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Character Sums with Division Polynomials

Igor E. Shparlinski and Katherine E. Stange

Abstract. We obtain nontrivial estimates of quadratic character sums of division polynomials Ψn(P),

n = 1, 2, . . . , evaluated at a given point P on an elliptic curve over a finite field of q elements. Our

bounds are nontrivial if the order of P is at least q1/2+ε for some fixed ε > 0. This work is motivated

by an open question about statistical indistinguishability of some cryptographically relevant sequences

that was recently brought up by K. Lauter and the second author.

1 Division Polynomials and Character Sums

Let E be an elliptic curve over a finite field Fq of characteristic p ≥ 3. Denote by E(Fq)

the group of points of E defined over Fq. We refer to [9] for background on elliptic

curves.

For an integer n, let Ψn be the n-th division polynomial; nP = O, where O is the

point at infinity, see [9, Exercise 3.34]. For a given point P ∈ E(Fq), the sequence

Ψn(P) is often called an elliptic divisibility sequence. It satisfies the following recur-

rence relation [9, Exercise 3.34]

(1.1) Ψh+i(P)Ψh−i(P)Ψ j(P)2 + Ψi+ j(P)Ψi− j(P)Ψh(P)2

+ Ψ j+h(P)Ψ j−h(P)Ψi(P)2
= 0

Furthermore, the sequence Ψn(P) is necessarily periodic with some period T and

T is always a multiple of the order of P (see Lemma 3.1 below). For background on

elliptic divisibility sequences, see [2, 11, 12].

Note that elliptic divisibility sequences can be viewed as a generalisation of Lucas

sequences. We recall that a Lucas sequence (of the first kind) is a sequence satisfying

a recurrence of the form

Ln = aLn−1 + bLn−2, L0 = 0, L1 = 1,

in given coefficients a and b. Lucas sequences, including Fibonacci numbers, satisfy

an analogue of (1.1) after an appropriate scaling (multiplication of the n-th term by

λn2
−1 for some λ); see [9, Exercise 3.34] and [12, Section VI].
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In this paper, for a fixed point P ∈ E(Fq) and a positive integer N ≤ T, we obtain

nontrivial estimates of sums of the form

SP(N) =

N
∑

n=1

χ (Ψn(P)) ,

where χ is the quadratic character of Fq (as usual, we set χ(0) = 0). Character

sums with linear recurrence sequences were studied in [8]. See also [2, Chapter 5]

for a survey of estimates of exponential and character sums with various recurrence

sequences. However, to our knowledge, for elliptic divisibility sequences no results

have been obtained prior to this work.

2 Motivation

This question also has a cryptographic connection. In [5] the following elliptic divis-

ibility sequence residue problem was considered: given two points P,Q ∈ E(Fq) such

that Q ∈ 〈P〉, Q 6= O, where, as before, O is the point at infinity, and ord(P) ≥ 4,

calculate χ(Ψk(P)) for the smallest positive k such that Q = kP. To find k given

the points P and Q is the well-known elliptic curve discrete logarithm problem and

its assumed difficulty is the basis of elliptic curve cryptography. To solve the residue

problem it certainly suffices to solve the discrete logarithm problem. However, it

may be possible to solve the residue problem without first calculating k. It was shown

in [5, Theorem 1.1] that solving either of these problems in subexponential time leads

to a solution of the other in subexponential time. For perspective, the calculation of

χ(Ψk+1(P)/Ψk(P)) takes only polynomial time from P and Q, and does not reveal k,

see [5, Section 8]. This has raised the general question of what can be said about the

residuosity of Ψn(P). More specifically, it has been shown in [5] that the difficulty

of a certain distinguishability problem of cryptographic interest depends on the bias

between the quadratic residues and nonresidues amongst consecutive terms of the

sequence Ψn(P), n = 1, . . . ,N, which is in turn equivalent to estimating the sums

SP(N).

3 Prerequisites Concerning Division Polynomials

We recall some classical results, the first of which describes the ratio Ψn+r(P)/Ψn(P).

By [10, Theorem 8] (see also [12, Theorem 8.1]), we have the following lemma.

Lemma 3.1 Let P ∈ E(Fq) be of order r ≥ 3. Then for all positive s, k ∈ Z,

Ψsr+k(P) = aksbs2

Ψk(P),

where a and b are given by

a =
Ψr−2(P)

Ψr−1(P)Ψ2(P)
, b =

Ψr−1(P)2
Ψ2(P)

Ψr−2(P)
.
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Furthermore, by [10, Lemma 6], we also have the following lemma.

Lemma 3.2 Let n and m be positive integers. Then

Ψnm(P) = Ψn(mP)Ψm(P)n2

.

We remark that in general, for P ∈ E(Fq) of order r ≥ 3, the period T of the

sequence Ψn(P) may be as large as r(q− 1); see [10, Corollary 9]. In turn, r can be of

order q as well, for example, if P is a generator of the cyclic group of points.

However, the following result, which is immediate from Lemma 3.1, shows that

the sequence χ (Ψn(P)) is of smaller period.

Lemma 3.3 Let P ∈ E(Fq) be of order r ≥ 3. Then the sequence χ (Ψn(P)) is periodic

with period which is a divisor of R = 2r.

Thus, we see from Lemma 3.3 that bounds of character sums SP(N) are of interest

only for the values of N ≤ R = 2r.

4 Prerequisites Concerning Character Sums

It is well known that for an elliptic curve E over Fq we have

E(Fq) ∼ Z/MZ × Z/LZ

for unique integers M and L satisfying L | M. The point G1 and G2 are called echelo-

nized generators if G1 has order M, G2 has order L, and any point Q ∈ E(Fq) can be

written in the form Q = mG1 + ℓG2 with 1 ≤ m ≤ M and 1 ≤ ℓ ≤ L.

Let Ω = Hom(E(Fq),C
∗) be the group of characters ω on E(Fq); these are given

explicitly by ω(Q) = eM(am)eL(bℓ), for some integers a and b with 0 ≤ a < M,

0 ≤ b < L, where Q = mG1 + ℓG2 and for a positive integer K, we define

eK (z) = exp(2πiz/K).

The following multiplicative analogue of a result of [4] is essentially Proposition 1

of [1], which in turns comes from [6] (note that in [1] it is formulated only for prime

fields but the proof extends to arbitrary fields without any difficulties).

Lemma 4.1 Let η be a non-principal multiplicative character on F
∗

q of order m | q−1.

Let K = Fq(E) be the function field of an elliptic curve E over Fq, and f ∈ K be of degree

d and such that f 6= gm for any function g in the algebraic closure K of K. Let ω ∈ Ω.

Then
∣

∣

∣

∑∗

Q∈E(Fq)

ω(Q)η( f (Q))
∣

∣

∣
≤ 2d

√
q

where
∑

∗
indicates that the sum is over Q ∈ E(Fq) such that f (Q) 6= ∞.

Lemma 4.2 Under the assumptions of Lemma 4.1, let H ⊆ E(Fq) be a subgroup.

Then
∣

∣

∣

∑∗

Q∈H

ω(Q)η( f (Q))
∣

∣

∣
≤ 2d

√
q,

where
∑

∗
indicates that the sum is over Q ∈ H such that f (Q) 6= ∞.
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Proof Let ΩH ⊆ Ω be the subset of characters ϑ such that H ⊆ ker(ϑ). Then ΩH is

dual to E(Fq)/H. So by the orthogonality property of characters of abelian groups,

we have
1

|ΩH |
∑

ϑ∈ΩH

ϑ(Q) =

{

1 Q ∈ H,

0 Q /∈ H.

Therefore,

∑∗

Q∈H

ω(Q)η( f (Q)) =
1

|ΩH |
∑∗

Q∈E(Fq)

∑

ϑ∈ΩH

ϑ(Q)ω(Q)η( f (Q))

=
1

|ΩH |
∑

ϑ∈ΩH

(

∑∗

Q∈E(Fq)

(ϑ · ω)(Q)η( f (Q))
)

.

Applying Lemma 4.1, we obtain the desired result.

5 Main Results

Here we estimate the incomplete sum SP(N). Following the standard approach, we

start with estimates of complete sums twisted with an additive character.

As before, let R = 2r, where r is the order of P. Then for an integer a we define

the sums

TP(a) =

R
∑

n=1

χ(Ψn(P))eR(an)

which can be of independent interest.

Theorem 5.1 For any integer a, we have

TP(a) = O(R5/6q1/12(log q)1/3).

Proof Let a ∈ Z. Fix an integer L ≥ 3 and let L denote the set of odd primes ℓ such

that ℓ < L and ℓ ∤ R. Since R has at most O(log R) = O(log q) prime divisors, we see,

say, for

(5.1) L ≥ (log q)2

and sufficiently large q we have

(5.2) #L ≥ L

2 log L
.

Let ℓ ∈ L. As n runs through all residue classes modulo R, so does ℓn. Since

both sequences χ(Ψn(P)) and eR(an), n = 1, 2, . . . , are periodic with period R, (see

Lemma 3.3), we have

TP(a) =

R
∑

n=1

χ(Ψℓn(P))eR(aℓn).

https://doi.org/10.4153/CMB-2011-126-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-126-x


854 I. E. Shparlinski and K. E. Stange

We average over all choices of ℓ ∈ L and set

W =

∑

ℓ∈L

R
∑

n=1

χ(Ψℓn(P))eR(aℓn).

Then we have

(5.3) TP(a) =
1

#L
W.

To estimate W , we change the order of summation, and then apply the Cauchy

inequality:

|W |2 ≤ R

R
∑

n=1

∣

∣

∣

∑

ℓ∈L

χ(Ψℓn(P))eR(aℓn)
∣

∣

∣

2

.

Now we apply Lemma 3.2:

|W |2 ≤ R

R
∑

n=1

∣

∣

∣

∑

ℓ∈L

χ(Ψℓn(P))eR(aℓn)
∣

∣

∣

2

= R

R
∑

n=1

∣

∣

∣

∑

ℓ∈L

χ(Ψℓ(nP))χ(Ψn(P)ℓ
2

)eR(aℓn)
∣

∣

∣

2

.

Since χ is the quadratic character and ℓ is odd, we have

(5.4) χ(Ψn(P)ℓ
2

) = χ(Ψn(P)).

Therefore,

|W |2 ≤ R

R
∑

n=1

|χ(Ψn(P))|2
∣

∣

∣

∑

ℓ∈L

χ(Ψℓ(nP))eR(aℓn)
∣

∣

∣

2

≤ R

R
∑

n=1

∣

∣

∣

∑

ℓ∈L

χ(Ψℓ(nP))eR(aℓn)
∣

∣

∣

2

.

Expanding the square and switching the order of summation again, we obtain

|W |2 ≤ R

R
∑

n=1

∑

ℓ1,ℓ2∈L

χ(Ψℓ1
(nP))eR(aℓ1n)χ(Ψℓ2

(nP))eR(−aℓ2n)

= R
∑

ℓ1,ℓ2∈L

R
∑

n=1

χ
(

Ψℓ1
(nP)Ψℓ2

(nP)
)

eR(a(ℓ1 − ℓ2)n).
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We now turn to bounding the inner sum. For ℓ1 = ℓ2 = ℓ, we have the trivial

estimate
R

∑

n=1

χ(Ψℓ(nP)2) < R.

For ℓ1 6= ℓ2 we use Lemma 4.2. The degree of Ψℓ(P) (considered as a function in

the function field of E) is (ℓ2 − 1)/2, so the degree of Ψℓ1
(P)Ψℓ2

(P) is

(ℓ2
1 + ℓ2

2 − 2)

2
< L2 − 1.

It is also easy to see (by examining its zeros) that Ψℓ1
(P)Ψℓ2

(P) is not a square of

another function from the same function field. Since R = 2r and r is the order of the

group H = 〈P〉 generated by P, we see from Lemma 4.2 that

∣

∣

∣

R
∑

n=1

χ
(

Ψℓ1
(nP)Ψℓ2

(nP)
)

eR(a(ℓ1 − ℓ2)n)
∣

∣

∣

=

∣

∣

∣

r
∑

n=1

χ
(

Ψℓ1
(2nP)Ψℓ2

(2nP)
)

er(a(ℓ1 − ℓ2)n)
∣

∣

∣

+
∣

∣

∣

r
∑

n=1

χ
(

Ψℓ1
(2nP − P)Ψℓ2

(2nP − P)
)

er(a(ℓ1 − ℓ2)n)
∣

∣

∣

= O(L2q1/2).

Thus, we obtain |W |2 = O(R2#L + RL2√q(#L)2). Substituting this bound in (5.3)

and using (5.2), we derive

TP(a) = O
(

R(#L)−1/2 + q1/4R1/2L
)

= O
(

RL−1/2(log L)1/2 + q1/4R1/2L
)

.

We now choose L =
⌊

R1/3q−1/6(log q)1/3
⌋

; thus (5.1) is satisfied, provided that q

is large enough which implies the desired estimate.

We remark that Theorem 5.1 is nontrivial if R ≥ q1/2+ε for a fixed ε > 0 (we recall

that the largest possible value of R is of order q).

Now using the standard reduction between complete and incomplete sums, see [3,

Section 12.2], we obtain the following corollary.

Corollary 5.2 For any N ≤ R, we have, SP(N) = O(R5/6q1/12(log q)4/3).
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6 Comments

In principle, our approach works for sums of multiplicative characters of arbitrary

order d | q − 1. In this case, Lemma 3.3 needs some obvious adjustments. Further-

more, the set L in the proof of Theorem 5.1 must be chosen to consist of primes

ℓ ≡ ±1 (mod d), so (5.4) still holds. For any fixed d the final result is the same, how-

ever its strength diminishes as d grows, and, for example, for characters of order q−1

leads only to a trivial estimate. Although we do not see any immediate cryptographic

significance of such a result, obtaining nontrivial estimates of character sums with ar-

bitrary multiplicative characters is a natural and interesting question. A related open

question is obtaining nontrivial estimates on similar sums of additive characters of

Fq. In this case, there is no natural analogue of (5.4) and thus our approach does not

apply at all.

Finally, we mention an algorithmic question which can be of cryptographic rele-

vance. Given a black box which for every integer n outputs χ(Ψn(P)), the question

is to recover the “hidden” point P. This admits several modifications depending on

whether the curve E and the field Fq are known or not. This question is analogu-

ous to the more studied cryptographic problem of recovering a hidden polynomial

f (X) ∈ Fq[X] given a black box which outputs χ( f (n)); see [7] and the references

therein.
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