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THE ë-INVARIANTS OF CUSPED
HYPERBOLIC 3-MANIFOLDS

ROBERT MEYERHOFF AND MINGQING OUYANG

ABSTRACT. In this paper, we define the ë-invariant for a cusped hyperbolic 3-
manifold and discuss some of its applications. Such an invariant detects the chirality
of a hyperbolic knot or link and can be used to distinguish many links with homeomor-
phic complements.

0. Introduction. The ë-invariant of the signature operator for a closed odd dimen-
sional Riemannian manifold was introduced by Atiyah, Patodi and Singer in [1] in the
1970’s. Since then much effort has been made toward generalizing the invariant to the
cases of non-closed manifolds.

For a closed hyperbolic 3-manifold, the study of the ë-invariant benefits from its
complex-analytic relation with the hyperbolic volume of the manifold. Such a complex-
analytic relation was first speculated by Thurston in [9]. A precise conjecture was formu-
lated by Neumann and Zagier in [6] and later proved by Yoshida in [12]. By virtue of such
a relation, Neumann and the first author in [3] obtained a Dehn-surgery formula of the
ë-invariant of a closed hyperbolic 3-manifold for sufficiently large surgery coefficients.
Later in [7] the second author proved that such a formula is valid for all hyperbolic surg-
eries. The ë-invariant is now almost as computable as the volume for a closed hyperbolic
3-manifold.

The purpose of this note is to define the ë-invariant for a cusped hyperbolic 3-manifold
and discuss some of its applications.

Our definition of the ë-invariant depends on the choices of meridian-longitude pairs
at the cusps. It differs by one-third of an integer when different choices are made. For a
hyperbolic knot or link L in S3, we define the ë-invariant of L to be ë(S3 � L) with the
topologically standard choices of the meridians and longitudes for the components of L.
It turns out that ë(L) is a well-defined link invariant for a hyperbolic knot or link. We
show that such an invariant detects the chirality of a hyperbolic knot or link. It can also
be used to distinguish many links with homeomorphic complements.

As for the case of a closed Riemannian 3-manifold, the ë-invariant defined here can
be thought of as a real-valued generalization of the Chern-Simons invariant of a cusped
hyperbolic 3-manifold as defined by the first author in [2].

The rest of this note will be organized as follows. Section 1 presents some preliminary
material necessary for our later discussions. In Section 2, we define the ë-invariant for a
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THE ë-INVARIANTS 205

cusped hyperbolic 3-manifold and then go on to explore some properties of the invariant.
Section 3 exhibits a family of links with homeomorphic complements and different ë-
invariant. Finally in Section 4, we give a simplicial expression for the ë-invariant of a
cusped hyperbolic 3-manifold. As an example, we show how to calculate the invariants
for the twisted Whitehead links.

1. Preliminaries. Let M be an oriented complete hyperbolic 3-manifold of finite
volume with h cusps. Denote by D(M) the hyperbolic Dehn surgery space of M. For each
k ≥ 1, . . . , h, fix a meridian-longitude basis (mk, lk) for the homology of the torus Tk cor-
responding to a horospherical cross-section of cusp k. Let uk (resp. vk) be twice the loga-
rithm of an eigenvalue of the holonomy of mk (resp. lk). By [9] and [6], D(M) has com-
plex dimension h and can be holomorphically parameterized by u ≥ (u1, . . . , uh) 2 Ch

in a neighborhood of the origin in Ch. Denote by Mu the manifold M with the hyperbolic
structure parametrized by some u 2 D(M).

As shown in [12], there exist a link L ² M and an orthonormal frame field F ≥
(e1, e2, e3) on M � L such that F has a special singularity at L and is homotopically
linear in the cusps (we refer to [2] and [12] for the terminology). Let î ≥ (î1,î2,î3)
be an orthonormal frame field defined on a neighborhood of each component of L ²
M such that î1 is tangent to L and has the same direction as e1 near each component
of L. Both F and î can be chosen so that they vary continuously with the analytic
parameter u, resulting in frame fields Fu and îu in Mu. Denote by F(Mu) the oriented
SO(3) frame bundle of Mu. Let (°i), (°ij), and (Ωij) be respectively the fundamental
form, the connection form, and the curvature form of the hyperbolic metric connection
on F(Mu). Let C be the complex 3-form on F(Mu) given by

C ≥
1

4ô2

�
4°1 ^ °2 ^ °3 � d(°1 ^ °23 + °2 ^ °31 + °3 ^ °12)

�

+
i

4ô2
(°12 ^ °13 ^ °23 + °12 ^Ω12 + °13 ^Ω13 + °23 ^Ω23)

and define

(1) f
�
u; (L, F ,î)

�
≥
Z

s(Mu�L)
C �

1
2ô

X
K�L

Z
s0(K)

(°1 � i°23)

where s: Mu � L ! F(Mu) and s0: L ! F(Mu) are the sections defined by Fu and îu

respectively. Then f (u) defines an analytic function on D(M). When a different choice
of the triple (L, F ,î) is made, f (u) differs only by an integral multiple of i. If u 2 D(M)
represents a hyperbolic structure whose metric completion M̄u is the result of a hyperbolic
Dehn-surgery on the cusps of M, then we have

Re
�
f (u)

�
≥

1
ô2

Volume (M̄u) +
1

2ô

hX
k≥1

Length (çk)

and

Im
�
f (u)

�
≥ 2 CS(M̄u) +

1
2ô

hX
k≥1

Torsion (çk) (mod Z)
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206 ROBERT MEYERHOFF AND MINGQING OUYANG

where çk (1 � k � h) is the filled-in geodesic at the k-th cusp and CS(M̄u) is the Chern-
Simons invariant of M̄u.

Denote (p, q) ≥ (p1, q1; . . . ; ph, qh) where (pk, qk) is a pair of coprime integers for
each k ≥ 1, . . . , h. Let M(p, q) be the result of (pk, qk)-Dehn surgery with respect to
a fixed meridian-longitude pair (mk, lk) at the k-th cusp of M. Then the ë-invariant of
M(p, q) is computed by the following formula

(2)

ë
�
M(p, q)

�
≥

1
3

Im f
�
u(p, q)

�
�

hX
k≥1

1
6ôpk

Im
�
vk(p, q)

�

+
hX

k≥1

�
4s(qk, pk)�

qk

3pk

�
� sign

�
Y(p, q)

�
.

Here f (u) depends on the choice of (mk , lk) and can be calculated using (1) with some
choice of the triple (L, F ,î). s(qk, pk) is the classical Dedekind sum function defined by

s(q, p) ≥
1

4p

p�1X
k≥1

cot
�kô

p

�
cot

�kqô
p

�
if p Ù 0,

s(q, p) ≥ s(�q,�p) if p Ú 0.

Y(p, q) is the 4-manifold obtained by pasting (the lens space L(pk, qk))ð (the unit interval
I) to M(p, q) ð I along the copy of (D2 ð S1)k for k ≥ 1, . . . , h as sketched in Figure 1
below. Its signature sign

�
Y(p, q)

�
can be computed explicitly from Wall’s nonadditivity

formula ([11]) and depends only on Ker
�
H1(cusps; Q) ! H1(M; Q)

�
and the elements

l1, . . . , lh, p1m1 + q1l1, . . . , phmh + qhlh of H1(cusps).

M(p, q) M(p, q)

D2
ð S1 M D2

ð S1 M(p, q)ð I

D2
ð S1 D2

ð S1 D2
ð S1 D2

ð S1

L(p2, q2)ð I

L(p1, q1) L(p2, q2)

Y(p, q)

L(p1, q1) L(p2, q2)

≥)

Figure 1

The above formula was first derived in [3] for each p2
k + q2

k ! 1 and was recently
shown to be valid throughout hyperbolic Dehn-surgery space in [7].

2. Definition and Properties. In this section, we attempt to define the ë-invariant
for a cusped hyperbolic 3-manifold as a certain limit of the closed case. Note that as
shown in [3], ë

�
M(p, q)

�
takes on a dense set of values in R as each p2

k + q2
k ! 1. To

deal with this situation, we “average” the ë-invariant over larger and larger circles in
hyperbolic Dehn surgery space.
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DEFINITION 2.1. Let M be an oriented complete hyperbolic 3-manifold of finite vol-
ume with h cusps. Fix a meridian-longitude pair (mk, lk) at each cusp. Then

ë(M) :≥ lim
p2

k +q2
k!1,k≥1,...,h

1
2

�
ë
�
M(p, q)

�
+sign

�
Y(p, q)

�
+ë

�
M(p,�q)

�
+sign

�
Y(p,�q)

��
.

Note that in denoting ë(M) we have suppressed mention of the choice of the meridian-
longitude pairs.

We need to check that the above limit exists.
From (2) we get

ë
�
M(p, q)

�
+ sign

�
Y(p, q)

�
≥

1
3

Im f
�
u(p, q)

�

�
hX

k≥1

1
6ôpk

Im
�
vk(p, q)

�

+
hX

k≥1

�
4s(qk, pk)�

qk

3pk

�

and

ë
�
M(p,�q)

�
+ sign

�
Y(p,�q)

�
≥

1
3

Im f
�
u(p,�q)

�

�
hX

k≥1

1
6ôpk

Im
�
vk(p,�q)

�

+
hX

k≥1

�
4s(�qk, pk)�

�qk

3pk

�

≥
1
3

Im f
�
u(p,�q)

�
�

hX
k≥1

1
6ôpk

Im
�
vk(p,�q)

�

�
hX

k≥1

�
4s(qk, pk)�

qk

3pk

�
.

For each k, if pk !1, then we have
1
pk

Im
�
vk(p, q)

�
! 0 as p2

k + q2
k !1;

If qk !1, then since
pkuk(p, q) + qkvk(p, q) ≥ 2ôi,

we have also
1
pk

Im
�
vk(p, q)

�
≥

2ô
pkqk

�
1
qk

Im
�
uk(p, q)

�
! 0 as p2

k + q2
k !1.

Thus it follows that

(3)

ë(M) ≥ lim
p2

k +q2
k!1,k≥1,...,h

1
2

�
ë
�
M(p, q)

�
+ sign

�
Y(p, q)

�
+ ë

�
M(p,�q)

�

+ sign
�
Y(p,�q)

��

≥ lim
p2

k
+q2

k
!1,k≥1,...,h

1
2

�1
3

Im f
�
u(p, q)

�
+

1
3

Im f
�
u(p,�q)

�
≥

1
3

Im f (u0)
�
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208 ROBERT MEYERHOFF AND MINGQING OUYANG

where u0 2 D(M) represents the complete hyperbolic structure on M.

REMARK. ë(M) ≥ 1
3 Im f (u0) might be taken as another (equivalent) definition of

ë(M). As we shall see later, defining the ë-invariant as a limit of the closed case has its
advantage when we come to compare the ë-invariants of two manifolds.

By combining (2) and (3), we obtain

(4) ë(M) ≥ lim
p2

k
+q2

k
!1,k≥1,...,h

 
ë
�
M(p, q)

�
+ sign

�
Y(p, q)

�
�

hX
k≥1

�
4s(qk, pk)�

qk

3pk

�!
.

Let M be a complete, cusped hyperbolic 3-manifold of finite volume. Let L ² M be
a link in M and F an orthonormal frame field which is homotopically linear in the cusps
and has a special singularity at L. The Chern-Simons invariant of M was defined by the
first author in [2] as

(5) CS(M) �
1

8ô2

Z
s(M�L)

Q�
1

4ô

X
K�L

ú(K)
�

mod
1
2

�

where s: M � L �! F(M) is the section defined by F and Q is the Chern-Simons form

°12 ^ °13 ^ °23 + °12 ^Ω12 + °13 ^Ω13 + °23 ^Ω23.

ú(K) is the torsion of K � L which is well defined modulo 2ô.

Since Q ≥ 4ô2 Im(C), we have

Im
�

f
�
u0; (L, F ,î)

��
≥ lim

u!u0
Im
�

f
�
u; (L, Fu,îu)

��

≥ lim
u!u0

Im
�Z

s(Mu�L)
C �

1
2ô

X
K�L

Z
s0(K)

(°1 � i°23)
�

≥ lim
u!u0

� 1
4ô2

Z
s(Mu�L)

Q +
1

2ô

X
K�L

Z
s0(K)

°23

�

≥
1

4ô2

Z
s(M�L)

Q +
1

2ô

X
K�L

Z
s0(K)

°23.

Notice that �
R

s0(K) °23 is equal to ú(K) modulo 2ô. Thus it follows from (3) and (5)
that

(6) CS(M) �
1
2

Im
�
f (u0)

�
�

3
2
ë(M)

�
mod

1
2

�
.

Thus the Chern-Simons invariant is completely determined by the ë-invariant for a
cusped hyperbolic 3-manifold.

Since the Chern-Simons invariant does not depend on the choice of the meridian-
longitude pairs, we have from (6)
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PROPOSITION 2.2. ë(M) differs only by one-third of an integer when different choices
of the meridian-longitude pairs are made.

Let L be a knot or link in S3. Then for each component Sk of L, we have the topolog-
ically standard meridian and longitude (mk, lk) which are a pair of simple closed curves
on ∂N(Sk), the boundary of a tubular neighborhood of Sk, determined up to isometry by
the homology mk ≥ 0 2 H1(Nk) and lk ≥ 0 2 H1(S3 �Nk). If L is hyperbolic, we define
the ë-invariant of L to be ë(S3�L) with the choice of the topologically standard meridian
and longitude for each component of L.

PROPOSITION 2.3. The ë-invariant is a well-defined link invariant for a hyperbolic
knot or link.

PROOF. Suppose that L and L0 are two equivalent hyperbolic knots or links in S3. Let
(mk, lk) and (m0

k, l0k) be the topological meridian and longitude for each component of L
and L0 respectively. Then there exists an orientation-preserving homeomorphism h: S3 !
S3 sending L to L0. Thus we have an induced orientation-preserving homeomorphism
h0: S3 � L ! S3 � L0 sending each (mk, lk) to (m0

k, l0k). Since both S3 � L and S3 � L0

are complete hyperbolic 3-manifold of finite volume, by the Mostow-Prasad Rigidity
Theorem, h0 is homotopic to an orientation-preserving hyperbolic isometry h̄: S3 � L !
S3 � L0. Clearly, h̄ also sends each (mk, lk) to (m0

k, l0k).

PROPOSITION 2.4. Let L be a hyperbolic knot or link in S3. Denote by LŁ its mirror
image. Then we have ë(LŁ) ≥ �ë(L).

PROOF. Let (mk, lk) be the topological meridian-longitude pair for each component
of L. Let ì: M ≥ (S3 � L) ! MŁ ≥ (S3 � LŁ) be an orientation-reversing isometry. Then
ì sends each (mk , lk) to either (mk,�lk) or (�mk, lk).

Let each p2
k+q2

k be sufficiently large so that M(p, q) has a hyperbolic structure. Then the
unique hyperbolic structure on M(p, q) determines an incomplete hyperbolic structure on
M. Completing this structure kills off each curve pkmk + qklk and produces M(p, q). The
orientation-reversing isometry ì sends each pkmk + qklk to pkmk � qklk or �pkmk + qklk.
Thus after completion we have an orientation-reversing isometry between M(p, q) and
MŁ(p,�q) ≥ MŁ(�p, q). Therefore ë

�
M(p, q)

�
≥ �ë

�
MŁ(p,�q)

�
.

Denote by YŁ(p,�q) the 4-manifold obtained by pasting L(pk,�qk)ðI to MŁ(p,�q)ð
I along each copy of the solid torus (D2 ð S1)k in MŁ(p,�q). Since there is an orienta-
tion-reversing homeomorphism between lens spaces L(pk, qk) and L(pk,�qk), we
get an orientation-reversing homeomorphism between Y(p, q) and YŁ(p,�q). Hence
sign

�
YŁ(p,�q)

�
≥ � sign

�
Y(p, q)

�
. It follows from (4) that

ë(LŁ) ≥ lim
p2

k
+q2

k
!1,k≥1,...,h

 
ë
�
MŁ(p,�q)

�
+ sign

�
YŁ(p,�q)

�
�

hX
k≥1

�
4s(�qk, pk)�

�qk

3pk

�!

≥ � lim
p2

k +q2
k!1,k≥1,...,h

 
ë
�
M(p, q)

�
+ sign

�
Y(p, q)

�
�

hX
k≥1

�
4s(qk, pk)�

qk

3pk

�!

≥ �ë(L).

https://doi.org/10.4153/CMB-1997-025-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-025-8
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COROLLARY 2.5. If L is an amphicheiral hyperbolic knot or link, then ë(L) ≥ 0.

QUESTION. Does the vanishing of the ë-invariant imply that L is amphicheiral?
The answer to the above question is unlikely to be affirmative although no example

has been found.

EXAMPLE. The fact that the Borromean rings is amphicheiral can be seen from its
projection as shown in Figure 2. Thus theë-invariant (hence the Chern-Simons invariant)
of the Borromean rings is zero.

Figure 2

REMARK. The vanishing of the Chern-Simons invariant for the complement of the
Borromean rings was shown by Ruberman and the first author in [4] by viewing the
Borromean rings as the result of mutating a two-fold cover of the complement of the
Whitehead link along a twice-punctured disk.

3. Some links with homeomorphic complements and differentë-invariants. Let
L be a two-component link as shown in Figure 3(a). Suppose that L is hyperbolic with
zero linking number (e.g., the Whitehead link). Let Lk denote the link obtained from L
by adding k full twists to one of its components as in Figure 3(b). Then Lk and L have
homeomorphic complements.

T T

k full twists
Ð Ð Ð

Figure 3(a) Figure 3(b)

Denote by Mk(p1, q1; p2, q2) the result of the (p1, q1; p2, q2)-surgery along Lk with
respect to its standard meridian-longitude pairs. Let Yk(p1, q1;p2, q2) be the 4-manifold
obtained by pasting L(p1, q1) ð I and L(p2, q2) ð I to Mk(p1, q1;p2, q2) ð I along two
copies of solid tori as shown in Figure 1 of Section 2. Since the linking number of Lk is
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0, using Wall’s nonadditivity formula [W], we get sign
�
Yk(p1, q1;p2, q2)

�
≥ 0. Thus (4)

of Section 2 implies
(7)

ë(Lk) ≥ lim
p2

i +q2
i !1,i≥1,2

�
ë
�
Mk(p1, q1; p2, q2)

�
� 4s(q1, p1)� 4s(q2, p2) +

q1

3p1
+

q2

3p2

�
.

Since the linking number of Lk is zero, Mk(p1, q1; p2, q2) and Mk+1(p1, q1 + p1; p2, q2)
represent two surgery descriptions of the same manifold (see Rolfsen’s book [8] for in-
stance).

It follows from (7) that

ë(Lk+1) ≥ ë(Lk) +
1
3

and thus

ë(Lk) ≥ ë(L) +
k
3

.

Since ë(Lk1 ) Â≥ ë(Lk2 ) for k1 Â≥ k2, we have the following

COROLLARY 3.1. Lk1 is equivalent to Lk2 if and only if k1 ≥ k2.

4. A simplicial formula for the ë-invariant of a cusped hyperbolic 3-manifold.
Let M be an oriented complete finite-volume hyperbolic 3-manifold with h cusps. Sup-
pose M has an ideal triangulation M ≥ ∆(z0

1) [ Ð Ð Ð [ ∆(z0
n) where each ∆(z0

j ) is an ideal
tetrahedron described by a complex parameter zo

j after choosing an edge for each ∆(z0
j ).

Denote

z0 ≥
�
log z0

1, . . . , log z0
n, log(1 � z0

1), . . . , log(1 � z0
n)
�
.

Then z0 is determined by the consistency and cusp relations in the form

z0U ≥ ôid

where U is an integer 2nð (n + 2h)-matrix and d ≥ (d1, . . . , dn+2h) is some integer vector
(see [5]). Let c ≥ (c01, . . . , c0n, c001 , . . . , c00n ) be a solution to the equation

cU ≥ d.

Denote by Mu the hyperbolic structure on M obtained by deforming the parameter
u0 ≥ (z0

1, . . . , z0
n) to u ≥ (z1, . . . , zn). Suppose that the metric completion of Mu is M(p, q)

for some (p, q) ≥ (p1, q1; . . . ; ph, qh). Then by combining Neumann’s simplicial formula
for the analytic function and (1) of Section 2 we get

ë
�
M(p, q)

�
≥ ã�

1
3ô2

Im
nX

j≥1

�
iR(zj) +

ô

2

�
c̄0j log(1 � zj)� c̄00j log zj

��

�
hX

k≥1

1
6ôpk

Im(vk) +
hX

k≥1

�
4s(qk, pk)�

qk

3pk

�
� sign

�
Y(p, q)

�
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212 ROBERT MEYERHOFF AND MINGQING OUYANG

where ã is a constant which can be determined via a “boot-strapping” procedure, using
surgery relations discovered between hyperbolic 3-manifolds. R(z) is the Rogers diloga-
rithm function defined by

R(z) ≥
1
2

log(z) log(1 � z) + Li2(z) ≥
1
2

log(z) log(1� z)�
Z z

0
log(1� t) d log t

with log the standard branch on C� (�1, 0] and x̄ denotes the complex conjugate of x.
Thus it follows from (3) and (4) of Section 2 that

(8)

ë(M) ≥
1
3

Im f (u0)

≥ ã �
1

3ô2
Im
 nX

j≥1

�
iR(z0

j ) +
ô

2

�
c̄0j log(1� z0

j )� c̄00j log z0
j

��!
.

To finish up the section, we calculate the ë-invariants of twisted versions of the White-
head link. We first do it for the Whitehead link W as in Figure 4.

Figure 4

As described in [10], S3 �W can be obtained by gluing faces of an ideal octahedron
in pairs. By subdividing the octahedron, we get an ideal triangulation of the complement
with four simplices. We refer to [3] for the pictures and gluing equations.

The four ideal tedrahedra are all described by e
iô
2 ≥ i with a choice of an edge for

each tedrahedron. Namely, we have z0
1 ≥ z0

2 ≥ z0
3 ≥ z0

4 ≥ i.
As computed in [3],

(9) f (u) ≥
1
ô2i

 
R(z1) + R(z2) + R

� 1
1� z3

�
+ R

� 1
1� z4

�!
+ 2i

where the constant 2i was obtained by using the fact that (1, 1; p, q)-surgery on W is the
(p, q)-surgery on the figure-eight knot for which the constant had been determined in
[12].

It follows from (8) and (9) that

ë(W) ≥
1
3

Im

0
B@ 1
ô2i

 
R(i) + R(i) + R

� 1
1� i

�
+ R

� 1
1� i

�!
+ 2i

1
CA ≥ 5

12
.
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k full twists
Ð Ð Ð

Figure 5

Denote by Wk the twisted Whitehead link as shown in Figure 5.
Then as in Section 3, we have

ë(Wk) ≥
5

12
+

k
3

.
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