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§ 1. Introduction.

In the general theory of relativity, as in many other branches of
theoretical physics, the material and energetical content of space-
time is considered, in the first instance, as an extended field, which
is specified by means of field quantities (energy-momentum-stress
tensor, charge-current density, electromagnetic field strength). From
this point of view corpuscles (material particles, photons) are con-
structs obtained by first considering the field quantities as non-
vanishing only within certain world tubes, and then passing by
limiting processes to the idealisation in which these world tubes are
shrunk into world lines. More precisely, this passage to the
corpuscular description may be thought of as accomplished by
replacing the original field by successive members of a sequence of
field distributions, satisfying the same field laws, which cluster more
and more in the neighbourhood of the world lines, and for which in
some gignificant sense the total measure approaches a finite limit.
Each such world line, together with the limiting measures of those
portions of the field quantities associated therewith, is then a cor-
puscle; the form of the world line determines the motion of the
corpuscle, and the associated ‘‘ corpuscular quantities’” its physical
attributes (mass or energy, momentum, charge).

Only to the extent to which this programme is realisable are we
justified in considering the physical content as representable by a
corpuscular aggregate; thus if, as we now believe, both matter and
radiant energy partake in undulatory properties, the programme can
be successful only to that extent to which we may ignore the dis-
persive and diffractive phenomena unavoidably associated therewith.
In the last analysis, then, a corpuscular description of the field is
hedged about by restrictions originating in the inner structure of
the field quantities; it would accordingly seem reasonable to believe
that the more compatible any given aspect of their structure is with
the above procedure, the more adequately it may be represented in
such a description.
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Perhaps the most universal characteristic of the fields which
crop up in modern theoretical physics is the existence in them of
certain so-called conservation laws, expressed by the vanishing of the
divergence of a field vector or tensor. These laws, as we shall see, do
not of themselves contradict the programme outlined above, and we
may therefore assume that they will be reflected in properties of the
corpuscular description which are of significance whenever and to
whatever extent such a description may be of value in the problem
at hand We propose here to examine these implications of the
conservation laws, particularly in the case in which the influence of
that portion of the field in question on the kinematical structure of
space-time may be ignored. The resulting construct will be called a
test corpuscle, and the degree to which it may be taken to represent a
physical entity will aceordingly be circumscribed by this new limita-
tion, in addition to those mentioned above as consequent to the inner
structure of the field.

The problem with which we are here concerned may now be
more precisely formulated as follows. Let R be a region of space-
time which is supplied, in some appropriate coordinate system
' (¢ =0, 1, 2, 3), with a non-singular Riemannian metric

ds? = gij dxi da’ (]..].)

of signature — 2, whose coefficients g,; are considered as given
functions which are of class one in their arguments z°. There exists
in R a vector J* or a tensor 7%, whose components are likewise of
class one, and which satisfies the ‘‘ conservation” law

J¥ =0, or (1.2)
T =0, (1.3)

where the index k, preceded by a comma, indicates convariant
differentiation with respect to zf. We propose here to discuss the
kinematical and dynamical properties of the corpuscles resulting on
replacing the field quantities J¥, T, or some significant part thereof
by a singular distribution along one or more time-like or null world
lines in R. Various aspects of this problem have been considered by
previous writers, but we find it desirable to start afresh in order to
obtain a precise formulation of the results, new and old, from a
unified point of view; the connections with this previous work will be
indicated during the course of the development.
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§2. Kinematical preliminaries.

We begin by specifying a preferred set of coordinate systems,
which will facilitate our subsequent manipulation and interpretation.
We note that an observer O, examining phenomena in the neighbour-
hood of an event E on his world line, will find it convenient to make
a natural separation of this space-time neighbourhood into space and
time. This he may do by referring the neighbourhood to coordinates
2* in which the direction of the time axis at E coincides with the
direction of his world line at the same event, and in which the
directions of the three spatial axes are orthogonal to that of the time
axis—and, if desired, to those of each other—in the sense of the
metric (1.1). The remainder of the coordinate net may then be filled
in quite arbitrarily, subject to the conditions laid down in §1 above.
Thus O may, within wide limits, choose as the hypersurface 2°=0 a
three-space V having at each event a continuous time-like normal
which coincides at E with the direction of his world-line, parameterise
V by a set z*(a =1, 2, 3) of spatial coordinates, and augment the
2% into a complete coordinate system 2, within some closed region R
containing B as an interior event, by employing as the temporal

coordinate z° = ¢ the invariant interval jds along geodesics which cut

V orthogonally. The resulting ¢ Gaussian ”’ coordinate system is one
in which the metric (1.1) assumes the simpler form

ds? = di2 — di2, A2 = hy, (27) da® da?, (2.1)

where di? is a positive definite metric whose coefficients A, possess
continuous derivatives with respect to their four arguments zt.
Furthermore, this choice of a (Gaussian coordinate system can be
made in such a way that it accomplishes a natural separation into
space and time for a finite number of given observers at a finite
number of points on their respective world lines, apart from limita-
tions of a topological nature. In any case, the coordinate system
thus set up does provide a separation at each event E of R which
is natural, in the above sense, for some possible observer O at
E, and the transition from O’s data concerning phenomena in the
immediate neighbourhood of E to those of any other observer O’ at
E may then be accomplished as in the special theory of relativity.

It will suffice for our purposes to consider only space-time regions
R which are four-cells, defined in terms of a given Gaussian coordinate
system as follows: such an R is the closed region bounded by two
spaces t =1, t =t3(>t) and by the three-space generated by the
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geodesics 2% = const. emanating from the boundary of a three-cell in
the space t =t,. A segment L of a world line will then be said to be
contained in R provided it cuts the intersection of R with each space
t =const., t; £t < t,, in one interior point. Within R, L will be
defined by expressing the coordinates 2z of events on it as continuous
functions ¢, which we shall also assume are differentiable, of a para-
meter p which increases monotonically with ¢; the tangent vector
u* to L may then be defined in terms of the derivatives of £

i gi i 3¢

ot = £ (p), w=a (2.2)
The condition that L be a time-like or null world line within R then
requires that

w0 = | (hgp u® ul)H|; (2.3)
a corpuscle with a time-like world line (for which the inequality holds
at each event) will be called a particle, and one with a null world line
(the equality holding at each event) a photon. In the case of a
particle we shall in general take as the parameter p the arc-length s
measured in the direction of increasing ¢; the direction vector ¢ is
then the unit vector, the components of which are the direction
cosines of L. TFinally, a corpuscle whose world line is such that a
segment L of it is wholly contained within a closed cell R which
contains no event of any other corpuscular world line, will be said to
be isolated in R.

We take as the total measure of a field quantity within a spatial
region, preliminary to passing to the corpuscular description, its
volume integral over the region. We shall, in particular, find it
convenient to employ for this purpose regions in the spaces t= const.,
whose volume element is given by

av =kt (8, 2°) da' da? dad. (2.4)
This expression is not, however, a scalar under general space-time
transformations, and we shall therefore at times employ instead the
quantity
av.=udV (2.5)
in dealing with the differential neighbourhood of an event E (2*) on a
corpuscular world line L, where %° is the temporal component of the
vector u® tangent to L at E. This alternative measure (2.5) is in fact
a scalar under transformation from one Gaussian coordinate system
to another, for it may be considered as the quotient of the space-time
element dtdV and the scalar dp. In case L is the world line of a
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particle, referred to the parameter s, dV, is the scalar measure of the
projection of the spatial element dV on to a space which cuts L
orthogonally at E—.e. it is the scalar measure of the proper space of
the particle in the neighbourhood of E. The unit of length is here
taken to be such that the velocity of light is unity; thus no distinc-
tion is to be made between the unit of mass and the unit of energy.

§3. Spectfication of corpuscular quantities.

In the cases to be dealt with in the sequel, the conservation
equations (1.2), (1.3) can be thrown into a form involving at most
vectors (charge-current vector, ponderomotive force) and tensors
(energy-momentum-stress tensor of material or radiation field) which
are to be replaced, on transition to the corpuscular description, by
the members of a sequence of quantities satisfying the same field
laws, and which vanuish in the limit at all events except those on the
world lines of the corpuscles in question. In order to describe this
situation in a form suitable for analytical manipulation, we adopt
a Gaussian coordinate system z¢ and consider a segment L of a
corpuscular world line as contained within some four-cell R, in the
sense defined in §2. We then consider L as contained within, and
in a sense as the limit of, a nest of world tubes T, (¢ =1, 2,....)
threading R and having the properties

(a) each tube T, contains within its interior its successor T, ,
and the segment L.

(b) the intersection of T, with the space ¢ = const., ({, <t <),
is a closed three-cell within R, whose volume ¥V, and
maximum diameter D, both tend to the limit 0 as x —> o0 .

For simplicity, we confine ourselves in this and the three
succeeding sections to the consideration of a corpuscle which is
isolated in R, in the sense defined in §2; the amendments necessary
for the later developments, in which the interaction between two or
more portions of the field is best described in terms of the collision of
two or more corpuscles, are for the most part self-explanatory. We
may, then, allow each component A4 (2?) of the field quantities to be
replaced in R by successive members of the set 4, (2%), («=1,2, ....),
in accordance with the condition

(c) for each value of «, the quantity A, (z') vanishes at all
events z* outside the tube T,.
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Hence, by (a) and (b), for each event E of R, which is not on 1,
there exists an integer xg such that all components of the field
quantities constituting the set x = «g vanish at E.

The conditions (a)—(c) laid down above are merely in the nature
of rules of procedure for the transition to the corpuscular description,
and must now be augmented by more precise assumptions concerning
the behaviour of the field quantities 4, () on allowing « — « ; clearly
the physical properties of the corpuscles are determined by this
behaviour. Now each component 4 (27) of the field densities repre-
sents some physical property of the field; we take as the total
measure of this property for the field A, contained within the tube
T,. at the «™ stage in the transition, the volume integral of A4, over
the intersection of R and the space ¢ = const. The limit « ({) of this
integral as k=5 « is then to be taken as the measure at time ¢ of the
corresponding physical property of the corpuscle, as assigned by that
virtual observer O at E (£° =t, £2) who has adopted the space-time
separation implied by the Gaussian coordinate system xz?. We insure
the existence of the limit «, and at the same time define implicitly
the manner in which it is to be attained, by imposing the stronger
requirement

(d) the sets A, (2%) of field quantities are to be so chosen that,
on multiplication by an arbitrary continuous function
f(z%) and integration over that portion of ¢= const.
within R,
lim jf(xi) A, () dV =F(t, &) a(2), (3.1)
K> 00
where z¢t = ¢ is the event E in which the world line
L cuts the space t = const. Further, continuity or
differentiability properties of 4 (z%) with respect to its
arguments z¢ are to imply the same properties of a (¢)
with respect to its argument ¢; we shall in general
postulate at least continuity. .

The definition of the corpuscular quantity a (¢) associated with a feld
quantity A (%), which will always be denoted by the corresponding
lower case Greek letter, is contained in (3.1) for f=1.

The corpuscular quantities a¥, 8¢, y which the observer O thus
associates with a tensor field 4%, a vector field B, and a scalar field
C, respectively, are themselves not the components of a tensor, a
vector, and a scalar at E. They are, however, closely related to
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such, for on multiplying the integral (3.1) by u®=dt/dp and
examining its behaviour in the neighbourhood of E, we find, with the
aid of (2.5), that the resulting limiting quantities

ai=ula¥, bi=u'fi, c=uly (3.2)

are in fact the components of a tensor, a vector, and a scalar,
respectively. These tensor quantities are not of the same direct
physical significance to O as are the original corpuscular quantities;
thus, in the case in which the construct is a particle whose world line
is parameterised by its proper length s, they represent quantities
obtained by integration over the proper space of the particle, whereas
their indices refer to the space-time separation adopted by O. We
shall, in fact, show that the tensor quantities of most significance in
the corpuscular description, such as the energy-momentum vector or
the charge, are obtained directly from the components of the pseudo-
tensor quantities a¥, 8¢, and not from the associated tensors (3.2).

§4. Corpuscular implications of field conservation laws.

We are now prepared to examine the implications, for the
corpuscular description, of the conservation equations satisfied by
the field quantities. These equations are characterised by the fact
that each component of them may be thrown into the form

1 @

27 5o (W 4% = B, (4.1)

involving only field quantities 4% B (not necessarily a vector and a
scalar) which are localisable in the manner contemplated in §3 above;
h is here the determinant of the coefficients &, of di2, equation (2.1).
We therefore confine ourselves for the moment to a consideration of
the consequences, from the corpuscular standpoint, of the form (4.1)
common to these equations, reserving until later the more precise
specification of 4* and B.

The transition is now to be accomplished by replacing the field
quantities 4%, B, in any space-time region R in which the corpuscle
under discussion is isolated, by sets 4%, B, satisfying the same equation
(4.1), and which define as x— » a singular distribution along the
world line segment L in question, as prescribed by the conditions
(a)—(d) of §3. We shall for simplicity assume that each component
A* is of class one—possessing continuous first derivatives—and that
B is, accordingly, continuous. In order to reap the full consequences
of (4.1) under the conditions laid down in §3 for the transition, we
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first multiply this equation by an arbitrary function f(z¥) of class
one, and rewrite the resulting equation in the more significant form

ot 5op (Wf4%) — [, 4¥ — fB =0, (4.2)
where f, is the derivative of f with respect to «*. This new equation,
as applied to the set A%, B , is now to be multiplied by the volume
element (2.4) and integrated over the portion of the space ¢ = const.
within R. The contributions due to the terms k =1, 2, 3 in the first
group in (4.2) may now, by Gauss’ theorem, be transformed into
surface integrals over the boundary of the intersection of ¢ = const.
with R; we are then left with the integral form

C%IfABdV - f(fk At 4+ fB)dV =0, (4.3)

on interchanging the order of differentiation and integration in th
first term. -

The transition «->o, in accordance with the condition (d)
above, now enables us to conclude from (4.3) that the corpuscular
quantities of (t), B(t), associated with 4% (%), B(a%) at time ¢, satisfy
the equation

& (o) —frak~f8 =0, (4.4)

where f, f; are to be evaluated at the event E (¢, £2) on L. But the
arguments £ of f, and therefore f itself and its derivatives f;, are
defined implicitly as functions of ¢ by the condition £ =t and the
equations (2.2) of L. On carrying out the differentiation indicated in
the first term of (4.4), the left-hand side becomes a linear form in
fs fi which must vanish identically for an arbitrary function f of class
one. Hence each coefficient in the form must vanish, and (4.4) may
accordingly be replaced by the equivalent conditions

dgt da
b g% da’ g 4.5
ab=atr, =P (4.5)

Thus any four field quantities A% which satisfy an equation of the
form (4.1), must be represented in the corpuscular description by four
quantities a* which are proportional to the direction cosines of the
(so far, given) corpuscular world line, where the factor of proportion-
ality changes along the world line in a manner which is determined
by the corpuscular quantity B associated with the fifth field quantity
B appearing in the equation.
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We have now to examine the further consequences deducible
from the above in the case in which the A* are the components of a
contravariant vector, and in that in which they are the four com-
ponents A% (i fixed, k variable) defining the " row of a contravariant
tensor of degree two. In the first of these cases (4.1) is simply the
continuity equation

A% .= B, (4.6)
where B is a scalar. The only remark which we have here to add to
our previous discussion is that the temporal component

a® is a scalar; (4.7)

this result follows from the first set of equations (4.5) on multiplica-
tion by #’, for by (3.2) the left-hand side #%q«*, and therefore the
right-hand side «° %, is a vector, and since u*is itself a vector the
factor of proportionality o® must be a scalar.

Consider next the tensorial equation

Atk = P, (4.8)

where 4% is a contravariant tensor of degree two and P?a contra-
variant vector. The ¢*" component of (4.8) is an equation of precisely
the form (4.1), where
AF = A, B=Pi—{?}Aik; (4.9)
Ik
the Christoffel symbols of the second kind here involved are computed
from the metric (2.1). Equations (4.5) then become, under the
conditions (a)—(d) governing the transition,
: od&  da®® 1) .
= g0 > T * = g, 4.10
7 dt+{jk}a i (4.10)
where a®, 7t are the corpuscular quantities associated with 4%, Piand
the Christoffel symbols are evaluated at the event E (¢, £*) on L. The
first set of equations (4.10) implies that the matrix (a®) is at most of
rank one, and that the four quantities

ai® =gt (4.11)
are the components of a contravariant vector, as can be shown by a

direct examination of their law of transformation—or seen more
readily from the fact that

% = 0 g = 0 oF

are, by (3.2), the components of a tensor of degree two. The
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fundamental equations (4.10) may, on multiplication by «° be thrown
into the tensorial form
# _ gigr 44 U [P
a* = a* u”, @_'_{jkjaju = p*, (4.12)

where p' is the vector associated with =% as in (3.2). Here, again,
the corpuscular consequences of the field equations (4.8) imply no
essential restriction on the form of the world line L of the corpuscle;
they merely state that, given the corpuscular world line L, there
exists a vector af, which together with the direction cosines w* of L
defines a*, and whose vectorial rate of change along L is determined
by the vector p? associated with the given P

This latter situation is radically changed if we require in addition
that 4% be a symmetrical tensor—i.e. that 4% = A%. For it then
follows immediately from (4.12) that the vector a‘ falls along the
tangent ¢ to L, and we may accordingly write

al = qu?, (4.13)

where a is a new scalar. The second set of equations (4.12) then
assumes the form

du? ) . :I . da
hathadl Juk | = pt — i 2= 4,14
a[dp—l-{jk}uu P udp’ (4.14)
where as usual u'= d¢/dp. These equations will be interpreted in
the sequel as placing an essential restriction on the form of the
corpuscular world line L—:.e. on the motion of the corpuscle.

§5. Motion of a test particle.

As a first application of the methods developed above, we con-
sider the problem of the motion of an isolated test particle in general
relativity. Most of the results we here derive have been obtained,
in some form or other, by previous investigators!, but it may not be
superfluous to treat them anew from the standpoint adopted in the
present attack. Consider, then, the ¢‘conservation ’ equations

Tik, k= O (5.1)

1L Above all, by H. Weyl in his important treatise Raum-Zeit-Materie; we shall
here refer to the 5th edition of this work, although many of the results are to be found
in the earlier editions. They are also obtained, although from a less fundamental
standpoint, in the standard English work, A. S. Eddington, The Mathematical Theory
of Relativity (Cambridge, 1923).
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in a region R in which the total energy-momentum-stress tensor
Tk = Mik  Sik (5.2)

may be separated, at least phenomenologically, into an inertial
tensor M#* and a tensor S¥ representing the external field. The first
of these, which is to characterise the particle itself on transition to
the corpuscular description, is to be localisable in the neighbourhood
of a time-like world line L in R and is to satisfy the conditions

M®=0, g, M*=0 (5.3)

non-trivially, in the sense that the corpuscular quantities u%, g, u*
associated therewith shall be positive. Of the second part, S¥*, we
require merely that the power-force vector
Pi= — 8% , (5.4)
obtained therefrom be localisable in the neighbourhood of L; the
associated corpuscular vector p?! will then be interpreted as the force
acting on the particle due to the external field. We do not assume,
for the moment, that the stress tensors are symmetrical in their
indices ¢ and £.
The conservation equations (5.1) are now of the form (4.8), where
A jg the inertial tensor M* and P!is the force vector (5.4). Since
the world line L is assumed time-like at each event in R, we may
choose as its parameter p the proper time s measured along it, and

the corpuscular consequences (4.12) of the conservation laws assume
the form

m# = miu¥, ‘% + {;k} mi uk = pt, (5.5)
where m? is the vector u®®© and u* is the ‘ direction cosine’ d¢*/ds of
L. Now m? (> 0) is interpreted as the mass of the particle at the
event E, as viewed by the virtual observer O, 2* = const., at E, for it
is the total measure u® obtained by integrating the mass density M %
over the proper space of O in the neighbourhood of E and passing
to the corpuscular idealisation; similarly, the spatial components m?
are O’s measure of the momentum of the particle when it is at E.
Thus we see how mass (or energy) and momentum (or rate of flow of
energy), which are represented in the field by the components M© of
a tensor, are represented in the corpuscular description by the mass-
momentum vecfor mi. Assuming the power-force vector p®as given
along the path L of the particle, the second set of equations (5.5)
merely tell us how m’ is propagated along the given world line L;
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these equations are thus the invariantive four-dimensional formula-
tion ‘‘ proper rate of change of momentum along L equals force” of
the second law of motion, together with the corollary ¢ proper rate of
change of energy equals power.”

In order to complete our corpuscular dynamics, we must specify
how the dynamical concept ‘‘ momentum > mi is related to the kine-
matical concept ‘ velocity,”” here represented by wuf; this question,
which has been raised explicitly by Eddington?, is here to be answered
in terms of the symmetry of the inertial tensor M% with respect to
its indices. For if, as is generally assumed from the beginning, M¥,
and therefore also its corpuscular counterpart u¥, is symmetrical, it
follows as in (4.13) that

m? = mui, (m>0), (5.6)

where the scalar magnitude m of m‘ is the proper or rest mass of the
particle. Thus under these conditions the energy-momentum vector
m* must coincide in direction with the velocity four-vector u—and,
conversely, if this latter situation is to obtain, at least the
limiting measure u¥ of the inertial field must be symmetrical in its

indices. .
The second set of equations (5.5) now yield the equations of
motion
d2 g i) d¢ df":| ;  dé dm
i =22 | =pt— 2, 5.7
ml:dsz +{jk} ds a1~ P 7 35 s (51

Since u'=d¢!/ds is here a unit vector, it is orthogonal to its contra-
variant rate of change, given by the expression in brackets above,
and hence on multiplying these equations by the covariant com-
ponent %; and summing over ¢ we find

%7.92 = u; p'; (5.8)
the proper rate of change of proper mass (or energy) is equal to the
proper rate at which work is done by the external field. We have
with this shown that the field conservation laws imply, under the
conditions (a)—(d) laid down in §3 and the assumption that the
inertial tensor is symmetrical, that the corpuscular trajectory must
satisfy the second order equations of motion (5.7). It remains only to
apply this general result to cases in which the force vector pirepre-
sents situations of particular physical interest.

1 Op. cit., p. 125.
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We consider first the case in which 7% consists only of the inertial
part M#*; we are then dealing with an isolated particle subject to no
explicit external field. The force vector p* vanishes, and by (5.8) the
proper mass m of the particle is constant along its trajectory. The
equations (5.7) then yield the familiar result that the motion of a
free neutral test particle is along a geodesic of the metric (1.1).

As a second illustration, we consider the motion of a charged
particle in an electromagnetic field. In accordance with the pheno-
menological electrodynamies incorporated into the general theory of
relativity, we may describe the total field as in (5.2)—(5.4), where

the ponderomotive force
Pi= — Fi Jk (5.9)

is derived from the exterior electromagnetic field F;, and the charge-
current vector J* of that portion of the field which is to give rise to
the charged particle. Now the vector J* is a localisable vector which
satisfies, in this theory, the conservation equation (1.2), and hence its
corpuscular counterpart  obeys the equations (4.5). Further, by
(4.7), the temporal component . is a scalar, the charge e of the
particle as measured by any observer at the event E in question;
thus charge, in contradistinction to ‘“ mass” m? is independent of
the relative motion of particle and observer. In terms of the vector
j* associated with * as in (3.2), equations (4.5) may now be expressed
in the form

JF = eut, e = const. (5.10)

Equation (5.9) yields, on integration over the cross-section ¢ = const,
and multiplication by % the expression '

Ppt= — elFiu? | (5.11)

for the ponderomotive force on the particle. Since F; is an anti-
symmetrical tensor, the sum w;p* vanishes, and hence by (5.8) the
proper mass m of the particle is again a constant of the motion. The
equations (5.7), (5.11) are then the usual equations of motion of a
charged particle under the influence of an external electromagnetic
field Fg 2.

Our derivation of these results differs from that of Weyl or
Eddington mainly in its formulation of the postulate concerning the
behaviour of the energy-momentum-stress tensor on the transition to

1Weyl, op. cit., §38 ; Eddington, op. cit,, § 56.
2 Weyl, op. cit., p. 285 ; Eddington, op. cit., p. 190.
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the corpuscular description. Thus these authors assume, in addition
to indicial symmetry, the rotational symmetry of the elementary
particles, and are thereby enabled to conclude the relation (5.6)
between momentum and velocity; from our standpoint this is
accomplished entirely by the general postulate (d), which would
almost seem inherent in the very notion of the transition!. Our
methods allow us to deal directly with the full problem, without
introducing the concept of the ‘““exterior field”” due to the Riemannian
character of the metric, as in Weyl’s treatment, and can be applied,
as shown in the succeeding section, to the case in which the corpuscles
are light quanta. On the other hand, we have not attempted here
to take into account the effect of the corpuscles in question on the
metric field, as has been done by Weyl? or, from another standpoint,
by C. Lanczos®; it would seem, however, that such an investigation,
which is beyond the scope of the present paper, could be accomplished
along substantially the same lines.

§6. Motion of a test photon.

We come now to the case of most novel interest in the present
investigation, that in which the test corpuscle is obtained from an
energy-momentum-stress tensor

T = S% where g;, S* = 0, S = 0. (6.1)

This situation arises naturally in dealing with a field which is purely
electromagnetic in the region R under examination, and we accord-
ingly refer to the resulting corpuscular constructs as photons. It is
to be emphasised, however, that at least in the preliminary stages no
reference is made to the inner structure of S%, other than that its
divergence and its trace both vanish.

The vanishing of the divergence of the localisable tensor S
implies, by (4.10), that the associated corpuscular quantities o satisfy
the equations

oik=sid_§k, d_s‘ +{?}Sa’ ‘gf
dt dp jk dp

where p is any suitable parameter and we have written s'= ¢, in

=0, (6.2)

1 The necessity of demanding that the limiting ¢‘mass-centre” of the field fall no
the path L, which is here insured by our formulation of (d), has been pointed out by
A. Einstein and W. Mayer in a discussion with the writer.

2 Op. cit., p. 283.
3 Zeits. f. Phys. 59, p. 514 (1930).
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accordance with (4.11). Further, by (6.1) and the rules governing
the transition, the trace of ¢** must vanish, whence
i
s;ut =0, where u' = ﬁ (6.3)
dp
Without imposing conditions on the symmetry of S8¥*, we see that the
conservation equations and the vanishing of the trace require that,
whatever the path L, the energy-momentum vector s must be ortho-
gonal to it and be transported along it by parallel displacement.

Although the investigation of the relation between st and «' under
specific unsymmetrical tensors S%* (such as that of Minkowski) might
be of interest in other connections, we are here concerned primarily
with a radiation field in otherwise free space, and therefore adopt the
usual condition that S% be symmetrical in its indices 7 and k. But
then, as in (4.13), s’ is proportional to %¢; we here find it convenient
to choose the parameter p in such a way that these two vectors are
identical—specifically, we define
8° et _ d&_ U, (6.4)

p= jdt/s , whence s & dp

The equations (6.2), (6.3) for the parallel transport of s* are then the

equations
dz g i) dé§ deF ;
> = =2 =0, =20 6.

ARIAE 5 A (-5

of the null geodesics of the metric (1.1)!. We have with this proved
the assumptions of Kermack, McCrea and Whittaker? that the path of
a light pulse is a null geodesic, along which the energy-momentum
vector &' is carried by parallel transport. The results derived there-
from by these authors, in particular that as a consequence of (6.4),
(6.5) a photon description of light is possible also in the space-times

1 0f. the work of O. Halpern, Phys. Rev. 48, p. 431 (1935), where it is shown that,
on the classical theory, a plane wave field, whose energy-momentum-stress tensor is
symmetrical and satisfies the condition (6.1), is necessarily propagated with the velocity
of light.

2 Proc. Roy. Soc. Edin. 53, p. 43 (1932). (Y. also J. L. Synge, Quart. Journ. Math.
(Oxford) 6, p. 199 (1935), who shows that their assumption of the parallel transport
of ¢ can be replaced by energy-momentum considerations concerning the interaction
of the material source and receiver in establishing the possibility of a photon descrip-
tion in general relativity ; the justification of these assumptions, from the present
standpoint, is considered in the succeeding § 7.
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contemplated in the general theory of relativity, then.follow as in
their work.

For the sake of completeness, we add here a derivation, based on
their theorem (2.6) concerning neighbouring null geodesics, of the fact
that the energy s° of such a photon is proportional to a frequency v
intrinsically associated with the phenomenon; this result serves as a
bridge between the corpuscular or geometrical optics, to which we
have so far confined our considerations, and the more fundamental
wave or physical optics. The theorem under discussion states that
for any two neighbouring null geodesics the quantity

J = u; 8¢ (6.6)

is a constant of the motion, where %’ is the transport vector of one of
the null geodesics and 8¢ is the displacement between associated
events on the two paths; this association is arbitrary within wide
limits, for if we add to 8¢ any infinitesimal displacement along the
path, the value of J is unchanged in terms of first order. Consider
now light impulses sent out with a frequency v, by an observer O,
at x* = af%, const., and received by an observer O, stationed at
x* = x%, const. Then if v, be the frequency with which these impulses
are received by O,, we may say that the v, 8f, impulses sent out by
Oy in the interval ¢y, ¢, + 8y are received by O, in the interval ¢,,

t, 4 8t;, where
Vo Sto =" Stl. (67)

On applying (6.6) to the two null geodesics defining this signal band—
t.e. to the null geodesics which originate at x¢ at times ¢, ¢, 4 8¢, and

pass through % at times ¢,, {; + 8¢, respectively—we find
(w0 8t)o = (u®3t),, (6.8)

where we have taken account of the fact that for the metric (2.1)
there is no distinction between the covariant component %, and the
contravariant component «° of the transport vector. On noting that
4% = s and comparing our last result with (6.7), we find that

s%v is a constant of the motion. (6.9)

Now since, as shown by the authors quoted above, this Doppler
frequency v may be identified with the optical frequency of the
pulse—again within the limitations dwelt upon in the Introduction—
we have established the compatibility of our considerations with

Planck’s law
80 = hw, (6.10)
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where h is the universal constant of action—and hence with the
possibility of a photon description of the radiation field in general
relativity.

We have with this justified, from first principles, the procedure
adopted by Hubble and Tolman! in deriving their expression for the
luminosity of distant nebulae in cosmological space-times2. For not
only is the luminosity of a receding source decreased by the factor
(14 82/A)~1 due to weakening by Doppler effect, but also again by
the same factor due to the slower rate of reception of photons—
contrary to the contention of de Sitter® that this factor should be
applied but once.

§7. Collision phenomena. Compton effect.

As a final application of the methods developed above, we treat
briefly the case in which two or more portions of the field 7' interact
in a manner which is best described, from the corpuscular standpoint,
as a collision between two or more particles. It will suffice to con-
gider two corpuscles A, B whose world lines intersect at an event
E(.fi), and are otherwise isolated, from one another and from other
corpuscles, within a four-cell R containing E in its interior. Let the
segments L,, Ly of their world lines within R be enclosed within two
nests of world tubes, as prescribed by the conditions (a) and (b) of §3,
in such a way that the intersections of these two nests with the
boundary ¢ = t;, and with the boundary ¢ = ¢, of R have in each case
no common event. The two portions of the field 7%, whose inter-
action within R is to be described as the collision, are now to be
replaced within R by a series of field distributions which satisfy the
remaining conditions (¢) and (d) of §3 in the neighbourhoods of the
bounding hypersurfaces ¢ =t¢,, t = t,; in addition, each set 7% of the
total field distribution is to satisfy the conservation equations (1.3)
whose consequences we now examine.

The fundamental equations (1.3) satisfied by 7% may be written

in the form
1 ¢

7T o (BT = — {;k} T, (7.1)

1 Astrophys. Journ. 82, p. 302 (1935).

2 This case, considered in detail by Kermack, McCrea and Whittaker, can also be
treated with the aid of the results obtained by M. v. Laue. Sitzungsber. preuss. Akud.
Wiss. 1931, p. 123. Note added in proof: Such a treatment, by v. Laue himself, has
since appeared in Zeits. f. Astrophys. 12, p. 208 (1936).

3 Bull. Astronom. Inst. Netherlands 7, No. 261, p. 210 (1934).
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where % is the determinant of the coefficients %, of the auxiliary
metric dl?, (2.1). On multiplying these equations by the element of
volume dtdV of space-time and integrating over the region R we

find that
U TioclV:lz __ rdtH ) i gy, (7.2)
* 1 4 JkJ’ )

where the term on the left is the difference of the spatial integral
over the boundaries t =1,, 1 = ¢, of R, and we have again made use
of the fact that the integrals arising from the remaining terms
k=1, 2,3 in the divergence vanish in virtue of the boundary con-
ditions. Now each of the corpuscular world lines L,, Ly is, by
assumption, solated in the neighbourhoods of the boundaries ¢ =1,
t =1y, of R, and hence the considerations of §4 apply to the field
distributions about L,, Lp in these neighbourhoods. On making the
transition x—> « to the corpuscular idealisation we may therefore
express the left-hand side of (7.2) in terms of the energy-momentum
vectors m%, m§ of the two corpuscles A, B at the events in which
their world lines L,, Lg intersect the temporal boundaries of R;
equation (7.2) then yields

b
s+ milt = [ ) et (1.3
where l.
’] - 1 v j
Filt) = L"ij{jk} T*av. (7.4)

It is to be noted that these equations, relating the total energy-
momentum before the impact to that after the impact, are not
vectorial equations in the true sense, for they involve quantities
computed at different events of R, and the manner in which these
events are chosen is dependent on the coordinate system employed.
Indeed, we can refer to them as dealing with the total energy and
momentum only with reference to that privileged set of virtual
observers O, 2% = const., signalised by that particular Gaussian
coordinate system a? employed in setting up the metric (2.1). How-
ever, this situation is no cause for concern, for we are actually here
only interested in what happens in the immediate vicinity of the
event E (£) at which the collision takes place; the behaviour of each
vector m' along the remainder of the paths L within R, on which
each of thc particles may be regarded as isolated, is already deter-
mined by the considerations of the preceding §§5, 6. Our investiga-
tion will thus be complete if we confine ourselves here to the situation
in the neighbourhood of E.
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In order to obtain a precise formulation, sufficient for the physical
situations in mind, we assume that each energy-momentum vector
m possesses a limit [m?},, [m]_ as we approach the singular event E
from the positive, and from the negative, ¢-directions, respectively,
and that fi(t) is a bounded function of ¢ in a region containing E.
As we then allow ¢, ¢, — £° the right-hand side of (7.3) approaches the
limit 0, and we are left with the condition

[y + mb]y = [mi +mi]_; (7.5)
t.e. the total energy and total momentum of the system are unchanged by
the collision. This vectorial result, which refers only to the situation
at a single event E, is clearly applicable to the case in which any
number of corpuscles collide at a single event.

It has not been found necessary to specify more precisely the
nature of the corpuscles suffering the collision; they may be either
material particles or photons, indescriminately. Thus if one, say A,
is a photon which interacts with a particle B, we have the situation
contemplated in the Compton effect, and the result (7.5), together with
Planck’s relation (6.10), leads to the more detailed theory of this
effect. We remark, in closing, that the acceptance of the results of
R. S. Shankland! on the failure of this theory, would seem to entail
some limitation on the possibility of a corpuscular deseription of the
field which is more fundamental than those resulting from the usually
accepted undulatory theory touched upon in the Introduction—or
perhaps the eventual surrender of the field laws (1.3) themselves.

1 Phys. Rev. 49, p. 8 (1936). Note added in proof: This eventuality seems now to
be removed, by the later work of Shankland, Phys. Rer. 50, p. 571 (1936), and of others.
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