
ON FREQUENCIES AND SEMICONTINUOUS FUNCTIONS 

F. W. LEVI 

T H I S paper deals with a particular class of distributive1 properties which 
appear to be important for Analysis and which I call frequencies. They can 
be defined for any kind of sets but it essential for proper application that a 
condition L (the statement of Lindelof's lemma)2 is satisfied. From this con­
dition follows Theorem 1, which is characteristic for frequencies but does not 
hold for other distributive properties. For every frequency F of a space ]£, 
one can build up an Analysis mod F of ]T ; the classical case is the Analysis 
mod Tv It is convenient to introduce the words "nearly every" with such a 
meaning that "every" and "almost every" are the special cases which, when 
we use the notation of this paper, correspond to F = F0 and F = Fc. These 
notations are applied to the semicontinuous functions which are obtained by 
the upper and lower limiting operations and their iteration. In this way an 
appropriate tool for investigating the discontinuities of a function is obtained. 
The iteration of the limiting process leads to interesting "pairs" of functions 
which are the upper (lower) limiting functions of a set of functions. The co­
ordination into pairs is independent of the frequency F, a fact which proves 
to be important for the investigation of the pairs. The notion of frequency is 
also useful for other purposes, e.g. for a generalization of uniform convergence. 

1. Consider a set £ (called space) of elements (called points) in which a 
family of subsets (called open sets) is distinguished which satisfy the following 
condition : 

L. If A is the join of an aggregate of open sets 0V, then there exists a count­
able subset of sets 0V such that A is the join of them. 

This condition is satisfied e.g. for locally compact metric spaces when 
"open" has the usual meaning (Lindelof's lemma). 

We use in this paper the symbols H and KJ for the set-theoretical "meet" 
and "join." In particular U n An will denote the join of a countable aggregate 
of sets Au A2, . . . . 

A property which, for a subset of ]£, either holds or does not hold, is called 
a frequency F when it satisfies the following three conditions : 

Condition 1. F holds in A = \JnAn if and only if F holds in at least one AH-

Condition 2. F does not hold in the empty set. 

Condition 3. F holds in £ . 

Received September 29, 1948. 
Regarding distributive properties, see [2] pp. 9-14 and the literature quoted on p. 48. 
2See [1] p. 46, [2] p. 38. 
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Conditions 2 and 3 are introduced for convenience only to exclude properties 
which either hold for every subset of E or for none. Every frequency is a 
distributive property, but the converse does not hold. If F holds in S Ç i , 
it holds also in A = SKJ A. The property "to be infinite" which plays an 
important role in Analysis, is distributive, but not a frequency. Note the 
following frequencies which may hold in £ : 

F0 = the property "not to be empty", 

Fi = the property "not to be countable", 

and—in a space admitting a regular measure function (Caratheodory)— 

Fc = the property "to have a positive measure". 

If 6* has the frequency F, then the property of A that AC\S has the frequency 
F, is a frequency F(S). If A has the frequency F(S) we say also: "S has the 
frequency F in A". If every open set which contains a point x G E n a s the 
frequency F(S), we say: US has the frequency F at x". That Fa implies Fb, 
is denoted by Fa Q Fb; in particular, 

(1) Fa ç Fo. 

The frequencies form a partially ordered set, which is not a lattice. The 
property that a set has two given frequencies Fa and Fb, is not necessarily a 
frequency; however the property that it has Fa or Fb, is a frequency: 

(2) Fa\J Fb^ Fa. 

lî S = Si^J S2 has the frequency F, but 52 has not the frequency F, then 
F(S) = F(5i). 

If there exists a countable set T in which F holds, then F holds also for some 
one-point-set {x}, where x£T. Denote the join of the one-point-sets which 
have the frequency F, by So. If A C £ — 50 has the frequency i7, then 4̂ 
is non-countable. If 5 P\ So is non-empty, then £ has the frequency F. Thus 
if So is non-empty, 

(3) F = 7?o(So) U ^ ( E - So), where F ( £ - 50) Q * i ( £ ~ 50). 

As L holds in £ , the join of the open sets 0n which have not the frequency 
Fy can be represented by 

Z"=vnon, 
and from condition 1 it follows that £ " has not the frequency F. Thus for 
E ' = E - E " , F = ^ ( E ) = ^(EO- Moreover, x Ç E ' if and only if £ has 
the frequency J7 at x. Hence : 

THEOREM 1. The points at which the space E has the frequency F, form a 
subset £ ' , such that ]£' has the frequency Fat each of its points. £ / is non-empty. 

By applying Theorem 1 to the frequency F(S), we obtain the following 
corollary : 
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COROLLARY. If 5 has the frequency F, then the points of 5 at which 5 
has the frequency F form a non-empty subset S' and S' has the frequency F 
at each of its points. 

Theorem 1 is well known for topological spaces admitting L when F = Fi(B). 
In this case ]£' is the set of the points of condensation of B\ moreover it is 
known for F = FC(B). That the theorem cannot be generalized to distribu­
tive properties which are not frequencies, is seen from the property "to contain 
an infinite subset of B". This property holds at every limiting point of B, 
but these may be finite in number. 

Given a frequency F, the word nearly will mean: except a set which has not 
the frequency F. Thus for F = Fc, "nearly every" becomes synonymous with 
"almost every", whereas for F — F0j it means "every". 

2. The frequencies are closely connected with the theory of measure; they 
can even be considered as special cases of a generalized measure theory which 
includes both the measure (Lebesgue, Haar etc.) in a locally compact metric 
space as well as the frequencies. 

A measure function JLI* is a set function which for every a C £ takes only 
real non-negative numbers and + oo as values. It is supposed to satisfy the 
conditions: 

I M*(a) ^ 0 for a suitable a, 
II M*(a)^ M*(aU/3), 

III M *(U n a n ) ^ T,n*(nn), 

IV If co is open and a Ç w , P Q H — u are compact, then fi*(a\Jp) 
= M*W + M*(0). 

The theory can be generalized ; the values of ju*(&) may belong to any linear­
ly ordered system V provided an addition for every countable subset of V is 
defined and this addition satisfies the condition: 

(4) £ an^ an. 
n 

V may consist of two elements only, say 0 and 1, and a sum may be equal 
to 1 if and only if at least one of the terms is equal to 1; e.g., we may put 
/i* (a) = 1 when a has the frequency F, otherwise 0. The theory of measurable 
sets can be developed without any reference to properties of real numbers other 
than those supposed to hold for V. From any generalized measure function 
we can deduce frequencies in the following way. We subdivide F into a well-
ordered sequence of "sections", say 

• • • C »S> C Sv+i C • • • > 

such that every section is closed for addition and contains, with every element 
a, also the elements ^ a. The property /**(a) > Sk is a frequency F{k) with 
j?(k) 3 j?(x) for ^ ^ X. The values used in the classical theory form only two 
such sections and therefore give rise to a single frequency (n*(a) > 0). 
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The theory of frequencies admits a modification when we restrict the notion 
of ''subset of J2" to that of "admissible subset of X"- Every family <t> of sub­
sets may be taken as admissible when : 

(a) Every open set belongs to 0, 

(b) If Ai, A2, . . . belong to <£, then KJnAn belongs to <t>. 
A similar restriction has been applied successfully in the theory of the dis­
tributive properties. 

3. Let XI be a topological space which satisfies the second axiom of count-
ability; then L holds for open sets 0n. Every open set which contains a point 
x, will be called a neighbourhood of x. Let C Ç ]T have the frequency F at 
each of its points. We consider functions f(x), g(x), . . . whose domain is C 
and whose values are real numbers, + °° or — o°. 

We define fi(x) as the upper limiting function mod F of f(x) and/2(#) as the 
lower limiting function mod F of f{x) in the following way : 

fi(x) is the l.u.b. of the values k which satisfy the condition that for every 
positive e, the points x' for which 

(5) fix') >k-e 

have the frequency F at x; f2(x) is the g.l.b. of the values g which satisfy the 
condition that for every positive €, the points x" for which 

(5') f(x")<g + e, 

have the frequency F at x. The (upper and lower) limiting functions of the 
classical theory3 are those mod Fo. If/i(x0) < ht then the set of points x, for 
which/(x) ^ h, does not have the frequency F at x0; therefore the set of points 
x", for which fix") < h, has the frequency F, hence/2(^o) < h. As this holds 
for every h > fi(xo), x0 Ç A, it follows that 

(6) Mx)$Mx),xec. 
It is convenient to use the notation 

(7) g(xo)<f(xo) 

when there exists a neighbourhood 0 of x0 such that g(x) ^ f(x) for nearly 
every x£Q. The relation (7) is therefore not a relation between the values 
g(x0) and/(x0), but between the pairs {g,x0} and {f,x0}. If (7) and/(x0) < g(x0) 
hold, we write 

(70 *(*.) ~/(*o); 

in this case there exists a neighbourhood 0' of Xo such that g(x) = f(x) for 
nearly every x£0 ' ; (7) implies that g{x) < f{x) for every x£Q and (7') implies 
that g(x) ~f(x) for every x C &'. Moreover it follows from the definition of 
the upper and lower limiting functions mod F that (7) implies 

3See [1], p. 122. 

https://doi.org/10.4153/CJM-1950-004-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1950-004-6


36 F. W. LEVI 

(8) gi(x)$ ft(x), g2(x)^ /2(x), xGO, 

and that (7') implies 

(8') gi(x) =fi(x), g2(x) = / 2 (x ) , xÇO'. 

THEOREM 2. For nearly every xÇC, we have f(x)^ /i(x), f2(x) ^ /(x), awd 
therefore f2(x) < f(x) < fi(x) for xÇC. 

Proof. By symmetry it suffices to prove the first statement of the theorem. 
If for some x, f(x) > /i(x), then f(x) ^ — «>, /i(x) 9e + <» , and we can there­
fore represent C as the join of the (disjoint) sets: 

c = unCnU£; uc*uc0, 
where xG C* if and only if fi(x) <f(x) = + °°, 

X Ç Q « - « « _ œ = £(*)</(*), 

xeCn il " " " - i — > / ( * ) - / i ( * ) £ - for» = 1 ,2 , . . . , 
w — 1 w 

x€Co " " " " Mx)^ f(x). 

We prove that none of these sets has the frequency F except CV Suppose C* 
has the frequency F; then it follows from Theorem 1 that there exists an xo€ C* 
at which C* has the frequency F, but as/(x) = + oo for xÇC*,/i(x0) = + °° , 
contrary to the supposition. If Q or Cn has the frequency F, we partition 
the set Q = W w Q , m , Cn = WmCn,m where the second index indicates that 
m — 1 < /(x) ̂  m holds (m = 0, + 1 + 2, . . .). If Q has the frequency F, 
then some Q l W has the frequency F and therefore there exists some yGC*,w 

at which Q ,m has the frequency F, but then/i(y) ^ m — 1 ^ — °° . Suppose 
now that Cn,m has the frequency F and z^Cn,m\ then /i(z) ̂  /(z) — 1/w. 
Therefore, if Ï7 is any neighbourhood of z, the points ZiGC = UC\Cn,m for 
which /(si) ̂  /(z) — 1/w, have the frequency F. In every neighbourhood Z7' 
of Zi again, the points z2£C" = £7' P\ C", for which/(z2)^ /(zi) — 1/»^ f(z) 
— 2/w, have the frequency F; after » steps we find a subset C(n) CI Cn,m in 
which the points znG C{n) f{zn) ^ /(z) — 1 have the frequency F. Hence 
Cn,m ^ Cn,m+i is non-empty, contrary to the definition of Cn,m- Therefore 
Cn,m has not the frequency F. Thus C — Co has not the frequency F. 

Asf(x)<fi(x), it follows from (8) that /i(x) ^ /n(x) throughout C. Sup­
pose that for some x G C,fi(x) = c,fn(x) =c+3&, &>0; then in every neighbour­
hood Œ of x, the set of points x' for which jfi(x') ^ c + 2& has the frequency F, 
and therefore in every neighbourhood Q' C Œ of x', the set of points x" for 
which f{xn) > c + k has the frequency F. Thus the set of these points x" has 
the frequency F at x and therefore fi(x) > c, contrary to the supposition. Hence : 

(9) Mx) = / i (*) f Mx) = /2(x) 

for every xÇC. If now gi(x0) </ i (x 0 ) , then it follows from (8) that gn(x) 
^ /n (# ) , #G^ (neighbourhood of x0), and from (9) that gi(x)^ /i(x). Hence: 
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THEOREM 3. gi(x) < fi(xo) implies that there exists a neighbourhood Œ of xo, 
such that gi(x) ^ fi(x)> xÇŒ, i = I or 2. 

When we consider several frequencies Fa, Fb, . . . which C has at every xÇ C, 
the limiting functions will be distinguished by an upper index. Suppose 
Fa QFb] the set of points x" for which f{xn) <fa2(x) + e, e>0 has the frequency 
Fa and therefore also the frequency Fb at x£C. Therefore A M ^ faz{x). 

Hence 

(10) Fa Ç Fb implies jf*2(*) < AC*) ^ A M ^ A M , *£ C. 

THEOREM 4. F a C 7?6 implies fai(x) = (fai)bi(x),for xeC,i = lor2. 

Proof. It suffices to consider i = 1. From (9) and (10) we deduce 

A M = (A)°1(X)^ (A)&!(X). 

As in the proof of (9), we put fa
t(x) = c, (fai)\(x) = c + 3k, k> 0. Every 

neighbourhood 0 of x contains points xr where fai{xf) > c + 2k and therefore 
neighbourhoods £2' of x' where the sets of points x" satisfying f{x") > c + k 
has the frequency Fa. Therefore fai(x) > c, contrary to the supposition. Hence 
the theorem. 

Formula (9) is a special case of the theorem, as it corresponds to Fa — Fb. 
By putting Fb = Fo we obtain : 

COROLLARY 1. For every F, the functions fi(x) and f2(x) are semi-contin­
uous above and below, respectively. 

From a well known theorem4 therefore follows: 

COROLLARY 2. If £ is an w-dimensional Euclidean space, then fi(x) and 
f2(x) are measurable functions. 

This corollary admits generalization to other spaces. 
That (fai)bi(x) and (fhi)ai(x) may be different functions, can be shown by 

the following example. 

„ x ( = 1 , x a rational number, 
\ =0, x an irrational number. 

croM*) = i \im x 
(Pi)\(x) = /»,(*) = 0 / I o r e v e r y * -

We call the functions f(x) for which f(x) = fi(x) (or f(x) — f2(x) ), semi-
continuous mod F above (or below), generalizing ordinary semicontinuity which 
corresponds to F = F0. The semicontinuity mod F implies also the corres­
ponding semicontinuity mod every weaker frequency. Addition of a continu­
ous function and multiplication with a positive continuous function leave semi-
continuity mod F invariant. Multiplication with — 1 interchanges semi-
continuity above and below (mod F). 

4[1] p. 403. 
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The obvious inequalities: 

( f ( * ) + « ( * ) ) i ^ / i ( « ) + & ( * ) , 
(/(*) + «(*) ) i ^ /*(*) + &(*) 

can be replaced by the corresponding equalities when F = JFO, but not in the 
general case (example f(x) = 1 for 0 ^ x ^ 1, otherwise f(x) = 0; g(x) = 
f(x + 1) ). Semicontinuity above mod Fo can be tested by the necessary and 
sufficient condition that x* —» Xo and /(#») —•> a imply /(xo) ^ a ; however an 
arbitrary frequency has no test involving convergence of sequences only. 

4. To investigate the functions obtained by applying alternatively the 
upper and lower limiting operations mod a given F, a more general way of 
approach is convenient. 

Given an arbitrary set A which contains a partially ordered subset A1 \ let 
Li and Li be two mappings of the elements a, b, . . . of A on elements of A' 

(11) Li : a —+ au L.2 : a —> a2 

which satisfy the following conditions, when i, j , fe, stand for 1 and 2: 

(12) au = ai (idempotent), 

(13) a,j< bk implies ayt-< bu (monotonie) 

(14) a2< ax. 

Then aix. . . ini2kx . . . kn < a t l . . . imikl . . . kn- In particular, 

ai2i2< ani2 = ai2 = ai222< am2, 
and therefore 

(15) ai2i2 = ai2, a(i2i)(i2i) = ai2i2i = am. 

Hence the operations L i2 mapping a —•> ai2 and Lm mapping a —» am are idem-
potent and obviously monotonie. The same statements hold for the mappings 
L21 and L212 which are defined in a corresponding manner. The six mappings 
Li, L2, L12, L21, Lm, L212 form a semigroup of idempotents, and the four map­
pings L12, Lm, L21, L212 form a subsemigroup in it. We have 

(16) a2< a2i2< ai2< am< ai, 
a2 *< a2i2 < a2i < ai2i •< ai. 

These formulae do not establish any order relation between ai2 and an- By 
the mappings Li, L2 and Li2, and with the help of (16), we obtain easily: 

(17) a i 2< a2i implies a2i = am and a2i2 = ai2, 

(18) ai2< &m< a m implies am — bm and ai2 = bu. 

5. We apply now the methods and results of 4 to the space £) considered in 3. 
The system A consists of the pairs {/,x} represented by/(x) , where x runs over 
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C a n d / o v e r the functions with domain C; the system A' consists correspond­
ingly of the/»(#); the order relation in A' is the relation < introduced by (7), 
and the mappings Li are defined by 

(19) U :/(*) -•/,•(*), * = 1,2. 

From (16) it follows that for every x£ C, 

(20) f2(x) < fm{x) < /*(*) < /i(x), 

(21) MxXMx) <fm(x)<Mx). 

It may be remembered that g(x0) <f(xo) does not necessarily imply g(xo)^ /(xo), 
(nor does g(x0) ^ / (xo) imply g(x0) = /(x0) ), but the relation implies g(x)^/(x) 
for nearly every x of a suitable neighbourhood 0 of x0 (similarly for ~). How­
ever, by Theorem 3, gi(x0) < /»(x0) implies gi(x) ^ f%(x) for every xÇO. In the 
case of functions with several suffixes, it is the last one that matters. For xÇS2, 

(22) fu(x0) < f2i(x0) implies /2i(x) = fm(x) and fm(x) = /i2(x), 
fu(xo) < gm(xo) < fm(xo) implies fm(x) = gm(x) and f12(x) = gi2(x). 

If f(x) is continuous at x — xo, then/i(x0) = /2(xo). Conversely this equa­
tion does not necessarily imply the continuity of f(x) a t Xo. If for xGO (open), 
fi(x) = f(x) = f2(x), then (by Corollary 1 of Theorem 4) /(x) is semicontinu-
ous above and below and therefore continuous. Furthermore we prove 

THEOREM 5. Let fi(x) ~ / 2 ( x ) for xÇO (open), then there exists K QQ such 
that K contains nearly all the points of Q and /(x) is continuous when considered 
as a function with the domain K. 

Proof. f2(x) = / i (x ) , for nearly every x£Q; moreover, by Theorem 2, 
/2(x) ^ f(x) ^ fi(x) for nearly every x£ C. Hence the points of Q which satisfy 
both these conditions form a set i £ ^ 0, where f2(x) = f(x) = fi(x). Thus/(x) 
is continuous when considered on K alone. 

The theorem admits a converse statement, since the values of /i(x) and 
f2(x) do not depend on the values of f(x) on the complement of K in 0. There­
fore the continuity of/(x) on K implies the equivalence of /i(x) and/2(x), x£!2. 
The integrability (C) of a function does not depend on its values on a set 
which has not the frequency FQ. Hence : 

COROLLARY. When F = Fc and for x£Q,fi(x) ~fz(x) and/(x) is bounded, 
then/(x) is integrable (C) and J/(x) dx = ffi(x) dx. 

It should be noticed that we have here a sufficient condition for integrability 
(C) which depends on a property "im Kleinen" only. For a Euclidean space 
X and Lebesgue integration, the class of functions satisfying the conditions 
of the corollary does not include all the bounded functions which are measur­
able (L), but is larger than the class of the functions which are bounded and 
integrable (R). 
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THEOREM 6. Let g(x) be continuous on the open set £2, let A be the subset ofiï 
where g(x)^> fm(x) and B the subset where g(x)^ fu(x)) then A U B has the 
frequency F at every point of 12. 

Proof. Suppose A VJ B has not the frequency F a t xoG12; then fu(xo) < 
g(xo) < fm(xo). As g(x) is continuous, g(x) = gu(x) = gm(x). Therefore it 
follows from (22) that g(x) is equal and equivalent to/i2(x) and to/i2i(x) at Xo. 
Hence XQ^A C\ B ^ AVJ B. At the points of the complement C of A \J B 
in 12, therefore, A\J B has the frequency F. This leads to a contradiction, 
since when AKJ B has not the frequency F at Xo, this point is a limiting point 
of C and therefore A^J B has the frequency F at xo. 

6. Consider now pairs of functions g(x), h{x) for which, for x£ C, 

(23) g(x) = gi(x) = hi(x) and h(x) = g2(x) = h2(x); 

then 
g(x) = gm(x) = hm(x) = g2i(x) = hn(x); 
H%) = feOO = A12 (#) = gm(x) = hm(x). 

On the other hand, for every function/(x), the pairs jfi2i(x),/i2(x) and/2 i(x), 
f2u(x) satisfy (23). Now suppose 

(24) h(x0)<f(x0)< g(x0); 

theng(x0) = h(xo)^ /i(x0) ^ gi(x0) = g(x0); hence/i(x0) = g(x0). Similarly 
.M^o) = h(xo). On the other hand, /i(xo) = g(xo) implies (see Theorem 2) 
f(xo) < g(x0), and if /i(x) = g(x) for every x£S2 (open set), then f(x) ^ g(x) 
for nearly every xÇ12. Thus: 

THEOREM 7. Le/ £&e £air of functions g(x), h(x) satisfy (23); then the 
necessary and sufficient condition for /i(x0) = g(xo), j^C^o) = h(x0) is (24). 

When 12 is an open set, the necessary and sufficient condition for/i(x) = g(x), 
f2(x) = h(x), x£12 is &(x) -< f{x) < g(x). 

We consider now two frequencies Fa Q Fb which ]£ n a s at every point. To 
avoid clumsy formulas, we use the indices 1,2 mod Fb and correspondingly 
the indices a, /3 mod 7v If g(#) and h(x) satisfy (23), then it follows from (10) 
that 

h(x) = g2(x)^ gp(x)^ ga(x)^ gx(x) = g(x), 

but from Theorems 4 and 7, ga(x) = gai(x) = g(x), 
^ W = gf*2(x) = *(*)• 

Now suppose that r(x) = rQ(x) = sa(x),s(x) = ^(x) = ^ (x ) , then ri(x) =r(x), 
52(x) = 5(x) and therefore 5(x) = ^ ( x ) ^ r2(x) = r$2{x) = s2(x) = s(x). Hence 
r2(x) = s(x), and similarly si(x) = r(x). Therefore if (23) holds for F = Fby 

it holds also for Fa, and, conversely, if it holds for any F, it holds for F0 and 
for every other Ff (as it is necessarily C F0). Hence 
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THEOREM 8. If F and Ff are frequencies which C has at every point, and the 
equations (23) are satisfied mod F, they are also satisfied mod Ff. 

In the supposition of Theorem 8, C may be replaced by any subspace. 
Moreover it follows from this theorem, that when A and B are defined as in 
Theorem 6, A KJ B has every frequency that £2 C\ C has at each of its points. 

COROLLARY.5 For every e > 0 and arbitrary x0, the set of points x for 
which g(x) ^ g(xo) — e has all the frequencies at x0 which Chas at that point. 

As the relation (23) between g(x) and h(x) does not depend on the selection 
of F, we may put F = F0\ therefore g(x0) = h(xo) is the necessary and suffi­
cient condition for g(x) ( = h(x) ) to be continuous at xo. The difference 

(25) Ô(x) = g(x) - h(x) 

can therefore be used as a measure of the discontinuity of g(x) and h{x). 8(x) 
is non-negative and semicontinuous above mod Fo, but not every function 
with these properties is a 8(x). Select an arbitrary F which C has at every 
point, then 8(x) ^ ôi(x) (for (10) holds nearly everywhere). Suppose € > 0; 
then there exists a neighbourhood 0 of x0, such that for xÇO C\ C, g(x) ^ g(xo) 
+e ; moreover, there exists a subset S C Î2 P\ C which has the frequency F at 
Xo, such that for x'£S, h{x') ^ hi(x0) — e = g(x0) — e. Hence b(xf) ^ 2e 
for x 'Ç5. As 5(x) ^ 0 and 5 has the frequency F, it follows that ô2(xo) = 0 
for every x0. Moreover ôi2(x)^ 52(x). Hence 0 = ôi2(x) = ôm(x) = ô2i(x) 
— 52i2(x) = ô2(x). Therefore ô(x) is continuous only at those points where 
it vanishes, i.e., where g(x) = h(x) is continuous. 

The pairs g(x)} h(x) which satisfy (23) are the same for every F; but for a 
given function/(x), the pairs/m(x), fiï(x) are in general different for different 
frequencies F. 

7. A discontinuous function/(x) can be characterized by the two semicon­
tinuous functions/i(x) and/2(#), and furthermore by the two "pairs"/m(x) f 

/i2(x) and /2i(x), f2n(x). This characterization depends on the choice of the 
frequency F. It is therefore interesting to know all the frequencies which the 
domain of definition of f(x) has at each of its points. We have mentioned 
frequencies which are derived from the powers of the subsets of ]£ and fre­
quencies derived from measure functions. To know all the frequencies of the 
first kind would imply the solution of the "problem of the continuum"; the 
frequencies of the second kind include those generated by measures of lower 
dimension (e.g., Gillespie measure).6 Moreover, if F is a frequency which 
r ç J ] has at every point of XI» then ]T has also the frequency F(T) at every 
point. However there might exist frequencies of a different kind. 

6If one tries to describe the domain of the values between g(x) and h(x), spread over C in a 
pictorial way, this corollary states that the domain is "soft" inside, whereas Theorem 6 
means that it is "hard" outside. 

«See [3]. 
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The functions/i(x) and/2(x) satisfy /2(x) ^ /i2(x). To show that there is no 
other relation between those two semicontinuous functions, we select an arbi­
trary function which is semicontinuous above, say r{x), and a function s(x), 
semicontinuous below, such that s (x)^ r2(x) for x Ç £ - Then we split J^into 
X = i 4 W J 3 , 4 n £ = 0 , such that A as well as B has the frequency F at 
every point of £ . We define 

, , v ( = r(x) for x Ç 4 , 
; W \ = s ( x ) f o r x € £ ; 

then/i(x) = r(x),f2(x) = s(x), x £ £ . 
That the splitting of £ into -4 and B is always possible for F = F0 follows 

from the separability of £ . To split the w-dimensional Euclidean space into 
two sets A and B which have a positive Lebesgue measure at each point of 
the space, one can construct a suitable sequence of disjoint perfect sets of 
positive measure Ai, Bly A2, 5 2 , . . . such that A = \JnAn and B — \JnBn have 
the required property. 

Thus there is no relation other t h a n / 2 ( x ) ^ /i2(x), between the upper and 
the lower limiting function, which holds for every frequency; and therefore a 
closer investigation of the nature of the discontinuities must be split into the 
"discontinuity above" (characterized by/i(x) and the pair/ i2i(x),/12(x) ) and 
the "discontinuity below" (jf2(x) and/2i(x),/2i2(x) ). 

It has been suggested7 that we might modify the notion of upper (lower) 
limiting function by considering the functions 

A(/ ,x0) = Hm f(x); Atfxo) = lîS? fix). 

This would be an Analysis modulo the distributive property D: "To contain 
an infinite number of points". These limiting functions, however, do not lead 
to an idempotent operation, not even after infinite repetition, as is seen from 
the following example : 

Represent the numbers 0 ̂  x < 1 by decimal fractions ; then x Ç Sm,n (ft ̂  m) 
if and only if either x = 0, or x admits a finite decimal expansion which starts 
with exactly m zeros and has altogether m — n non-zeros. Put 

\Jm{Sm,o. . . Sm,k\ = Sk, \JkS
k = 5, 

and define/(x) = 1 for x(ES, = 0 otherwise; then Di(f, x) = 1 if and only if 
xÇ S — 5°, and when we indicate the iteration of the ZVoperation by an upper 
index, Z?i*+1(/, x) = 1 if and only if x£S — Sk. All these operators are there­
fore non-idempotent, and the functions form a monotonie decreasing sequence. 
The lower limit is Z>w(/, x) which = 1 for x = 0 only; thus the operator Dw is 
not idempotent either. The example can be modified in such a way that even 
some operators with higher transfinite indices are non-idempotent. For this 
purpose, one may admit several batches of non-zeros separated by sequences 
of consecutive zeros of prescribed length. 

7See [4] p. 1003, footnote 452a. 
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8. Given a frequency F which CQ Y, has at every point of C, and a sequence 
/ ( J C , 1 ) , / ( * , 2 ) , / ( # , 3 ) , . . . which converges to a function/(x) defined on a subset 
of C in such a way that for every € > 0 there exists an N(e), such that for 
n> N(e), 

(26) | f(x,n) — f(x) | < e for nearly every x Ç C, 

then the sequence is said to converge nearly uniformly to /(x) on C. Let 
€i—>0; if (26) holds, then the corresponding inequality holds also for every 
€i > e. If Cn,i is the set of points x for which 

then yJn,iCn,i has not the frequency F and therefore 2? = C — {Jn,iCn,i has 
the frequency F at every point of C. Therefore the given sequence is uniformly 
convergent on B to f{x)\ this function is defined at every point of B, and its 
limiting functionsfi{x), fo(x) are defined for every x£C. We prove now: 

THEOREM 9. (26) implies that fi(x,n) converge to fi(x) uniformly on C for 
i = 1,2. 

Proof. Let Un be a suitable neighbourhood of Xo£C. Then f(x,n) < fi(x0yn) 
+ e for nearly every x£Un H B, and therefore 

/(*) </i(*o,») + 2e, n> N(e). 

Moreover, Un has a subset Kn with the frequency F, such that f(x\n) > 
fi(xo,n) — € and therefore 

/ (* ' )>/ i (*o,«) - 2e, n > N(e), x'eKn. 

Now/i(xo) exists for #o€C and it follows from the two inequalities that 

fi(x0tn) - 2e^ Mxo)^ fi(x0,n) + 2e, n> N(c). 

Therefore fi(x0,n) -*fi(x) and similarly /2(#o,?0 —>f2(x). Moreover, 

|/i(#o) — fi(xo,n) | < 2e, n > iV(e) independent of x0. 

Thus the convergence is uniform on C. 
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