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Abstract. In this paper we introduce T -non-cosingular modules, dual Baer
modules and K-modules. We prove that a module M is lifting and T -non-cosingular if
and only if it is a dual Baer and K-module. Rings for which all modules are dual Baer
are precisely determined. We also give a necessary condition for a finite direct sum of
dual Baer modules to be dual Baer.
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1. Introduction. Throughout this paper S will denote the endomorphism ring
of any module M. In [11] and [12], the authors investigate Baer modules and K-
non-singular modules. Motivated by these works, we introduce dual notions, these of
dual Baer modules and T -non-cosingular modules. A module M is called a dual Baer
module if for every N ≤ M, there exists an idempotent e in S such that D(N) = {ϕ ∈
S | Imϕ ⊆ N} = eS. The module �� is not dual Baer, because for every integer n ≥ 2,
D(n�) is a non-zero and proper right ideal of End(�). On the other hand, the modules
�� and �(p∞) are dual Baer for every prime p (see Corollary 2.4). A module M is
called a T -non-cosingular module if, for every non-zero endomorphism ϕ of M, Imϕ

is not small in M. Following [14], the module M is called non-cosingular if for every
non-zero module N and every non-zero homomorphism f : M → N, Imf is not a small
submodule of N. It is clear that every non-cosingular module is T -non-cosingular.

A module M is called a lifting module if for every submodule N of M, there is a
decomposition M = M1 ⊕ M2 such that M1 ≤ N and N ∩ M2 � M2, or equivalently,
for every submodule N of M there is a direct summand K of M such that N/K � M/K .

A ring R is called a right Harada ring if every injective right R-module is lifting
(see [2, 28.1 and 28.10]).

The aim of this paper is to study dual Baer modules. T -non-cosingular modules
will be studied in a subsequent paper.

Section 2 is devoted to the study of dual Baer modules. We will begin by providing
an equivalent formulation of dual Baer modules (Theorem 2.1). Then we show that RR

is dual Baer if and only if the ring R is semi-simple. We also prove Theorem 2.14 which
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exhibits the connections between dual Baer modules and lifting modules. Moreover, we
characterize right hereditary right Harada rings in terms of lifting dual Baer modules
(Proposition 2.15).

In Section 3 we will be concerned with the direct sums of dual Baer modules. The
structure of dual Baer modules over Dedekind rings is described explicitly.

2. Dual Baer modules. Rizvi and Roman introduced the concept of Baer modules
in [11]. Let M be a module. According to [11], M is called a Baer module if for all
N ≤ M, the left annihilator of N in S, lS(N) = Se, with e2 = e ∈ S. Let N ≤ M. In this
paper we introduce the right ideal D(N) = {ϕ ∈ S | Imϕ ⊆ N} of S as the dual notion
of left annihilator lS(N) of N in S. Clearly, D(e(M)) = eS for any idempotent e in S.
A module M is called dual Baer if for every N ≤ M, there exists an idempotent e in S
such that D(N) = eS. It is obvious that any module with semi-simple endomorphism
ring is dual Baer. The module M is said to have the (strong) summand sum property,
denoted briefly by (SSSP) SSP, if the sum of (any family of) two direct summands of M
is a direct summand of M. Next, we provide a characterization of dual Baer modules
in terms of SSSP.

THEOREM 2.1. The following are equivalent for a module M:
(i) M is dual Baer.
(ii) For every subset A of S,

∑
f ∈A Imf = e(M) where e = e2 ∈ S.

(iii) For every right ideal I of S,
∑

f ∈I Imf = e(M) where e = e2 ∈ S.
(iv) M has the SSSP and for every ϕ : M → M, Imϕ is a direct summand of M.

Proof. (i) ⇒ (ii) Let A ⊆ S. Let N = ∑
f ∈A Imf ≤ M. Since M is dual Baer, there

exists an idempotent e ∈ S such that D(N) = eS. Thus e(M) ⊆ N. On the other hand,
for every f ∈ A, we have f ∈ D(N) = eS. Therefore for every f ∈ A, there exists s ∈ S
such that f = es. It follows that for every f ∈ A, Imf ⊆ e(M). This gives that N ⊆ e(M).
Consequently, N = e(M).

(ii) ⇒ (iv) It is a consequence of the fact that every direct summand of M is an
epimorphic image of M.

(iv) ⇒ (iii) Clear.
(iii) ⇒ (i) Let N be a submodule of M. Consider the right ideal I = D(N) = {f ∈

S | Imf ⊆ N} of S. By hypothesis,
∑

f ∈I Imf = e(M) for some e = e2 ∈ S. Then e ∈
D(N) and hence eS ⊆ D(N). Now if f ∈ D(N) = I , then Imf ⊆ e(M). Moreover, since
S = eS ⊕ (1 − e)S, we get f = es1 + (1 − e)s2 for some s1, s2 ∈ S. Therefore f = es1

because Imf ⊆ e(M). Hence f ∈ eS. So eS = D(N). This completes the proof. �

From Theorem 2.1 it follows easily that all semi-simple modules are dual Baer.
Note that if R is a commutative ring, then for any dual Baer module M and any

r ∈ R, Mr is a direct summand of M.

COROLLARY 2.2. A module M is an indecomposable dual Baer module if and only if
for every non-zero ϕ ∈ S, ϕ is an epimorphism.

Proof. By Theorem 2.1. �
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In view of the above corollary, every indecomposable dual Baer module M is
cohopfian (i.e. every monomorphism from M to M is an isomorphism). Let R be a
commutative Noetherian local complete domain with maximal ideal m. Then E(R/m)
is dual Baer by [13, page 143, Corollary 2] and Corollary 2.2.

COROLLARY 2.3. Every dual Baer module M is T -non-cosingular.

Proof. Let M be a dual Baer module and let ϕ ∈ End(M) with Imϕ � M. By
Theorem 2.1, Imϕ is a direct summand of M. Therefore Imϕ = 0, and so ϕ = 0. �

COROLLARY 2.4. Let M be an injective R-module over a right hereditary ring R.
Then M is dual Baer if and only if M has the SSSP. In particular, every indecomposable
injective R-module is dual Baer.

Proof. Let f be an endomorphism of M. Since Imf is a factor module of M and R
is right hereditary, Imf is injective. Hence Imf is a direct summand of M. The result
follows from Theorem 2.1. �

COROLLARY 2.5. Let M be a dual Baer module. Then every direct summand of M is
also dual Baer.

Proof. Let M = N ⊕ N ′. Since M has the SSSP, it is easy to see that N has the SSSP.
Now let f : N → N be any endomorphism of N. Consider the homomorphism f ⊕ 0N ′ :
N ⊕ N ′ → N ⊕ N ′ defined by f ⊕ 0N ′ (n + n′) = f (n). Now f ⊕ 0N ′ (N ⊕ N ′) = f (N) is
a direct summand of M and hence it is a direct summand of N. Therefore N is dual
Baer by Theorem 2.1. �

COROLLARY 2.6. (i) Every dual Baer module is a direct sum of indecomposable
modules.

(ii) Every dual Baer lifting module is a direct sum of hollow modules.

Proof. (i) By Theorem 2.1 and [10, Theorem 2.17].
(ii) By (i) and [2, 22.2 and 22.6]. �

A module M is called a regular module if every cyclic submodule of M is a direct
summand of M (see [8, Page 272, Exercise 16]).

COROLLARY 2.7. If M is a regular dual Baer module, then M is semi-simple.

Proof. Let N ≤ M. Note that N = ∑
x∈N xR. By Theorem 2.1, N is a direct

summand of M. �

PROPOSITION 2.8. If RR is dual Baer, then the ring R is von Neumann regular.

Proof. Take any principal right ideal I = aR of R. Consider the R-homomorphism
f : RR −→ RR defined by f (r) = ar, where r ∈ R. Then Imf = I , which is a direct
summand of RR by hypothesis. So R is von Neumann regular. �
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COROLLARY 2.9. Let R be a ring. Then the following are equivalent:
(i) RR is dual Baer.
(ii) RR is semi-simple.
(iii) RR is dual Baer.
(iv) RR is semi-simple.

Proof. (i) ⇔ (ii) Assume RR is dual Baer. By Proposition 2.8, R is von Neumann
regular. Therefore RR is semi-simple by Corollary 2.7. The converse is clear.

(iii) ⇔ (iv) The proof runs as before.
(ii) ⇔ (iv) By [8, Theorem 8.2.1]. �

COROLLARY 2.10. The following are equivalent for any ring R:
(i) Every right R-module is dual Baer.
(ii) Every left R-module is dual Baer.
(ii) R is semi-simple.

LEMMA 2.11. Let N be a submodule of a T -non-cosingular module M and let e be
an idempotent in S. If e(M) ≤ N and N/e(M) � M/e(M), then D(N) = eS.

Proof. Since e(M) ≤ N, we have eS ⊆ D(N). Now let ϕ ∈ D(N) and let us prove
that ϕ ∈ eS. Note that M = e(M) ⊕ (1 − e)(M) and N/e(M) � M/e(M). Therefore
N ∩ (1 − e)(M) � M. Since S = eS ⊕ (1 − e)S, there exist s1 and s2 in S such that
ϕ = es1 + (1 − e)s2. Thus Im(1 − e)s2 ≤ N ∩ (1 − e)(M) � M. By hypothesis, we get
(1 − e)s2 = 0 and hence ϕ = es1 ∈ eS. �

A module M is called a K-module if, for every non-small submodule N of M, there
exists a non-zero endomorphism ϕ of M such that ϕ−1(N) = M. This is obviously
equivalent to the condition that, D(N) �= 0 for every non-small submodule N of M.
Note that �� is not a K-module since it contains a proper non-small submodule and
every non-zero endomorphism of �� is an isomorphism. On the other hand, � is a
K-module since every non-zero submodule of � is isomorphic to �.

LEMMA 2.12. Every lifting module M is a K-module.

Proof. Let N ≤ M such that D(N) = 0. By the lifting property, there exists a direct
summand K of M such that N/K � M/K . Now there exists an idempotent e ∈ S such
that e(M) = K . This implies that e ∈ D(N). By hypothesis, e = 0. Therefore K = 0 and
hence N � M. �

PROPOSITION 2.13. Let M be a dual Baer K-module. Then M is lifting.

Proof. Let N be any non-small submodule of M. Then D(N) = eS for some
non-zero idempotent e ∈ S. Thus Ime is a non-zero direct summand of M which is
contained in N. Moreover, if f is another idempotent in S such that Ime ≤ Imf ≤ N,
then f ∈ D(N). Therefore there exists s ∈ S such that f = es. So Imf ≤ Ime and hence
Ime = Imf . This proves that Ime is a maximal direct summand of M with Ime ≤ N.
By [15, 41.12], M is lifting. �
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THEOREM 2.14. The following statements are equivalent for a module M:
(i) M is a lifting T -non-cosingular module.
(ii) M is a dual Baer and K-module.

Proof. By Lemmas 2.11, 2.12, Corollary 2.3 and Proposition 2.13. �

Recall that a module M is uniserial if its submodules are linearly ordered by
inclusion and it is serial if it is a direct sum of uniserial submodules. The ring R is right
(left) serial if the right (left) R-module RR (RR) is serial and it is serial if it is both right
and left serial.

Theorem 2.14 is a useful source of examples of dual Baer modules. In fact, since
every non-cosingular module is T -non-cosingular, every non-cosingular lifting module
is dual Baer. By using this fact, we will construct the following examples.

(1) If R is a right hereditary ring, then every injective module is non-cosingular by
[14, Proposition 2.7]. Thus every injective lifting module is dual Baer.

(2) If R is a right Harada ring, then every injective module is lifting. Therefore
every injective non-cosingular module is dual Baer.

(3) If the ring R is artinian serial with (Rad(R))2 = 0, then every module is lifting
by [2, 29.10]. So every non-cosingular module is dual Baer.

PROPOSITION 2.15. The following statements are equivalent for a ring R:
(i) R is a right hereditary right Harada ring.
(ii) Every injective module is lifting dual Baer.

Proof. (i) ⇒ (ii) Let M be an injective module. It is clear that M is lifting. By
[5, Proposition 1.6], M has the SSP. Thus M has the SSSP by [4, Proposition 4.9].
Therefore M is dual Baer by Corollary 2.4.

(ii) ⇒ (i) It follows from [5, Proposition 1.6]. �

What is lacking is an explicit example. Let k be a field and let R be the ring of
n × n upper triangular matrices over k. By [9, Example 2.36], R is an artinian right
hereditary ring and Rad(R) consists of all matrices in R with a zero diagonal. Thus
(Rad(R))2 = 0. On the other hand, R is a serial ring by [3, Example 1.21]. It follows
that every injective R-module is dual Baer.

Theorem 2.14 and Proposition 2.15 show the importance of dual Baer modules
in the theory of lifting modules, hereditary rings, and Harada rings.

In [14], the authors defined Z(M) = ∩{Ker(g) : g ∈ Hom(M, N), N � E(N)} and
Z

2
(M) = Z(Z(M)), where E(N) is the injective hull of N.

PROPOSITION 2.16. Let M be a lifting module. Then Z
2
(M) is a direct summand of

M which is dual Baer.

Proof. By [14, Corollary 3.4 and Theorem 4.1] and Theorem 2.14. �

PROPOSITION 2.17. Let M be an indecomposable dual Baer module with finite uniform
dimension. Then S is semi-local.
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Proof. By Corollary 2.2 and [1, Theorem 5]. �

Note that the ring of endomorphisms of a dual Baer module may not be von
Neumann regular. Also if the ring of endomorphisms of any module M is von Neumann
regular, then M need not be dual Baer.

EXAMPLE 2.18. (i) Let M be the Prüfer p-group �(p∞). It is dual Baer by Corollary
2.4. But S = End(M) is not von Neumann regular.

(ii) Let K be a field and let R = ∏∞
i=1 Ki with Ki = K for i = 1, 2, . . .. In [8, Page

264], it is proven that the ring R is von Neumann regular which is not semi-simple. Thus
RR is not dual Baer by Corollary 2.9. But End(R) is von Neumann regular.

In this vein we can give the following result.

PROPOSITION 2.19. (i) Let M be a dual Baer module such that for every
endomorphism f of M, Kerf is a direct summand of M. Then S is von Neumann
regular.

(ii) Let M be a module. If S is von Neumann regular and M has the SSSP, then M
is dual Baer.

Proof. By Theorem 2.1 and [8, Page 272, Exercise 17]. �

3. Direct sums of dual Baer modules. If R is a Dedekind domain, then R is said
to be proper if R is not a field. If R is a proper Dedekind domain, then for each non-
zero prime ideal P of R, R(P∞) will denote the P-primary component of the torsion
R-module K/R, where K is the quotient field of R. To prove Theorem 3.4 we need the
following three results.

EXAMPLE 3.1. Let R be a proper Dedekind domain. Let P be any non-zero prime ideal
of R. Consider the module M = R(P∞) ⊕ R/P and the endomorphism f : M −→ M
defined by f (x + y) = cy with x ∈ R(P∞), y ∈ R and c is a non-zero element of R(P∞)
such that cP = 0. It is clear that Imf = cR which is non-zero and small in M. So M
is not a T -non-cosingular module. In particular, for any prime integer p, the �-module
�(p∞) ⊕ �/p� is not a T -non-cosingular �-module.

LEMMA 3.2. Let L = xR be a cyclic module over a commutative ring R. Then L is
dual Baer if and only if L is semi-simple.

Proof. Let y ∈ L. Then there exists r ∈ R such that y = xr. Consider the
endomorphism f of L defined by f (xα) = yα. The map f is well defined since R
is commutative. As L is dual Baer, yR is a direct summand of L by Theorem 2.1.
Applying Theorem 2.1 again, L has SSSP, and hence every submodule of L is a direct
summand. Therefore L is semi-simple. The converse is clear. �

LEMMA 3.3. Suppose that R is a commutative ring which is not semi-simple. Let
M be an indecomposable module containing an element x such that x �∈ Rad(M) and
AnnR(x) = 0. Then M is not dual Baer.
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Proof. Suppose that M is dual Baer. Since x �∈ Rad(M), xR is not small in M.
Let L be a proper submodule of M such that xR + L = M. If xR ∩ L = 0, then
M = xR which is isomorphic to R since AnnR(x) = 0. Thus R is dual Baer and hence
R is semi-simple by Corollary 2.9. This contradicts our assumption. So xR ∩ L �= 0.
Let 0 �= r ∈ R such that xr ∈ L. Now consider the endomorphism of M defined by
f (y) = yr for every y ∈ M. Since f �= 0, Imf = M by Corollary 2.2. But Imf = Mr =
(xr)R + Lr ≤ L. Thus L = M, a contradiction. Consequently, M is not dual Baer. �

THEOREM 3.4. Let R be a proper Dedekind domain with quotient field K. The
following are equivalent for an R-module M:

(i) M is dual Baer.
(ii) M is a direct sum of copies of K, (R(P∞

i ))i∈I and (R/Qj)j∈J where (Pi)i∈I and
(Qj)j∈J are non-zero prime ideals of R with Pi �= Qj for every couple (i, j) ∈ I × J.

Proof. (i) ⇒ (ii) Since M is dual Baer, M = ⊕k∈�Mk is a direct sum of
indecomposable submodules Mk(k ∈ �) by Corollary 2.6. By [7, Theorem 10], each
Mk is either isomorphic to R(P∞) or R/Pn for some prime ideal P or Mk is torsion-free.
Note that if Mk is isomorphic to R/Pn, then Pn = P by Corollary 2.5 and Lemma 3.2.
Now if Mk is a non-divisible torsion-free module, then Mk is isomorphic to K (see [7,
Theorem 7] and Lemma 3.3). The proof of the necessity is completed by Example 3.1
and Corollaries 2.3 and 2.5.

(ii) ⇒ (i) It is well known that over R, a module N is radical if and only if it is
divisible if and only if it is injective. Let M be a module having the structure described
in the statement. By [7, Theorem 8], M possesses a unique largest injective submodule
I(M). Note that I(M) is the sum of all injective submodules of M. Moreover, M =
I(M) ⊕ S(M) where S(M) = [⊕j∈JMQj ] is semi-simple and MQj is the Qj-primary
component of T(M), the torsion submodule of M. Let N and L be submodules
of M such that M = N ⊕ L. Then N = I(N) ⊕ N1 and L = I(L) ⊕ L1. Hence M =
I(N) ⊕ I(L) ⊕ N1 ⊕ L1. By [6, Lemma 2.1], I(M) = I(N) ⊕ I(K). So N1 ⊕ K1

∼= S(M)
and hence N1 is a direct summand of S(M). Note that injective R-modules and semi-
simple R-modules all have the SSSP. Thus I(M) and S(M) have the SSSP. Therefore
M has the SSSP. On the other hand, if f is an endomorphism of M, then f (I(M)) is
injective since R is an hereditary ring. So f (I(M)) is a direct summand of I(M). This
gives that f (M) is a direct summand of M since f (S(M)) is a direct summand of S(M).
Consequently, M is dual Baer by Theorem 2.1. �

Note that the last theorem gives many examples (see also Example 3.1) showing
that a direct sum of dual Baer modules is not, in general, dual Baer.

COROLLARY 3.5. A �-module M is dual Baer if and only if M is isomorphic to a
direct sum of arbitrarily many copies of � and (�(p∞

i ))i∈I and (�/qj�)j∈J , where pi(i ∈ I)
and qj(j ∈ J) are primes with pi �= qj for every couple (i, j) ∈ I × J.

Proof. By Theorem 3.4. �

THEOREM 3.6. Let R be a non-local Dedekind domain. The following are equivalent
for a module M:
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(i) M is dual Baer lifting.
(ii) M is torsion and every P-primary component of M is isomorphic either to

[R(P∞)]nP or [R/P](IP) for some natural number nP and index set IP.

Proof. By Theorem 3.4, [10, Propositions A.7 and A.8]. �

COROLLARY 3.7. A �-module M is dual Baer lifting if and only if M is torsion and
each p-primary component Mp is isomorphic either to [�(p∞)]np or [�/p�](Ip) for some
natural number np and index set Ip.

Proof. By Theorem 3.6. �

Let A and B be modules. If for every homomorphism ϕ : A −→ B, Imϕ is a direct
summand of B, then we say that A is relative d to B. We call the modules A and B
relatively d-modules if, A is relative d to B and B is relative d to A.

LEMMA 3.8. Let M1 and M2 be dual Baer relatively d-modules. Assume that M2 is
M1-projective (or M1 is M2-projective). Then M = M1 ⊕ M2 is dual Baer.

Proof. Let I = {ϕj | j ∈ J} be any subset of S. Let K = ∑
j∈J Imϕj. We want to prove

that K is a direct summand of M. Let i1 : M1 → M, i2 : M2 → M be the canonical
inclusions and let π2 : M → M2 be the canonical projection. Let j ∈ J. Since M2 is
dual Baer, Im(π2ϕj i2) = π2(ϕj(M2)) is a direct summand of M2. Since M2 is relative
d to M1, we have Im(π2ϕj i1) = π2(ϕj(M1)) is a direct summand of M2. As M2 has
SSSP, π2(Imϕj) = π2(ϕj(M2)) + π2(ϕj(M1)) is a direct summand of M2. Hence π2(K)
is a direct summand of M2 since M2 has SSSP. It follows that π2(K) + M1 is a direct
summand of M. But it is clear that π2(K) + M1 = K + M1. Thus K + M1 is a direct
summand of M. Let L and E be two submodules of M such that M = (K + M1) ⊕ L
and K + M1 = E ⊕ M1. Then M = E ⊕ L ⊕ M1. Thus M2

∼= E ⊕ L. Since M2 is M1-
projective, E is M1-projective. So there exists a submodule K ′ ≤ K such that K ′ ⊕
M1 = K + M1 (see [2, 4.12]). Thus M = K ′ ⊕ M1 ⊕ L. Hence K = K ′ ⊕ [(M1 ⊕ L) ∩
K ] = K ′ ⊕ (M1 ∩ K). Now we consider the homomorphism πϕj : M → M1 where π :
M = K ′ ⊕ M1 ⊕ L → M1 is the canonical projection. Since M1 is dual Baer and M2

is relative d to M1, Im(πϕj) = π (ϕj(M1)) + π (ϕj(M2)) is a direct summand of M1

(Theorem 2.1). Hence
∑

j∈J Im(πϕj) is a direct summand of M1 because M1 has
SSSP. But

∑
j∈J Im(πϕj) = π (

∑
j∈J Imϕj) = π (K) = M1 ∩ K . Then M1 ∩ K is a direct

summand of M1. Therefore K = K ′ ⊕ (M1 ∩ K) is a direct summand of M. �

LEMMA 3.9. Let M1, M2 and M3 be dual Baer relatively d-modules. Assume that
M2 is M1-projective (or M1 is M2-projective). Then M1 ⊕ M2 and M3 are relatively
d-modules.

Proof. Let ϕ : M1 ⊕ M2 −→ M3 be any homomorphism. Then Im(ϕi1) = ϕ(M1)
and Im(ϕi2) = ϕ(M2) are direct summands of M3, where i1 : M1 → M1 ⊕ M2 and
i2 : M2 → M1 ⊕ M2 are the canonical inclusions (M1 and M2 are relative d to M3).
Since M3 has SSSP, Imϕ is a direct summand of M3. Now let ψ : M3 −→ M1 ⊕ M2

be any homomorphism. Since M3 is relative d to M2, Im(π2ψ) is a direct summand
of M2, where π2 : M1 ⊕ M2 → M2 is the canonical projection. Therefore π2(Imψ)
is a direct summand of M2. Thus π2(Imψ) + M1 is a direct summand of M1 ⊕ M2.
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But π2(Imψ) + M1 = Imψ + M1. Then Imψ + M1 is a direct summand of M1 ⊕ M2.
Let L and E be submodules of M1 ⊕ M2 such that (Imψ + M1) ⊕ L = M1 ⊕ M2

and Imψ + M1 = E ⊕ M1. Thus E ⊕ L ∼= M2. Since M2 is M1-projective, E is
M1-projective. So there exists F ≤ Imψ such that F ⊕ M1 = Imψ + M1 (see [2,
4.12]). Hence F ⊕ M1 ⊕ L = M1 ⊕ M2. Therefore Imψ = F ⊕ [Imψ ∩ (M1 ⊕ L)] =
F ⊕ (Imψ ∩ M1). Let π : F ⊕ M1 ⊕ L → M1 be the canonical projection. Consider
the homomorphism πψ : M3 → M1. We have Im(πψ) = π (Imψ) = π (F ⊕ [Imψ ∩
M1]) = Imψ ∩ M1. Since M3 is relative d to M1, Imψ ∩ M1 is a direct summand of
M1. Therefore Imψ is a direct summand of M1 ⊕ M2, and the proof is complete. �

THEOREM 3.10. Let M1, . . . , Mn be dual Baer modules, where n ∈ �. Assume that,
for any i �= j, Mi and Mj are relatively d-modules and for any i < j, Mi is Mj-projective.
Then M = ⊕n

i=1Mi is dual Baer.

Proof. By Lemmas 3.8 and 3.9. �
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