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Abstract

In a two-person red-and-black game, each player holds an integral amount of chips. At
each stage of the game, each player can bet any integral amount in his possession, winning
the chips of his opponent with a probability which is a function of the ratio of his bet to the
sum of both players’ bets and is called a win probability function. Both players seek to
maximize the probability of winning the entire fortune of his opponent. In this paper we
propose two new models. In the first model, at each stage, there is a positive probability
that two players exchange their bets. In the second model, the win probability functions
are stage dependent. In both models, we obtain suitable conditions on the win probability
functions such that it is a Nash equilibrium for the subfair player to play boldly and for
the superfair player to play timidly.
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1. Introduction

The red-and-black gambling problem, which has taken its name from the game of roulette,
has interested probabilists for quite some time. In a discrete version of the red-and-black game,
a player beginning with a positive integral fortune of x units can stake any positive integer
amount a ≤ x. His fortune becomes x + a if he wins with a fixed probability w (0 < w < 1)
and x − a if he loses with probability 1 − w. The player seeks to maximize the probability of
reaching a prespecified goal M by gambling repeatedly with suitably chosen stakes. Dubins
and Savage [3, pp. 87–89] showed that in the subfair case (i.e. w ≤ 1

2 ) an optimal strategy is
bold play, which corresponds to always betting the entire fortune or just enough to reach the
goal, whichever is smaller. This seems intuitively reasonable in that a shorter game seems to
give a better chance to the subfair player since he will surely lose in the long run. In the superfair
case (i.e. w ≥ 1

2 ), Ross [7] proved that it is optimal for the player to bet timidly, that is, always
to stake 1 unit of his current fortune at each stage. Intuitively, if the player is superfair, it is
better for him to prolong the game.

There have been some generalizations of the red-and-black game in several ways. A two-
person red-and-black game was introduced by Secchi [8]. Then Pontiggia [5] proposed two
different formulations of two-person red-and-black models, in which two players hold a positive
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integer fortune and they both aim to win the entire fortune of his opponent. One formulation
is called a weighted two-person red-and-black game; the other one is called a proportional
two-person red-and-black game. She showed that in each model, it is a Nash equilibrium for
the subfair player to play boldly and for the superfair player to play timidly. Chen and Hsiau
[2] extended Pontiggia’s results to a two-person red-and-black game with bet-dependent win
probability functions. They showed that if the subfair player’s win probability function, f , is
convex and satisfies f (0) = 0, f (s) ≤ s, and f (s)f (t) ≤ f (st), then it is a Nash equilibrium
for the subfair player to play boldly and for the superfair player to play timidly.

Pontiggia [5] also introduced an N -person model, called the proportional N -person red-
and-black game, in which a conjecture was proposed. Then Chen and Hsiau [2] gave a
counterexample of the conjecture and Chen [1] showed that in the proportional three-person
red-and-black game if the weights of players satisfy some suitable conditions then it is a Nash
equilibrium for the subfair player to play boldly and for the superfair player to play timidly.
Recently, Pontiggia [6] gave another general game, called an N -person nonconstant sum game.
She showed that if the win probability function satisfies some suitable conditions then it is a
Nash equilibrium for each player to play boldly.

In this paper we consider two new models of a two-person red-and-black game; one is a bet-
exchangeable game and the other is a stage-dependent game. For simplicity, we will combine
these two models into one version. Denote the two players by I and II. Let M ≥ 2 be the total
amount of chips in the system and let S = {0, 1, . . . , M} be the state space of fortune of each
player in the game. If player I has x chips, let

AI(x) =
{

{1, 2, . . . , x} if x ∈ {1, . . . , M − 1},
{0} if x ∈ {0, M},

be the action set for player I and let

AII(x) =
{

{1, 2, . . . , M − x} if x ∈ {1, . . . , M − 1},
{0} if x ∈ {0, M},

be the action set for player II.Assume that each player chooses his action without any knowledge
of the action chosen by the other. The goal of each player is to maximize his probability of
taking all the chips, i.e. reaching M .

Let {fm}m≥1 be a sequence of nonzero functions from [0, 1] to [0, 1] with fm(0) = 0 and
fm(s) ≤ s for each m ∈ N. Suppose that at stage m, player I has xm chips and bets am ∈ AI(xm)

chips, while player II bets bm ∈ AII(xm) chips. Let 0 < w ≤ 1 and w̄ = 1 − w. The law of
motion for player I is defined by

xm+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xm + bm with probability fm

(
am

am + bm

)
w,

xm − am with probability 1 − fm

(
am

am + bm

)
,

xm − am + bm with probability fm

(
am

am + bm

)
w̄,

for 1 ≤ xm ≤ M − 1 and by xm+1 = xm with probability 1 for xm = 0 or xm = M . This
means that once one of the players reaches M , the stage of neither player can change. Note that
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this model is more general than the model proposed by Chen and Hsiau [2] because the win
probability functions are stage dependent and, after each bet, there is a positive probability that
two players exchange their bets if w < 1. Note that if w = 1 and fm = f for all m ∈ N, the
above model is reduced to the model given in [2], which will be called a standard game with f .

Since fm(s) ≤ s, we see that

E[xm+1 | xm] = (xm + bm)fm

(
am

am + bm

)
w + (xm − am)

[
1 − fm

(
am

am + bm

)]

+ (xm − am + bm)fm

(
am

am + bm

)
w̄

= xm + (amw + bm)fm

(
am

am + bm

)
− am

= xm + (amw + bm)

[
fm

(
am

am + bm

)
− am

am + bm

]
− a2

mw̄

am + bm

≤ xm

for 1 ≤ xm ≤ M − 1 and that E[xm+1 | xm] = xm if xm = 0 or xm = M . Therefore, the
process {xm}m≥1 of the fortune of player I is a supermartingale. This means that the game is
subfair (or unfavorable) to player I and superfair (or favorable) to player II.

Hereafter, a timid strategy is that a player always stakes one chip at each stage of the game.
A bold strategy is that a player always stakes his entire fortune at each stage of the game. The
profile (bold, timid) will denote that player I always plays boldly and player II always plays
timidly.

In the above general model, if fm = f for all m ∈ N and 0 < w ≤ 1, the model is called a
bet-exchangeable game with (f, w). In Section 2 we will prove that if the profile (bold, timid)
is a Nash equilibrium for a standard game with f , then (bold, timid) is also a Nash equilibrium
for a bet-exchangeable game with (f, w). In the above general model, if w = 1, the model
is called a stage-dependent game with {fm}m≥1. In Section 3 we will prove that if, for all
s ∈ [0, 1], f1(s) ≥ f2(s) ≥ f3(s) ≥ · · · and, for each fm, the profile (bold, timid) is a Nash
equilibrium for the standard game with fm, then the profile (bold, timid) is a Nash equilibrium
for the stage-dependent game with {fm}m≥1.

2. Bet-exchangeable game

In this section we consider a bet-exchangeable game with (f, w). Suppose that at stage m,
player I has xm chips and bets am ∈ AI(xm) chips, while player II bets bm ∈ AII(xm) chips.
The law of motion for player I is defined by

xm+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xm + bm with probability f

(
am

am + bm

)
w,

xm − am with probability 1 − f

(
am

am + bm

)
,

xm − am + bm with probability f

(
am

am + bm

)
w̄,

for 1 ≤ xm ≤ M − 1 and by xm+1 = xm with probability 1 for xm = 0 or xm = M . Note that
if w = 1 (that is, at each stage, the probability of players exchanging their bets is 0) then the
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bet-exchangeable game with (f, w) is a standard game with f . For a bet-exchangeable game
with (f, w), the main result is the following, which extends the result in [2].

Theorem 2.1. If the profile (bold, timid) is a Nash equilibrium for a standard game with f

then (bold, timid) is also a Nash equilibrium for a bet-exchangeable game with (f, w).

To prove Theorem 2.1, we need some results about a bet-exchangeable game with (f, w).
First, we place a certain condition on a bet-exchangeable game with (f, w) to ensure that a bold
strategy is optimal for player I when player II plays timidly.

Lemma 2.1. In a bet-exchangeable game with (f, w), assume that player II adopts a timid
strategy. If the win probability function f satisfies

f

(
a

a + 1

)
+

[
1 − f

(
a

a + 1

)] a∏
i=0

f

(
x − i

x − i + 1

)
≤ f

(
x

x + 1

)
(2.1)

for all x ∈ {1, . . . , M − 1} and a ∈ AI(x), then a bold strategy is optimal for player I.

Proof. Assume that player II adopts a timid strategy. If player I uses a bold strategy, set

Q(x) = P(player I reaches M with an initial fortune x).

The corresponding law of motion at stage m for player I having xm units and playing boldly is
given by

xm+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xm + 1 with probability f

(
xm

xm + 1

)
w,

0 with probability 1 − f

(
xm

xm + 1

)
,

1 with probability f

(
xm

xm + 1

)
w̄,

for 1 ≤ xm ≤ M − 1, where w̄ = 1 − w, and by xm+1 = xm with probability 1 for xm = 0 or
xm = M . From this, it is not difficult to derive the recurrence relation

Q(x) = f (rx)wQ(x + 1) + f (rx)w̄Q(1), (2.2)

where rx = x/(x + 1) and 1 ≤ x ≤ M − 1. Note that Q(0) = 0 and Q(M) = 1.
A bold strategy is optimal for player I if and only if Q(·) is excessive (see Theorem 3.3.10

of [4]) or, equivalently, if the following inequality holds for every 1 ≤ x ≤ M − 1 and every
a ∈ AI:

f (ra)wQ(x + 1) + (1 − f (ra))Q(x − a) + f (ra)w̄Q(1) ≤ Q(x). (2.3)

Note that (2.3) holds if a = x, and so it remains to prove that (2.3) holds for 1 ≤ a ≤ x − 1.
Since 0 < w ≤ 1, repeatedly using (2.2) yields

Q(2) = 1

f (r1)w
[Q(1) − f (r1)w̄Q(1)] =

[
1 + 1 − f (r1)

f (r1)w

]
Q(1),

Q(3) = 1

f (r2)w
[Q(2) − f (r2)w̄Q(1)] =

[
1 + 1 − f (r2)

f (r2)w
+ 1 − f (r1)

f (r1)f (r2)w2

]
Q(1),
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and so on. Then, by mathematical induction,

Q(x) =
[

1 +
x−1∑
k=1

1 − f (rk)

wx−k
∏x−1

i=k f (ri)

]
Q(1).

Let H(1) = 1, and, for x ∈ {2, . . . , M − 1}, let

H(x) = 1 +
x−1∑
k=1

1 − f (rk)

wx−k
∏x−1

i=k f (ri)
.

We obtain, for every 1 ≤ x ≤ M − 1, Q(x) = H(x)Q(1) and

H(x + 1) = 1 + 1 − f (rx)

wf (rx)
+ 1

wf (rx)

x−1∑
k=1

1 − f (rk)

wx−k
∏x−1

i=k f (ri)
= H(x)

wf (rx)
− w̄

w
. (2.4)

Then, inequality (2.3) becomes

f (ra)wH(x + 1)Q(1) + (1 − f (ra))H(x − a)Q(1) + f (ra)w̄Q(1) ≤ H(x)Q(1),

which is equivalent to

f (ra)wH(x + 1) + (1 − f (ra))H(x − a) + f (ra)w̄ ≤ H(x) (2.5)

since Q(1) > 0. Substituting (2.4) into (2.5) and then multiplying both sides by f (rx), where
f (rx) > 0, we see that inequality (2.5) is equivalent to

f (ra)H(x) + (1 − f (ra))f (rx)H(x − a) ≤ f (rx)H(x). (2.6)

However, since H(y) ≥ 1 ≥ f (ry) for every 1 ≤ y ≤ M − 1 and 0 < w ≤ 1, we see that

H(y) = H(y)(1 − w̄)

w
≤ H(y) − f (ry)w̄

w
= f (ry)

[
H(y)

wf (ry)
− w̄

w

]
= f (ry)H(y+1). (2.7)

The last equality holds as a result of (2.4). Repeatedly using (2.7) yields H(x − a) ≤
[∏a

i=1 f (rx−i )]H(x). Thus, the left-hand side of inequality (2.6) satisfies

f (ra)H(x) + (1 − f (ra))f (rx)H(x − a) ≤ H(x)

[
f (ra) + (1 − f (ra))

a∏
i=0

f (rx−i )

]
. (2.8)

Because f satisfies (2.1) and H(x) ≥ 1, we have

H(x)

[
f (ra) + (1 − f (ra))

a∏
i=0

f (rx−i )

]
≤ H(x)f (rx).

Then inequality (2.6) holds and so inequality (2.3) holds. Hence, the bold strategy is optimal
for player I.

In the proof of Lemma 2.1, we see that if w = 1 then, from (2.4), H(y) = f (ry)H(y + 1)

for all 1 ≤ y ≤ M − 1 and this implies that H(x − a) = [∏a
i=0 f (rx−i )]H(x + 1). Therefore,

inequality (2.8) is actually an equality and so inequality (2.6) is equivalent to (2.1) since
H(x) ≥ 1. Thus, we have the following result.
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Theorem 2.2. In a standard game with f , assume that player II adopts a timid strategy. A bold
strategy is optimal for player I if and only if f satisfies (2.1) for all x ∈ {1, . . . , M − 1} and
a ∈ AI(x).

Next, we place a certain condition on a bet-exchangeable game with (f, w) to ensure that a
timid strategy is optimal for player II when player I plays boldly.

Lemma 2.2. In a bet-exchangeable game with (f, w), assume that player I plays a bold
strategy. If the win probability function satisfies

b−1∏
i=0

f

(
x + i

x + i + 1

)
≤ f

(
x

x + b

)
(2.9)

for all x ∈ {1, . . . , M − 1} and b ∈ AII(x), then a timid strategy is optimal for player II.

Proof. Assume that player I plays a bold strategy. If player II adopts a timid strategy, set

T (x) = P(player II reaches M with an initial fortune M − x).

Note that, after the nth bet, the probability that the game stops is greater than the probability
of player II reaching M . However, after the nth bet, the probability of player II reaching M

is greater than 1 − [f ( 1
2 )]n. Note that the limit of [f ( 1

2 )]n is 0 as n goes to ∞. That is, the
probability of player II reaching M is going to 1 as n → ∞ and so the game will eventually
stop. Recalling Q(x) defined in the proof of Lemma 2.1, we have T (x) = 1 − Q(x). If at
stage m player II bids an amount b then the corresponding law of motion for player I with xm

chips is given by

xm+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xm + b with probability f

(
xm

xm + b

)
w,

0 with probability 1 − f

(
xm

xm + b

)
,

b with probability f

(
xm

xm + b

)
w̄,

for 1 ≤ xm ≤ M − 1 and by xm+1 = xm with probability 1 if xm = 0 or xm = M . As in
the proof of Lemma 2.1, it suffices to prove that T (·) is excessive or, equivalently, that the
following inequality holds:

f

(
x

x + b

)
wT (x + b) +

[
1 − f

(
x

x + b

)]
T (0) + f

(
x

x + b

)
w̄T (b) ≤ T (x). (2.10)

Note that (2.10) holds if b = 1, and then it remains to prove that (2.10) holds for 2 ≤ b ≤ M−x.
Recall that Q(x) = H(x)Q(1), where H is defined in the proof of Lemma 2.1. Since

T (x) = 1 − Q(x) = 1 − H(x)Q(1), T (0) = 1, and Q(1) > 0, inequality (2.10) becomes

f

(
x

x + b

)
wH(x + b) + f

(
x

x + b

)
w̄H(b) ≥ H(x). (2.11)
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Substituting (2.4) into (2.11), we see that the right-hand side of (2.11) satisfies

f

(
x

x + b

)
wH(x + b) + f

(
x

x + b

)
w̄H(b)

= f

(
x

x + b

)[
H(x + b − 1)

f (rx+b−1)

]
+ f

(
x

x + b

)
w̄(H(b) − 1)

≥ f

(
x

x + b

)[
H(x + b − 1)

f (rx+b−1)

]
. (2.12)

The last inequality holds since f (x/(x + b))w̄ ≥ 0 and H(b) ≥ 1. Repeatedly using (2.7)
yields H(x + b − 1) ≥ H(x)/[∏b−2

i=0 f (rx+i )], and then

f

(
x

x + b

)[
H(x + b − 1)

f (rx+b−1)

]
≥ f

(
x

x + b

)[
H(x)∏b−1

i=0 f (rx+i )

]
. (2.13)

Since f satisfies (2.9) and H(x) ≥ 1, we have

f

(
x

x + b

)[
H(x)∏b−1

i=0 f (rx+i )

]
≥ H(x).

Hence, inequality (2.11) holds and so (2.10) holds. This completes the proof.

In the proof of Lemma 2.2, note that if w = 1 then w̄ = 0 and so inequality (2.12) is actually
an equality. Moreover, recall that if w = 1 then H(y) = f (ry)H(y +1) for all 1 ≤ y ≤ M −1
and this implies that H(x) = [∏b−2

i=0 f (rx−i )]H(x + b − 1). Therefore, inequality (2.13) is
actually an equality and so inequality (2.11) is equivalent to (2.9) since H(x) ≥ 1. Thus, we
have the following result.

Theorem 2.3. In a standard game with f , assume that player I adopts a bold strategy. A timid
strategy is optimal for player II if and only if f satisfies (2.9) for all x ∈ {1, . . . , M − 1} and
b ∈ AII(x).

In a bet-exchangeable game with (f, w), suppose that f satisfies (2.1) and (2.9). By
Lemma 2.1, it follows that a bold strategy is optimal for player I if player II plays timidly;
moreover, by Lemma 2.2, a timid strategy is optimal for player II if player I plays boldly.
Therefore, it is a Nash equilibrium for player I to play boldly and for player II to play timidly.
Hence, we have the following theorem.

Theorem 2.4. In a bet-exchangeable game with (f, w), assume that the win probability
function f satisfies (2.1) and (2.9). Then the profile (bold, timid) is a Nash equilibrium for this
game.

We now can prove Theorem 2.1.

Proof of Theorem 2.1. If the profile (bold, timid) is a Nash equilibrium for a standard game
with f then, by Theorems 2.2 and 2.3, f satisfies (2.1) and (2.9). Moreover, from Theorem 2.4,
the profile (bold, timid) is also a Nash equilibrium for a bet-exchangeable game with (f, w).
This completes the proof.

From Theorem 2.3 of [2], it is known that the profile (bold, timid) is a Nash equilibrium
for a standard game with f if f is convex and satisfies f (s)f (t) ≤ f (st) for all s, t ∈ (0, 1).
Then by Theorem 2.1 we have the following corollary.
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Corollary 2.1. In a bet-exchangeable game with (f, w), if f is convex and satisfies f (s)f (t) ≤
f (st) for all s, t ∈ (0, 1), then the profile (bold, timid) is a Nash equilibrium.

Remark 2.1. If we allow w = 0 in a bet-exchangeable game, the case is very different. For
example, if w = 0 and f (s) = s/2, then it is easy to verify that the game is subfair to player I
and superfair to player II. Moreover, as in the proof of Lemma 2.1, we have Q(x) = f (rx)Q(1),
where rx = x/(x + 1). Therefore, for every 1 ≤ x ≤ M − 1 and every 1 ≤ a ≤ x − 1,

Q(x) − [f (ra)Q(1) + (1 − f (ra))Q(x − a)]
= [f (rx) − f (ra) − (1 − f (ra))f (rx−a)]Q(1)

= −
[

a(x − a)(x + 3)

4(x + 1)(a + 1)(x − a + 1)

]
Q(1)

< 0.

This means that Q(·) is not excessive and, hence, a bold strategy is not optimal for player I
while player II plays timidly. Similarly, it is also easy to verify that a timid strategy is not
optimal for player II while player I plays boldly.

3. Stage-dependent game

In this section we consider a stage-dependent game with {fm}m≥1. Suppose that at stage m,
player I has xm chips and bets am ∈ AI(xm) chips, while player II bets bm ∈ AII(xm) chips.
The law of motion for player I is defined by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

xm + bm with probability fm

(
am

am + bm

)
,

xm − am with probability 1 − fm

(
am

am + bm

)
,

for 1 ≤ xm ≤ M − 1 and by xm+1 = xm with probability 1 for xm = 0 or xm = M . For a
stage-dependent game with {fm}m≥1, the main result is the following, which also extends the
result in [2].

Theorem 3.1. If f1(s) ≥ f2(s) ≥ f3(s) ≥ · · · for all s ∈ [0, 1] and, for each fm, (bold, timid)
is a Nash equilibrium for a standard game with fm, then (bold, timid) is a Nash equilibrium
for a stage-dependent game with {fm}m≥1.

To prove Theorem 3.1, we need some results about a stage-dependent game with {fm}m≥1.
First, we place a certain condition for a stage-dependent game with {fm}m≥1, which ensures
that a bold strategy is optimal for player I while player II plays timidly.

Lemma 3.1. If f1(s) ≥ f2(s) ≥ f3(s) ≥ · · · for all s ∈ [0, 1] and each fm satisfies (2.1), then
in a stage-dependent game with {fm}m≥1, a bold strategy is optimal for player I while player
II plays timidly.

Proof. Assume that player II plays a timid strategy. If player I uses a bold strategy, set

Qm(x) = P(player I reaches M with a fortune x at stage m).
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The corresponding law of motion at stage m for player I having xm chips and playing boldly is
given by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

xm + 1 with probability fm

(
xm

xm + 1

)
,

0 with probability 1 − fm

(
xm

xm + 1

)
,

for 1 ≤ xm ≤ M − 1 and by xm+1 = xm with probability 1 for xm = 0 or xm = M . From this,
it is not difficult to derive the recurrence relation

Qm(x) = fm(rx)Qm+1(x + 1), (3.1)

where 1 ≤ x ≤ M − 1 and rx = x/(x + 1). Note that Qm(0) = 0 and Qm(M) = 1 for all
m ∈ N.

In order to prove a bold strategy is optimal for player I while player II plays timidly, it
suffices to show that the following inequality holds for every x ∈ {1, . . . , M − 1}, a ∈ AI(x),
and m ∈ N:

fm(ra)Qm+1(x + 1) + [1 − fm(ra)]Qm+1(x − a) ≤ Qm(x). (3.2)

Repeatedly using (3.1) yields

Qm+1(x + 1) = fm+1(rx+1)Qm+2(x + 2) = · · · =
M−x−1∏

i=1

fm+i (rx+i ) (3.3)

and

Qm+1(x − a) = fm+1(rx−a)Qm+2(x − a + 1) = · · · =
M−x+a−1∏

i=0

fm+i+1(rx−a+i ).

Here we use Qn(M) = 1 for all n ∈ N. Since f1(s) ≥ f2(s) ≥ f3(s) ≥ · · · for all s ∈ [0, 1],
we have

M−x+a−1∏
i=0

fm+i+1(rx−a+i ) =
[ a∏

i=0

fm+i+1(rx−a+i )

][M−x−1∏
j=1

fm+j+a+1(rx+j )

]

≤
[ a∏

i=0

fm(rx−a+i )

][M−x−1∏
j=1

fm+j (rx+j )

]

=
[ a∏

i=0

fm(rx−i )

][M−x−1∏
j=1

fm+j (rx+j )

]
.

The last identity holds since
∏a

i=0 fm(rx−a+i ) = ∏a
i=0 fm(rx−i ). Moreover, since

Qm+1(x + 1) =
M−x−1∏

i=1

fm+i (rx+i ),

we obtain

Qm+1(x − a) ≤
[ a∏

i=0

fm(rx−i )

]
Qm+1(x + 1). (3.4)
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Substituting (3.3) and (3.4) into (3.2), we see that

fm(ra)Qm+1(x + 1) + [1 − fm(ra)]Qm+1(x − a)

≤ fm(ra)Qm+1(x + 1) + [1 − fm(ra)]
[ a∏

i=0

fm(rx−i )

]
Qm+1(x + 1)

=
{
fm(ra) + [1 − fm(ra)]

a∏
i=0

fm(rx−i )

}
Qm+1(x + 1)

≤ fm(rx)Qm+1(x + 1).

The last inequality holds because Qm+1(x + 1) > 0 and fm satisfies (2.1), i.e.

fm(ra) + [1 − fm(ra)]
a∏

i=0

fm(rx−i ) ≤ fm(rx).

Since fm(rx)Qm+1(x + 1) = Qm(x), (3.2) holds. This completes the proof.

Next, we place a condition on the sequence of win probability functions such that a timid
strategy is optimal for player II while player I plays boldly.

Lemma 3.2. If f1(s) ≥ f2(s) ≥ f3(s) ≥ · · · for all s ∈ [0, 1] and each fm satisfies (2.9),
then in a stage-dependent game with {fm}m≥1, a timid strategy is optimal for player II while
player I plays boldly.

Proof. Assume that player I plays a bold strategy. If player II adopts a timid strategy, let

Tm(x) = P(player II reaches M with an initial fortune M − x at stage m).

Recalling the functions Qm(x) defined in the proof of Lemma 3.1, we have Tm(x) = 1−Qm(x).
If at stage m player II bids an amount b then the corresponding law of motion for player I with
xm chips is given by

xm+1 =

⎧⎪⎪⎨
⎪⎪⎩

xm + b with probability fm

(
xm

xm + b

)
,

0 with probability 1 − fm

(
xm

xm + b

)
,

for 1 ≤ xm ≤ M − 1 and by xm+1 = xm with probability 1 for xm = 0 or xm = M . As
in the proof of Lemma 3.1, it suffices to prove that the following inequality holds for every
x ∈ {1, . . . , M − 1}, b ∈ AII(x), and m ∈ N:

fm

(
x

x + b

)
Tm+1(x + b) +

[
1 − fm

(
x

x + b

)]
Tm+1(0) ≤ Tm(x).

Since Tm(x) = 1 − Qm(x) and Tm(0) = 1 for all m ∈ N, the above inequality becomes

fm

(
x

x + b

)
Qm+1(x + b) ≥ Qm(x). (3.5)
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Recall that rx = x/(x + 1). Repeatedly using (3.1) yields

Qm(x) =
M−x−1∏

i=0

fm+i (rx+i )

and

Qm+1(x + b) =
M−x−1∏

i=b

fm+1+i−b(rx+i ) =
M−x−1∏

i=b

fm+i−(b−1)(rx+i ).

Here we use Qn(M) = 1 for all n ∈ N. Since b ≥ 1 and f1(s) ≥ f2(s) ≥ f3(s) ≥ · · · for all
s ∈ [0, 1], we have

b−1∏
i=0

fm+i (rx+i ) ≤
b−1∏
i=0

fm(rx+i )

and
M−x−1∏

i=b

fm+i (rx+i ) ≤
M−x−1∏

i=b

fm+i−(b−1)(rx+i ) = Qm+1(x + b).

Then

Qm(x) =
[b−1∏

i=0

fm+i (rx+i )

][M−x−1∏
i=b

fm+i (rx+i )

]

≤
[b−1∏

i=0

fm(rx+i )

]
Qm+1(x + b)

≤ fm

(
x

x + b

)
Qm+1(x + b).

The last inequality holds because Qm+1(x+b) > 0 and fm satisfies (2.9), i.e.
∏b−1

i=0 fm(rx+i ) ≤
fm(x/(x + b)). Hence ,(3.5) holds. This completes the proof.

We can now prove Theorem 3.1.

Proof of Theorem 3.1. If the profile (bold, timid) is a Nash equilibrium for each standard
game with fm then, by Theorems 2.2 and 2.3, each fm satisfies (2.1) and (2.9). Moreover, since
f1(s) ≥ f2(s) ≥ f3(s) ≥ · · · for all s ∈ [0, 1], we find that in a stage-dependent game with
{fm}m≥1, by Lemma 3.1, a bold strategy is optimal for player I while player II plays timidly
and, by Lemma 3.2, a timid strategy is optimal for player II while player I plays boldly. Hence,
the profile (bold, timid) is also a Nash equilibrium for a stage-dependent game with {fm}m≥1.
This completes the proof.

From Theorem 2.3 of [2], it is known that the profile (bold, timid) is a Nash equilibrium
for each standard game with fm if fm is convex and satisfies fm(s)fm(t) ≤ fm(st) for all
s, t ∈ [0, 1]. Thus, if f1(s) ≥ f2(s) ≥ f3(s) ≥ · · · for all s ∈ [0, 1] and each fm is convex
and satisfies fm(s)fm(t) ≤ fm(st) for all s, t ∈ [0, 1], by Theorem 3.1, we have the following
result.

Corollary 3.1. If f1(s) ≥ f2(s) ≥ f3(s) ≥ · · · for all s ∈ [0, 1] and each fm is convex and
satisfies fm(s)fm(t) ≤ fm(st) for all s, t ∈ [0, 1], then the profile (bold, timid) is a Nash
equilibrium for a stage-dependent game with {fm}m≥1.
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