly as in (10.11.12). 
It is a straightforward matter to calculate the other independent ampli­

tude M-1+;-1+ in a similar fashion. Note that there is no gluon helicity-flip 
in any of these amplitudes. 

Of course, choosing two different gauges for the above is a somewhat 
sledgehammer approach in such a simple problem. But in more compli­
cated, higher-order, diagrams great simplification can be achieved. 

As emphasized by Cvitanovic, Lauwers and Scharbach (1981), certain 
properties of the gauge-invariant subsets of diagrams become clearer if 
linear combinations of the invariant colour tensors are used that transform 
simply under permutations of the symmetric group. For example, in gluon 
Compton scattering we could utilize 

( yba) = l(tbta + tatb) .. + ji 2 jl 

( T~a) = l(tbta _ tatb) .. 
ji 2 jl 

in which case (10.11.7) becomes 

(10.11.19) 

M = ( T!a) ji [M(A) + M(B)] + ( T~a) ji [M(A)- M(B)- 2iM(C)]. 
(10.11.20) 

We see that the first term contains only the abelian QED amplitudes. 
This is a general result. For any number of partons the totally symmetric 
colour tensor singles out the QED-like contributions to the amplitude and 
the non-abelian effects are contained in the other-gauge invariant subsets. 

10.12 QCD: Multigluon amplitudes 

In dealing with purely gluonic reactions it is simpler to deal with the 
symmetric situations where all the gluons are incoming. Let the n gluons 
labelled 1, 2, ... , n have colours a1, ... , an, helicities A1, ... , An and momenta 
k1, ... , kn, respectively. We shall abbreviate the amplitude by 

(10.12.1) 

The contribution to M from each Feynman diagram will be of the form 

F(al, ... 'ank Jll (kl; AI) ... E Jln (kn; An)Mill···lln(kl, ... 'kn) (10.12.2) 

where F(a1, ... , an) is a colour factor. 
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For the purpose of understanding the helicity structure we may ignore 
energy and momentum conservation and pretend that all incoming gluons 
have positive energy in (10.12.2). 

The amplitude for a reaction with some outgoing gluons is obtained as 
follows. Let the jth gluon be outgoing with momentum k1 and helicity J:1. 
Then the amplitude for 

G1 + G2 + · · · + GJ-l + GJ+l + · · · + Gn----+ GJ 

is given by (see (10.8.20)): 

( 1) replacing E JJ1(k1, A 1) by 

e;/kJ, J:J) = -EJJ1(kj, -J:j); 

(2) putting k1 = -k1 in 
M fll···fln(k k ) 

1, · · ·' n · 

Thus as far as helicity structure is concerned: 

(10.12.3) 

(10.12.4) 

an ingoing helicity A is equivalent to an outgoing helicity -A. 
(10.12.5) 

10.12.1 The colour structure 

Now the colour factors, whether due to three-gluon or four-gluon vertices, 
always contain typical products like fahefecd· From (10.11.4) and the fact 
that 

one has that 

and therefore 

fahefecd = - 2i Tr (fabete[tc, td]) 

= - 2i Tr ([ta, tb][tc, td]). 

(10.12.6) 

(10.12.7) 

(10.12.8) 

Ultimately one ends up with traces of products, in all possible permu­
tations of all the tal. Since the trace is invariant under cyclic permutations 
the set of independent colour tensors for tree diagrams is just the set of 
non-cyclic permutations of the trace Tr (ta1 ta1 • • • ta" ). The total Feynman 
amplitude, as will be seen, then has the structure 

M = ~ "' Tr (ta1 ta1 • • • ta") in ~ 
perm(23 ... n) 

X M(kl,Al; ... ;kn,An) (10.12.9) 
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where the momentum- and helicity-dependent amplitudes M are gauge 
invariant. Each M, which is defined by the order of the labels in it, will 
contain contributions from several Feynman diagrams, as was the case for 
the M in Section 10.10. The M are calculated from Feynman diagrams 
in which the colour factor !abc is simply left out at each trilinear gluon 
vertex. For the quadrilinear gluon vertices, one starts from the modified 
form 

which, as can be checked, coincides with the usual expression given in 
Appendix 11. So, in calculating contributions to M from a Feynman 
diagram involving a quadrilinear vertex one must use, for the cyclic order 
(1234), 

(10.12.11) 

Since the M(1, 2, ... , n) are gauge invariant, the reference vectors qj used 
in specifying the polarization vectors e(kj; qj) can be chosen differently 
for the calculation of each M. 

Each qj will always be equal to one of the ki, say kJU), i.e. the polarization 
vectors will have the form e(kj;kf(j)). 

Let the mapping i ~ Pi be a permutation of i = 1, 2, ... , n. If, when 
we calculate M(P1, P2, ... , Pn), we utilize the set of polarization vectors 
e(kpj; kp1u) then it is clear that we can evaluate M(Pt, P2, ... , Pn) from the 
result for M(1, 2, ... , n) by simply carrying out the permutation i ~ Pi in 
the result. 

In subsection 10.12.3 we shall illustrate these rather abstract arguments 
with a concrete example, the four-gluon amplitude, and in subsection 
10.12.6 we give some general properties of n-gluon amplitudes. First, 
however, it will be helpful to deduce two very powerful rules for the 
helicity structure of gluon amplitudes. 

10.12.2 Helicity structure of the n-gluon amplitude 

Consider the amplitude for the n-gluon reaction. For a tree diagram 
consisting solely of trilinear couplings it is easy to see that the number of 
trilinear vertices, Nv, is related to n by 

Nv = n-2. (10.12.12) 

If there are quadrilinear vertices present in the diagram then for the 
trilinear vertices one will have 

Nv < n-2. (10.12.13) 
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Now, as can be seen from (10.11.8) each trilinear vertex has mass 
dimension 1, i.e. [m], whereas the quadrilinear vertices, (10.12.11), are 
dimensionless. Hence the mass dimension of the numerator of any Feynman 
tree diagram for the n-gluon reaction is dn, where 

dn::;: n- 2. (10.12.14) 

However, the numerator of the amplitude is linear in the n polarization 
vectors c of the gluons, which can only occur in combinations of the type 
c · p of dimension [m], where p is some momentum, or c; · Ej, which is 
dimensionless. It follows from (10.12.14) that the number of factors of the 
type c · p must be ::;: n- 2 and therefore at least one factor of the type E; · c j 
must occur. This simple result has powerful consequences, as follows: 

(1) Consider the amplitude where all gluon helicities are equal. Now choose 
the same reference vector q in (10.8.15) to define the polarization 
vectors for all the gluons. Then by (10.8.18) every scalar product 
c;.(k;;q) · c;.(kj;q) = 0 and thus the entire amplitude vanishes. 

For a physical scattering reaction, for example for 2G ---+ nG, this 
implies, via (10.12.5), that the amplitude for 

G1 ( -Jc) + G2( -Jc) ---+ G3(Jc) + G4(Jc) + ... + Gn+2(Jc), 

i.e. for a maximum change of helicity, is zero. 
(2) Suppose now that one gluon, say the lth, has helicity opposite to all 

the rest, i.e. Aj = Jc for all j -=/= l, Az = -Jc. Now choose the reference 
vector q = k1 for all gluons except the lth. Then the only possibility for 
a non-vanishing amplitude must come from scalar products involving 
c;.(kz; q'). But these will be of the form c;.(kj; kz) · c;.(kz; q'), which 
vanishes by (10.8.19). 

For the physical process 2G ---+ nG this implies, via (10.12.5), that 

etc. 

A[G1(-Jc) + G2(-.lc)---+ G3(Jc) + · · · + Gz(-Jc) + ... + Gn+2(Jc)] = 0 

(10.12.15) 

A[G1(Jc) + G2(-Jc)---+ G3(Jc) + · · · + Gz(Jc) + ... + Gn+2(Jc)] = 0 

(10.12.16) 

For the important reaction 

we immediately see that there are two non-zero independent amplitudes, 
for example Mu;ll and M1-1;1-1· The other non-zero amplitudes are 
obtained via parity invariance or symmetry arguments. 
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10.12.3 The amplitude for G + G ~ G + G 

To make full use of the symmetry, let us suppose that all the gluons are 
incoming. The Feynman diagrams are shown in Fig. 10.9. 

Using the result (10.12.8), diagrams A, B and C have the form 

-2 Tr (1234 + 4321- 1243- 3421) m(A) 

-2 Tr (1324 + 4231- 1243- 3421) m(BJ (10.12.17) 

-2 Tr (1234 + 4321- 1423- 3241) m(Cl 

where the shorthand notation 

(10.12.18) 

is used, and the fil(A) are the momentum- and helicity-dependent ampli­
tudes calculated without the colour factors !abc· 

Now, if we write 

(10.12.19) 

etc. then it is clear that 

m(BJ = m(AJ(1 3 2 4) 
' ' ' ' 

(10.12.20) 

2 3 

4 4 
A B 

2 3 
2 3 

4 

4 c D 

Fig. 10.9. Lowest-order Feynman diagrams for G + G --+ G +G. 

https://doi.org/10.1017/9781009402040.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.010


10.12 QCD: Multigluon amplitudes 

For diagram D, using (10.12.10) we have 

-2 L Tr (1234) m(D)(1, 2, 3, 4) 
perm (234) 

where fiz(D) is calculated using (10.12.11). 
Now (10.12.17) can be re-arranged in the form 

-2 Tr (1234+4321) [m(A)(1,2,3,4)+m(A)(4,1,2,3)] 

-2 Tr (1324+4231) [m(A)(1,3,2,4)-m(Al(4,1,2,3)] 

+2 Tr (1243 + 3421) [m(A\1, 2, 3, 4) + m(A)(1, 3, 2, 4)] . 

We shall soon see explicitly that 

m(Al(1, 2, 3, 4) = m(A)(2, 1, 4, 3) = m(A\4, 3, 2, 1) 

289 

(10.12.21) 

(10.12.22) 

(10.12.23) 

= - m(A)(2, 1, 3, 4) = -m(Al(1, 2, 4, 3) (10.12.24) 

so that (10.12.22) becomes 

-2 Tr (1234+4321) [m(A)(1,2,3,4)+m(A)(4,1,2,3)] 

-2 Tr (1324+4231) [m(A)(1,3,2,4)+m(A)(4,1,3,2)] (10.12.25) 

-2 Tr (1243+3421) [m(A)(1,2,4,3)+m(A)(3,1,2,4)] 

Using the second of eqns (10.12.23) we have finally for diagrams A + 
B+C+D 

where 

M = -2 L Tr (ta1 ta2 ta3 ta4 ) M(1,2,3,4) 
perm (234) 

(10.12.26) 

M(1, 2, 3, 4) = m(A)(1, 2, 3, 4) + m(A)(4, 1, 2, 3) + m(Dl(1, 2, 3, 4). (10.12.27) 

Equation (10.12.26) is precisely in the form (10.12.9). In Section 10.12.4 
we shall explain how the amplitudes M are constructed in the gen­
eral n-gluon case. Here we look in more detail into the four-gluon 
amplitude. 

Using the form of the three-gluon vertex given in Appendix 11, without 
the colour factor f abc, one finds after some algebra that 
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ig2 ( 
m(A)(1, 2, 3, 4) = - (kl + k2)2 (cl · c2)(c3 · E4)(k1 - k2) · (k3- k4) 

+ 4 {(cl · c2) [(c3 · kl)(c4 · k2)- (c3 · k2)(c4 · kl)] 

+ (c3 · E4) [(cl · k3)(c2 · k4)- k1 · k4)(c2 · k3)] 

+ k1 · c3)(c2 · kl)(c4 · k3) + (c2 · c4)(c1 · k2)(c3 · k4) 

- k1 · E4)(c2 · kl)(c3 · k4) 

- k2 · E3)(c1 · k2)(c4 · k3)}) (10.12.28) 

from which the properties (10.12.23) and (10.12.24) can be read off. 
As we know from subsection 10.12.2 we can take as independent non­

zero amplitudes just M(++;--) and M(+-;+-), corresponding to A1 = 
A2 = +1, A3 = A4 = -1 and A-1 = A3 = +1, A2 = A4 = -1 respectively. 

Consider first, in an obvious notation, the amplitude 

Choose the reference qj in such a way that the polarization vectors are 

(10.12.29) 

Then, via (10.8.18) and (10.8.19), the only non-zero scalar product of two 
polarization vectors is c+(k1;k3) · c(k4;k2). Hence 

(10.12.30) 

and 

4" 2 
m(A)(1 +, 2+, 3-, 4-) = (kl : k2)2 (ci · c4)(ci · kl)(c} · k4). (10.12.31) 

Further, from (10.12.28), 

m(Al(4-, 1 +, 2+, 3-) OC (c4 · cl) [(c2 · k4)(c3 · kl)- (c2 · kl)(c3 · k4)], 

which, using (10.8.17), will vanish when energy-momentum conservation 
is enforced. Thus we end up with the remarkably simple result 

4" 2 
M(ki,ki,k3,k4) = (kl :k2)2(ci · c4)(ci · kl)(c3 · k4), (10.12.32) 

Consider now the amplitude M(l +, 2-, 3+, 4-). Choose reference mo­
menta such that the polarization vectors are: 

(10.12.33) 

and the only non-zero scalar product is E+(k3;k4) · c(k2;kl). Hence 
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and, as before, 

Hence 

4' 2 
M(k{, k2, kj, k4) = (kl : k2)2 k2 · ej)(€{ · k2)(€4 · k3). 

The physical amplitudes Mx x .2122 for the reaction 
I 2' 

(k1, AI)+ (k2, A2) ~ (k~, A~)+ (k~, A~) 

are then, via (10.12.3), (10.12.4) and (10.12.17), 

Mu;ll = -2 L Tr (ta 1ta2 ta3 ta4 ) (-2ig2) 

perm (234) 

291 

(10.12.35) 

(10.12.36) 

X { kl \ 2 [e{(kl; -k3) · e4( -k4; k2)] [ei(k2; -k3) · kl] 

X [ej(-k3;k2) · (-k4))}, (10.12.37) 

where 

(10.12.38) 

and 

perm (234) 

X {kl \ 2 [e2(k2;kl)·ej(-k3;-k4)] [e{(k1;-k4)·k2] 

X [e4(-k4;kl) · (-k3))} (10.12.39) 

Using eqns (10.9.1)-(10.9.11) we get for the parts of (10.12.37) and 
(10.12.39) within the braces 

(klk2) 2 [k~k~] 2 
4(k1 . k2)(k2 . k3) 

and 
(k1kD 2 [k~k2l 2 

4(kt . k2)(k2 . k3) 

respectively; we have used the fact that k1 · k4 = k2 · k3. 

(10.12.40) 

It is clear that the structure of the numerators just corresponds to a 
pairing of the momenta of the gluons with the same helicity label, (±), 
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after each E~ is replaced by -E-Jc, with the correspondence 

Thus, since permutation does not alter which gluon has which helicity, 
one has 

Mu;u = -ig2 (k1k2) 2 [k~k;] 2 
Tr ( ta' ta2 ta3 ta4) 

X perl1234) (k1 · k2)(k2 · k3) 
(10.12.41) 

M1-1;1-1 = -ig2 (k1kD2 [k;k2] 2 
Tr (ta'ta2ta3ta4) 

X L . 
perm (234) (k1 · k2)(k2 · k3) 

(10.12.42) 

Note that since k1 + k2 + k3 + k4 = 0, 

I: 1 =o 
perm (234) (k1 · k2)(k2 · k3) 

(10.12.43) 

which is actually a reflection of a general property referred to as a dual 
Ward identity (see subsection 10.12.6 below). 

We turn now to consider the colour structure. 

10.12.4 Colour sums for gluon reactions 

All physical observables are bilinear in the helicity amplitudes and one 
almost always wishes to carry out a sum over the colours of the gluons. 
One thus has to carry out colour sums of the type 

S= L [Tr(ta'ta2···ta")] [Tr(ta'tb2···tb")r (10.12.44) 
all aj 

where (b2 ... bn) is some permutation of (a2 ... an). Because the ta are 
hermitian one has 

S = L Tr (tb" · · · tb2ta1 ) Tr (ta 1ta2 · · · ta"). 
all aj 

(10.12.45) 

The sum can be carried out step by step using the relations, valid for 
SU(N), 

(10.12.46) 

'""""" a a) N2 - 1 " L.)t t ij = 2N Uij· 
a 

(10.12.47) 
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We briefly indicate how this works. We have 

S = L (tbn ... tbztal )jitf} t~)(taz ... ta")zk 
all aJ 

= ~ L [ Tr (tb" ... tbzta2 ... ta") 
az ... an 

- ~ Tr (tb" · · · tb2) Tr (ta2 · · · ta")] . (10.12.48) 

To reduce further the second term one uses invariance under cyclic per­
mutations to put it in the form 

Tr (tb" · · · tb2) Tr (tb 2 ( 3 · · · ("), 

where (c3c4 ... en) is a permutation of (b3b4 ... bn), and then repeats the 
process used in (10.12.48). 

For the first term there are two possibilities. If b2 = a2 we have 

L Tr ( tb" ... tb3 ta2 ta2 ta3 ... ta") 

(10.12.49) 

If b2 f a2 then by cyclic permutation the first term can be put in the 
form Tr (A1 ta2 A2ta2 ), where A1,2 are products of taJ, j = 3, ... , n. Then by 
(10.12.46) 

L Tr (A1ta2 A2ta2 ) = ~ [ Tr (Al) Tr (A2)- ~ Tr (A1A2)] . (10.12.50) 
az 

Some useful results that hold when the colour group is SU(3) are given 
below. For brevity we write 

(a a a a)= Tr (ta 1 ta2ta3ta4 )· 1234- ' (10.12.51) 

then 

L (a1a2) = 4 (10.12.52) 
a; 

L (a1a2a1a2) = -2/3 (10.12.53) 
a; 

L (a1a2a2al) = 16/3 (10.12.54) 
a; 

L (a1a2)(a1a2) = 2. (10.12.55) 
a; 

There are two independent products of traces of three ts; the rest can 

be obtained by cyclic permutations. 
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(10.12.56) 
a; 

(10.12.57) 
a; 

There are six independent products of traces of four ts; the rest can be 

obtained by cyclic permutations. 

L (a4a3a2at)(a1a2a3a4) = 19/6 (10.12.58) 
a; 

(10.12.59) 
a; 

(10.12.60) 
a; 

(10.12.61) 
a; 

(10.12.62) 
a; 

(10.12.63) 
a; 

10.12.5 Colour sum for GG ---+ GG 

Let us now apply these results to gluon-gluon scattering using the ampli­
tudes (10.12.41), (10.12.42). Suppose we are interested in calculating the 
cross-section. In that case we need for example 

L 1Mu;ul2 = g41 (k1k2) 1 4 1[k~k~]l 4 
colours 

x L [ L (a1a2a3a4) l 
colours perm(234) (kl . k2)(k2 . k3) 

x [ L (a1a2a3a4) ] * 

perm(234) (kl · k2)(k2 · k3) 
(10.12.64) 

It is clear from (10.12.25) that actually the trace (a1a2a3a4) and the 
trace (a1a4a3a2) = (a4a3a2a1), obtained by the reflection permutation 
(1234) ---+ (4321), should be multiplied by the same kinematic amplitude. 
This is seen to be true since 

Thus we can replace (a1a2a3a4) by 

[a1a2a3a4] = (a1a2a3a4) + (a4a3a2at) (10.12.65) 

https://doi.org/10.1017/9781009402040.010 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402040.010


10.12 QCD: Multigluon amplitudes 295 

and sum only over permutations of (234) that are not reflections (NR) of 
each other, i.e. NR permutations of (234) are (234), (243), (324). 

Furthermore the two separate sets of permutations can be rearranged 
so that 

colours 

Using eqns (10.12.58)-(10.12.63) one obtains 

L [a1a2a3a4] [a1a2a3a4]* = 23/3 (10.12.67) 
colours 

(10.12.68) 
colours 

L [a1a2a3a4] [a1a3a2a4]* = -4/3 (10.12.69) 
colours 

Writing 23/3 = 9- 4/3, the terms in multiplying -4/3 in (10.12.66), 
vanish by (10.12.43). So we are left with 

L IMu;11l2 = 9g41 (k1k2) 1 4 1[k~k;]l 4 
colours 

x 2.::.:: [(kl. k2)
1
(k2. k3)r 

NRperm 

(10.12.70) 

(234) 

Writing this in terms of the usual Mandelstam variables, 

'"""' 2 4 ( 1 1 1 ) L...J IMu·ul = 144s 22 + 22 + 22 · 
I ' st su tu 

co ours 

(10.12.71) 

Summing over helicities and using symmetry arguments to evaluate 
M1-1;1-1 and parity invariance for the other Ms, 

'"""' 2 4 4 4 ( 1 1 1 ) L...J IM I = 288(s + t + u ) 22 + 22 + 22 , 
helicities S t S U t U 

(10.12.72) 

colours 

which can be simplified using s + t + u = 0. Dividing by 4 x 64 to obtain 
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an average over initial spins and colours gives 

IMI2 = ~g4 (3- ut- us-!.£) 
2 s2 t2 u2 

(10.12.73) 

which is a well-known result. 

10.12.6 Some properties of n-gluon amplitudes 

The set of all Feynman tree diagrams, for a given n, consists of certain 
'basic' structures from which the rest can be generated by permuting 
the gluon labels in all possible ways, subject to the restriction that the 
diagrams thus generated are topologically independent. For example, for 
the Feynman diagrams for four gluons shown in Fig. 10.9, diagrams (B) 
and (C) were obtained from (A) by permuting gluon labels; see (10.12.20). 

As a consequence it turns out that the kinematic amplitudes M in 
(10.12.9) are invariant under cyclic permutations of the gluon momentum 
and helicity labels. Note, however, that the application of a permutation 
to the result for an amplitude M can be rather subtle. For example, in 
(10.12.41) the factors (k1k2) and [k~k;] refer to the momenta of gluons 
with particular helicities and this does not change under a permutation, i.e. 
if gluon k1 has helicity + 1 it still does so after permuting the arguments 
of the function. 

For a given n the Feynman tree diagrams can be grouped into sub­
sets, each subset J being represented by one characteristic diagram, D1, 
from which the other members of the Jth subset can be generated by 
permutation of the gluons. 

The coefficient of a particular trace, say Tr (ta1ta3 · · · taj), is 

M(kl,Al;k3,A3; ... ;kj,Aj), 

where the kinematic amplitude M is a sum of contributions labelled by 
the characteristic diagram D1, with the kinematic variables in the same 
order as the gluon labels inside the trace, 

M(1,3, ... ,j) = 2::Mvj(1,3, ... ,j) (10.12.74) 
Dj 

and for each characteristic diagram D1, Mvj is a sum of the amplitude 
fhvj arising from diagram D1 plus those cyclic permutations of it that 
correspond to topologically independent diagrams: 

Mvj(1,3, ... ,j) = L 'mvj(1,3, ... ,j). 
cyclic 
perms 

(10.12.75) 

In the review of Mangano and Parke (1991), it is shown that the 
kinematic amplitudes M possess remarkable general properties, being 
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essentially so-called dual amplitudes and related to string amplitudes. Two 
important properties, which were shown, in subsection 10.12.4, to be true 
for the four-gluon amplitude, are the dual Ward identity 

M(1,2,3, ... ,n) + M(2, 1,3, ... ,n) + · · · + M(2,3,4, ... , 1,n) = 0 

(10.12.76) 

and the symmetry under reversal of the order of the labels, 

M(n,n -1, ... ,2, 1) = (-1tM(1,2, ... ,n -1,n). 

Moreover, it is shown how supersymmetry can be used to relate am­
plitudes for pure gluonic reactions to those where a pair of gluons is 
replaced by a quark-antiquark pair. For these general developments and 
many results for specific amplitudes the reader is referred to the above 
review, but care must be taken since the same symbols have been given 
differing normalizations in the review and in the earlier papers of the 
same authors. 
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