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Material update procedure for planar transient flow of ice
with evolving anisotropy
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ABSTRACT. A flow law for polar ice is derived, which takes into account the effect of
deformation-induced anisotropy due to hexagonal single-crystal symmetry. Attention is
focused on the main effect of crystal-lattice rotation. Existence of a continuous so-called
orientation-distribution function, ODE, for the crystals is assumed. With its help the micro-
scale constitutive behaviour is transformed to the large-scale. This transformation is sim-
plified by imposing different consistency conditions (CC) due to Voigt—"Taylor (VT) and
Sachs—Reuss (SR), respectively. Here we take the grain interaction into account by linearly
combining the VTand the SR conditions, i.e. by one additional parameter determining the
relative weight of the two. A coupled finite-element—finite-volume approach is used to ac-
count for fabric evolution at the ice-sheet scale. For different CC,VTand SR, an orientation
update is derived for planar flow, which results in only three additional degrees of freedom
at cach finite-element integration point to account for orthotropic material symmetry.

Computations for the GRIP-core data demonstrate that a better fit can be obtained than

withVTor SR alone.

1. INTRODUCTION

Ice-core data from ice sheets reveal the evolution of distinct
fabrics with increasing depth. Consequently, according to its
depth, ice exhibits a different viscous response. Therefore, fol-
lowing Lliboutry (1993), a realistic simulation of ice-sheet
flow first requires a model to predict the ice fabrics. Then the
mean material properties can at least be estimated from those
of the single crystal by homogenization. The homogenization
procedure proposed by Lliboutry (1993) was based on a con-
tinuous axi-symmetric distribution of the ¢ axes, where the
axis of revolution, as well as the distribution itself, were
assumed to be known a priori, for instance from borehole
data. Recently and more general, polycrystalline ice has been
modelled by computer-based models, where the polycrystal is
represented by a finite (commonly a large) number of single
crystals, e.g. Castelnau (1996a,b), so that the fabric may
freely evolve as a result of the applied loading conditions. Un-
less those models are found to be in agreement with labora-
tory observations, incorporation into numerical simulations
of the motion of large ice masses is questionable. Therefore,
the aim of this work is to propose a model which can describe
the evolution of the mechanical properties of polar ice due to
deformation-induced fabric evolution, where considerable re-
duction of the number of unknowns is achieved by adopting a
continuum mechanical description to the fabric evolution. In
so doing, we extend the classical continuum description, in the
following referred to as the large- or ice-sheet-scale formula-
tion, by the so-called small-scale description, which accounts
for the c-axes orientations of the polycrystalline aggregate. To
achieve the transition from small-scale to large-scale entities,
we adopt the concept of a region of influence around each mate-
rial point of the continuum. If its position, size and shape are
neglected, the grain may be identified uniquely by its ¢-axis
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unit vector. If, moreover, a statistical description is applied,
each large-scale material point may possess all c-axes orienta-
tions, which are thus describable by means of a continuous
(and differentiable) orientation-distribution function (ODF),
f(x,n,t), where x is the position of each point, n denotes a
point on the unit sphere S? associated with the orientation of
a particular crystal, and ¢ is the time (see, e.g., Clement,
1982). Obviously f(-,n,-) = f(-,
arbitrary small-scale quantity, x,, to its large-scale counter-
part, X, a volume-averaging procedure is applied as in Equa-
tion (1) below.

Let x and X be the positions of a material point of the

—n,-), and to pass from an

macro-continuum in its present and reference configura-
tion, respectively. Then, the motion of the macro-conti-
nuum, ie. the mapping x = (X,?), is obtained as the
homogenized small-scale motion of the crystals ,,(X, n, t),
ie.

(X,t) = / fo(X,n,t)d*n, (1)
S2

where d*n = sin©®dO d® and S? = © : [0, 7] x ® : [0, 27].
Given the small-scale deformation gradient Fy,, its multipli-
cative decomposition yields

F,=R,F., with F. :=1+, ®n,, (2)

in which F}w R, », and ng denote the inelastic (plastic, vis-
cous) deformation, rotation’, basal-sliding vector and the
c-axis unit vector in the reference configuration, respectively.
Material time differentiation then yields the small-scale actual
velocity gradient, which may be decomposed into its sym-
metric, D, = DL, and skew-symmetric, W, = W° + W!

n’

" The rotation is the deformation when the stretch is ignored.
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parts respectlvely, e. g Dafalias (1984). Asin Gédert and Hutter
(1998), W R,,LR describes the evolution of the individual
c-axis orlentatlon, 1f W,, = W is assumed, we obtain

n=Wn-D,n+ (n-D,n)n, n(t=t)=mng. (3)

2. BALANCE LAWS, CONSTITUTIVE EQUATIONS
AND MOTION

In addition to the classical mechanical balance laws for mass,
linear and angular momentum, balance of crystal orientation
must be considered. Depending on the underlying large-
scale formulation, the local orientational balance takes the
form

O f + divk(vf) = —diva(nf) or f = —diva(nf), (4)

with respect to Eulerian, f, and Lagrangian, f, coordinates,
respectively. The divergence operators divyx and div, are
referred to the large- and the small-scales, respectively, and
production (recrystallization) as well as small-scale con-
ductive flux of orientation are neglected. The material under
consideration is characterized by constitutive assumptions
for the small-scale state variables, Z,, which are generally
given as a function, Z.,, of the large-scale velocity gradient,
L, the Cauchy stress tensor, T, the structure tensor of order
2k, M and the k-th order small-scale structure tensor N,

A <2k> <k>

Z,=12,(L,T,M,N), k=12, .. (5)

with

<k> 9 < <k-1> <0>
/Nd —n®N and N =1.

If no tensor order is explicitly given, the tensor is assumed to
be of second order. In this work Z, may be identified with
the stress T, the strain rate D,,, or it takes the role of the
small-scale orientation rate n. However, only the simplest
cases will be considered, where either velocity gradient
(Voigt—Taylor, VT) or stress (Sachs—Reuss, SR) is assumed
to be uniform within the region of influence.

It is known (see, e.g., Castelnau, 1996b), that the contri-
butions of the pyramidal- and the prismatic-slip planes are
quite small compared to sliding along the basal plane, which
represents the most active glide plane. This prompts us to
reduce the single-crystal deformation to basal slip only. The
exact constitutive relation for the stress deviator according
to Glen’s flow law 1s hardly amenable to an analytical treat-
ment of the small-scale flow.

In view of many linear models already introduced into
the literature (cf. Meyssonnier and Philip, 1996; Gagliardini
and Meyssonnier, 1999), reasonable insight can be antici-
pated if an assumption of Newtonian fluid is applied.
Furthermore, the deviatoric-stress level the fabric develops
may be assumed quite low, so we finally reduce the constitu-
tive relation between the resolved stress and the basal glid-
ing to a linear relationship, 7, = p7,. With that, the
evolution equation (3) can be written more specifically for
the Taylor or the Sachs assumption, if in (3), D, is replaced
by D or 5T, respectively; p represents the basal fluidity.”
Rewriting the resolved quantities for the basal plane by

n = Zyn — N - -Z,, where the double dot denotes twofold
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contraction, one may deduce the fine-scale constitutive
equation for the VTand the SR assumptions

T,=u'C,-D and D,=uC,- T, (6)

respectively, where

<4> <4>
,=IN-.

T-N, with I--X=-(X+X") (7)

DN | =

denotes the projection of a second-order (tensor)quantity
onto the basal plane. From this, the large-scale constitutive
relations are simply obtained if the small-scale orientation
tensors are replaced by their associated large-scale structure
tensors, which yields

<4> <4> <4> <4>

C=IM--1-M. (8)
Because of the underlying small-scale incompressibility, <C13>
1s semi-definite, in the sense that it maps only the deviatoric
part of a tensor uniquely. In principle, Equations (8) and (3)
suffice to compute the fabric evolution due to large-scale
loading. However, no influence of the grain-to-grain inter-
action has yet been taken into account.

One possibility to account for grain-to-grain inter-
actions 1s to extend Equation (8) by an isotropic part, con-
trolled through a parameter, 8, which represents a large-
scale quantity, used to accommodate the small-scale flow,
as was done by Gagliardini and Meyssonnier (1999). On
the other hand, one may extend the small-scale flow dir-
ectly, so that instead of the pure SR or VT condition, a linear
combination of the SR and VT is applied, weighted by a
parameter v, D, = (1 — v)§T + vD.

This may be derived if we assume that the grain deform-
ation, D, which is so far given solely by basal slip, also con-
tains a certain amount of the large-scale deformation D,

<4>

D,=viD+w»uC,- T, (9)

where the grain-interaction coefficients vy, vy are assumed
to depend on the actual c-axes distribution. This assumption
may be justified by deformation processes which are not de-
scribable by means of basal slip alone (like polygonization
and the activation of non-basal-slip systems). In the follow-
ing, the strength of fabric of the polycrystal is measured by

Ma = d;il <Mmax - ;ll>7 (10)
where M.y denotes the maximum eigenvalue of the second
order structure tensor M and d € {2,3} gives the dimen-
sion of the underlying large-scale space. Hence, perfect
alignment along a single direction m may be identified with
M, = 1, whereas for a random distribution of the c axes,
M, = 0. Homogenizing Equation (9), the large-scale consti-
tutive equation takes the form

Vo <4>

D= uC - T. (11)

1—V1

On the other hand, if M,— 1, the structure tensor
M—m®m and Equation (lI) should reduce to the
single-crystal constitutive equation, C — C,,, with respect

? By using the Newtonian-type relation D,, = pT it is actu-
ally assumed that the behaviour within the basal plane is
1sotropic (Kamb, 1961).
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to m. Assuring further the positiveness of the dissipation
rate, M,— 1 implies
v

0<
1—1/1

—1. (12)

However, as a consequence of increasing alignment, the
prerequisite assumptions, justifying the homogenization
procedure, are violated, 1.e. a small scale no longer exists
and all crystals undergo nearly the same deformation
D,,—D, which, in terms of the interaction coefficients,
yields v1— 1, 15— 0. In reality, perfect alignment was
not observed (cf. Alley, 1992; Castelnau and others, 1996a),
so that v is restricted by a positive number o # 1. Moreover,
supposing that the limit case holds even if the alignment is
imperfect, v is given by

V9 = (1 — 1/1) . (13)

TFrom Equations (9) and (13), the modified small-scale con-
stitutive equation (3) takes the form

n=Wn —y[Dn— (N:D)n]
- y)g[Tn ~(N-T)n], (14)

where, for convenience, the subscript of v is omitted.

So far, the small-scale quantities are gll parameterized
by means of large-scale quantities and N (see Equations
(14), (11) and (8)). Assuming them to be stepwise constant,
one may integrate 1, which yields a functional relation for
the motion of the small-scale material point in the form

n-—= T(l’lo,XO,t—to) s (15)

in which the orientation at the present time, ¢, is related to its
value, np, at the initial time, %y, and to position Xg.
Assuming that the number of ¢ axes within a material
region of S? is preserved, the existence of the inverse map-
ping T ! (relative to n and ny), yields

-1

f(n,x,t) = a;n f(no, x0,t0) (16)

for the present ODF, which is then constructable accord-
ingly from its initial values if the small-scale motion is
known, as we will see for planar flow in the following,

3. PLANAR FLOW

In order to keep the theory considerably simple and to obtain
analytical results as far as possible, we restrict considerations
to planar deformation, v € IR?, as one would expect in the
vicinity of an ice divide, but fully three-dimensional small-
scale flow, n € T (where T € IR® denotes the set of tan-
gential spaces to S%). If we identify e3 with the anti-plane dir-
ection, the orientation can be written as n = sin Oeg
+ cos Oe3, where er := cos®Pe; + sin Pey, with latitude
angle O and longitude angle ®. Following the calculations
outlined in the Appendix, one may derive the following gen-
eral expression for the ODF,

f:f52 (‘a t) :% [fgll)‘SiDQ O + cos’ 9]_%fS2 (e t0), (17)

which depends on the in-plane orientational distribution fg
and one additional parameter A= 3Oy Hy ) yith
dn,,- = e; - D,e;, so that the integration along © may be car-
ried out analytically. fq describes the distribution of the
caxes along the circle S* = $? N [R? and is given as the mean
value of fg with respect to ©, (Equation (18)). Therefore, to

obtain the general ODF for this case, it is sufficient to know
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the in-plane ODF which may be derived if one applies the
procedure outlined above to the in-plane motion of the c axes,

folt) =G falut) = [ fe(smede. ()
0

The in-plane evolution equation for the ¢ axes is given by (cf.
Appendix)

= rn 4 cos(2(® + «))],

dy —dy, >
TV(”2“)+%W
with (19)

dy,. — dp,.
200 = tan ! [ L2 )
2d,,,

andn = (es - Wey)/r, r #0. Supposing the parameters 7, 7)
and « are constant, the solution of Equation (19) distin-

guishes four non-trivial cases depending on the value of ,

”=1 ”>1, (20)

7" =0 7 <1
for which the solutions may be found in integral tables (e.g.
Gradshteyn and Ryzhik, 1965). It can be shown that all of
them are structurally covered by

Ctan ! (KAW) X mgt 21
o = tan X(]) , () = 0() an<p+5(A)7 ( )

where K, 6., 6), B(w), Ba) are parameters (the indices u, [
simply stand for “upper” and “lower”) representing the in-
fluence of the loading conditions on the solution, and
¢ = ® + a. If one starts from an 1initially isotropic solution,
differentiation of ¢y = ®( + a with respect to ¢ (cf. Appen-
dix), leads to

% - K((Squ — 51Xu)
dp  [(KX,)” + X?]cos?p

(22)

Applying the definition given in Equation (21), the Relation
(22) takes the simple form

1

for(t)=— bsin(2®) + ccos(2®) ’

(23)

irrespective of the applied loading conditions. Hence, we ex-
pect that Equation (23) represents the general form of the
solution, where the parameters al = (a, b, ¢) are functions
of the actual large-scale state variables, L, T and M, acting
during the time increment At, i.e. the structure of Equation
(23) has to be preserved even if one starts from an arbitrarily
chosen fabric. For this case the actual ODF is given by
[ = f&'(dpr-1/der), where we generalized considera-
tions to an arbitrary time-step At =t — tx—1. 1o obtain
f&7 in terms of the actual orientation angle ®(t;), ®(t_1)
has to be expressed through the inverse of the in-plane
motion, ®(t;_1) = (P (L, -). Straightforward calculation
then yields the initial in-plane ODF in terms of the actual
orientation ¢*,

2
fk_l _ [(KXu) +X12]tk (24)
5 al. (Z’":?s.X%iXi Ki) ’
i=0 Si<Y] u

ty
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For brevity, the following abbreviations are introduced:

1 0 1
so = | —sin20) |, s1 = 2| cos(2a) |, S2= sin(2aq)
cos(2a) sin(2a) —cos(2a)

8y Buy + By Buy
(81 61y —Boy Bury) $0(20) + (81 By +B0, b1y ) cO8(2x)
(60, Buy =B, Buy ) c08(2a) + (8 Buy +, 61y ) sin(201))

» (25)

Xl/lllz = —

with v; = w or v; = [, respectively.

Now, combining Equations (24) and (22), one may extract
&' = (1,5in(2®), cos(2®)), so that the actual ODF takes
the form

fli=(® -GF a1l (26)

There is no other dependency of (26) on ® than the explicit
dependence through ®, so that (23) represents indeed the
exact” solution of the planar flow problem and provides the
rule to update the coefficient vector a successively,

a" =G | -af! (27)

with
T T 1 T
. Kxyy - Sy +Xul Sy + X8

k
Gk_l B 61161 - 51611 ’

where the constant updating matrices G]1§71 depend on the

large-scale stress and deformation conditions acting during
the underlying time-step, AAt, as well as on the present fab-
ric. A further reduction of the set of three parameters (a, b,
¢) tojust two independent parameters is possible if the prob-
abilistic nature of the ODF, the constraint condition
fSl fs1d® = 1, is taken into account.

To demonstrate how this approach works, we consider
the pure shearing or biaxial deformation, dis = 0, where no
large-scale spin occurs, so 7 = 0 for VT'and SR conditions,
respectively. If we further assume that positive loading is
acting along the I-direction, 2 = 7/2 and r = —d,,,, < 0,
so that the resulting evolution equation (19) is given by

d
Y rdt. (28)
cos 2¢p
After the integration, the in-plane motion takes the form
tan o + .
@o = tan! ﬁIM with ,
tanp + ()
Bu= Gt = K = tanh(—rat),  (29)
6u = 61 = 1)
from which one obtains
1 0 1
Sy = -1, S1 = (U S = |1 ;
0 2 0
1+ﬂ§ 2{’\1 1+ﬁ§
I —32 2
2quK =4 2X111 ' igu 2XII/K A
—_— 1 , = , = -1
603 26, op3 1+4 o6 28,
-3 1-52 1-5;

with 68 = 6,01 — 618, According to Equation (27), combin-

% “exact” with the proviso that 7, 1 and « are kept constant

during the time-step.
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ation of the above quantities yields the transition matrix for
pure shear,

cosh(2d,,,At) 0 sinh(2d,,,At)
Gi | = 0 1 0
sinh(2d,,,At) 0 cosh(2d,,, At)

n11

» (30)

where we used

1+ 3 20,
15 1- 5
Starting from an isotropic distribution, for which the coeffi-

cients are given by a = (1,0,0), the in-plane ODF takes
the form

[

= cosh(2d,,,At) and

= sinh(2d, , At) .

1
~ cosh(2d,,, At) + sinh(2d,,,, /At) cos(2®)

which is exactly the same as if we had integrated Equation
(28) directly. As one would expect, for dy, >0 and
® € [0, 7], the maximum of fg for pure-shear is located at
®pax = 7/2; alternatively, if d,,,, < 0, it will be found at
Dpax = 0.

As a final demonstration, the trivial case, when r—0,

will be considered. The fine-scale differential equation is
then given by b = —w1g, with wis = €1 - Wes. The result-
ing inverse (rigid-body) motion takes the form
D1 = O + wi9AAt, from which the update operator

1 0 0
Gi =10 cos(wipAt)  sin(2wia/t) (31)
0 - SiD(QWQAt) COS(QWQAt)

may be derived by expanding the trigonometric function of
Equation (23). As one would expect, Gﬁl turns out to be a
pure rotation matrix operating on the ODF-parameter-
space, where the a-parameter Oaxis serves as the axis of ro-
tation, since a represents the isotropic part of the ODEF, and
hence remains unchanged under any rotation.

In summary, the actual ODF is given if the actual coefli-
cient vector a is known. Therefore, the evolution of the ODF
1s given by the evolution of a.

4. NUMERICS

The finite-element approximation, to which the results below
are referred, 1s based on the elastic—viscoelastic analogy using
rectangular four-node-quasi-incompressible elements (cf.
Hughes, 1987). Usually the ice flow is described by the Stokes
equations referred to Eulerian coordinates. Hence, in addi-
tion to the (local) material (Equation (27)), the large-scale
fabric evolution must be considered, i.e. reformulation of fsl
in terms of large-scale Eulerian coordinates (indicated by a
tilde) becomes necessary if flux across the element bound-
aries takes place. Note, that although f¢ was originally
defined with respect to Lagrangian coordinates, the Eulerian
description of the ODF must reflect the same structure as
Equation (23).

This will be done by adopting an explicit time-integra-
tion scheme based on a finite-volume approximation (see,
e.g., Ferziger, 1996) using Equation (4), where the finite-
volume mesh is chosen to coincide with the finite-element
mesh. This enables us to make subsequent use of the velocity
field, which was obtained from the finite-element analysis
for the fabric computations.

In view of an explicit time-integration scheme, based on
a finite-volume approximation, the orientational balances
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(Equation (4)) will be rewritten in their conservative forms
with respect to a certain volume element V; (i are count-
ing indices for the central position of the rectangular ele-
ments) which yields

/&gﬂ]dV—i— / ll'Vﬁ'de: /fZJdV, (32)
Vij oV Vij

where the superposed dot denotes the material and 9;() the
local time derivative, respectively. Furthermore, dVj; repre-
sents the element boundary and u its outward unit-normal
vector. Recalling that the initial “values”of f and f are the
same at each time-step, ikj*l = fikj*l, the application of the
mean-value-theorem yields

~ At )

b=r-pt [ Atsuevas @)

v,

with k € [0, 1], where the ODF approximation is supposed
to be CV continuous. Explicit integration is obtained for
Equation (33) if k = 1.

Note that ]Zl]} is still a function of ®, which is uniquely
defined by three parameters, affj, for each element. So, these
coefficients may be calculated in general from three inde-
pendent values of the actual ODF. For example: if we choose
(@1, Doy, P3) = (0,7/6,7/3), the coefficient matrix a?j for
each element is determined by

g =C-aj,
e o
withgl == | fay | C:={1 £ 1 (34)
Fay 1, I

Thus, the calculation of the fabric reduces to the determin-
ation of three additional equations for each element. At the
boundary between two adjacent elements, the ODF is
defined as the linear interpolation of the two adjacent ODFs.
Ignoring recrystallization, orientation is conserved,

/ fd*n=1, (35)
S2

and the set of additional equations experiences a further re-
duction by 1 if Equation (35) is adopted and is then in agree-
ment with the classical theory of planar orthotropy, which is
uniquely determined by two parameters, one direction and
one additional material parameter.

The original domain is to be surrounded by additional
finite-volume elements, so-called boundary-volumes, to
apply boundary conditions for the fabric by prescribing the
coefficient vector a for each of them. In principle, we distin-
guish three different types of boundary volumes (see Fig. 1):
free boundary, across which material as well as fabric trans-
port occurs; stationary boundary, across which the ODF is
assumed to be continuous, however material transport may
occur; fixed boundary, across which neither material nor fab-
ric may flow. In our problem, the free surface of a glacier
partly represents a free boundary, where because of the ran-
domness of the orientation of the ice (snow) crystals,
a =(1,0,0) will be prescribed, whereas if the streamlines
are directed outward of the free surface, the fabric within
the domain will not be influenced; therefore this part should
be modelled as a stationary boundary. Due to symmetry,
the velocity field at the ice divide is restricted to the vertical
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Fig. 1. Schematic ice-sheet discretization by a coupled finite-
element volume approach.

direction, so no horizontal flux has to be considered. There-
fore, similar to the bottom line, it possesses all the properties
of a fixed boundary.

5. APPLICATION

In this section some results for stationary planar and axi-
symmetric flow will be presented. These results are used to
identify the grain interaction parameter v (see Equation
(14)), by accommodation of the computational results to
measurement data of the GRIP core as well as to those
obtained by Castelnau and others (1996a) using a so-called
viscoplastic-self-consistent approach (VPSC).

To this end, the ODF is needed for axi-symmetric load-
ing conditions, which is also covered by Equation (17) if one
considers that fg = 1. If the stresses T = 0 e3 ® ej3 are in-
troduced into Equation (6)y, the large-scale strain rate,
ds3 = ez - Des (cf. Equation (8)), takes the form

dsz = po (Msz — Mssss), (36)
where Mj3s and Ms333 are the components associated to the
loading axis of the second- and fourth-order structure tensors,

respectively. Recalling, that the accumulated strain €, is given
here by

1
6021—?:|e3'F63—1|, (37)

it can be written completely in terms of the applied loading if
the large-scale deformation gradient F = vye; ® e; + ye
®ey + 7_2e3 ® eg is taken into account;

7 & exp [Z o Nt (Mszz — M3szs) | - (38)
(4)

In Equation (38) as well as in the following, uniform effec-
tive loading is assumed, i.e. o;u;At; = ou/At = const. In

® Grip-Dat ‘: )
rip-Data
0.8 VPSC .’ :
[ N ] ’/
0.6 . &
[ ] e
. 0=1.24 .~
. & "a=0.0
_.-—’
0.2 . )
®
[ ]
0.2 0.4 0.6 0.8 1
Ro

Fig. 2. Evolution of degree of orientation R, for pure SR
(o = 0.0) and grain interaction (B =05, a = 12) in
comparion to GRIP data and VPSC model as a_function of
the accumulated linear strain, €., under uniaxial compression.

111


https://doi.org/10.3189/172756400781820552

Gadert and Hutter: Material update procedure for planar transient flow of ice

addition, the evolution of the large-scale structural quanti-
ties in the course of the time-step 1s neglected. On the other
hand, after treating the first-order small-scale evolution
equation (14) and using (36), one obtains

A =exp [S,uaAt Z(l — V(1 — 3M33 + 3M3333)), |,
(i)
(39)

which represents the anisotropy of the polycrystal. In con-
trast to A, the anisotropy of the GRIP core data, displayed
in Figure 2, is related to R, := 2| [}, fnd®n| — 1, where
the integral is to be taken over the hemisphere H? and | - ||
denotes the Euclidean norm. Accomplishing the integra-
tion, one obtains

VA 1
1+vVx

which relates both parameters. If the ¢-axes distribution re-
flects rotational symmetry, R,—1 if a single maximum
fabric develops, whereas, if the ¢ axes are distributed ran-
domly, R, = 0. Hence, R, gives the intensity of the actual
tabric. We already mentioned that we prefer M, as an align-
ment measure, however we will give results with respect to
R, to make them comparable to Castelnau and others
(1996a). Accordingly, the grain interaction coefficient is sup-
posed to take the general form

v=aM’ (41)

Ry=2 (40)

where o and [3 are constant values, determined by compar-
1son of the computational results and the GRIP data (cf. Fig.
2). From this, best agreement was achieved with 5 = 0.5,
which is assumed throughout the following considerations.
That is, the identification of the effective grain interaction,
v, is reduced to the determination of a.. Note, that the data
presented in Figure 2 are based on an assumed velocity field
along the GRIP core, which certainly does influence the
fabric evolution.

Despite of this, it is obvious from Figure 2 that the curve
obtained with an interaction parameter a = 1.2 yields the
best fit to the data, except when R, < 0.4, for which the pure
SR as well as the VPSC model give better approximation.
Results (not presented in Fig. 2) very close to VPSC are
obtained if @ = 1, where if all crystals are aligned, the
small-scale evolution equation is completely based on the
VTassumption. On the other hand, if & > 1, the SR based
contribution to the small-scale flow changes its direction
when (1—v) =1—aM? <0, so that the fabric will not ap-
proach perfect alignment, i.e. R, < L. It is known from the
work of Alley and others (1992), that this behaviour used to
be explained by polygonization (or rotation recrystalliza-
tion), where the strain-induced small-scale motion appears
to be balanced through the development of sub-grain
boundaries, which under uniaxial loading is expected to
result in a so-called girdle fabric. Considering the periodi-
city of the ODF, (Equation (17)), a girdle fabric cannot be
taken into account exactly. Hence, beside controlling the
small-scale directly by the actual fabric, the interaction
parameters, a, 3, also summarize effects due to deviations
of the fabric from a single-maximum fabric.

Next, the fully planar case, i.e. f = fg, is considered,
where the material structure is completely determined by
only one element of the fourth-order structure tensor,
M1122 = 1/4 fSiIlQ(QCI))fsl do.

Figure 3 is concerned with the material response under
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Fig. 5. Normalized shear stress T and normal stress o for simple
shear deformation, where « = 1.2, 3 = 0.5.

simple shear deformation s, with £ = 0. Owing to the un-
derlying linear stress—strain-rate relation, the shear viscos-
ity, which after an initial growth decreases until it reaches
half of its initial value, reveals softening behaviour as is qua-
litatively expected (Duval, 1981). Moreover Figure 3 shows
that simple shear deformation requires the development of
normal stresses 0 = (011 — 092)/2, similar to the shear
stress response (cf. Li and others, 1999). It should be men-
tioned that the peaks of the stresses are strongly influenced
by the choice of the interaction parameters «, [, e.g. if no
grain interaction is considered at all, one obtains strong
hardening behaviour.

This can be deduced from the results presented in Figure
4, where the maximum of the ODE, f,,, is plotted against its
orientation, ®,, driven by simple shearing for different
parameters o.. The computation starts from a randomly dis-
tributed c-axes configuration. In spite of a, the maximum
value f, initially evolves at ®,, = %71 The density of the
dotted lines may be associated with the convergence of the
material behaviour, i.e. a low dot density reflects fast
changes on the small scale. Whereas for o = 1.2 and a =
L1, f,, posseses the limit values f,, ~ 16 and f,, =~ 30, re-
spectively, infinite growth takes place if o € [0,1.0], where
the pure SR model is represented by oo = 0.0. Moreover, it
is known that, under the applied loading, the so-called
easy-glide configuration of a polycrystal is achieved if the

100 b T T T T T
90 - fmler, 3=10.5) -
80 ' .
70 |- .
60 - ' 2
50 - : -
10 F Ya=10 )
30 Ay . -
20 o = 1.2 - .
10 L .".-- *

R

20 21 22 23 24
(&)

Fig. 4. Maximum of the ODE, fy,, vs ils orientation, ® oy tn
radians for pure SR (o = 0.0) and different grain inter-
actions (o =10, =1L =12).
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Fig. 5. Evolution of alignment along the GRIP core. Finite-
element—finite-volume computation (solid line) and measured

data ( dotted line ).

mean ¢-axes orientation, which may be identified with ®,,,
is directed close to the vertical axis, ®,, = 7/2. Therefore,
the softest material behaviour under simple shear is
obtained if o = 1.2; hardening (locking) was observed for
a < 1. On the other hand, approaching the vertical axis
(®,,—7/2) is accompanied with a decrease of f,, and
hence, a decrease of the effective anisotropy.

Finally, a rectangular domain, 10 times longer than high,
was considered as a simple model for stationary plane flow in
the vicinity of an ice divide, driven by gravity. The vertical
direction was discretized by 10 equal size elements with as-
pect ratio 0.25. Perfect sliding was assumed at the bottom in
conjunction with a vanishing slope. Symmetry implies pure
vertical flow at the divide. At the free surface the ODF was
expected to reflect isotropic behaviour, whereas at all other
boundaries stationarity was assumed. Note that these large-
scale boundary conditions correspond on the material level to
uniaxial compression used to accommodate the interaction
parameters a = 1.2, = 0.5 (cf. Equation (41)). Therefore,
we may anticipate that the GRIP data will to some extent be
reproduced by the simulation. Comparison of the evolution
of the order parameter M9 at the divide with the quadratic
Schmidt factor (3, sin(2¢;)/N)?, i =1,..., N obtained
from the GRIP core, is given in Figure 5. As M99, the
Schmidt factor is a measure of the softness (fluidity); a signif-
icant effect of the orientation distribution on the mean mate-
rial response 1s expected only below ~1250 m (Thorsteinsson,
1997, p. 113). Accordingly, this depth was chosen to correspond
to the height (H =1) of the ice-sheet model, where M99 = %.
The quadratic Schmidt factor was accommodated by linear
transformation to the isotropic case. The graph in Figure 5
was selected from the series of solutions to represent a good
fit to the GRIP data. Hence, it is in principle possible to
obtain reasonable results by applying this approach to model-
ling ice-sheet flow.

6. CONCLUSION

Adecoupled, two-scale (small/large) description of the strain-
induced orthotropic anisotropy of ice polycrystals has been
proposed. The evolution of the ice-crystal ¢ axis, originally
derived from pure kinematic calculations, was supplemented
by small-scale phenomenological considerations to account
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for grain-to-grain interaction. Under stepwise plane-flow
conditions, it could be shown that the fabric, represented by
an orientation-distribution function, is completely deter-
mined by three parameters. A general transition matrix was
derived from the fabric-evolution equation establishing step-
wise computation of the fabric parameters.

It could be shown that this approach is capable of repre-
senting the fabric evolution of polycrystalline ice, at least
qualitatively. A strong influence of the material response
on the grain interaction was observed, but could not be con-
sidered in detail here. By comparison with measurement
data, the importance of a grain-interaction contribution to
the fabric evolution became obvious. This was finally done
by combining the uniform-stress and the uniform-strain
assumptions through a phenomenological interaction coef-
ficient depending on the actual fabric alone. The specific ac-
commodation of the interaction model to field data revealed
its ability to model the material response due to effects nor-
mally explained by polygonization/rotation recrystalliza-
tion and the activation of non-basal-slip systems.

To obtain the actual fabric in a large-scale ice-sheet flow,
we generalized the update procedure to Eulerian coordinates.
The flux of orientation was considered by applying a de-
coupled finite-element—finite-volume approach, where the ac-
tual structure is represented by only three additional material
parameters at each integration point to account for the evol-
ving orthotropy. 1o concentrate on the proper material re-
sponse, not influenced by a varying free-surface as well as by
a wavy bedrock, a rectangular domain was chosen with an
initially overall random distribution of the ¢ axes as the most
simple case of nearby ice-divide flow. Even if a coarse discre-
tization 1is applied, the proposed strategy turned out to be ap-
propriate for producing reasonable results.

Finally, it should be mentioned that there is further need
for more elaborate investigations, especially concerning al-
ternative initial and boundary conditions as well as differ-
ent interaction models.
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APPENDIX

In the following we assume that the crystals are randomly
distributed in their initial configuration at time ¢y. Then,
considering that the number of ¢ axes within a material
(sub-)domain V € S%, given by N, = fsin(0)dOd®, is
conserved, the present ODF takes the form

1 Sin(@()) d@() @

19 = I sin(0) 40 o

(A1)
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On the other hand, the small-scale velocities (Equation (3))
may be written as

d =w— DR w=eg  Weg (A2)

. 1 o
0= 5s,in(z@)(17=;3 — DY, DY =e, D,es (A3)

by which the pure in-plane ODF can be expressed by

d®y  w— D*(t)

where fg denotes the actual orientation distribution within
the large-scale flow plane. Introducing the identity

D¢ = Dp® — DYt = DY — 2D (A5)
into Equation (A3), the co-latitude velocity will reduce to

. 1
6 = —sin(20) (3D + DIY), (A6)

where () 5 denotes partial differentiation with respect to @,
and from which after integration the co-latitude motion as
well as the differential quotient d©,/dO are obtained as
O = tan ! (tan(Oy)(faA)"") and
A6y (foX) " (A7)
dO®  (fa)) 'sin(©) + cos(©)
Introducing Equations (A3) and (A7) into (Al) and then

using the relation sin(arctan(z)) = /(1 + 2?) gives the fi-
nal formula for the ODF (Equation (17)).
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