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Abstract.

Modern solar telescope design in the EUV to x-ray range is now capable of producing large
images in multiple channels at rapid cadences, with high spatial and temperature resolution.
We discuss reconstruction of differential emission measures for solar coronal plasma using two
state-of-the-art instruments: the X-Ray Telescope on Solar-B, and the Atmospheric Imaging
Assembly on the Solar Dynamics Observatory. We discuss the relative merits of iteration and
direct inversion methods for determining DEM(T'). We also consider strategies for automating
and visualizing DEM maps, given the high data rates that these instruments will produce. We
touch on the scientific potential of high-cadence, spatially resolved DEM data products.

1. Introduction

Solar telescope design in the EUV to x-ray range is now capable of producing large
images (4096 x 4096 pixels) in multiple channels (six or more) at rapid cadences (~ 10
seconds), with high spatial (sub-arcsecond) and temperature (order of emission kernel
widths) resolution. Such instruments permit more sophisticated temperature diagnos-
tics than the filter-ratio method used with the previous generation of coronal imaging
telescopes. In this paper, we discuss the issues, capabilities, and science for DEM re-
construction in the context of two state-of-the-art instruments: the X-Ray Telescope on
the Solar-B spacecraft, and the Atmospheric Imaging Assembly on the Solar Dynamics
Observatory. The X-Ray Telescope (XRT) is a grazing-incidence, broadband instrument
with nine diagnostic filters spanning the range 6.1 < logT < 7.5. More information on
the design of XRT for DEM reconstruction can be found in Golub et al. (2004).

The Atmospheric Imaging Assembly (AIA) is a normal-incidence, narrow-band instru-
ment with four 20-cm, dual-channel telescopes operating simultaneously at a 10 second
cadence (Fig. 1la). The mirrors in each telescope are subdivided into two areas (called
“D”s) with different multilayer coatings, giving seven EUV channels, plus a channel used
for UV and white-light observations (Fig. 1b). The AIA will be able to image coronal
plasmas for 5.5 < logT < 7.5, and cooler regions of the solar atmosphere. The focal plane
detector is a 4k x4k back-illuminated CCD with 0.6 arcsecond pixels and a 43 arcminute
field-of-view which will be able to capture the entire solar disk— the AIA will combine
the f.o.v. of SOHO/EIT with the resolution of TRACE.

2. Two methods for DEM reconstruction

The differential emission measure (DEM) is a basic observable of the coronal plasma
in a region of interest dV. The DEM is a measure of the amount of emitting plasma:

/ng dv = /DEM(T) dr, (2.1)
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Figure 1. (a) Model of the ATA assembly. (b) Diagram showing the arrangement of the wave-
length channels on the four telescopes. The UV passband has three separate channels available
through the use of focal plane filters.

where n. is the electron number density. The intensity d; observed in channel 7 is
d; = /DEM(T) r(T)dT, (2.2)

where r;(T") combines the known information, i.e., the temperature response function for
channel ¢ with the plasma emissivity function. The DEM may be found, in principle, by
inverting Eq. 2.2, but that is an ill-conditioned problem if the r;(T") overlap in tempera-
ture coverage (as they do for the XRT and ATA). We discuss two approaches to solving
this inversion problem: an iterative search method, and direct inversion methods.

2.1. Iterative methods

We wish to find the “best” fitting DEM for a given set of observations in several spectral
channels. Here we consider a set of images taken of an active region (AR). We assume that
the structure of the AR loops is unchanged during the time it takes for the instrument
to accumulate all of the images. Before processing, the set of images is co-aligned and
reduced to physical units (e.g., DN/s). In this section, we discuss how we estimate the
DEM in a given pixel.

Our procedure produces an iterative least-squares fit to the observations using a DEM
represented by a spline with evenly spaced knots in log T, space. For the set of obser-
vations (all ¢) in pixel p, we wish to solve the simultaneous equations of Eq. 2.2. With
the forward modeling approach, we assume a starting DEM, apply Eq. 2.2, and compare
the predicted observations for each filter with the real observations. The optimal DEM
spline is found using IDL mpfit routines from Craig B. Markwardt (http://cow.phys-
ics.wisc.edu/~craigm/id1/idl.html), which search towards a minimum x? statistic
by varying the spline knots. These routines use the non-linear least-squares method
based on the MINPACK-1 routines (http://www.netlib.org/minpack/). This method,
including uncertainty analysis, is described in more detail in Golub et al. (2004).

2.2. Direct inversion methods

Another class of solution methods is comprised of inversion algorithms. Eq. 2.2 can be
written in matrix form as

R;7 DEMy =d; | (2.3)
representing a simultaneous set of linear equations, where DEM is a vector of length
Nrp, and d; is a vector of length N;. For Ny = N, the system is determined and there is
a unique solution (assuming no degeneracies in the response functions). The inversion is

easily solvable with standard linear algebra techniques (e.g., lower-upper decomposition).
However, unless the selection of temperature bins (implicit in the response functions)
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happens to be closely consistent with the characteristics of the “true” DEM function, the
solution DEM is often unphysical. For example, solution functions often show significant
negative DEM values. Furthermore, the constraint Ny = N; may imply poor resolution
in temperature.

For Np > N,, the system in Eq. 2.3 is underdetermined, and there is an infinite family
of solutions. In other words, the a posteriori information (i.e., the data) is insufficient to
constrain the model to a unique solution. In this case, there is freedom to constrain the
solution with a priori information (i.e., physical constraints, such as assumptions about
positivity or smoothness). Regularization methods (see Press et al., 1992) turn Eq. 2.3
into a well-posed minimization problem with the addition of such a constraint, by trading
the quality of fit to the data against the quality of fit to the assumed constraint. (The
amount of trade-off is typically adjusted such that the y? fit to the data is ~ N;.) Note
that this approach requires an explicit choice of a priori assumptions.

Without making any a priori assumptions, the method of singular value decomposition
(SVD) can be used to describe the family of solutions to Eq. 2.3. If R;r is considered as
a linear map from the DEM space of Nt dimensions to the data space of N; dimensions,
then the SVD algorithm provides the N; DEM orthonormal basis functions which solve
Eq. 2.3. This reduces the inverse problem to a square system of equations with a deter-
minable principal solution. SVD also provides (N — N;) DEM orthonormal null-space
functions, which add to the principal solution to generate the infinite family of solutions
to Eq. 2.3. (Note that there is no physical significance inherent to the principal SVD
solution, although it happens to be the solution vector of shortest norm.)

3. Comparing DEM reconstruction methods

We compared the iterative and SVD (inversion) methods to evaluate their pros and
cons for implementation of an automated algorithm. A variety of nine input DEMs were
designed and folded through the AIA response functions to produce simulated observa-
tions. Then each set of observations was solved for a reconstructed DEM using three
methods: (a) “Simple” inversion (where Ny = N;); (b) SVD principal inversion; and (c)
the iterative approach. The “Simple” inversion method was included as a baseline for
comparisons, even though it was expected to produce relatively poor reconstructions.
We used six of the AIA’s EUV channels (N; = 6), and solved for DEMs with Ny = 19
temperature bins spanning the range logT = 5.6-7.4 .

Fig. 2 shows four of our model DEMs and the respective solutions for the SVD and
iterative methods. (Note that model “h” is an empirical active region DEM, derived from
observations by Dupree et al., 1973). These plots illustrate typical aspects of the solutions.
The SVD and iterative methods do about equally well at reconstructing the DEMs (this
is quantified below). For input models which have a constrained temperature range, the
solutions accurately recover the central temperature. There is a lower limit on the width
(resolution) of the fits due to the width of the temperature response functions. The
iterative method always gives positive solutions, while the SVD method often produces
solutions with small negative components.

We have quantified three measures of the relative value of the three solution methods
considered. These are recorded in Table 1. The first quantity is runtime. For each set
of observations, we calculated the average runtime of the method for 100 runs on a Sun
Ultra 10 workstation, with a 440 MHz processor and 1.0 GB of RAM. As expected,
the inversion methods are substantially faster than the iterative approach: 7(iterative)
~ 400 x 7(SVD) ~ 10* x 7(“Simple” inversion).
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Figure 2. Four selected DEM models from a set of nine. (The letters correspond to entries in
Table 1.) The thick black line is the model DEM; the dotted line is the estimate by the iterative
method; and the dashed line is the SVD principal solution (direct inversion).

DEM model = | a b c d e f g h i |Median

Table 1.1: Runtimes (milliseconds)

“Simple” inversion [ 0.055 0.054 0.053 0.053 0.055 0.056 0.055 0.054 0.054| 0.054
SVD 1.3 1.4 1.4 14 1.4 1.4 1.3 1.3 1.3 1.4
Iteration 1800 590 750 750 570 510 1100 520 @ 440 590
Table 1.2: x? between observations from model and from estimated DEM
“Simple” inversion| 0 0 0 0 0 0 0 0 0 0
SVD 0 0 0 0 0 0 0 0 0 0
Iteration 0.10 0.11 0.003 4.3 19.6 0.038 3.2 0.009 67.4 | 0.11
Table 1.3: Cross-correlation coeff. between model DEM and estimated DEM
“Simple” inversion | 0.75 0.063 0.098 0.54 0.048 0.069 0.22 -0.096 0.053| 0.069
SVD 0.89 0.95 092 0.67 072 069 0.54 099 0.95| 0.89
Iteration 1.00 1.00 1.00 0.56 0.42 0.64 0.48 1.00 0.99 | 0.99

Table 1. Quantitatively comparing DEM reconstruction methods for different DEM models.
Models {a,b,c} are Gaussian distributions for cool, warm, and hot plasma. Models {d,e,f} are
“double isothermal” peaks for cool, warm, and hot plasma. Model g is a cool isothermal peak
plus a hot isothermal peak. Models {h,i} are multithermal and shown in Fig. 2. The median
values are simply the medians for this arbitrary set of nine models.
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The second tabulated quantity is the x? fit to the observations. Note that inversion
methods reproduce the observations perfectly. This is a mathematical consequence when
solving a well-determined (or underdetermined) system of equations. Iteration converges
to the first minimum it reaches from the starting guess, which may only be a (nonzero)
local minimum in x2.

The third tabulated quantity is the cross-correlation coefficient between the input and
solution DEMs. The iterative method is shown to most accurately reconstruct the DEMs,
typically. “Simple” inversion does not have the temperature resolution to accurately re-
produce the input DEMs. The SVD method does a fair job, considering that the principal
solution is only one of a family of solutions, some of which might be much better. (In
fact, since we are solving over the same temperature bins for which the input DEMs are
defined, the input DEM is definitely a member of the SVD family of solutions. Of course,
this would not be expected when analyzing observations of coronal plasma.)

From these results, it is apparent that the iterative approach does well at reproducing
our sample of model DEMs, giving positive solutions. Its ability to reproduce the observa-
tions (in terms of the x? statistic) varies greatly. The inversion methods are much faster,
which is a prominent concern when designing a DEM data product for, e.g., the ATA,
which produces images with 16+ Mpix at a cadence of 10 seconds. The SVD principal
solution reproduces the observations perfectly (before error analysis), and does almost
as good a job at reconstructing the DEM models as the iterative method does, although
it can return negative components. Note that there is freedom to impose some physical
constraints on inversion methods (such as positivity) while retaining computation speeds,
by allowing the x? statistic to go to NV;.

4. Sixteen Million DEMs Every Ten Seconds

Calculating DEMs at several points in an image is straightforward for nearly any
method, however the true power of AIA and XRT DEM observations comes when the
DEMs are available for every image set. Say, for example, there is a coronal loop visible
in a few adjacent channels, and we wish to test the hypothesis that the loop is isothermal.
With AIA standard cadence we can follow the evolution of this loop from appearance
to disappearance with a ten second cadence. If the loop lasts for 100 minutes we will
have an observational dataset that consists of 600 sets of 6 EUV images to form DEMs
from. For this project we would limit our analysis to the few hundred pixels surrounding
the loop, say 1/4 million pixels/frame total. It is apparent that if the visible loop is in
fact a physically distinct structure in the corona, its evolution will be different from the
surrounding plasma. There will be “features” within the loop’s DEM that will evolve
together; the rest of the DEM in the loop can be attributed to changes along the line
of sight, not associated with the loop in question. An isothermal loop will have a DEM
feature that is within the temperature resolution of the telescopes used (~ 0.2logT,).
The ability to calculate DEMs at every point along a loop (and all adjacent points, too)
will provide an unprecedented set of observational constraints on coronal loop models
and corona heating theories.

In this section we discuss our investigations of pre-conditioning methods, which opti-
mize DEM reconstruction for the iterative approach by making an informed initial DEM
guess that takes advantage of the sharing of DEM information among the pixels in an
image. In addition, we evaluate the effectiveness of different DEM display options, in-
cluding single temperature emission maps and time-progression DEM movies. We aim to
construct DEMs efficiently and display complex information in a concise, useful manner.

We use a simulated cube of coronal plasma, with dimensions 79 x 137 x 137 (z,x,y), to
model DEM reconstruction from AIA observations. (The model is provided by Gudiksen
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Figure 3. ATA simulated observations of the model, top view.

et al., 2001, 2004.) The original simulation had a 150 x 150 x 150 cube x45 time frames,
with n. = 108-10'7 cm ™3 and log T' = 3.6-6.6 K. From the cube we constructed a DEM,
at each pixel, along a vertical line-of-sight. We binned the data in temperature (bins of
logT = 0.1), and interpolated to match AIA pixel scale (440 km). Observations were
generated by convolving the DEMs with a spectral model and the AIA response function
for each channel (Fig. 3).

4.1. Optimization methods

As shown in Table 1.1, the run times for SVD are ~ 400 times faster than the iterative
method. However, the iterative method provides a better fit to the DEMs. The iterative
model depends on an initial guess of the DEM; currently we are using a flat (i.e., an
uninformed) guess. We can improve the runtime for the iterative method by using an
informed guess. Four methods are compared: Brute Force - our standard method; for
each image, solve for the DEM of each pixel independently using a flat first guess. Single
Average - for each image, average all pixels and calculate a “global” DEM; use this as a
first guess for the DEM reconstruction of all pixels. Time Dependent - for the first image,
solve for the DEM of each pixel independently using a flat first guess; use the resulting
DEM image as a first guess for calculations in second image; iterate to last image. Time
Averaging - for first image, use a global DEM as a first guess for DEM reconstruction for
each pixel; use the resulting DEMs as a first guess for calculations in second image; iterate
to last image. To compare computation times from method to method, we performed a
series of reconstructions for 10 time frames of simulated data with eight different square
array sizes using each of the above methods.

4.2. Optimization results

The results are shown in Fig. 4: a log-log plot of total number of pixels vs the computation
time. For the Brute Force method, computation time goes roughly as N2, where N is
the square array length. For the Single Average method, there are improvements for
small array sizes, but when the array grows too large, the global guess is no longer a
good approximation for most pixels. The Time Averaging and Time Dependent methods
improve the convergence time by nearly a factor of three. Note that pre-conditioning
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Figure 4. A log-log plot showing the computation
time as a function of the total number of pixels in
the image.

Figure 5. Single temperature im-
ages constructed from DEM solu-
tions.

does not sacrifice goodness of fit for speed (iterative DEM solutions are surprisingly
independent of initial guess).

While we expect to use pre-conditioning to calculate DEMs for large data sets, a factor
of three improvement is not sufficient. The SVD fits described above give improvements of
a factor of four hundred. We will look into improving the accuracy of SVD type methods
without sacrificing speed.

5. How do we view the data?

It is unlikely that the ATA and XRT missions will be able to provide DEMs at every
pixel for every set of observations. A standard data product might be isothermal images
of the corona constructed every hour. Fig. 5 shows examples of this data product for
four temperatures, logT" = 6.0-6.3. The tools to construct DEMs from time dependent
data sets are essential. We have explored different ways of presenting the results of that
analysis: movies of single temperature images (Fig. 5), movies of observations with DEMs
from selected points displayed (Fig. 6, top), and movies of DEM differences (DEM];,
— DEM]|;, ,) (Fig. 6, bottom). Each of these have advantages and limitations— an
isothermal loop should be easily seen in the single-T movies, but if you want to understand
the process of chromospheric evaporation, DEM differences may be the best approach.

6. Conclusion

The XRT and ATA instruments will provide solar scientists with an unprecedented set
of observations. The volume of data and the complexity of DEM analysis place strong
requirements on the data analysis system. Tools must be provided for: quick-look single
temperature maps (based on DEM analysis); detailed DEM analysis of events by sci-
entists, with error estimates; and plasma emission codes with variable parameters and
keywords that track the assumptions made in the DEM processing. These tools will need
to be evaluated on various criteria (e.g., speed, confidence intervals, fit to observations),
depending on the particular questions being put to the data. The advances currently hap-
pening in emission line codes, imaging solar telescope design, and DEM reconstruction
techniques shall address these issues.
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Figure 6. (Top) An Fe IX observation with DEM plots at 9 selected points in a simulated 171A
image. The model DEMs (lighter line) and estimated DEMs (darker line) are both plotted.
(Bottom) An Fe XIV observation with DEM differences at 9 selected points in a simulated
211A image. The curves show at which temperatures the density is increasing (positive) and
decreasing (negative).
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