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The book under review concentrates more on the general theory of J-symmetric operator
algebras and representations of *-algebras on Krein spaces, which are the indefinite analogues
of C’-algebras and their representations on Hilbert space. Many of the results here have been
known for more than twenty years, but they have been scattered in the literature. The authors
present these results in a coherent fashion, making reference to the modern theory of C*-
algebras where relevant, and they include some new results in representation theory. The theory
of representations on general Krein spaces is quite weak, but it is much stronger in the case
of those Krein spaces, known as Il -spaces or Pontryagin spaces, where H_ or H, is finite-
dimensional.

The final one-third of the book is devoted to relatively recent applications to the study of
*-derivations of C*-algebras. Let A be a C*-algebra of operators on a Hilbert space H, and 4 be
a closed, densely-defined (unbounded) *-derivation from A into B(H). One seeks closed operators
S on H (with good properties) which implement § in the sense that

6(A)x = SAx — ASx (x € Dom(S), A € Dom (8)).

It is easy to construct a J-symmetric representation of the Banach *-algebra Dom (6) on a Krein
space H' in such a way that closed operators S implementing & correspond to closed subspaces
of H invariant under the representation, and moreover Hilbert space properties of S correspond
neatly to Krein space properties of the subspace. However, H' is not a I1,-space, so the results
obtained from representation theory are quite weak. One can obtain stronger results if one
already has a skew-symmetric operator § which implements é and one of the deficiency indices
of § is finite, a situation which is not unusual in practice. Then there is a representation of
Dom (6) on a Il -space, and the stronger representation theory can be used to show that § can
also be implemented by extensions of S with better Hilbert space properties. Moreover, these
constructions enable index theory of semigroups of *-endomorphisms of B(H), as developed by
Powers and Arveson, to be derived from the representation theory of Krein spaces.

Since little material on representations on Krein spaces or implementation of derivations has
previously appeared in books, this book will be of great interest to those specialising in Krein
spaces, and also those specialising in C"-algebras with interests in derivations. A novice who
wishes to master Krein spaces may prefer to start with a more leisurely introduction to the basic
geometry and operator theory, and a reader who has not already studied the basic theory of
C*-algebras may not appreciate Chapter 6 and some earlier sections. The background material
summarised in the first section varies enormously in level of difficulty, but much of the book can
be read without knowledge of the more demanding topics. It is the nature of this subject that
the proofs require verification of many routine properties, and the authors have used fine
judgment to steer a course between too much detail and too little detail. The text has been
written carefully, with only a few typographical errors. Indeed, this book succeeds in describing
a subject which was well worth writing about.

C.J. K. BATTY

OLLERENSHAW, K. and BREE, D. Most-perfect pandiagonal magic squares: their construction and
enumeration (Institute of Mathematics and its Applications, Southend-on-Sea, 1998), xiii+
152 pp., 0 905091 06 X, £19.50.

This is a marvellous book. It is very readable, carefully planned, and contains fascinating
material.

Magic squares have a long history, and well-known constructions exist for squares of all sizes
greater than two. However, the enumeration problem of counting the different magic squares
of a particular type has so far remained unresolved. The authors consider a special type of magic
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square which they call “most-perfect pandiagonal™, and succeed in constructing all such squares
and in counting them by means of a one-one correspondence between such squares and what
they call ‘‘reversible squares”. Let me explain these ideas.

In a magic square based on the numbers 0,1,...,n* — 1, the rows, columns and main
diagonals all have the same sum, namely %n(n2 — 1). If all (broken) diagonals have this sum, the
square is pandiagonal (or Nasik, or diabolic). It is easy to show that no pandiagonal square of
order n=2(mod4) can exist, so the authors concentrate on n = 0 (mod4). They further call the
square most-perfect if each 2 x 2 subsquare has entries summing to 2(n” — 1), and pairs of
integers a distance in apart along a (broken) diagonal add up to n* — 1. Here for example is a
most-perfect pandiagonal square of order 4:

0 14 3 13
7 9 4 10
12 2 15 1
11 5 8 6

The integers 3, 10, 12, 5 lie along a broken diagonal and add up to 30; those integers two apart
along the diagonal add up to n®* — 1 = 15, viz. 3+ 12 =10+ 5 = 15.

It is shown that these most-perfect pandiagonal squares are in a one-one correspondence
with a family of square arrays called reversible squares. An n x n reversible square contains
the numbers 0,1,...,n* — 1; each row and each column have reverse symmetry (i.e. added to
its reverse it gives a constant row or column) and, in any rectangular array within the square,
the sums of the integers in opposite corners are equal. These reversible squares are nicely
constructed, and, importantly, can be enumerated. The enumeration is a tour de force of
manipulation of binomial coefficients, and the numbers of such squares turn out to be
astronomical.

The major part of this work was carried out over several years by Dame Kathleen
Ollerenshaw, who completed the work for n = 2'p* (r > 2, p prime). The work was then extended
to all n =0 (mod4) by David Brée. It should perhaps be pointed out that the formula obtained
in the final section can in fact be obtained more neatly by using the inclusion-exclusion
principle.

The exposition is very clear throughout. Often the reader is reminded of a definition; key
points from one chapter are often repeated in a later one. After a look at some earlier
constructions, such as those of McClintock (1897) and of Rosser and Walker (1939) on whose
ideas the present authors build, we are led very carefully through the construction and
enumeration of the new squares. This detailed exposition covers 90 pages; the only major flaw I
found was in the definition of McClintock squares, where the definition does not fit with the
example, but this is peripheral to the main stream of the argument. There then follow a glossary
of 8 pages, an appendix on binomial identities (5 pages), detailed proofs of some of the
properties of most-perfect and reversible squares which had been stated without proof (10 pages),
a historical appendix of 16 pages on earlier constructions of pandiagonal magic squares, detailed
algorithms for constructing reversible squares and hence magic squares, and finally a complete
list of principal (canonical) reversible squares of order 12.

One passage in the Preface sticks out, demanding a response: “When a serious effort was made
to provide proof, the argument became increasingly complex and involved numerous diversions
that had their own interest. The full proof thus became unsuitable for publication as an article in
a recognised journal and better suited to publication as a book.” What a sad condemnation of
what we tend now to expect from learned journals — articles written tersely for a select few, with
little thought for the general reader’s understanding or enjoyment.

Read this book, and enjoy it!

I. ANDERSON
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