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Abstract. In this paper we study the p-rankofAbelian prime-to-p covers of the generic r-pointed
curve of genus g.There is an obvious bound on the p-rankof the cover.We show that it suf¢ces to
compute the p-rank of cyclic prime-to-p covers of the generic r-pointed curve of genus zero.
In that situation, we show that, for large p, the p-rank of the cover is equal to the bound.
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1. Introduction

This paper is concerned with computing the p-rank of (rami¢ed) covers of curves in
characteristic p. Mainly we are interested in Abelian covers of prime-to-p order
of the generic r-pointed curve of genus g. This question can be reformulated in terms
of quotients of tame fundamental groups.

Let X be a nonsingular connected projective curve over an algebraically closed
¢eld k of characteristic p > 0 and let g � g�X �. Put U � X ÿ S. Not much is known
about the tame fundamental group pt1�U�. Its structure is known only for
2g� rW 2. By a result of Grothendieck [6, XII.2.12], pt1�U� is a quotient of Ĝg;r,
the fundamental group of a curve over C with same g and r. The prime-to-p parts
of both groups are equal, but pt1�U� ' Ĝg;r only in `trivial' cases. For gX 1 this
is seen by considering the p-cyclic quotients of pt1�U�; they correspond to the ëtale
p-cyclic covers of X . The maximal elementary Abelian p-quotient of pt1�U� is
�Z=p�s�X �, where 0W s�X �W g�X � is the p-rank of X . The maximal elementary
Abelian p-quotient of Ĝg;r is �Z=p�2g. This implies that there are less ëtale p-cyclic
covers in characteristic p than in characteristic zero. In fact, the p-part of pt1�U�
is a free pro-p group on s�X � generators. This result is related to the
Deuring^Shafarevich formula. This is a formula for the p-rank s�Y � in terms of
s�X � and the rami¢cation indices for a (possibly rami¢ed) cover Y ! X whose
Galois group is a p-group, [2]. We will see that the situation for prime-to-p covers
is more complicated.

The p-part and the prime-to-p part of pt1�U� are known; the next case to consider is
quotients Gwhich are an extension of a prime-to-p groupH by a p-group P. We may
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suppose that P is elementary Abelian, since pp�X � is a free pro-p group. Suppose we
are given a quotient pt1�U� !! G. To this quotient corresponds a G-cover
Z! X ; it factors through Y :� Z=P. The cover Y ! X is prime-to-p; these covers
we know exactly. The cover Z! Y is ëtale. We can reformulate the question of
G-quotients of pt1�U� as follows. For convenience, we consider only quotients which
lie over a ¢xed H-quotient, i.e. we ¢x the H-cover Y ! X . Then G-quotients of
pt1�U� correspond to Fp�H�-submodules P of H1�Y ;OY �F , where F is the Frobenius
morphism. This means that in order to solve our problem, we have to compute
the structure of H1�Y ;OY �F as Fp�H�-module. The dimensions of the isotypical
spaces are called the generalized Hasse^Witt invariants. For a more precise
de¢nition, see Section 2. The generalized Hasse^Witt invariants can be viewed
as generalizations of the p-rank by taking into account the H-Galois action. It
is easy to see that if we consider a family of covers of curves with ¢xed �g; r�, then
the p-rank will depend on the bottom curve. Here we are interested in computing
the p-rank in case the bottom curve is the generic r-pointed curve of genus g, i.e.
corresponds to the generic point of the moduli space Mg;r 
 Fp.

The question of the p-rank of a prime-to-p cover has been considered previously in
the ëtale case, [11, 14, 17]. In these papers it is shown that many ëtale covers of the
generic curve are ordinary, most importantly this holds for Abelian covers. But
in [17] it is shown that this is not true for all groups: there exist ëtale nonordinary
covers of the generic curve Xg for every gX 2. In this paper we consider what
happens for rami¢ed covers. It is easy to see that it is not to be expected that
all (Abelian) covers of the generic r-pointed curve of genus g are ordinary. It turns
out that there is an obvious bound B�a; g� on the p-rank coming from the structure
of H1�Y ;OY � as k�H�-module, here a denotes the monodromy. The k�H�-module
structure of H1�Y ;OY � is known by a results of Chevalley^Weil, see Section 3.

The question whether all ëtale covers of the generic curve of genus g are ordinary
translates for rami¢ed covers into the question whether all (prime-to-p) covers
of the generic r-pointed curve of genus g have p-rank equal to B�a; g�. The situation
for rami¢ed covers is analogous to the situation for ëtale covers, with this
modi¢cation. We will show that there exists a non-Abelian cover of the generic
curve whose p-rank is less than the bound (Example 3.5). It seems reasonable to
expect that the p-rank of Abelian covers of the generic r-pointed curve of genus
g is equal to the bound. We will show this, under some mild hypothesis on the
characteristic.

THEOREM. Let �X ;S� be the generic r-pointed curve of genus g. Suppose that p is
suf¢ciently large. Let H be an Abelian group of order prime-to-p, and Y ! X an
H-Galois cover, unbranched outside S. Then the p-rank of Y is equal to the bound.

The proof will proceed in several steps. We show that we can restrict to the case
that H is cyclic. In Section 6 we prove the theorem for cyclic covers ofP1. We prove
this by computing the coef¢cients of the Hasse^Witt matrix of Y . In Section 8 we
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show that the statement for genus greater than zero can be reduced to the case of
genus zero. This is shown by degenerating covers in a suitable way.

The outline of the paper is as follows. In Section 2 we de¢ne the generalized
Hasse^Witt invariants and study basic properties. We relate the generalized
Hasse^Witt invariants to quotients of tame fundamental groups. In Section 3 we
describe the k�H�-module structure of H1�Y ;OY � and use this to de¢ne a bound
on s�Y �. In Section 3 we also compute the generalized Hasse^Witt invariants
for some non-Abelian covers. We give an example, due to Raynaud, of a cover
of P1 branched at three points whose p-rank is unequal to the bound. In Section
4 we concentrate on the case of cyclic covers. In Section 5 we compute the coef¢cients
of the Hasse^Witt matrix of a cyclic cover of P1. In Section 6 we use this to compute
the p-rank of a cyclic cover of P1 in case p is large and the branch points are general.
In Section 7 we explain how we can get information on the p-rank of a cover by
degenerating it to a cover of semistable curves. We use this to reprove the main
theorem in case p � �1 �mod `� or rW 4. In these cases we can drop the assumption
p large. In Section 8 we use the same method to show that the computation of
the generalized Hasse^Witt invariants of covers of the generic curve of g can be
reduced to the computation of the generalized Hasse^Witt invariants of covers
of P1.

2. Generalized Hasse^Witt Invariants

In this section we will de¢ne generalized Hasse^Witt invariants and study their basic
properties. Most importantly, we will give the relation between quotients of pt1�U�
which are an extension of a prime-to-p group H by a p-group P, and the generalized
Hasse^Witt invariants of H-covers of X , unbranched outside S.

The generalized Hasse^Witt invariants were ¢rst introduced by Katsurada in [9] in
the case of an ëtale `-cyclic cover with `j�pÿ 1�. In that paper they were used to show
that p1�X � is not determined by the genus, the characteristic and the p-rank of X .
Namely, it was shown that p1�X � also depends on the generalized Hasse^Witt
invariants. The reason being that the number of (ëtale) covers of X whose Galois
group is an extension of Z=` by Z=p can be expressed in terms of the generalized
Hasse^Witt invariants. Later this was generalized by Nakajima [11], Ru« ck [18]
and Pacheco [13]. Of these authors, Pacheco gave the most general de¢nition, namely
in the case of possibly rami¢ed Galois covers whose Galois group is of order prime to
the characteristic. Also in this case the generalized Hasse^Witt invariants of a
G-Galois cover Y ! X can be used to give a formula for the number of tame Galois
covers of X factoring through Y , whose Galois group is an extension of G by an
elementary Abelian p-group. In the ëtale case this was proved by Pacheco.

Let p : Y ! X be a Galois cover of nonsingular projective irreducible curves
de¢ned over an algebraically closed ¢eld k of characteristic p > 0. We allow the
cover to be rami¢ed. Let H be the Galois group of p, suppose that its order is prime
to the characteristic. The group H acts naturally on H1�Y ;OY �. As was explained
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in the introduction, we are interested in the dimension over Fp of the isotypical
spaces of H1�Y ;OY �F , where F is the Frobenius morphism. For each irreducible
k-character w of G, we denote by L�w� the w-isotypical part of H1�Y ;OY �, i.e.
the largest subspace which, as a k�G�-module, is a sum of irreducible representation
with character w. The Frobenius morphism F sends L�w� to L�wp�, here wp is the
Frobenius twist of w. For each irreducible character w, we denote by f �w� the minimal
positive integer such that Ff �w� sends L�w� to itself. Recall that the p-rank s�X � of X is
equal to the k-dimension of the largest subspace of H1�X ;OX � on which F is a
bijection. We mimic this to de¢ne the generalized Hasse^Witt invariants.

DEFINITION 2.1. Let p : Y ! X be a G-Galois cover of curves over k and suppose
that p 6 j jGj. For each irreducible character w of G, we de¢ne the generalized
Hasse^Witt invariant gp�w��� g�w�� of the cover p : Y ! X as the dimension of
the largest subspace of L�wÿ1� on which Ff �wÿ1� is a bijection.

We consider the inverse character in the above de¢nition to make our de¢nition
consistent with the literature. Let q be a suf¢ciently large power of p. We
identify k-characters with Fq-characters. The space J�Y ��p� 
Fp Fq is dual to
H1�Y ;OY �F 
Fp Fq as Fq�G�-module, [20, p. 38]. In [13] the generalized Hasse^Witt
invariants are de¢ned as the dimensions of the w-isotypical part of
J�Y ��p� 
Fp Fq. One easily checks that this de¢nition coincides with our de¢nition.
The following lemma gives some elementary properties of the generalized
Hasse^Witt invariants (cf. [13]).

LEMMA 2.2. Let p : Y ! X be a G-Galois cover of curves and suppose that p6 j jGj.
Let w be an irreducible character of G and let nw be its dimension. Then

(i) g�w� � g�wp�,
(ii) s�Y � �Pw g�w�, where the sum is taken over the irreducible k-characters of H,
(iii) if w is the trivial character, then g�w� � s�X �,
(iv) g�w� is a multiple of nw,
(v) let Gw be the kernel of the representation corresponding to w and write �p � p=Gw.

Then w may be considered as a character of G=Gw and gp�w� � g �p�w�.
Proof.We can write L�w� as L�w�s � L�w�n, where Ff �w� is a bijection on L�w�s and is

nilpotent on L�w�n, [20, no. 9]. The Frobenius morphism is a bijection from L�w�s to
L�wp�s. This proves the ¢rst statement. The second statement follows immediately
from the ¢rst, since H1�Y ;OY �s � �w2XL�w�s. Let w be the trivial character, then

L�w� � H1�Y ;OY �G ' H1�X ;OX �:

This proves the third statement. The fourth statement follows from the fact the
H1�Y ;OY �s is a G-module. The ¢fth statement is obvious. &
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We will now relate the generalized Hasse^Witt invariants to the quotients of
pt1�U�. The p-rank of a curve X is related to the number of ëtale p-cyclic covers
of X . If s denotes the p-rank of X , then the number of ëtale p-cyclic covers of
X is equal to the number of p-cyclic quotients of �Z=p�s. In fact, something more
general holds. The p-part of the fundamental group pp�X � is a free pro-p group
on s generators. Hence, a p-group P occurs as Galois group of an ëtale cover over
X iff P can be generated by s elements. A similar statement holds for the generalized
Hasse^Witt invariants.

LEMMA 2.3. Let p : Y ! X be an H-Galois cover, with H prime-to-p. There is a 1-1
correspondence between Galois covers Z! X which dominate pwith Galois group an
extension of H by an elementary Abelian p-group and H-submodules of
Hom�p1�Y �;Z=p�:

Proof. Suppose given a Galois cover Z! X which dominates p, whose Galois
group G is an extension of H by an elementary Abelian p-group P ' �Z=p�n. Let
V � Hom�Gal�Z;Y �;Z=p�. We may regard V as a subspace of Hom�p1�Y �;Z=p�
via the exact sequence

1! p1�Z� ! p1�Y � ! Gal�Z;Y � � P! 1:

Note that V as an Fp�H�-module is dual to P.
Conversely, suppose given V � Hom�p1�Y �;Z=p� with dimFp V � n. Then V cor-

responds to an ëtale �Z=p�n-Galois cover Z! Y . The cover Z! X is Galois iff
V is H-equivariant. The space V with the action of H can be identi¢ed with
Hom�Gal�Z;Y �;Z=p�. &

Let X �H� be the set of irreducible k-characters of H. Write w � w0 if w0 � wp
j
for

some j. Let �X �H� � X �H�= �. Recall that the set �X �H� corresponds to the
set of Fp-irreducible characters of H.

For an Fp�H�-module P, write
P
�w�2 �X �H�mP�w��w� wp � � � � � wp

fÿ1� for its charac-
ter and let nP � dimFp P. Let P� � Hom�P;Z=p� be the dual Fp�H�-module. The
proof of the above lemma shows that P� � H1�Y ;OY �F corresponds to a tame
P j�H cover dominating p. The character of H1�Y ;OY �F isX

�w�2 �X �H�
�g�wÿ1�=n�w���w� wp � � � � � wp

fÿ1 �:

Therefore P� � H1�Y ;OY �F iff mP�w�W g�w�=n�w� for all w.
Let f 2 Aut�H�. For an irreducible k-character w, denote by wf the character

obtained by twisting by f. Let P be as above and put G � P j�H. Then there exists
a tame G-cover dominating p iff there exists a f 2 Aut�H� such that
mP�w�W g�wf�=n�w�:We need to twist by f because for two different Fp�H�-modules
P and P0, the groups P j�H and P0 j�H might be isomorphic. This proves the
following proposition.
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PROPOSITION 2.4. Let p : Y ! X be a tame H-Galois cover of nonsingular
curves. Let P be an Fp�H�-module and put G � P j�H. Then there exists a tame
G-Galois cover of X dominating p if and only if there exists an automorphism f
of H such that

m�w�W g�wf�
n�w� for each �w� 2 �X �H�;

where n�w� is the dimension of the representation with character w.

Results similar to the proposition above can be found in [11] and [13]. The result of
[11] is a special case of the result in [13] which is a special case of the present case. Our
proof follows the proof of [11].

We can phrase this proposition differently. Let Gmax be the group which is an
extension of H by the elementary Abelian p-group P � �Z=p�s�Y �, where H acts
on P via

P
w2X �H��g�w�=n�w��w. Then Gmax is the largest extension of H by an elemen-

tary Abelian p-group for which there is a Galois cover dominating p. A group
G as in the proposition exists if and only if G is a quotient of Gmax.

PROPOSITION 2.5. Let G be a group which is an extension of a prime-to-p group H
by a p-group P. Let F�P� � Pp�P;P� be the Frattini subgroup of P and P �
P=F�P�. Write G � P j�H. Suppose given a tame G-cover f : Z! X. Then there
exists a tame G-cover g : W ! X dominating f .

Proof. The proposition is proved in [14] for ëtale covers, but the proof carries over
immediately to the case of tamely rami¢ed covers. The results follows from the fact
that, for Y � Z= �P, the p-part of the fundamental group pp1�Y � is a free pro-p
group. &

3. A Bound on the p-Rank

From Lemma 2.2 it follows that

g�wÿ1�W min
j

dimL�wpj �:

For the p-rank of Y , this implies

s�Y � ÿ s�X �W
X
w 6�1

min
j

dimL�wpj �: �1�

Therefore knowledge of the dimensions of the L�wj� gives nontrivial information on
the generalized Hasse^Witt invariants and the p-rank of the cover. These dimensions
are known by a classical result of Chevalley^Weil [1] (Proposition 3.1 below). The
results was originally stated for k � C, but can be extended to our case, since
p 6 j jGj (see [8, 12]).
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For each y 2 Y writeGy for the decomposition group of y, let ey be the order ofGy.
Choose a local parameter uy at y. De¢ne a character

yy : Gy! k?; yy�g� � g � uy
uy
�mod �uy��: �2�

Note that if y1; y2 2 Y both map to x 2 X then the characters yy1 and yy2 are con-
jugate.

PROPOSITION 3.1 (Chevalley^Weil).There exists a unique k�G�-module R such that

jGj � R '
M
y2Y

Meyÿ1
d�0

d � IndG
Gy

ydy

 !
�3�

as k�G�-modules. The k�G�-module structure of H1�Y ;OY � is given by

H1�Y ;OY � ' k� k�G�g�X �ÿ1 � R:

Proof. [1]. &

DEFINITION 3.2. Let x1; . . . ; xr be the branch points of the G-Galois cover
p : Y ! X . For each branch point xi 2 X choose yi 2 pÿ1�xi�. Let yyi be the character
de¢ned in (2). Then the set of characters �G; yy1 ; . . . ; yyr � we will call the type of
p : Y ! X .

Note that the Galois module structure of H1�Y ;OY � can be described in terms of
the type. Let y � �G; yy1 ; . . . ; yyr � be a type corresponding to some group G of order
prime-to-p. Let R � Ry be the module de¢ned in (3). For an irreducible character
w of G, let Vw be the G-module over k with character w and write nw for the dimension
of Vw. By f �w� we denote the smallest positive integer f such that the pf th twist of w is
equal to w. Write R � �wmwVw: Then for w 6� 1 the multiplicity of Vw in
k� k�G�gÿ1 � R is mw � �gÿ 1�nw. For each nonnegative integer g de¢ne

B�y; g� :�
X

1 6�w2 �X

f �w�min
j
��mwpj � �gÿ 1�nw� � nw�:

Here �X � �X �H� as before corresponds to the set of characters of the irreducible
Fp�H�-characters.

Let Y ! X be a G-Galois cover with type y and g�X � � g. Then, using the
notation explained above, the multiplicity of a nontrivial irreducible character w
of G in H1�Y ;OY � is mw � �gÿ 1�nw by the result of Proposition 3.1. The result
of (1) becomes with the new notation

s�Y � ÿ s�X �WB�y; g�: �4�
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QUESTION 3.3. Suppose �X ;S� is the generic r-pointed curve of genus g. LetH be a
group of order prime-to-p. Fix the monodromy y. Under what conditions is it true
that all H-covers with monodromy y have p-rank equal to B�y; g�?

EXAMPLE 3.4. (i) Let E be an elliptic curve with an automorphism f of order three,
de¢ned over an algebraically closed ¢eld k of characteristic not three. Then
g�E=hfi� � 0. This implies that f acts nontrivially on the 1-dimensional space
H1�E;OE�. Let w be the character of this representation. Then dimL�w� � 1 and
dimL�w2� � 0. We ¢ndX

w2 �X

f �w�min
j

dimL�wÿpj � � 1 if p � 1 �mod 3�;
0 if p � 2 �mod 3�:

�

Of course, it is well known that s�E� � 1 if p � 1 �mod 3� and s�E� � 0 if
p � 2 �mod 3�. So in this case, s�E� is equal to the bound.

(ii) Let El be the 2-cyclic cover ofP1 branched at 0; 1;1; l and suppose that p 6� 2.
The s�El� is one for almost all l and zero for ¢nitely many l. This illustrates that the
p-rank varies in a family of covers. This explains the condition �X ;S� generic in
Question 3.3.

In this paper we will mainly consider Question 3.3 for cyclic covers. Here the
results are quite general. The case of Abelian covers can be reduced to the case
of cyclic covers. In the rest of this section we will consider the question for
non-Abelian covers. We will see that the answer to the question is no, in general:
there exists a non-Abelian cover Y ! P1 branched at three points with
s�Y � < B�y; 0�.

This situation is similar to the situation for ëtale covers. For Y ! X ëtale, the
statement of Proposition 3.1 becomes

H1�Y ;OY � ' k� k�G�g�X �ÿ1;
as k�G�-modules. Therefore the expression for the bound B�y; g� in (4) becomes very
easy:

B�y; g� � g�Y � ÿ g�X �:
Question 3.3 becomes in this case: are all ëtale Galois covers of prime-to-p order of
the generic curve ordinary? Nakajima [11] has proved that this is true for all Abelian
covers. Raynaud [17] has shown that there exist non-Abelian ëtale covers of the
generic curve which are nonordinary. In fact, (some of) the nonordinary covers given
in that paper have nilpotent Galois group; the nonordinary cover discussed below
has a solvable Galois group.

EXAMPLE 3.5. This example was suggested to me byM. Raynaud. Consider Galois
covers p : Y ! P1

Q branched at three points 0; 1;1, with Galois group S4 and
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rami¢cation of order 4; 4; 3. We are going to show that for in¢nitely many primes p
the curve Y has good supersingular reduction mod p. Note that for Sn covers of
P1 in characteristic p > n the bound is equal to the genus, since all irreducible
characters of Sn are de¢ned over the prime ¢eld.

Let C1 (resp. C2) be the conjugacy class in S4 of a 4-cycle (resp. a 3-cycle). The
triple �C1;C1;C2� is rational and rigid and therefore Y ! P1 is de¢ned overQ, [21].
Note that g�Y � � 3. De¢ne H1 � h�12��34�i; H2 � h�13��24�i; H3 � h�14��23�i as
subgroups of S4 and let Ei � Y=Hi. The Ei are isomorphic elliptic curves de¢ned
over Q. (They have j-invariant 24 � 133 � 3ÿ2.) This implies that J�Y � � E1�
E2 � E3 ' E3

1 . To compute the p-rank of the reduction Yp of Y to characteristic
p it suf¢ces to compute the p-rank of E1;p. By the result of Elkies [3] the elliptic
curve E1 has in¢nitely many primes of supersingular reduction. Since J�Y � � E3

1 ,
the same holds for Y .

This shows that there exists a p and a type y such that for all covers Y ! P1

branched at 0; 1;1 of type y we have s�Y � < B�y; 0�.

4. Cyclic Covers

In the previous section it is shown that there exists a non-Abelian cover of
P1 ÿ f0; 1;1g for which the p-rank is strictly less than the bound. Therefore in
the rest of the paper we will concentrate on the case of Abelian covers. Here
our results are quite general. In this section we specialize the results of the previous
two sections to Abelian covers. Note that by part (v) of Lemma 2.2 we may reduce
the computation of the generalized Hasse^Witt invariants of an Abelian cover
to the generalized Hasse^Witt invariants of suitable cyclic subcovers. In case of
a cyclic cover the result of Chevalley^Weil becomes easier to formulate.

Let p :Y ! X be aH-Galois cover with p 6 j jHj andH cyclic of order `. Note that `
is not supposed to be prime. We ¢x a generator f of H and a primitive `th root of
unity z 2 k. The de¢nition of type can be reformulated as follows in this case. This
reformulation is less canonical, but will facilitate the formulas in what follows.
Let x1; . . . ; xr be the branch points of p. Write ni � jpÿ1�xi�j. For each i, choose
some yi 2 pÿ1�xi� and a local parameter ui at yi. Let w be the character of H which
sends f to z. We will write Li and gi instead of L�wi� and g�wi�.

DEFINITION 4.1. We say that p is of type �`; a1; . . . ; ar� if for all i 2 f1; . . . ; rg we
have that 0W ai < ` and nijai and �fni �?ui � znibi ui �mod �u2i ��, where
bi � ai=ni � 1 �mod `=ni�.

We will suppose the branch points to be ordered. In the statement `Y ! X is a
cover of type a � �`; a1; . . . ; ar� branched at x1; . . . ; xr' we will assume the ai cor-
responds to the xi as in the de¢nition above.

We can interpret the type of an `-cyclic cover p : Y ! X in terms of the map
f : pt1�X ÿ fx1; . . . ; xrg� !! Z=` corresponding to the cover. Choose generating
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elements a1; . . . ; ag; b1; . . . ; bg; d1; . . . ; dr of pt1�X ÿ fxig� such that
Q�ai; bi�Q di � 1

and such that for each continuous pt1�X ÿ fxig� !! G, with G ¢nite, the images
of the di generate a decomposition group above xi ([6, XIII.2.12]). The cover p
is of type �`; f �d1�; . . . ; f �dr��. If �`; a1; . . . ; ar� is a type, then

P
ai � 0 �mod `�. Con-

versely, if
P

ai � 0 �mod `� then there exists a (not necessarily connected) cover
of type �`; a1; . . . ; ar�.

The type of a cyclic cover as de¢ned above, contains the same information as the
type de¢ned in the previous section. The two de¢nitions can be related as follows.
Let p : Y ! X be as above. Let yi be some point mapping to a branch point xi.
Then fni generates the decomposition group of yi. The character yyi , which was
de¢ned in (2), sends fni to znibi . Conversely, given the character yyi we ¢nd ai as
the integer 0W ai < ` which is a multiple of ni and satis¢es aibi=ni � 1 �mod `=ni�.

The de¢nition of type is independent of the choice of yi and ui. Replacing f or z
changes �`; a1; . . . ; ar� into �`; na1; . . . ; nar� for some n 2 �Z=`�?. Hence, we should
consider the type as an element of

f�a1; . . . ; ar� j 0W ai < `;
X

ai � 0 �mod `�g=�Z=`�?:

We will always choose a representative of such a class.

EXAMPLE 4.2. Suppose g�X � � 0 and choose x1; . . . ; xr 2 X . If
P

ai � 0 �mod `�
then, up to isomorphism, there is a unique cover Y ! P1 of type �`; a1; . . . ; ar� with
Y nonsingular, branched at x1; . . . xr 2 P1

k. If none of the xi is 1, this curve is
the nonsingular curve associated to the equation

y` � �xÿ x1�a1 �xÿ x2�a2 � � � �xÿ xr�ar :

The curve Y is connected iff gcd�`; a1; . . . ; ar� � 1.

LEMMA 4.3. Let p : Y ! X be of type �`; a1; . . . ; ar�. Then

dimk Li �
g�X �; if i � 0;Xr

j�1

iaj
`

� � !
ÿ 1� g�X �; otherwise:

8><>:
Here h�i denotes the fractional part.

Proof. The lemma follows from Proposition 3.1; in a slightly different
terminology, it is a special case of [8, Proposition 1]. But we can also prove it directly.

We can write p?OY � �`ÿ1i�0Li, where locally Li is the eigenspace of f with
eigenvalue zi. This is Kummer theory. Choose yj 2 pÿ1�xj� for each j. Let uj be a
local parameter at yj such that fnj �uj� � znjbj uj, with notation as in De¢nition 4.1.
Then, by the de¢nition of type, p?��ujf�uj� � � �fnjÿ1�uj��hiaj=`inj � generates Li locally
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around xj. It follows that

L
`i ' OX ÿ
Xr
j�1

iaj
`

� �
`xj

 !
:

In fact Li � Li: Hence,

degLi � ÿ 1
`

Xr
j�1

iaj
`

� �
`:

Note that H1�X ;Li� ' Li. We ¢nd that

dimk Li � dimk H1�X ;Li� �
Xr
j�1

iaj
`

� � !
� g�X � ÿ 1;

by the Riemann^Roch Theorem. &

NOTATION 4.4. For a type a � �`; a1; . . . ; ar� we will denote

kik � kika �
Xr
j�1

iaj
`

� � !
ÿ 1 for i 2 �Z=`� ÿ f0g:

In the case kika X 0, it is equal to the dimension of the ith eigenspace Li of
H1�Y ;OY �, where Y ! P1 is a cover of type a. If all aj's are zero �mod `=�i; `��
then kika � ÿ1 and then kik does not have an interpretation as a dimension of
an isotypical space of a cover of P1, but we will use the notation in this case
nonetheless.

LEMMA 4.5. Fix a type �`; a1; . . . ; ar�. Let s be the number of aj unequal to
0 mod `=�i; `�. Then

kik � k ÿ ik � sÿ 2; if `=�i; `� 6� 2;

kik � s
2
ÿ 1 if `=�i; `� � 2:

In particular, kikW sÿ 2.
Proof. Immediate. &

LEMMA 4.6. Let a be a type and X any curve. Denote by Dr � Xr the generalized
diagonal. De¢ne Ua � Xr ÿ D as the set of �x1; . . . ; xr� 2 Xr ÿ D such that for all
`-cyclic covers Y ! X, unbranched outside the xi, of type a, we have
s�Y � ÿ s�X � � B�a; g�X ��. Then Ua is open.

Proof. For each �x1; . . . ; xr� 2 Xr ÿ D we de¢ne Yx1;...;xr ! X as the smallest cover
which has all covers of X of type a branched at the xi as subcovers. Choose gen-
erators a1; . . . ; ag; b1; . . . ; bg; d1; . . . ; dr of pt1�X ÿ fx1; . . . ; xrg� such that for each
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¢nite quotient the images of the di generate a decomposition group above xi. The
cover Yx1;...;xr ! X corresponds to the maximal quotient

pt1�X ÿ fx1; . . . ; xrg� !! �Z=`�n

which sends di to ai; . . . ; ai. For suitable `-cyclic subcovers Yj ! X of Yx1;...;xr ! X
we have

J�Yx1;...;xr � � J�X � �
Yn
j�1
�J�Yj�=J�X ��:

Here, for a curve Z we denote by J�Z� its Jacobian. This implies

s�Yx1;...;xr�W s�X � � nB�a; g�X �� �: s:

We obtain a family f : A! Xr ÿ Dr, with Ax1;...;xr � J�Yx1;...;xr �. Let Wa � Xrÿ
�Dr [Ua� � f�x1; . . . ; xr�js�Yx1;...;xr �W sÿ 1g. From [15, Cor. 1.5] it follows that
Wa is closed. This proves the lemma. &

5. Coe¤cients of the Hasse^Witt Matrix

Let p : Y ! P1 be an `-cyclic cover, de¢ned over an algebraically closed ¢eld k of
characteristic p with �`; p� � 1. In this section we will compute the coef¢cients of
the Hasse^Witt matrix of Y and relate these coef¢cients to the generalized
Hasse^Witt invariants. We ¢x the following notations. The branch points of p
we will denote by x1; . . . ; xr, and a � �`; a1; . . . ; ar� will be the type of the cover
p (de¢ned in Section 4). We choose a coordinate on P1 such that none of the xi
is 1. We will suppose that none of the ai is congruent to zero mod `. We denote
by Li the ith eigenspace of H1�Y ;OY � with respect to a ¢xed primitive `th root
of unity z and a ¢xed generator f of Gal�Y ;P1� as in Section 4, i.e.
Li � fxjf � x � zixg. The dimension of Li we denote by kik; it is equal to
�Pr

j�1hiaj=`i� ÿ 1. The integer f denotes the order of p in �Z=`�?. Note
Ff : Li ! Li. Put m � �pf ÿ 1�=`. The curve Y is the nonsingular projective curve
de¢ned by the equation

y` � �xÿ x1�a1 �xÿ x2�a2 � � � �xÿ xr�ar :

We are going to calculate the coef¢cients of the matrix of Ff on Li. We will com-
pute them using Cí ech cohomology; we ¢rst describe a basis of H1�Y ;OY � (cf. [22,
Section 5], note that the kik from that paper is +1 more than our kik). A special
case of this result is proved in [4], using a different method. Write
U1 � P1 ÿ f1g and U2 � P1 ÿ f0g. As open sets we take Vs � pÿ1�Us� � Y for
s � 1; 2. For i � 1; . . . ; `ÿ 1 let

vi � yi�xÿ x1�ÿ�i
a1
` � � � � �xÿ xr�ÿ�i

ar
` �:
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Note

G�V1;OV1� �
M̀ÿ1
i�1

k�x� vi;

G�V2;OV2� �
M̀ÿ1
i�1

k�xÿ1� xÿkikÿ1vi;

G�V1 \ V2;O� �
M̀ÿ1
i�1

k�x; xÿ1� vi:

De¢ne

xi;j � xÿjvi for j � 1; . . . ; kik
as an element of H1�Y ;OY � � G�V1 \ V2�=�G�V1� � G�V2��: Then the fxi;jj0 < i < `;

0 < jW kikg form a basis of H1�Y ;OY �. More precisely, Li � hxi;ji. Let Bi be the
matrix of Ff : Li ! Li with respect to the basis xi;j, for 1W jW kik. We will compute
the coef¢cients of Bi. To calculate the �j; j0�th coef¢cient of Bi we have to ¢nd the
coef¢cient of xi;j0 in �xi;j�p

f
. We have

�xi;j�p
f � xÿjp

f
yip

f �xÿ x1�ÿp f �ia1` � � � � �xÿ xr�ÿp f �iar` �:

Note

ÿp f �ia=`� � ÿ�p f ia=`� � �p f hia=`i� � ÿ�ia=`� ÿ iam� `mhia=`i
and

y`�xÿ x1�ÿa1 . . . �xÿ xr�ÿar � 1:

Hence

�xi;j�p
f � �x�ÿjpf �xÿ x1�`mh

ia1
` i � � � �xÿ xr�`mh

iar
` ivi: �5�

The coef¢cient of xi;j0 in �xi;j�p
f
is

�ÿ1�N
X

n1�����nr�N

m`hia1` i
n1

� �
� � � m`hiar` i

nr

� �
xn11 � � � xnrr ; �6�

whereN � �kik � 1ÿ j�`m� j0 ÿ j. This proves the ¢rst part of the following lemma.
The other part is proved analogously.

LEMMA 5.1. Let �xi;j�i;j be the basis of H1�Y ;OY � which was described above.
(i) The �i; j�; �i; j0�th coef¢cient of the matrix of F f on H1�Y ;OY � is

�ÿ1�N
X

n1�����nr�N

m`hia1` i
n1

� �
� � � m`hiar` i

nr

� �
xn11 � � � xnrr ; �7�

where N � �kik � 1ÿ j�`m� j0 ÿ j.
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(ii) If i0 � pi �mod `�, then the �i; j�; �i0; j0�th coef¢cient of the Hasse^Witt matrix of
Y is equal to

�ÿ1�N
X

n1�����nr�N

�phia1` i�
n1

� �
� � � �ph

iar
` i�

nr

� �
xn11 � � � xnrr ; �8�

where N � p�kik � 1ÿ j� ÿ �ki0k � 1ÿ j0�. If i0 6� pi �mod `�, then the �i; j�; �i0; j0�th
coef¢cient of the Hasse^Witt matrix is zero.

6. Main Theorem

THEOREM 6.1. Suppose pX `�rÿ 3�. Then for each a � �`; a1; . . . ; ar� there exist
x1; . . . ; xr such that for the `-cyclic cover Y ! P1 of type a branched at
x1; . . . ; xr we have s�Y � � B�a; 0�:

To prove the theorem, we have to prove that there exist x1; . . . ; xr 2 P1
k such that

for every 1W aW ` we have gÿa � mini kpiak. It is no restriction to suppose that
a � 1 and n :� k1kW kpik for all i. Let B be the matrix of Ff : L1! L1 with respect
to the basis x1;j. Let A be the matrix of F : �fÿ1

i�0 Lpi !�fÿ1
i�0 Lpi and Ai the matrix

of F : Lpi ! Lpi�1 . To prove the theorem, we will prove that det�B� is not identically
zero as polynomial in the xi. We will prove this by showing that a certain monomial
occurs in det�B�with a nonzero coef¢cient. The strategy of the proof is the following.
We de¢ne an ordering on monomials in x1; . . . ; xr. We give an expression for det�B�
as a sum over an index set J of terms which are products of determinants of
n� n submatrices of the Ai (Lemma 6.2). We ¢nd for each J 2 J the largest
monomial TJ with respect to the ordering (Lemma 6.5). We conclude the proof
by showing that for J 6� J 0 we have TJ 6� TJ 0 (Lemma 6.6).

Recall that each Lpi has a basis xpi;j with 0 < jW kpik (see the previous section).
Number the rows and columns of A as �i; j� with 0W iW f ÿ 1 and 1W jW kpik.
Here �i; j� corresponds to the basis vector xpi;j of Lpi . Put I � f�i; j�j0W
iW f ÿ 1; 1W jW kpikg. Let J be the set of J � I such that J contains for each
i exactly n indices �i; ji�a�� and ji�1� < ji�2� < � � � < ji�n�: For i � 0, we have
j0�1� � 1; . . . ; j0�n� � n. To a J 2 J we associate for each i a matrix MJ;i. This
MJ;i is the n� n submatrix of Ai consisting of the columns �i; ji�1��; � � � ; �i; ji�n��
and the rows �i � 1; ji�1�1��; � � � ; �i � 1; ji�1�n��. For i � f ÿ 1, the matrix MJ;i has
columns �f ÿ 1; jfÿ1�1��; � � � ; �f ÿ 1; jfÿ1�n�� and rows �0; j0�1� � 1�; � � � ; �0; j0�n� � n�.

LEMMA 6.2. We have

jBj �
X
J2J

Yfÿ1
i�0
jMJ;ijpfÿ1ÿi

 !
:
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Proof. The lemma follows from the fact that

B � Afÿ1A
�p�
fÿ2 � � �A�p

fÿ1�
0 ;

here A�p� is the matrix obtained by raising all the coef¢cients of A to the pth power.&

NOTATION 6.3. De¢ne an ordering on monomials xn11 � � � xnrr by xn11 � � � xnrr >
xk11 � � � xkrr if there exists an i such that kj � nj for all j < i and ni > ki.

In the following lemma we ¢nd the largest monomial in jMJ;ij (cf. Lemma 6.2). Let
M �MJ;i. Recall that the columns of M are �i; ji�a�� and the rows are �i � 1; ji�1�b��,
where 1W a; bW n and 1W ji�1� < � � � < ji�n�W kpik and 1W ji�1�1� < � � � <
ji�1�n�W kpi�1k: If J and i are understood we can number the rows and columns
by b and a.

The coef¢cients of MJ;i are

mJ;i
b;a � �ÿ1�N

J;i
b;a

X
n1�����nr�NJ;i

b;a

�phpia1` i�
n1

 !
� � � �ph

piar
` i�
nr

 !
xn11 � � � xnrr ;

with NJ;i
b;a � p�kpik � 1ÿ ji�a�� ÿ �kpi�1k � 1ÿ ji�1�b��; by the second part of Lemma

5.1.The following notation is introduced to describe the largest monomial TJ;i in
jMJ;ij.

NOTATION 6.4. De¢ne cJ;ib;a as the smallest number c in f1; . . . ; rg such that

p
pia1
`

� �� �
� � � � � p

piac
`

� �� �
> NJ;i

b;a:

And let

CJ;i
b;a � NJ;i

b;a ÿ p
pia1
`

� �� �
� � � � � p

piacÿ1
`

� �� �� �
;

where c � cJ;ib;a:

Note that

p
pia1
`

� �� �
� � � � � p

piar
`

� �� �
ÿNJ;i

b;a � pji�a� ÿ ji�1�b�X pÿ kpi�1kX 0;

since ji�1�b�W kpi�1kW rÿ 2 (Lemma 4.5) and pX rÿ 2 (by assumption). This
implies that cJ;ib;a is well de¢ned. Moreover, 0WCJ;i

b;a < �phpiac=`i�:

LEMMA 6.5. The largest monomial TJ;i in jMJ;ij is the largest monomial in the
product of the diagonal elements of MJ;i.
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Proof. In this proof we ¢x J and i and drop them from the notation. The largest
monomial in mb;a, which we denote by Tb;a, is

Tb;a :� �ÿ1�Nb;a
�phpiac` i�

C

 !
x�ph

pia1
` i�

1 � � � x�ph
piacÿ1
` i�

cÿ1 xCc : �9�

Here c � cb;a and C � Cb;a. Note that 0WCb;a < �phpiac=`i� < p, therefore the
coef¢cient of Tb;a is unequal to zero. One checks that

cb;a > cb;g; if a < g; �10�
cb;a W cg;a; if b < g: �11�

Wewill prove the lemma by induction. For n � 1 there is nothing to prove. We will
prove the lemma for n � 2.

Choose a < a0 and b < b0. We want to compare Tb;aTb0;a0 and Tb0;aTb;a0 . To deter-
mine which of the two is smaller, we have to look at the smallest 1W sW r where
the power of xs in one of the monomials is less than �phpias=`i�. From (10) and (11)
it follows that this happens for s � cb;a0 . One checks that in case cb;a0 � cb0;a0 , then
Cb;a0 ÿ Cb0;a0 � Nb;a0 ÿNb0;a0 < 0. This implies that

Tb;aTb0;a0 > Tb0;aTb;a0 :

This proves the lemma for n � 2, by taking a � b � 1 and a0 � b0 � 2.
For n > 2 we have

jMj �
Xn
a�1
�ÿ1�a�1m1ajM1aj; �12�

where M1a is the minor of M obtained by omitting the ath column and the ¢rst row.
Therefore, by the induction hypothesis

Ta :� T1aT21 � � �Ta;aÿ1Ta�1;a�1 � � �Tnn for a � 1; . . . ; n

is the largest monomial in m1ajM1aj (cf. (12)). One checks that

Ta ÿ Ta�1 � T21 � � �Ta;aÿ1Ta�2;a�2 � � �Tnn�T1aTa�1;a�1 ÿ T1a�1Ta�1;a�:
Note that T1aTa�1;a�1 > T1;a�1Ta�1;a by the n � 2 case applied to the minor of M
consisting of the rows 1 and a� 1 and the columns a and a� 1. As remarked above,
the coef¢cients of the Txy do not vanish. This implies that Ta > Ta�1, and hence that
the largest monomial TJ;i in jMJ;ij is T1. &

The lemma gives an expression for

TJ �
Yfÿ1
i�0

Tpfÿ1ÿi
J;i : �13�

Note, TJ is not identically zero as polynomial in the xi. To ¢nish the proof of the
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Main Theorem, we have to ¢nd a nonvanishing monomial in the expression for
det�B� given in Lemma 6.2. This is done if for J1 6� J2 we show that the monomials
TJ1 and TJ2 are nonidentical. In that case the largest of the TJ does not cancel
in det�B�. This is proved in the next lemma. This is the only place where we use
the assumption pX `�rÿ 3�. Up to now we only used pX rÿ 2.

LEMMA 6.6. Suppose pX `�rÿ 3�. Let J1; J2 2 J . If TJ1 and TJ2 are equal up to a
(nonzero) constant, then J1 � J2.

Proof. We want to compare TJ for different J. In the previous lemma we showed
that TJ is a product of powers of Tji�a�;ji�1�a�, (see (13)). Note that the monomials
Tji�a�;ji�1�a� actually depend on i, but we suppressed this in the notation; in this proof
we will therefore refer to these monomials as Ti

�;�. An expression for Ti
ji�a�;ji�1�a� is

given in (9). Note that now b will be always equal to a in (9); therefore we will
suppress b from the notation of cJ;ib;a;C

J;i
b;a;N

J;i
b;a.

CLAIM. Suppose pX `�rÿ 3�: Then cJ;ia�1 < cJ;ia .
Proof. Note that

NJ;i
a � p�kpik � 1ÿ ji�a�� ÿ �kpi�1k � 1ÿ ji�1�a��

� p
pia1
`

� �� �
� � � � � p

piar
`

� �� �
� ji�1�a� ÿ pji�a�:

Therefore the integers cJ;ia , de¢ned in Notation 6.4, may also be de¢ned for given
J; i; a as the unique integer c such that

p
piac�1
`

� �� �
� � � � � p

piar
`

� �� �
< pji�a� ÿ ji�1�a�W p

piac
`

� �� �
� � � � � p

piar
`

� �� �
:

Suppose pX `�rÿ 3�, then kpi�1kW rÿ 2W p=`� 1: Since

pji�a� 1� ÿ ji�1�a� 1�X p�ji�a� � 1� ÿ kpi�1k
> pji�a� > pji�a� ÿ ji�1�a�

we have cJ;ia�1 W cJ;ia . Suppose cJ;ia�1 � cJ;ia � c, i.e.

p
piac�1
`

� �� �
� � � � � p

piar
`

� �� �
< pji�b� ÿ ji�1�b�W p

piac
`

� �� �
� � � � � p

piar
`

� �� �
for b � a; a� 1. Then

pji�a� 1� ÿ ji�1�a� 1� ÿ pji�a� � ji�1�a� < p
piac
`

� �� �
: �14�

We assumed that

1W jx�a�W jx�a� 1� ÿ 1 for any x:
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Hence

p�ji�a� 1� ÿ ji�a�� ÿ ji�1�a� 1� � ji�1�a� > pÿ ji�1�a� 1� � 1: �15�
Equations (14) and (15) imply that �phpiac=`i� > pÿ ji�1�a� 1� � 1. Hence

ji�1�a� 1� > p� 1ÿ p
piac
`

� �� �
� p� 1ÿ p

piac
`

� �
� pi�1ac

`

� �
X p� 1ÿ p

`ÿ 1
`

� �
� 1
`

� p� 1ÿ p� p� 1
`
� 1� p� 1

`
> 1� p

`
X kpi�1k:

This is impossible since ji�1�a� 1�W kpi�1k:Hence cJ;ia�1 < cJ;ia . This proves the claim.

Let J1 and J2 be as in the statement of Lemma 6.6. We will write
xn11 � � � xnrr �s x

k1
1 � � � xkrr if kt � nt for all tW s, where we ignore constants. Write

J1 � fji�a�g and J2 � fki�a�g.

CLAIM. The following two statements are equivalent:

(1) TJ1 �s TJ2 for s in f1; . . . ; rg,
(2) for each a and tW s the sets fi j cJ1;ia � tg and fi j cJ2;ia � tg are equal. Furthermore,

for each i; a with cJ1;ia � s we have that pji�a� ÿ ji�1�a� � pki�a� ÿ ki�1�a�.
Proof. The second statement implies the ¢rst statement. Suppose that TJ1 �s TJ2

and suppose that the second statement holds for all t < s. For s � 1 this is an empty
assumption. If cJ1;ia < s then cJ2;ia < s, by assumption. Since cJ;ia�1 < cJ;ia , there is an
a0 such that

cJ1;ib < s for all b > a0;

cJ1;ia0 X s:

If cJ;ib < s for all b 2 f1; . . . ; ng, put a0 � 0: Write

TJx � �constant�xn1�Jx�1 � � � xnr�Jx�r for x � 1; 2:

The assumption that J1 �s J2 implies that nt�J1� � nt�J2� for tW s. ConsiderPfÿ1
i�0 pfÿ1ÿiZi;s with

Zi;s �

0; if a0 � 0;
0; if cJ1;ia0 > s and cJ2;ia0 > s;

CJ1;i
a0 ÿ p pias

`

D Eh i
if cJ1;ia0 � s and cJ2;ia0 > s;

p pias
`

D Eh i
ÿ CJ2;i

a0 if cJ1;ia0 > s and cJ2;ia0 � s;

CJ1;i
a0 ÿ CJ2;i

a0 if cJ1;ia0 � cJ2;ia0 � s:

8>>>>>><>>>>>>:
�16�
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The sum
Pfÿ1

i�0 pfÿ1ÿiZi;s is equal to ns�J1� ÿ ns�J2�. Note that

ÿp < ÿ p
pias
`

� �� �
W Zi;s W p

pias
`

� �� �
< p:

Let i0 be the smallest i such that Zi;s 6� 0, then

Zi0;s < 0 �) ns�J1� > ns�J2�
and

Zi0;s > 0 �) ns�J1� < ns�J2�:
(This is seen by noting that if Zi0;s X 1, then

ns�J1� ÿ ns�J2�

X pfÿ1ÿi0 ÿ
Xfÿ1

i�i0�1
pfÿ1ÿi�pÿ 1�

� pfÿ1ÿi0 ÿ pfÿ1ÿi0 � pfÿ2ÿi0 � � � � pÿ p� 1 � 1:

For the other inequality, interchange J1 and J2.) Our assumptions imply that
ns�J1� � ns�J2�. In particular, Zi;s � 0 for all i. Looking at the explicit formula (16)
for Zi;s yields that one of the following holds

a0 � 0;

cJ1;ia0 > s and cJ2;ia0 > s;

cJ1;ia0 � cJ2;ia0 � s and CJ1;i
a0 � CJ2;i

a0 :

This last condition implies

pji�a� ÿ ji�1�a� � pki�a� ÿ ki�1�a�:
This proves the claim.

For each J and each i; a there exists an sW r with cJ;ia � s, as was remarked below
Notation 6.4. Hence, the claim implies that if TJ1 �r TJ2 then for each i; a we have

pji�a� ÿ ji�1�a� � pki�a� ÿ ki�1�a�:
Furthermore, we have 1W j0�1� < � � � < j0�n�W kp0k � n, hence j0�a� � a. The same
holds for the k0�a�. This shows that ji�a� � ki�a� for all i; a. We conclude J1 � J2.
This ¢nishes the proof of the lemma. &

Proof of the theorem. Consider the set of all J 2 J for which TJ is maximal.
Lemma 6.6 implies that this set consists of one element, i.e. there is a unique
J 0 2 J such that TJ 0 is maximal among the TJ 's. Therefore, in the expression for
det�B� given in Lemma 6.2, the term TJ 0 does not cancel. Furthermore,
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deg�T 0J� 6� 0. This implies that det�B� is a polynomial in x1; . . . ; xr of positive
degree. &

It is not clear to me if the condition p large in theMain Theorem is really necessary.
I do not know of any counter example for small p. In the case that kik � 1 the proof
can be simpli¢ed considerably, and we can improve on the condition on p.

PROPOSITION 6.7. Fix a type a � �`; a1; . . . ; ar�. Suppose pX rÿ 2. Suppose fur-
thermore that kik � 1 and kipjkX 1 for all j and some i. Then there exist
x1; . . . ; xr such that gÿi � 1.

Proof.We will use the same notation as before. It is no restriction to suppose that
i � 1. We have J � f�i; ji�j0W i < f ; 1W ji W kpikg. To prove the lemma, we have to
show that the matrix of Ff : L1 ! L1 is invertible, for some choice of the branch
points x1; . . . ; xr. By assumption L1 is one dimensional. The matrix is given by

X
J2J

Yfÿ1
i�0

bp
fÿ1ÿi

J;i ;

with

bJ;i � �ÿ1�N
X

n1�����nr�N

�phpia1` i�
n1

 !
� � � �ph

piar
` i�

nr

 !
xn11 � � � xnrr :

Here N � p�kpik � 1ÿ ji� ÿ �kpi�1k � 1ÿ ji�1�. As before, the bJ;i are not identically
zero as polynomial in the xi. The proof that for J1 6� J2 the largest of bJ1;i does
not cancel against the largest monomial of bJ2;i is obvious in this case. We do
not need the assumption pX `�rÿ 3�, which was needed in the general case. &

COROLLARY 6.8. Let Y ! P1 be a cover of type a branched at three points. Then
s�Y � � B�a; 0�:

Proof. This follows immediately from the above proposition, since Lemma 4.5
implies that the dimension of the eigenspaces are at most one in this case. &

This result can also be deduced from a result of Yui [24] by using the formula for
the zeta function of Y , where Y ! P1 is an `-cyclic cover unbranched outside
0; 1;1, [5, Section 1]. Actually one can calculate not only the p-rank of Y , but also
the isogeny type of the p-divisible group of the Jacobian of Y .

EXAMPLE 6.9. Let k be an algebraically closed ¢eld of characteristic p. Let E be an
elliptic curve de¢ned over k and P a k-point of E.

CLAIM. Then

pt1�P1
k ÿ f0; 1;1g� 6' pt1�E ÿ fPg�:
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For simplicity we will suppose p 6� 2; 3, but the argument can easily be extended to
any characteristic. Much more general results of this type have been obtained by
A. Tamagawa (forthcoming).

Choose `jpÿ 1 with ` > 2 but ` not necessarily prime. Choose an `-cyclic cover
Y ! P1 branched at 0; 1;1with g�Y � > 0. Corollary 6.8 implies that Y is ordinary,
since p � 1�mod `�. Proposition 2.4 implies that pt1�P1

k ÿ f0; 1;1g� has a quotient of
order p`; this quotient is non-Abelian. On the other hand, every quotient of
pt1�E ÿ fPg� of order p` is Abelian. This proves the claim.

7. Degeneration

A way to get information on the p-rank of a cover is to degenerate the cover, and
deduce information on the original cover from the, hopefully easier, degenerate
cover. In the case of Galois covers of degree prime-to-p, this method works very
well, as one knows exactly which covers one gets by degenerating it, namely admiss-
ible covers. In this section and the next, we use this idea to strengthen the results from
the previous section, under certain extra hypotheses. Unfortunately, this method
does not work in general. Under specialization, the p-ranks drops. It is possible
to ¢nd examples were all degenerations of a given cover YK ! XK have p-rank
strictly less than the p-rank that one want to show the original cover has, namely
B�a; g�.

The following notations will be ¢xed throughout this section and the next. Suppose
k � �k and the characteristic of k is p > 0. Let A :� k��t�� have maximal ideal mA and
¢eld of fractions K . Put S :� Spec�A�. For a scheme X over S we denote by
X �K � X 
A K the generic ¢ber and X s � X 
A k the special ¢ber. A curve X=S
is a £at scheme such that the geometric ¢bers are projective, connected, reduced
and of dimension one. A semistable curve X=S is a curve over S such that the geo-
metric ¢bers of X have at most ordinary double points as singularities. A morphism
p : Y ! X of curves over S is a cover if it is ¢nite and generically ëtale. Let G
be a subgroup of Aut�Y=X�. The cover p is called G-Galois if Y=G!� X and the
order of G is equal to the degree of p.

DEFINITION 7.1. Let p : Y ! X be a tame G-Galois cover of semistable curves
over k. Suppose the decomposition group of t is cyclic. Let f be a generator of
the decomposition group of t. Let ui for i � 1; 2 be a uniformizing parameter at
t of the branches of Y meeting at t. Then p is called admissible if for each singular
point t of Y the following condition is satis¢ed: f?u1 � zu1 �mod �u21�� and
f?u2 � zÿ1u2 �mod�u22��, for some root of unity z 2 k.

Let X be a semistable curve over S, whose generic ¢ber X �K is smooth. Suppose we
are given a G-Galois cover pK : YK ! XK of smooth curves and suppose p 6 j jGj.
Denote the branch locus of pK by x1; . . . ; xr. Let Y be the normalization of X in
the function ¢eld of YK . After replacing A by a ¢nite extension of A, we may assume
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Y is reduced, by Abhyankar's Lemma. Suppose that x1; . . . ; xr specialize to distinct
points in the smooth locus of X s.

PROPOSITION 7.2. Let Y ! X be as above. The cover Ys ! X s is admissible and
unbranched outside fx1�s�; . . . ; xr�s�g [ Sing�X s�.

Proof [19, Thëore© me 3.2]. Note that what is called admissible here is called
kummërien in that paper. &

In fact, a stronger result is true. In the situation as above, one can show that
admissible covers of X s can be lifted to covers of X , unbranched outside
x1; . . . ; xr, see [7] or [23]. There is an isomorphism between the prime-to-p part
of the fundamental group ofX �K and the prime-to-p part of a suitably de¢ned admiss-
ible fundamental group of X s, but we do not need this here.

If X=S is a curve with semistable ¢bers then s�X �K �X s�X s� , [16, p. 1281]. The
analogous statement for generalized Hasse^Witt invariants is also true, as follows
from the next proposition.

PROPOSITION 7.3. Let X ! S be a semistable curve with X �K nonsingular. Let
p : Y ! X be a G-Galois cover of order prime-to-p. For each irreducible character
w of G we have gp �K

�w�X gpk �w�:
Proof. Let Y be a semistable curve over k on which acts a group G of prime-to-p

order. Then G acts on H1�Y ;OY �F . Using the identi¢cation

H1�Y ;OY �F ' H1
�et�Y ;Z=p� ' �Z=p�s�Y �

[10, III. 4.12], we can de¢ne an action of G on �Z=p�s�Y �.
Now let w be an irreducible character of G. Then the generalized Hasse^Witt

invariant g�w� is equal to the product of the dimension of w and the multiplicity
of wÿ1 � �wp�ÿ1 � � � � �wpfÿ1�ÿ1 in �Z=p�s�Y � 
Fp Fp.

Let p : Y ! X be as in the statement of the proposition. There exists an injective,
canonical map

H1�Ys;Z=p� ,!H1�Y �K ;Z=p�;

[16, p. 1281]. Since the map is G-equivariant, gpk�w�W gp �K
�w�: &

Suppose that p � 1 �mod `�. Let Y ! P1 be an `-cyclic cover over K . Decompose
H1�Y ;OY � � �`ÿ1i�1Li into isotypical spaces. Then F : Li ! Li. Hence in this case
B�a; 0� � g�Y �. Question 3.3 boils down to: for a ¢xed type a, do there exist
x1; . . . ; xr such that the cover of P1 branched at the xi of type a is ordinary? This
is the case as is shown in the following proposition.

PROPOSITION 7.4. Let `j�pÿ 1�. There exists x1; . . . ; xr 2 P1 such that all `-cyclic
covers p : Y ! P1

k, unbranched outside x1; . . . ; xr, are ordinary.
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Proof.We use induction on r. For r � 2 there is nothing to prove since each cover
of P1 branched at 2 points has genus zero. For r � 3 the result follows from
Corollary 6.8. So suppose rX 4.

Suppose the statement holds for all s < r. Let A � k��t��, S � SpecA and let K be
the quotient ¢eld of A. Construct a semistable curve X ! S, with semistable special
¢ber consisting of two curvesX1 andX2 of genus 0 meeting in one point t, and generic
¢ber a nonsingular curve of genus 0. Choose sections x1; . . . ; xr : S! X , such that
x1; x2 meet X1 ÿ ftg and x3; . . . ; xr meet X2 ÿ ftg. By induction, we can choose
the xi such that for all mj`, the m-cyclic covers of X2, unbranched outside
x3; . . . ; xr; t, are ordinary. Also the m-cyclic covers of X1, unbranched out-
sidex1; x2; t, are ordinary, by the results for r � 3 branch points.

Let pK : Y �K ! X �K be an `-cyclic cover, unbranched outside x1; . . . ; xr. This cover
will be de¢ned over some ¢nite extension of K , so, after replacing A by a ¢nite
extension, we may assume that the cover is de¢ned over K . We now proceed as
in the beginning of this section. Let Y be the normalization of X in the function
¢eld of YK . Assume Y is reduced (replace A by a ¢nite extension, if necessary). Prop-
osition 7.2 implies that Ys ! X s is an admissible `-cyclic cover which is unbranched
outside x1�s�; . . . ; xr�s�; t.

Let Z be an irreducible component of Ys. Let m be the order of the decomposition
group ofZ. ThenZ=hf`=mi is isomorphic toXi for i equal to 1 or 2 henceZ! Xi is an
m-cyclic cover of Xi and Z is ordinary by assumption. Since all components of Ys are
ordinary, the curve Ys itself is ordinary. It follows that

g�Y �K �X s�Y �K �X s�Ys� � pa�Ys�:

Because Y ! S is £at, pa�Ys� � g�Y �K � and Y �K is ordinary. &

LEMMA 7.5. Suppose that a is a type such that k ÿ pik � rÿ 2 for all i. Then there
exist x1; . . . ; xr 2 P1 such that for all covers of type a, unbranched outside the xi,
we have g1 � rÿ 2:

Proof. This lemma follows easily by induction, using an argument similar to the
argument used in the previous proposition. &

The situation of the lemma above is very special. Here is a case were it occurs.

EXAMPLE 7.6. Let ` � �pr ÿ 1�=�pÿ 1� and let a :� �`; 1; p; p2; . . . prÿ1�. Let
p : Y ! P1 be an `-cyclic cover of type a branched at x1; ; xr. Then

kpjk � k1k � 1
`
�1� . . .� prÿ1� ÿ 1 � 0 for all j:

Hence, k ÿ pjk � k ÿ 1k � rÿ 2 for all j by Lemma 4.5. From the lemma above it
follows that g1 � rÿ 2, in case x1; . . . ; xr are suf¢ciently general.
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PROPOSITION 7.7. Let Yx! P1 be the cover of type a branched at 0; 1;1; x. Then
there exists an x 2 P1 such that s�Yx� � B�a; 0�:

Proof. To prove the proposition, it suf¢ces to show that for each j � 1; . . . ; `ÿ 1
we have gÿj � mini kpijk. As before we may assume j � 1 and kpikX k1k. From
Lemma 4.5 we know that kpikW rÿ 2 � 2 for all i. Therefore, distinguish three
cases:

(i) k1k � 0,
(ii) k1k � 1,
(iii) kpik � 2 for all i.

We have to show for a suitable choice of xwe have gÿ1 � 0 in the ¢rst case, gÿ1 � 1
in the second case and gÿ1 � 2 in the third case.

In Case (i), the action of Frobenius on �iLpi is nilpotent, so gÿ1 � 0. Case (ii)
follows from Proposition 6.7. Case (iii) follows from Lemma 7.5. &

PROPOSITION 7.8. Suppose p � ÿ1�mod `�. Let a � �`; a1; . . . ; ar� be a type. There
exist x1; . . . ; xr such that for the `-cyclic cover Y ! P1 of type a, branched at the xi,
we have s�Y � � B�a; 0�.

Proof. Let p : Y ! P1 be a cover of type a � �`; a1; . . . ; ar� with 0 < ai < ` 6� 2.
Suppose that p � ÿ1 �mod `�: The coset of hpi in �Z=`�? containing i consists of
two elements: i and ÿi. We want to show

gÿi � min�kik; k ÿ ik�:

We may suppose i � 1.
From Lemma 4.5 we know that k1k � k ÿ 1k � rÿ 2: Put n � k1k. We may sup-

pose 0W nW ��rÿ 2�=2�. If n � 0 the matrix of Frobenius on L1 � Lÿ1 is nilpotent
and g1 � 0. Suppose that n > 0.

We will prove the proposition by induction. For r � 3; 4 the statement follows
from Corollary 6.8 and Proposition 7.7. Suppose the statement holds for r0 < r.

Case 1. Suppose n < �rÿ 2�=2. For r odd this always holds. Choose i 6� j with
ai � aj < `. We can do this since if a2sÿ1 � a2s X ` for each s, then
a1 � � � � � ar X �r=2�`. But a1 � � � � � ar � n` < �rÿ 2�`=2 < �r=2�`, so we get a con-
tradiction. Put a1 � �ai; aj;ÿai ÿ aj� and a2 � �ai � aj; a1; . . . ; âi; . . . ; âj; . . .�, i.e.
in a2 we omit ai and aj. For a cover f : X ! P1 of type a1 we ¢nd

k1ka1 �
ai � aj � �`ÿ ai ÿ aj�

`
ÿ 1 � 0 and k ÿ 1ka1 � 1:

For a cover g : Z! P1 of type a2 we ¢nd

k1ka2 �
a1 � � � � � ar

`
ÿ 1 � n and k ÿ 1ka2 � rÿ 3ÿ n:
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Note kW rÿ nÿ 3: By induction g1�f � � 0 and g1�g� � n. As in the proof of the
previous proposition, Proposition 7.3 implies g1�p�X g1�g� � n: Hence g1�p� � n.

Case 2. Suppose r � 2s with s > 2 and n � sÿ 1. Then a1 � . . .� ar � s`:

CLAIM. There exist distinct h; i; j, such that ` < ah � ai � aj < 2`.

To prove the claim, put xi � ai=`ÿ 1=2. Note

ÿ1=2 < xi < 1=2 and x1 � . . .� xr � 0

We will see that for any m there exist distinct i1; . . . ; im 2 f1; . . . ; rg such that
ÿ1=2 <Pm

j�1 xij < 1=2: The claim follows from this by taking m � 3.
Use induction. Form � 1 it is trivial. Letm > 1. Choose I � fi1; . . . imÿ1g such that
ÿ1=2 < Smÿ1 :�Pi2I xi < 1=2. If Smÿ1 X 0 then �P xi� ÿ Smÿ1 < 0, so there is an
j 62 I with xj < 0. We can add j to I to ful¢ll the condition for m. Analogously
for Smÿ1 < 0. This proves the claim.

Choose h; i; j as in the claim. Put a1 � �ah; ai; aj;ÿah ÿ ai ÿ aj�, and a2 �
�ah � ai � aj; rest of the at�. Then k1ka1 � k ÿ 1ka1 � 1 and k1ka2 � k ÿ 1ka2 �
sÿ 1. As in the previous case, the proposition follows by induction. &

Remark 7.9. In this section, we showed several results of the form: under this
condition there exists a position of the branch points such that all covers have
maximal p-rank. Recall that by Lemma 4.6 the set U of all branch points with this
property is open. So in fact, we could reformulate, e.g. Proposition 7.4 as follows.
Suppose p � 1 �mod `�. Then there exists a dense open subset U � �P1�r ÿ D such
that all `-cyclic covers branched at �x1; . . . ; xr� 2 U are ordinary. Similar for the
other results.

8. Cyclic Covers of Generic Curves

Let X be an ordinary elliptic curve or the generic curve of genus X 2. In this section
we will show that we can reduce Question 3.3 on the p-rank of an `-cyclic cover of X
to the case of `-cyclic covers of P1.

PROPOSITION 8.1. Let X be the generic curve of genus gX 2 or an ordinary elliptic
curve. Let a be a type such that there exists a (not necessarily connected) cover of P1

of type a with p-rank B�a; 0�. Then there exist x1; . . . xr 2 X such that each cover of X
of type a, unbranched outside the xi, has p-rank B�a; g� � g�X �.

We need to consider nonconnected covers ofP1 in the statement of the proposition
because of the following. Suppose gcd�`; a1; . . . ; ar� 6� 1 and suppose g�X �X 1. Then
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there exist connected covers of X of type a :� �`; a1; . . . ; ar�, but the covers of P1 of
type a are nonconnected.

Proof. Let gX 1 be an integer. Let X be the generic curve of genus g if gX 2 or an
ordinary elliptic curve if g � 1 and let k be some algebraically closed ¢eld of charac-
teristic p over which X is de¢ned. Put S � Spec k��t�� and K � Q�k��t���. Construct a
semistable curve X ! S as follows. The generic ¢ber X �K is a trivial deformation
of X and the special ¢ber Xs consist of two components X1 and X2 meeting in
one point t, where X1 ' X and X2 is a nonsingular curve of genus zero. A curve
like this can be constructed by blowing up the trivial deformation of X over S
in one point of the special ¢ber. Choose distinct sections x1; . . . ; xr of S! X such
that the xi meet the special ¢ber X s in X2 ÿ ftg. Let n2 � gcd�`1; a1; . . . ; ar� and write
a0 � �`2; a01; . . . ; a0r�, where a0i � ai=n2 and `2 � `=n2. We assume that the `2-cyclic
cover Y 02 ! X2 of type a0 with branch locus x1�s�; . . . ; xr�s� has p-rank B�a0; 0�. (This
is equivalent to the assumption in the statement of the proposition.)

Recall that starting from the cover Y 02! X2 we can form a (nonconnected)
Z=`-cover by taking the induced cover, i.e. take n2 � `=`2 copies of Y 02 and let
Z=` permute the copies suitably. Call the resulting cover Y2! X2; it is of type
a. Consider all admissible covers Y ! X s whose restriction to X2 is isomorphic
to Y2 ! X2. (These covers are what one could call `admissible covers of X s of type
a with branch locus x1�s�; . . . ; xr�s�'.) We would like to show that all these covers
have p-rank equal to B�a; g� � g. The proposition follows from this, as in the proof
of Proposition 7.4.

We will now compute the p-rank of the `admissible covers of X s of type a with
branch locus x1�s�; . . . ; xr�s�'. Let Y ! X s be such a cover. Write Y1 � Y jX1

and
let n1 be the number of connected components of Y1 and put `1 � `=n1. Note
gcd�n1; n2� � 1 since Y is supposed to be connected. Let Y 01 be a connected
component of Y1. If g�X1� � 1 then Y 01 ! X1 is an ëtale cover of an ordinary elliptic
curve and Y 01 is ordinary. If g�X1�X 2 it follows from [11, Section 5.III] that Y 01
is ordinary.

By assumption, the curve Y 02 has p-rank

s�Y 02� �
X
i2I 0

f 0i min
j

Xr
n�1

ipja0n
`2

� �
ÿ 1

 !
;

where I 0 is a set of representatives of the cosets of hpi in Z=`2 ÿ f0g and f 0i is the
number of elements of the coset containing i. Of course, since all components of
Y2 are isomorphic, the same statement holds for the other components of Y2. Note
that H1�Y2;OY2� � IndZ=`

Z=`2 H
1�Y 02;OY 02� as a k�Z=`�-module. This yields

s�Y2� � n2�s�Y 02�� �
X
i2I

fi min
j

Xr
n�1
hipjan`2i ÿ 1

 !
� n2 ÿ 1;

where I is a set of representatives of the cosets of hpi inZ=`ÿ f0g and fi is the number
of elements of the coset containing i.
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The curve Y contains 1� `ÿ n1 ÿ n2 loops. Therefore, we ¢nd for the p-rank of Y
that

s�Y � � n1 � g�Y 01� � 1� `ÿ n1 ÿ n2 � s�Y2�

� `g�
X
i2I

fi min
j

Xr
n�1

ipjan
`

� �
ÿ 1

 !
� B�a; g� � g:

Recall that

B�a; g� �
X
i2I

fi min
j

Xr
n�1

ipjan
`

� �
ÿ 1

 !
� �`ÿ 1�g:

Note that for i divisible by `2, we haveXr
n�1

ipjan
`

� �
ÿ 1 � ÿ1;

since all an's are divisible by n2.This ¢nishes the proof of the proposition. &

In fact, the proof applies to every curve X such that all ëtale cyclic covers Y ! X
whose order m divides `, have p-rank s�X � � �mÿ 1��gÿ 1�. In [11] it is proved that
this holds for curves in a dense open subset of the moduli space Mg.

COROLLARY 8.2. Let X be the generic curve of genus gX 2 or an ordinary elliptic
curve. Let ` be an integer prime-to-p, and suppose one of the following holds:

(i) pX `�rÿ 3�,
(ii) rW 4,
(iii) p � �1 �mod `�.
Then there exists x1; . . . ; xr 2 X such that all `-cyclic covers Y ! X, unbranched
outside the xi of type a satisfy

s�Y � � B�a; g� � g:
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