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1. Introduction. In teaching the elements of transform theory to students of physics and
engineering it is very useful to have available, as early as possible, the inversion theorem for the
Hankel transform

t)dx. (1.1)

The difficulty is that a valid proof for general values of v (cf. [1], p. 456) is complicated and
involves a greater familiarity with the processes of analysis and the properties of Bessel functions
than is possessed by most science students.

In applications of the Hankel transform to the solution of boundary value problems in
mathematical physics (e.g. in potential theory and in the theory of elasticity) it is usually only
the transforms of order zero and unity that are involved. The object of the present note is to
show that a convincing demonstration of the result 3fP~1 = 3Vy in these cases can be given to
students who are familiar with the Fourier inversion theorem, with the fact that the solution
of the Abel integral equation

M ^ = g(x) (x > 0) (1.2)

is
2dC* xg(x)dx

and with the results

(x > 0,
f * cos (£0

Jo \\x ~* )
p" sin (ft) <ft

Wo2-*2)"
(* > 0, Z > 0). (1.5)

It should also be observed that a simple change of variables in equations (1.2) and (1.3) shows
that the solution of the integral equation

••g(x) ( x > 0 ) (1.6)

is

'•-\iXihrk' (u )

natj, J(x —t)
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All of this should be known (quite early on) to students attending a " mathematical methods "
course.

The proof that in the cases v = 0, l,^'1 = Jfv, i.e. that the integral equation (1.1) has
solution

/(*)=
o

rests on interpreting the solution (1.2) as an inversion theorem for an operator sf1 defined
(apart from a numerical factor) by equation (1.2) called, for obvious reasons, an Abel trans-
form, and the solution (1.7) as an inversion theorem for an operator s/2 whose definition is
suggested by equation (1.6).

The basic identities for these operators are equations (2.13) and (2.14) below. By taking
simple forms for the arbitrary kernel K{^, x) occurring in these equations we can immediately
derive the desired inversion theorems for the Hankel transform (cf. Section 3). In Section 4
it is shown that the same method can be applied to derive the inversion theorem for H-trans-
forms (see [2], p. 215) in the case v = 0.

2. Abel transforms. It is convenient to define " Abel transforms " s^l and s/2 through the
equations

If we regard equation (2.1) as an integral equation for/(0>/i(*) being prescribed, then its
solution is given by equation (1.2). Making use of the notation

/i = ̂ i/=>/wr7i, (2.3)

we see that this solution can be written in the operator form

*Vh = D,*i[xh<d\i\, (2.4)

where, as usual, D, denotes the differential operator d\dt.
Similarly, if we regard (2.2) as an integral equation for/(<) we find that

(2.5)

Many standard integrals can be interpreted as statements involving these transforms.
For instance, we can interpret the integrals (1.3) and (1.4) in the forms

, [cos({0; x] = V(i70Jo«*), (2-6)

Vo(W. (2-7)
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respectively. If we differentiate both sides of (2.6) with respect to ^ we obtain the formula

•^[fsintfO; *] = y/QiOxJ&x), (2.8)

and using this result in equation (2.4) we find that

j * r * [sin (fr); i] = V(i»t)^o«0- (2-9)

Similarly from equations (2.5) and (2.7) we find that

from which we deduce immediately the equation

(2-10)

We have similar results for the Struve function H o (^ ) and the Bessel function of the
second kind of order zero, Yo(£x). If we replace the function sin (%t) by its Maclaurin expan-
sion and integrate term by term, we can easily show that

Now Struve's function Hv(*) is defined by the equation

* (-lY(lxY+2r+1

Hv(x) = £

so that the above equation is equivalent to the relation

On the other hand, if we define the Bessel function of the second kind by its integral
representation

(cf. [1], p. 170), we see immediately that

If we differentiate both sides of this equation with respect to <!;, interchange x and / and use the
recurrence relation Fo' = — Ylt we find that

Now making use of the formula (2.5) and the recurrence relation
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we find that

j*2 l [sin (?x); q = JdnKtY0({t). (2.12)

The method used in Sections 3,4 rests essentially on two integral identities which we shall
now derive.

From the definition (2.1) we have

r
Reversing the order in which we perform the integrations we see that the double integral on the
right may be written in the form

l{2\r°> C<°K(t,x)dx

which shows that

f " K{£, x)A(x) dx = f °7(x)j*2[Ktf, t);t-+x] dx. (2.13)
Jo Jo

In a similar way we can show that

f" K(c, x)/2(x) dx = f "/(xjj/ , [W, t);t^x] dx. (2.14)
Jo Jo

3. Inversion of the operators Jf 0
 a n^ -^V ^ w e denote the operator of the Fourier sine

transform by &„ so that

we see from equations (2.13) and (2.7) that

Jo

We can write this equation in the alternative form

where /0(£) is the Hankel transform of order zero of the function/(x), defined by (1.1) with
v = 0.

Applying the operator &J1 = &s to both sides of equation (3.1) we find that
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and then, applying s/^1 to both sides of this equation, that

Using equation (2.9) we see that this last equation is equivalent to the relation
C 00

/(o= MVo^o^.
Jo

In other words: If/0({) = 3f0 [fix); Zl then/(x) = Jf o[fo«); *L '^- ^ o ' = -
Similarly from equations (2.14) and (2.8) we see that

and hence that
^s[xUx);a=m), (3.2)

where/,((?) is the Hankel transform of order 1 of/(x). Applying the operator &', to both sides
of this equation, we have

which, in turn, we can write as

Using equation (2.10) we see that

] . (3.3)

4. Inversion of the operators Jf* and <^0. From equations (2.14) and (2.11) we find that

i.e.

^s[/2(*);£l= /(x)H0«x)</x,
Jo

a result which can be written in the form

where

/„*(£) = X $[f(x); £] = | x/(x) Ho (£x) dx. (4.2)
Jo

Applying the operators &, and J J / J 1 in turn to both sides of equation (4.1) we find that
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Using equation (2.12) we see that

rV (4-3)
o

Comparing equations (4.2) and (4.3) we find that
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