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Abstract. Inthispaper we study the p-rank of Abelian prime-to-p covers of the generic r-pointed
curve of genus g. There is an obvious bound on the p-rank of the cover. We show that it suffices to
compute the p-rank of cyclic prime-to-p covers of the generic r-pointed curve of genus zero.
In that situation, we show that, for large p, the p-rank of the cover is equal to the bound.
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1. Introduction

This paper is concerned with computing the p-rank of (ramified) covers of curves in
characteristic p. Mainly we are interested in Abelian covers of prime-to-p order
of the generic r-pointed curve of genus g. This question can be reformulated in terms
of quotients of tame fundamental groups.

Let X be a nonsingular connected projective curve over an algebraically closed
field k of characteristic p > 0 and let g = g(X). Put U = X — S. Not much is known
about the tame fundamental group =}(U). Its structure is known only for
2g +r < 2. By a result of Grothendieck [6, XII1.2.12], #{(U) is a quotient of fg,,,
the fundamental group of a curve over C with same g and r. The prime-to-p parts
of both groups are equal, but =n{(U) ~ lA"g,,, only in ‘trivial’ cases. For g > 1 this
is seen by considering the p-cyclic quotients of 7}(U); they correspond to the étale
p-cyclic covers of X. The maximal elementary Abelian p-quotient of n{(U) is
(Z/p)"(X), where 0 < g(X) < g(X) is the p-rank of X. The maximal elementary
Abelian p-quotient of lA“g,, is (Z/p)*. This implies that there are less étale p-cyclic
covers in characteristic p than in characteristic zero. In fact, the p-part of 7} (U)
is a free pro-p group on o(X) generators. This result is related to the
Deuring—Shafarevich formula. This is a formula for the p-rank ¢(Y) in terms of
a(X) and the ramification indices for a (possibly ramified) cover ¥ — X whose
Galois group is a p-group, [2]. We will see that the situation for prime-to-p covers
is more complicated.

The p-part and the prime-to-p part of 7} (U) are known; the next case to consider is
quotients G which are an extension of a prime-to-p group H by a p-group P. We may
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suppose that P is elementary Abelian, since 7”(X) is a free pro-p group. Suppose we
are given a quotient n{(U)— G. To this quotient corresponds a G-cover
Z — X; it factors through Y:= Z/P. The cover Y — X is prime-to-p; these covers
we know exactly. The cover Z — Y is étale. We can reformulate the question of
G-quotients of ©{(U) as follows. For convenience, we consider only quotients which
lie over a fixed H-quotient, i.e. we fix the H-cover ¥ — X. Then G-quotients of
i} (U) correspond to IF,[H]-submodules P of H'(Y, Oy)F, where F is the Frobenius
morphism. This means that in order to solve our problem, we have to compute
the structure of H'(Y, Oy) as IF,[H]-module. The dimensions of the isotypical
spaces are called the generalized Hasse—Witt invariants. For a more precise
definition, see Section 2. The generalized Hasse-Witt invariants can be viewed
as generalizations of the p-rank by taking into account the H-Galois action. It
is easy to see that if we consider a family of covers of curves with fixed (g, r), then
the p-rank will depend on the bottom curve. Here we are interested in computing
the p-rank in case the bottom curve is the generic r-pointed curve of genus g, i.e.
corresponds to the generic point of the moduli space M, , ® I,.

The question of the p-rank of a prime-to-p cover has been considered previously in
the étale case, [11, 14, 17]. In these papers it is shown that many étale covers of the
generic curve are ordinary, most importantly this holds for Abelian covers. But
in [17] it is shown that this is not true for all groups: there exist étale nonordinary
covers of the generic curve X, for every g > 2. In this paper we consider what
happens for ramified covers. It is easy to see that it is not to be expected that
all (Abelian) covers of the generic r-pointed curve of genus g are ordinary. It turns
out that there is an obvious bound B(a, g) on the p-rank coming from the structure
of H'(Y, Oy) as k[H]-module, here a denotes the monodromy. The k[H]-module
structure of H'(Y, Oy) is known by a results of Chevalley-Weil, see Section 3.

The question whether all étale covers of the generic curve of genus g are ordinary
translates for ramified covers into the question whether all (prime-to-p) covers
of the generic r-pointed curve of genus g have p-rank equal to B(a, g). The situation
for ramified covers is analogous to the situation for étale covers, with this
modification. We will show that there exists a non-Abelian cover of the generic
curve whose p-rank is less than the bound (Example 3.5). It seems reasonable to
expect that the p-rank of Abelian covers of the generic r-pointed curve of genus
g is equal to the bound. We will show this, under some mild hypothesis on the
characteristic.

THEOREM. Let (X, S) be the generic r-pointed curve of genus g. Suppose that p is
sufficiently large. Let H be an Abelian group of order prime-to-p, and Y — X an
H-Galois cover, unbranched outside S. Then the p-rank of Y is equal to the bound.

The proof will proceed in several steps. We show that we can restrict to the case

that H is cyclic. In Section 6 we prove the theorem for cyclic covers of P!. We prove
this by computing the coefficients of the Hasse—Witt matrix of Y. In Section 8 we
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show that the statement for genus greater than zero can be reduced to the case of
genus zero. This is shown by degenerating covers in a suitable way.

The outline of the paper is as follows. In Section 2 we define the generalized
Hasse—Witt invariants and study basic properties. We relate the generalized
Hasse—Witt invariants to quotients of tame fundamental groups. In Section 3 we
describe the k[H]-module structure of H'(Y,Oy) and use this to define a bound
on o(Y). In Section 3 we also compute the generalized Hasse—Witt invariants
for some non-Abelian covers. We give an example, due to Raynaud, of a cover
of P! branched at three points whose p-rank is unequal to the bound. In Section
4 we concentrate on the case of cyclic covers. In Section 5 we compute the coefficients
of the Hasse-Witt matrix of a cyclic cover of P'. In Section 6 we use this to compute
the p-rank of a cyclic cover of P! in case pislarge and the branch points are general.
In Section 7 we explain how we can get information on the p-rank of a cover by
degenerating it to a cover of semistable curves. We use this to reprove the main
theorem in case p = £1 (mod €) or r < 4. In these cases we can drop the assumption
p large. In Section 8 we use the same method to show that the computation of
the generalized Hasse—Witt invariants of covers of the generic curve of g can be
reduced to the computation of the generalized Hasse—Witt invariants of covers
of P!

2. Generalized Hasse—Witt Invariants

In this section we will define generalized Hasse—Witt invariants and study their basic
properties. Most importantly, we will give the relation between quotients of n{(U)
which are an extension of a prime-to-p group H by a p-group P, and the generalized
Hasse-Witt invariants of H-covers of X, unbranched outside S.

The generalized Hasse—Witt invariants were first introduced by Katsurada in [9] in
the case of an étale £-cyclic cover with £|(p — 1). In that paper they were used to show
that 71(X) is not determined by the genus, the characteristic and the p-rank of X.
Namely, it was shown that 7;(X) also depends on the generalized Hasse—Witt
invariants. The reason being that the number of (étale) covers of X whose Galois
group is an extension of Z/¢ by Z/p can be expressed in terms of the generalized
Hasse—Witt invariants. Later this was generalized by Nakajima [11], Riick [18]
and Pacheco [13]. Of these authors, Pacheco gave the most general definition, namely
in the case of possibly ramified Galois covers whose Galois group is of order prime to
the characteristic. Also in this case the generalized Hasse—Witt invariants of a
G-Galois cover Y — X can be used to give a formula for the number of tame Galois
covers of X factoring through Y, whose Galois group is an extension of G by an
elementary Abelian p-group. In the étale case this was proved by Pacheco.

Let n: Y — X be a Galois cover of nonsingular projective irreducible curves
defined over an algebraically closed field k of characteristic p > 0. We allow the
cover to be ramified. Let H be the Galois group of n, suppose that its order is prime
to the characteristic. The group H acts naturally on H'(Y, Oy). As was explained
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in the introduction, we are interested in the dimension over I, of the isotypical
spaces of H'(Y, Oy)", where F is the Frobenius morphism. For each irreducible
k-character y of G, we denote by L(y) the y-isotypical part of H'(Y,Oy), i.e.
the largest subspace which, as a k[G]-module, is a sum of irreducible representation
with character y. The Frobenius morphism F sends L(y) to L(x”), here %’ is the
Frobenius twist of y. For each irreducible character y, we denote by f(y) the minimal
positive integer such that F/0 sends L(y) to itself. Recall that the p-rank o(X) of X is
equal to the k-dimension of the largest subspace of H'(X, Ox) on which F is a
bijection. We mimic this to define the generalized Hasse—Witt invariants.

DEFINITION 2.1. Let n: Y — X be a G-Galois cover of curves over k and suppose
that p ) |G|. For each irreducible character y of G, we define the generalized
Hasse—Witt invariant . (x)(= y(x)) of the cover n: ¥ — X as the dimension of
the largest subspace of L(y~!) on which F/ " is a bijection.

We consider the inverse character in the above definition to make our definition
consistent with the literature. Let ¢ be a sufficiently large power of p. We
identify k-characters with [ -characters. The space J(Y)[p]®r, I, is dual to
HY(Y,Oy)f ®r, Iy as Fy[G]-module, [20, p. 38]. In [13] the generalized Hasse-Witt
invariants are defined as the dimensions of the y-isotypical part of
J(Y)[p] ®r, ;. One easily checks that this definition coincides with our definition.
The following lemma gives some elementary properties of the generalized
Hasse-Witt invariants (cf. [13]).

LEMMA 2.2. Let n: Y — X be a G-Galois cover of curves and suppose that p } |G)|.
Let y be an irreducible character of G and let n, be its dimension. Then

@ 700 =7,

1) o(Y)= Z/ v(x), where the sum is taken over the irreducible k-characters of H,
(iii) if y is the trivial character, then y(y) = a(X),

(iv) v(y) is a multiple of n,,

(v) let G, be the kernel of the representation corresponding to y and write & = n/G,.
Then y may be considered as a character of G/G, and vy, (x) = yz(%).

Proof. We can write L(x) as L(x)* @ L(x)", where F/@ is a bijection on L(y)* and is
nilpotent on L(3)", [20, no. 9]. The Frobenius morphism is a bijection from L(y)* to
L(y?)°. This proves the first statement. The second statement follows immediately
from the first, since H'(Y, Oy)’ = @,cxL(z)’. Let  be the trivial character, then

L(y) = H(Y,0y)° ~ H'(X, Oy).

This proves the third statement. The fourth statement follows from the fact the
H'(Y,Oy) is a G-module. The fifth statement is obvious. O
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We will now relate the generalized Hasse—Witt invariants to the quotients of
nj(U). The p-rank of a curve X is related to the number of étale p-cyclic covers
of X. If ¢ denotes the p-rank of X, then the number of étale p-cyclic covers of
X is equal to the number of p-cyclic quotients of (Z/p)°. In fact, something more
general holds. The p-part of the fundamental group n”(X) is a free pro-p group
on ¢ generators. Hence, a p-group P occurs as Galois group of an étale cover over
X iff P can be generated by o elements. A similar statement holds for the generalized
Hasse—Witt invariants.

LEMMA 2.3. Letn: Y — X be an H-Galois cover, with H prime-to-p. Thereis a 1-1
correspondence between Galois covers Z — X which dominate n with Galois group an
extension of H by an elementary Abelian p-group and H-submodules of
Hom(m(Y), Z/p).

Proof. Suppose given a Galois cover Z — X which dominates n, whose Galois
group G is an extension of H by an elementary Abelian p-group P =~ (Z/p)". Let
V =Hom(Gal(Z, Y), Z/p). We may regard V as a subspace of Hom(n;(Y), Z/p)
via the exact sequence

l > mn(Z)—> n(Y)—> Gal(Z,Y)=P — 1.

Note that V" as an [F,[H]-module is dual to P.

Conversely, suppose given V' C Hom(n(Y), Z/p) with dimy, V' = n. Then V cor-
responds to an étale (Z/p)"-Galois cover Z — Y. The cover Z — X is Galois iff
V is H-equivariant. The space V' with the action of H can be identified with
Hom(Gal(Z, Y), Z/p). O

Let X (H) be the set of irreducible k-characters of H. Write y ~ y if ¥’ = 4" for
some j. Let X(H)= X(H)/~. Recall that the set X(H) corresponds to the
set of I -irreducible characters of H.

For an F,[H]-module P, write Y 1 gy mp(O)(x + 77 + -+ 7”7 for its charac-
ter and let np = dimy, P. Let P* = Hom(P, Z/p) be the dual I,[H]-module. The
proof of the above lemma shows that P* ¢ H'(Y, Oy)" corresponds to a tame
P x H cover dominating . The character of H'(Y, Oy) is

S GG+ e+ ),

[eX(H)

Therefore P* C H'(Y, Oy)" iff mp(y) < y(x)/n(y) for all y.

Let ¢ € Aut(H). For an irreducible k-character y, denote by y? the character
obtained by twisting by ¢. Let P be as above and put G = P x H. Then there exists
a tame G-cover dominating 7 iff there exists a ¢ € Aut(H) such that
mp(y) < 7(x?)/n(y). We need to twist by ¢ because for two different F,[H]-modules
P and P', the groups PxH and P'xH might be isomorphic. This proves the
following proposition.
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PROPOSITION 2.4. Let n: Y — X be a tame H-Galois cover of nonsingular
curves. Let P be an F,[H]-module and put G = PxH. Then there exists a tame
G-Galois cover of X dominating n if and only if there exists an automorphism ¢
of H such that

W=

where n(y) is the dimension of the representation with character y.

for each [y] € X(H),

Results similar to the proposition above can be found in [11] and [13]. The result of
[11]1s a special case of the result in [13] which is a special case of the present case. Our
proof follows the proof of [11].

We can phrase this proposition differently. Let Gp.x be the group which is an
extension of H by the elementary Abelian p-group P = (Z/p)’Y), where H acts
on P via ZleX(H)(V(X)/”(X))X- Then Gy is the largest extension of H by an elemen-
tary Abelian p-group for which there is a Galois cover dominating n. A group
G as in the proposition exists if and only if G is a quotient of Gy,x.

PROPOSITION 2.5. Let G be a group which is an extension of a prime-to-p group H
by a p-group P. Let ®(P) = PP[P, P] be the Frattini subgroup of P and P =
P/®(P). Write G =PxH. Suppose given a tame G-cover f: Z — X. Then there
exists a tame G-cover g: W — X dominating f.

Proof. The proposition is proved in [14] for étale covers, but the proof carries over
immediately to the case of tamely ramified covers. The results follows from the fact
that, for Y = Z/P, the p-part of the fundamental group nf(Y) is a free pro-p
group. ]

3. A Bound on the p-Rank

From Lemma 2.2 it follows that

o < min dim L").

For the p-rank of Y, this implies

o(¥) —o(X) < ) mindim L(z"). (1)
!

Therefore knowledge of the dimensions of the L(/) gives nontrivial information on
the generalized Hasse—Witt invariants and the p-rank of the cover. These dimensions
are known by a classical result of Chevalley—Weil [1] (Proposition 3.1 below). The
results was originally stated for k£ = C, but can be extended to our case, since

p /1G] (see [8, 12]).
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Foreach y € Y write G, for the decomposition group of y, let e, be the order of G,.
Choose a local parameter u, at y. Define a character

g-u

0,: G, — k*, 0,(g) = - L (mod (uy)). (2)
)

Note that if y;, y» € ¥ both map to x € X then the characters 0,, and 0,, are con-
jugate.

PROPOSITION 3.1 (Chevalley—Weil). There exists a unique k[G]-module R such that

e,—1
|G| - R ~ @(@ d-Indg 0;{) (3)

ye¥ \d=0
as k[Gl-modules. The k[G]-module structure of H'(Y, Oy) is given by
H\(Y,Oy) ~k ®k[GIF*V ' @ R.
Proof. [1]. O

DEFINITION 3.2. Let xj,...,x, be the branch points of the G-Galois cover
n: Y — X.For each branch point x; € X choose y; € n7!(x;). Let 0,, be the character
defined in (2). Then the set of characters (G; 0,,,...,0,,) we will call the type of
n:Y — X.

Note that the Galois module structure of H'(Y, Oy) can be described in terms of
the type. Let 0 = (G; 0,,, ..., 0,,) be a type corresponding to some group G of order
prime-to-p. Let R = Ry be the module defined in (3). For an irreducible character
1 of G, let V, be the G-module over k with character y and write n, for the dimension
of V.. By f() we denote the smallest positive integer f such that the P/ th twist of y is
equal to y. Write R=@®,m,V,. Then for y# 1 the multiplicity of V, in
k®KkGE ' @R is m, + (g — 1)n,. For each nonnegative integer g define

BO.g):= Y fGyminl(m,; +(g = D) -n,]

1#£eX

Here X = X(H) as before corresponds to the set of characters of the irreducible
F,[H]-characters.

Let Y — X be a G-Galois cover with type 6 and g(X) =g. Then, using the
notation explained above, the multiplicity of a nontrivial irreducible character y
of G in H'(Y,Oy) is my, + (g — 1)n, by the result of Proposition 3.1. The result
of (1) becomes with the new notation

a(Y) —a(X) < B(0. g). 4)
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QUESTION 3.3. Suppose (X, S) is the generic r-pointed curve of genus g. Let H be a
group of order prime-to-p. Fix the monodromy 6. Under what conditions is it true
that all H-covers with monodromy 6 have p-rank equal to B(0, g)?

EXAMPLE 3.4. (i) Let E be an elliptic curve with an automorphism ¢ of order three,
defined over an algebraically closed field k& of characteristic not three. Then
g(E/{¢)) = 0. This implies that ¢ acts nontrivially on the 1-dimensional space
H'(E, Og). Let x be the character of this representation. Then dim L(y) = 1 and
dim L(3?) = 0. We find

>_/(mindim Lz ") =

{1 if p=1 (mod 3),
1eX

0 if p =2 (mod 3).

Of course, it is well known that o(E)=1 if p=1(mod 3) and o(E) =0 if
p =2 (mod 3). So in this case, (FE) is equal to the bound.

(ii) Let E; be the 2-cyclic cover of P! branched at 0, 1, 0o, 4 and suppose that p = 2.
The o(E)) is one for almost all 1 and zero for finitely many 4. This illustrates that the
p-rank varies in a family of covers. This explains the condition (X, S) generic in
Question 3.3.

In this paper we will mainly consider Question 3.3 for cyclic covers. Here the
results are quite general. The case of Abelian covers can be reduced to the case
of cyclic covers. In the rest of this section we will consider the question for
non-Abelian covers. We will see that the answer to the question is no, in general:
there exists a non-Abelian cover Y — P! branched at three points with
a(Y) < B(6,0).

This situation is similar to the situation for étale covers. For Y — X étale, the
statement of Proposition 3.1 becomes

H'(Y,Oy) ~ k & k[GEW !,

as k[G]-modules. Therefore the expression for the bound B(0, g) in (4) becomes very
easy:

B(0,g) = g(Y) — g(X).

Question 3.3 becomes in this case: are all étale Galois covers of prime-to-p order of
the generic curve ordinary? Nakajima [11] has proved that this is true for all Abelian
covers. Raynaud [17] has shown that there exist non-Abelian étale covers of the
generic curve which are nonordinary. In fact, (some of) the nonordinary covers given
in that paper have nilpotent Galois group; the nonordinary cover discussed below
has a solvable Galois group.

EXAMPLE 3.5. This example was suggested to me by M. Raynaud. Consider Galois
covers m: Y — PIQ branched at three points 0, 1, co, with Galois group S; and
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ramification of order 4, 4, 3. We are going to show that for infinitely many primes p
the curve Y has good supersingular reduction mod p. Note that for S, covers of
P! in characteristic p > n the bound is equal to the genus, since all irreducible
characters of S, are defined over the prime field.

Let C; (resp. C;) be the conjugacy class in Sy of a 4-cycle (resp. a 3-cycle). The
triple (C}, Cy, C) is rational and rigid and therefore ¥ — P! is defined over Q, [21].
Note that g(Y) = 3. Define H, = ((12)(34)), H, = ((13)(24)), H3 = ((14)(23)) as
subgroups of S; and let E; = Y /H;. The E; are isomorphic elliptic curves defined
over . (They have j-invariant 2*.133.372) This implies that J(Y)~ Ejx
E> x E3 ~ E}. To compute the p-rank of the reduction Y, of Y to characteristic
p it suffices to compute the p-rank of E;,. By the result of Elkies [3] the elliptic
curve E) has infinitely many primes of supersingular reduction. Since J(Y) ~ E3,
the same holds for Y.

This shows that there exists a p and a type 0 such that for all covers ¥ — P!
branched at 0, 1, co of type 0 we have o(Y) < B(0, 0).

4. Cyclic Covers

In the previous section it is shown that there exists a non-Abelian cover of
P! — {0, 1, oo} for which the p-rank is strictly less than the bound. Therefore in
the rest of the paper we will concentrate on the case of Abelian covers. Here
our results are quite general. In this section we specialize the results of the previous
two sections to Abelian covers. Note that by part (v) of Lemma 2.2 we may reduce
the computation of the generalized Hasse-Witt invariants of an Abelian cover
to the generalized Hasse—Witt invariants of suitable cyclic subcovers. In case of
a cyclic cover the result of Chevalley—Weil becomes easier to formulate.

Letn: Y — X be a H-Galois cover with p f |H| and H cyclic of order £. Note that £
is not supposed to be prime. We fix a generator ¢ of H and a primitive £th root of
unity { € k. The definition of type can be reformulated as follows in this case. This
reformulation is less canonical, but will facilitate the formulas in what follows.
Let xi, ..., x, be the branch points of n. Write n; = |7~ !(x;)|. For each i, choose
some y; € 7~ !(x;) and a local parameter u; at y;. Let y be the character of H which
sends ¢ to {. We will write L; and 7, instead of L(y") and 7(x)).

DEFINITION 4.1. We say that n is of type (¢;ay,...,a,) if forallie{l,...,r} we
have that 0<a <¢ and mla; and (¢")u; = "Pu; (mod (u?)), where
b,’ . a,-/n,- =1 (mod K/n,)

We will suppose the branch points to be ordered. In the statement ‘Y — X is a
cover of type a = (¢; ay, ..., a,) branched at xi,...,x," we will assume the a; cor-
responds to the x; as in the definition above.

We can interpret the type of an £¢-cyclic cover n: ¥ — X in terms of the map
fim(X —{x1,...,x}) > Z/t corresponding to the cover. Choose generating
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elements oy, ..., g, B, ..., By 61,..., 0, of 7y (X — {x;}) such that [ [[a;, B;][[6: =1
and such that for each continuous 7}(X — {x;}) > G, with G finite, the images
of the J; generate a decomposition group above x; ([6, XIII.2.12]). The cover ©
is of type (&; (1), ..., f(0,). If (¢; ay, ..., a,)is atype, then > a; = 0 (mod £). Con-
versely, if ) a; =0 (mod ¢) then there exists a (not necessarily connected) cover
of type (¢; ay, ..., a).

The type of a cyclic cover as defined above, contains the same information as the
type defined in the previous section. The two definitions can be related as follows.
Let n: Y — X be as above. Let y; be some point mapping to a branch point x;.
Then ¢" generates the decomposition group of y;. The character 6,,, which was
defined in (2), sends ¢" to {"”. Conversely, given the character 0,, we find a; as
the integer 0 < a; < ¢ which is a multiple of n; and satisfies a;b;/n; = 1 (mod ¢/n;).

The definition of type is independent of the choice of y; and u;. Replacing ¢ or {
changes (¢; ay, ..., a,) into (¢; nay, ..., na,) for some n € (Z/£)*. Hence, we should
consider the type as an element of

{@.....a) | 0<a<t ) a;=0 (mod0)}/(Z/e).
We will always choose a representative of such a class.

EXAMPLE 4.2. Suppose g(X) = 0 and choose xi,...,x, € X. If Y a; =0 (mod ¢)
then, up to isomorphism, there is a unique cover Y — P! of type (¢; ay, .. ., a,) with
Y nonsingular, branched at xp,...x, € P}(. If none of the x; is oo, this curve is
the nonsingular curve associated to the equation

Y= (= x)M(x = x2)® e (x = X))
The curve Y is connected iff ged(¢, ay,...,a,) = 1.

LEMMA 4.3. Let n: Y — X be of type (¢; ay,...,a,). Then

gX), ifi=0,

dimy L; = (Z<%>> -1 +g(X), otherwise.

J=1

Here (-) denotes the fractional part.
Proof. The lemma follows from Proposition 3.1; in a slightly different
terminology, it is a special case of [8, Proposition 1]. But we can also prove it directly.
We can write n,0y = ®'-!L;, where locally £; is the eigenspace of ¢ with
eigenvalue ('. This is Kummer theory. Choose Vi € n_l(xj) for each j. Let u; be a
local parameter at y; such that ¢"(u;) = C”fb/uj, with notation as in Definition 4.1.
Then, by the definition of type, m.((ujdp(u;)--- (p”’_l(uj))(iaf/e)”f) generates £; locally
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around x;. It follows that
L8~ Oy (- Z<%>€x]>
=
In fact £; = £'. Hence,
1 ! iaj
j=1
Note that H'(X, £;) ~ L;. We find that
. . . [ia;
dimy L; = dimg H'(X, £;) = (;(7’» +(X) - 1,

by the Riemann—Roch Theorem. O

NOTATION 4.4. For a type a = (¢; ay, ..., a;) we will denote
1=t = (S0 =1 for ie@/e)—10
lill = lilla = ;7 =1 for ie(Z/6)~ (0}

In the case ||i]|, =0, it is equal to the dimension of the ith eigenspace L; of
H'(Y,Oy), where Y — P! is a cover of type a. If all aj’s are zero (mod £/(i, £))

then |||, = —1 and then |i|| does not have an interpretation as a dimension of
an isotypical space of a cover of P! but we will use the notation in this case
nonetheless.

LEMMA 4.5. Fix a type (¢;ai,...,a,). Let s be the number of a; unequal to
Omod ¢/(i, £). Then

lill 4 =il =s—2, if €/(i, ) #2,
lill = % 1 if e 0 =2.

In particular, ||i| <s— 2.
Proof. Immediate. O

LEMMA 4.6. Let a be a type and X any curve. Denote by A, C X" the generalized
diagonal. Define U, C X" — A as the set of (x1,...,x,) € X" — A such that for all
L-cyclic covers Y — X, unbranched outside the x;, of type a, we have
a(Y)—o(X) = B(a, g(X)). Then U, is open.

Proof. For each (x1, ..., x,) € X" — Awedefine Y, _, — X asthe smallest cover
which has all covers of X of type a branched at the x; as subcovers. Choose gen-
erators ay, ..., 0, B, ..., ﬁg, o1,...,0, of ni(X —{x1,...,x;}) such that for each
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finite quotient the images of the J; generate a decomposition group above x;. The
cover Y, ... — X corresponds to the maximal quotient

(X —{x1, ..., x:}) > (Z)0)

which sends ¢, to a;, . . ., a;. For suitable £-cyclic subcovers Y; — X of ¥, . — X
we have

T(Yy ) ~ J(X) x [ [U(¥)/7(X)).
j=1

Here, for a curve Z we denote by J(Z) its Jacobian. This implies
0(Yy,,..x) < 0(X)+nB(a, g(X)) = s.

We obtain a family f: A — X" —A,, with Ay, =J(Yy, . .x) Let Wo=X"—
(AU Uy) ={(x1, ..., x)|0(Yy, . .x) <s—1}. From [15, Cor. 1.5] it follows that
W, is closed. This proves the lemma. O

5. Coefficients of the Hasse—Witt Matrix

Let n: Y — P! be an ¢-cyclic cover, defined over an algebraically closed field k& of
characteristic p with (¢, p) = 1. In this section we will compute the coefficients of
the Hasse—Witt matrix of Y and relate these coefficients to the generalized
Hasse-Witt invariants. We fix the following notations. The branch points of =
we will denote by xi,...,x,, and a = (¢; ay,...,a,) will be the type of the cover
7 (defined in Section 4). We choose a coordinate on P! such that none of the x;
is co. We will suppose that none of the g; is congruent to zero mod ¢. We denote
by L; the ith eigenspace of H'(Y, Oy) with respect to a fixed primitive £th root
of unity { and a fixed generator ¢ of Gal(Y, P') as in Section 4, i.e.
L;={f¢-&=1C"¢). The dimension of L; we denote by |i|; it is equal to
(Z;zl(iaj/Z)) — 1. The integer f denotes the order of p in (Z/f)*. Note
F/'L;— L;. Put m = (p/ —1)/£. The curve Y is the nonsingular projective curve
defined by the equation

Y= (=) = x)® (= x)

We are going to calculate the coefficients of the matrix of F/ on L;. We will com-
pute them using Cech cohomology; we first describe a basis of H'(Y, Oy) (cf. [22,
Section 5], note that the ||i|| from that paper is +1 more than our ||i]|). A special
case of this result is proved in [4], using a different method. Write
U =P - {oo} and U, = P! — {0}. As open sets we take V, =n"!(U,) C Y for
s=1,2. Fori=1,...,¢0—1 let

vi=y(x — X)L (x — x,) 1,
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Note

-1
T(V1. On) = Dkl v,
i=1
-1 )
T(V2, Op,) = DK Tx 1w,
i=1
-1
T(V1 N V3, 0) = @PKx, x v
i=1

Define
&i=x7y forj=1,... |l

as an element of H'(Y, Oy) = ['(V1 N V3)/(I(V) + (V). Then the {&ijl0<i<,
0 <j < |li|l} form a basis of H'(Y, Oy). More precisely, L; = (¢ij). Let B; be the
matrix of F/: L; — L; with respect to the basis &ij, for 1 < j < |li|l. We will compute
the coefficients of B;. To calculate the (j, j)th coefficient of B; we have to find the
coefficient of &; » in (5,;_,»)”’. We have

w,-]

( éi,j)pf _ x_jp_/vyjbf (x— XI)_p_,v[i“T'] C(x— xr)—pf[lT )
Note

—p/lia)€] = —[p’ ia)€] + [p' (ia)€)] = —[ia/€] — iam + Em(ia/L)
and

PVax—x)™ . (x—x) " =1.
Hence

V= (07 (v =) () (5)
The coefficient of &, in (&) is

¢ (i £ (i
¥ ¥ (mn<16>>...<mn<rlz>)xlln...xfr, (6)

IR
where N = (J|i]| + 1 — j)¢m +j' — j. This proves the first part of the following lemma.

The other part is proved analogously.

LEMMA 5.1. Let (&;);; be the basis of H'(Y, Oy) which was described above.
() The (i, ), (i, j)th coefficient of the matrix of F/ on H(Y, Oy) is

o E () (g »

ny+--+n=N

where N = (|lill + 1 — j)fm +j —j.
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(1) If' i’ = pi (mod £), then the (i, ), (', j')th coefficient of the Hasse—Witt matrix of
Y is equal to

N [p ()] PEN L,
0 () (e N

where N =p(|lill +1—)) — (/| + 1 =j"). If i’ # pi (mod £), then the (i,)), (T, ) )th
coefficient of the Hasse—Witt matrix is zero.

6. Main Theorem
THEOREM 6.1. Suppose p = £(r — 3). Then for each a = ({; ay, ..., a,) there exist

X1,...,x, such that for the (t-cyclic cover Y — P! of type a branched at
X1, ..., X we have o(Y) = B(a, 0).
To prove the theorem, we have to prove that there exist xi, ..., x, € P} such that

for every 1 < a < ¢ we have y_, = min,; |[p'a||. It is no restriction to suppose that
a=1and n:=||1| < |p| for all i. Let B be the matrix of F/: L, — L; with respect
to the basis ¢, ;. Let 4 be the matrix of F: @{;&Lpi — @{;OILP,- and A4; the matrix
of F: L, — L. To prove the theorem, we will prove that det(B) is not identically
zero as polynomial in the x;. We will prove this by showing that a certain monomial
occurs in det(B) with a nonzero coefficient. The strategy of the proof is the following.
We define an ordering on monomials in xi, ..., x,. We give an expression for det(B)
as a sum over an index set J of terms which are products of determinants of
n x n submatrices of the 4; (Lemma 6.2). We find for each J € J the largest
monomial 7'y with respect to the ordering (Lemma 6.5). We conclude the proof
by showing that for J # J’ we have T, # T, (Lemma 6.6).

Recall that each L, has a basis ¢, ; with 0 < j < IP']l (see the previous section).
Number the rows and columns of 4 as (i,j) with 0 <i<f—1and 1 <j<|p'|.
Here (i,j) corresponds to the basis vector ¢, ; of L,. Put I ={(i))0<
i<f—1, 1<j<|p'l}. Let J be the set of J C I such that J contains for each
i exactly n indices (i,ji(«)) and ji(1) <ji(2) <--- <jin). For i=0, we have
jo(h)=1,....jo(n) =n. To a J € J we associate for each i a matrix My ;. This
My ; is the n x n submatrix of A4; consisting of the columns (i, ji(1)), - - -, (i, ji(n))
and the rows (i +1,ji11(1)), -+, (i + 1, jiy1(n)). For i = f — 1, the matrix M, ; has
columns (f — 1, jr—1(1)), - -+, (f = 1, jr—1(n)) and rows (0, jo(1) = 1), - - -, (0, jo(n) = n).

LEMMA 6.2. We have

|B| = Z(ﬁ |MJ,,»|P"“’>.

JeJ \i=0
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Proof. The lemma follows from the fact that
B— Af—lA}p,)z . .Agp/—‘)’
here A?) is the matrix obtained by raising all the coefficients of 4 to the pth power.[]

NOTATION 6.3. Define an ordering on monomials x}'---x/ by x]'---x/ >

XM X% if there exists an i such that k; = n; for all j < i and n; > k;.

In the following lemma we find the largest monomial in | M ;| (cf. Lemma 6.2). Let
M = Mj ;. Recall that the columns of M are (i, ji(x)) and the rows are (i + 1, ji11(f)),
where 1 <o, f<n and 1<ji(l)<---<ji(n)<|p' and 1<ji(l)<---<
Jir1(n) < ||p™Y). If J and i are understood we can number the rows and columns
by f and a.

The coefficients of M ; are

L PEDN (SN L. L,
e = D m+ +Z:—N"" ( n i o
1T e =Ny,

with N7 = p(Ip'll + 1 = ji(@)) = (P [l + 1 = jiz1(8)), by the second part of Lemma
5.1.The following notation is introduced to describe the largest monomial 77 ; in
[My .l

NOTATION 6.4. Define cé:i as the smallest number ¢ in {1, ..., r} such that
i i ‘
AT+ [ - e
And let

J.i J.i Pial Pia —1
e () o )

i
o

where ¢ = c;:
Note that

ia iar . . . i
|:p<pZ l>i| 4.4 |:p<1)7>] - N};’“ =pji(@) —jiri(B)=p—lp +l” >0,

since ji1(B) < lpY <r—2 (Lemma 4.5) and p >r —2 (by assumption). This
implies that c‘/;:’ is well defined. Moreover, 0 < C/f:; < [pp'a./0)].

o

LEMMA 6.5. The largest monomial Ty ; in |Mjy ;| is the largest monomial in the
product of the diagonal elements of My ;.
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Proof. In this proof we fix J and i and drop them from the notation. The largest
monomial in myg,, which we denote by T, is

pla pa Pla_y,
Ty = (=)= ([p(le >])x[1p< R ©)

c—1 c

Here ¢ =c¢p, and C = Cp,. Note that 0 < Cp, < [p(p'a./¢)] < p, therefore the
coefficient of Tj, is unequal to zero. One checks that

Cpo > Cpyn M a <y, (10)
Cpo < Cyyy  If <y, (11

We will prove the lemma by induction. For n = 1 there is nothing to prove. We will
prove the lemma for n = 2.

Choose « < o’ and f < f'. We want to compare Ty, Ty , and Ty ,Tp . To deter-
mine which of the two is smaller, we have to look at the smallest 1 < s < r where
the power of x; in one of the monomials is less than [p(p'a,/¢)]. From (10) and (11)
it follows that this happens for s = ¢s,,. One checks that in case ¢4, = cp , then
Cpo — C/;f’a/ = Ngy — Nﬁ/’“r < 0. This implies that

Tﬁ,%Tﬁ/,x’ > Tﬁ/’aTﬂ’“f.
This proves the lemma for n =2, by taking a = f=1and o/ = f' = 2.
For n > 2 we have
n
(M| =) (=1 i My, (12)
=1
where M1, is the minor of M obtained by omitting the ath column and the first row.
Therefore, by the induction hypothesis
T(x:= TlocTZI T Tx,o:—lTo:+l,oc+l T Tnn for o = 17 L. N
is the largest monomial in my,|M,| (cf. (12)). One checks that

fo - Tsc-H - TZI ce fo.a—l Ta+2.c<+2 T Tnn(Tloch+l,ax+l - lex+l TLX+],O€)'

Note that 714 Tot1.041 > T1.4+174+1., by the n =2 case applied to the minor of M
consisting of the rows 1 and o + 1 and the columns « and « + 1. As remarked above,
the coefficients of the T, do not vanish. This implies that 7, > 7,1, and hence that
the largest monomial T;; in |M; ;| is T;. O

The lemma gives an expression for

T, =[] (13)

Note, T is not identically zero as polynomial in the x;. To finish the proof of the
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Main Theorem, we have to find a nonvanishing monomial in the expression for
det(B) given in Lemma 6.2. This is done if for J; # J, we show that the monomials
Ty, and Ty, are nonidentical. In that case the largest of the 7; does not cancel
in det(B). This is proved in the next lemma. This is the only place where we use
the assumption p = €(r — 3). Up to now we only used p > r — 2.

LEMMA 6.6. Suppose p = £(r —3). Let J1,J> € J. If T, and Ty, are equal up to a
(nonzero) constant, then J, = J.

Proof. We want to compare 7 for different J. In the previous lemma we showed
that 7 is a product of powers of Tj )i, @, (s€€ (13)). Note that the monomials
Tji(a).jin (o actually depend on i, but we suppressed this in the notation; in this proof
we will therefore refer to these monomials as T,’f. An expression for le,-(oc),jm @) is
given in (9). Note that now f will be always equal to « in (9); therefore we will

suppress f from the notation of cé:;, C[{; N/{;

J.i i
CLAIM. Suppose p = €(r — 3). Then ¢}, < c}".
Proof. Note that

Ny = pIp'l+ 1 =) = P+ 1 = i ()

=)+ [ o) o0 = i

Therefore the integers ¢/, defined in Notation 6.4, may also be defined for given
J,i,o as the unique integer ¢ such that

A7 o) mer o< [ o A7)

Suppose p = £(r — 3), then [|p™!| <r—2 < p/€+ 1. Since

pji(OC + 1) —jl'Jr](OC + 1) Zp(],(o() + 1) _ ”pi-H ”
> pji(e) > pji(e) — jir1(a)
J

J.i J.i N S N S
we have o S ¢t Suppose G =¢ =c¢ le.

[t [oE)] < i) sy < [o{Z)] o [ {22

for f = o, + 1. Then

. . . . ‘a,
i+ 1) = jiy1(o + 1) = pji(@) + jip1(2) < [P<p£ >] (14)
We assumed that

1 <ji(2) <jo(e+1)—1 for any x.
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Hence

pUie+ 1) =ji(@) = i@+ 1) +jin1 (@) > p —jia (@ + 1) + 1. (15)

Equations (14) and (15) imply that [p(p'a./€)] > p — jiy1(x + 1) 4+ 1. Hence

i i i+1
Jiil@+ 1D >p+1— |:p<p a‘>i| =p+1 _p<p ac>+<l) ac>

l £ Y4
>p+1 LA
=Zp V4 ) 7

+1 +1 :
=p+1-p+— =1+ 14 .

This is impossible since ji41 (2 + 1) < [|[p™*!||. Hence ¢/, < ¢J*'. This proves the claim.

Let J; and J, be as in the statement of Lemma 6.6. We will write
XY X~y 331“ x’r‘ if k, =n, for all ¢t <s, where we ignore constants. Write

Ji = {ji(x)} and J5 = {ki(x)}.

CLAIM. The following two statements are equivalent:

() Ty ~s Ty, for sin{l,...,r},
(2) foreachoandt <s tﬁe sets {i | cé‘*’ =tyand{i | cﬁ’ = t} are equal. Furthermore,
Jor each i, o with ¢I'' = s we have that pji(o) — jir1(x) = pki(e) — kit1(a).

Proof. The second statement implies the first statement. Suppose that T, ~; Ty,
and suppose that the second statement holds for all # < s. For s = 1 this is an empty
assumption. If ¢/ < s then ¢}>' < s, by assumption. Since ¢J;'; < ¢J, there is an
oo such that

cgl” <s forall §> ay,
J],i
Cy =S

If cé‘i < s forall pefl,...,n}, put g =0. Write
T, = (constant)x’fl(l‘) c) for x =1, 2.

The assumption that J; ~; J, implies that n,(J;) =n,(J,) for t <s. Consider
>0 P/ g with

0, if oy = 0,

0, if ci(l)*’ > s and cjg” > s,
Jii _ | plrfas\ | ip i — Ja.i

My = (&4 [p( 7 H if ¢l =sand ¢;2' > s, (16)
pa\| _ ~hi e i Joi

p< 7 >] C' if ¢ > sand 2" =,
Jl,i _ Jz,i 3 Jl,i i Jz,f J—

Cio Cao if CC{U - Caa =4
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The sum Z{:_Ol P/~ is equal to ny(Jy) — ny(J2). Note that

i, iq,
o) e o) <

Let iy be the smallest i such that », ; # 0, then

Mg, s < 0= ns(Jl) > ng(J>)
and
'/Iio,s >0 = nS(Jl) < ns(JZ)-

(This is seen by noting that if #, ;> 1, then

ns(Jl) - }13-(.]2)

S=r
2p =y YT e -

i=ip+1
i iy =

For the other inequality, interchange J; and J,.) Our assumptions imply that
ny(J1) = ny(J2). In particular, n; ; = 0 for all i. Looking at the explicit formula (16)
for n; ; yields that one of the following holds

og =0,
c;“’ >s and 2 >3,
0 oo
Jii o i Ji, 0 Jo, 1
Gt =c¢rt=s and C.'=C2"

This last condition implies

pji(@) — jir1(2) = pki(or) — kiy1(o0).

This proves the claim.

For each J and each i, o there exists an s < r with ci*i = s, as was remarked below
Notation 6.4. Hence, the claim implies that if 7, ~, T}, then for each i, « we have

Pji(@) — jix1() = pki() — kiy1(e).

Furthermore, we have 1 < jo(1) < --- < jo(n) < ||p°|l = n, hence jjo(x) = o. The same
holds for the k¢(x). This shows that j;(«) = k() for all i, . We conclude J; = J>.
This finishes the proof of the lemma. O

Proof of the theorem. Consider the set of all J € J for which T; is maximal.
Lemma 6.6 implies that this set consists of one clement, i.e. there is a unique
J' € J such that T, is maximal among the 7,’s. Therefore, in the expression for
det(B) given in Lemma 6.2, the term 7, does not cancel. Furthermore,
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deg(T}) # 0. This implies that det(B) is a polynomial in xi,...,x, of positive
degree. ]

It is not clear to me if the condition p large in the Main Theorem is really necessary.
I do not know of any counter example for small p. In the case that ||i|| = 1 the proof
can be simplified considerably, and we can improve on the condition on p.

PROPOSITION 6.7. Fix a type a = (¢; ay, ..., a,). Suppose p = r — 2. Suppose fur-
thermore that |i|| =1 and |ip’|| =1 for all j and some i. Then there exist
Xls ..o, Xp Such that y_; = 1.

Proof. We will use the same notation as before. It is no restriction to suppose that
i=1 Wehave J = {(i,/)|0 <i<f, 1<j; <|p'|l}. To prove the lemma, we have to
show that the matrix of F/: L, — L, is invertible, for some choice of the branch

points xi, ..., x,. By assumption L; is one dimensional. The matrix is given by
/-1
f—1—i
2119
JeJ i=0
with
play pla,
bJ,,‘:(—l)N Z [p( 7 )] [p( 7 )] XI;I"'X:}".
ny4--+n=N n ny

Here N = p(||p’| + 1 —ji) — (Ip"* 'l + 1 — ji11). As before, the b, ; are not identically
zero as polynomial in the x;. The proof that for J; # J, the largest of by, ; does
not cancel against the largest monomial of by, ; is obvious in this case. We do
not need the assumption p > £(r — 3), which was needed in the general case. []

COROLLARY 6.8. Let Y — P! be a cover of type a branched at three points. Then

a(Y) = B(a, 0).
Proof. This follows immediately from the above proposition, since Lemma 4.5
implies that the dimension of the eigenspaces are at most one in this case. O

This result can also be deduced from a result of Yui [24] by using the formula for
the zeta function of Y, where ¥ — P! is an ¢-cyclic cover unbranched outside
0, 1, 0o, [5, Section 1]. Actually one can calculate not only the p-rank of Y, but also
the isogeny type of the p-divisible group of the Jacobian of Y.

EXAMPLE 6.9. Let k be an algebraically closed field of characteristic p. Let E be an
elliptic curve defined over k and P a k-point of E.

CLAIM. Then

7 (P} — {0, 1, 00}) % 7| (E — {P}).
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For simplicity we will suppose p # 2, 3, but the argument can easily be extended to
any characteristic. Much more general results of this type have been obtained by
A. Tamagawa (forthcoming).

Choose £|p — 1 with £ > 2 but £ not necessarily prime. Choose an ¢-cyclic cover
Y — P! branched at 0, 1, co with g(Y) > 0. Corollary 6.8 implies that Y is ordinary,
since p = 1(mod ¢). Proposition 2.4 implies that n’l(P}( — {0, 1, oo}) has a quotient of
order p¢; this quotient is non-Abelian. On the other hand, every quotient of
nj(E — {P}) of order p¢ is Abelian. This proves the claim.

7. Degeneration

A way to get information on the p-rank of a cover is to degenerate the cover, and
deduce information on the original cover from the, hopefully easier, degenerate
cover. In the case of Galois covers of degree prime-to-p, this method works very
well, as one knows exactly which covers one gets by degenerating it, namely admiss-
ible covers. In this section and the next, we use this idea to strengthen the results from
the previous section, under certain extra hypotheses. Unfortunately, this method
does not work in general. Under specialization, the p-ranks drops. It is possible
to find examples were all degenerations of a given cover Yx — X have p-rank
strictly less than the p-rank that one want to show the original cover has, namely
B(a, g).

The following notations will be fixed throughout this section and the next. Suppose
k = k and the characteristic of k is p > 0. Let 4 := k[[f]] have maximal ideal m, and
field of fractions K. Put S := Spec(4). For a scheme X over S we denote by
X=X ®4 K the generic fiber and X, = X ® 4 k the special fiber. A curve X/S
is a flat scheme such that the geometric fibers are projective, connected, reduced
and of dimension one. A semistable curve X'/S is a curve over S such that the geo-
metric fibers of X have at most ordinary double points as singularities. A morphism
n: )Y — X of curves over S is a cover if it is finite and generically étale. Let G
be a subgroup of Aut()/X). The cover =« is called G-Galois if V/G = X and the
order of G is equal to the degree of =.

DEFINITION 7.1. Let n: ¥ — X be a tame G-Galois cover of semistable curves
over k. Suppose the decomposition group of 7 is cyclic. Let ¢ be a generator of
the decomposition group of 7. Let u; for i = 1,2 be a uniformizing parameter at
7 of the branches of Y meeting at 7. Then 7 is called admissible if for each singular
point t of Y the following condition is satisfied: ¢*u; = ({u; (mod (u%)) and
d*ur = Tl (mod(3)), for some root of unity { € k.

Let X be a semistable curve over .S, whose generic fiber X'z is smooth. Suppose we
are given a G-Galois cover ng: Yx — Xk of smooth curves and suppose p /[ |G|.
Denote the branch locus of ng by xi,...,x,. Let Y be the normalization of X in
the function field of Yk. After replacing A4 by a finite extension of 4, we may assume
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Y is reduced, by Abhyankar’s Lemma. Suppose that xi, ..., x, specialize to distinct
points in the smooth locus of X.

PROPOSITION 7.2. Let Y — X be as above. The cover Y, — Xy is admissible and
unbranched outside {x,(s), ..., x,(s)} U Sing(Xy).

Proof [19, Théoréme 3.2]. Note that what is called admissible here is called
kummeérien in that paper. O

In fact, a stronger result is true. In the situation as above, one can show that
admissible covers of X, can be lifted to covers of X, unbranched outside
X1, ..., X, see [7] or [23]. There is an isomorphism between the prime-to-p part
of the fundamental group of X'z and the prime-to-p part of a suitably defined admiss-
ible fundamental group of X, but we do not need this here.

If /S is a curve with semistable fibers then o(X';) = o(Xy) , [16, p. 1281]. The
analogous statement for generalized Hasse—Witt invariants is also true, as follows
from the next proposition.

PROPOSITION 7.3. Let X — S be a semistable curve with Xz nonsingular. Let
n: Y — X be a G-Galois cover of order prime-to-p. For each irreducible character
1 of G we have y, (1) Z v, (20)-

Proof. Let Y be a semistable curve over k on which acts a group G of prime-to-p
order. Then G acts on H'(Y, Oy)". Using the identification

H'(Y,0y)" ~H)\(Y,Z/p) ~ (Z/p)""

[10, III. 4.12], we can define an action of G on (Z/p)"(Y).

Now let y be an irreducible character of G. Then the generalized Hasse—Witt
invariant y(y) is equal to the product of the dimension of y and the multiplicity
of '@ @) in (Z/p) ™ @, T,

Let n: Y — X be as in the statement of the proposition. There exists an injective,
canonical map

H'\(Yy, Z/p)—~H'(YVg. Z/p),

[16, p. 1281]. Since the map is G-equivariant, y, (1) < ynk(;{). O

Suppose that p = 1 (mod ¢). Let Y — P! be an £-cyclic cover over K. Decompose
HY(Y,Oy) = @] L; into isotypical spaces. Then F: L; — L;. Hence in this case
B(a,0) = g(Y). Question 3.3 boils down to: for a fixed type a, do there exist
X1, ..., X, such that the cover of P! branched at the x; of type a is ordinary? This
is the case as is shown in the following proposition.

PROPOSITION 7.4. Let £|(p — 1). There exists xi, . . ., x, € P! such that all ¢-cyclic
covers w: Y — P}c, unbranched outside x\, ..., x,, are ordinary.
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Proof. We use induction on r. For r = 2 there is nothing to prove since each cover
of P! branched at 2 points has genus zero. For r =3 the result follows from
Corollary 6.8. So suppose r = 4.

Suppose the statement holds for all s < r. Let A = k[[t]], S = Specd and let K be
the quotient field of 4. Construct a semistable curve X — S, with semistable special
fiber consisting of two curves X; and X; of genus 0 meeting in one point 7, and generic
fiber a nonsingular curve of genus 0. Choose sections x, ..., x,: S — X, such that
x1,x; meet X; — {r} and x3,...,x, meet X, — {r}. By induction, we can choose
the x; such that for all m|¢, the m-cyclic covers of X,, unbranched outside
X3, ..., X, 7T, are ordinary. Also the m-cyclic covers of X, unbranched out-
sidexy, x», 7, are ordinary, by the results for r = 3 branch points.

Let ng: Y — X; be an £-cyclic cover, unbranched outside xi, . .., x,. This cover
will be defined over some finite extension of K, so, after replacing 4 by a finite
extension, we may assume that the cover is defined over K. We now proceed as
in the beginning of this section. Let ) be the normalization of X in the function
field of Yk. Assume ) is reduced (replace 4 by a finite extension, if necessary). Prop-
osition 7.2 implies that J); — X is an admissible ¢-cyclic cover which is unbranched
outside x;(s), ..., x,(s), .

Let Z be an irreducible component of ). Let m be the order of the decomposition
group of Z. Then Z/(¢*™) is isomorphic to X; for i equal to 1 or 2 hence Z — X;isan
m-cyclic cover of X; and Z is ordinary by assumption. Since all components of ) are
ordinary, the curve ) itself is ordinary. It follows that

gVg) = a(Vg) = a(Vs) = pa(Vs).
Because Y — S is flat, p,(Y;) = g(Vx) and Vi is ordinary. OJ
LEMMA 7.5. Suppose that a is a type such that | — p'|| = r — 2 for all i. Then there
exist X1, ..., x, € P! such that for all covers of type a, unbranched outside the x;,
we have y, =r —2.
Proof. This lemma follows easily by induction, using an argument similar to the
argument used in the previous proposition. O

The situation of the lemma above is very special. Here is a case were it occurs.

EXAMPLE 7.6. Let £=(p" —1)/(p—1) and let a:=(; 1,p,p% ...p"""). Let
n: Y — P! be an ¢-cyclic cover of type a branched at xi, , x,. Then

. 1 X
171 = Il :Z(l—i-...—i—p’_l)—l:() for all j.

Hence, | —p/|| = || = 1|| = — 2 for all j by Lemma 4.5. From the lemma above it
follows that y; =r — 2, in case xi, ..., x, are sufficiently general.
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PROPOSITION 7.7. Let Y — P! be the cover of type abranched at 0, 1, co, x. Then
there exists an x € P' such that o(Y,) = B(a, 0).
Proof. To prove the proposition, it suffices to show that foreachj=1,...,¢—1

we have y_; = min; I7%71l. As before we may assume j = 1 and ||p|| > ||1]. From
Lemma 4.5 we know that ||p/|| <r —2 =2 for all i. Therefore, distinguish three
cases:

@® I1=0,

i) =1,

(iii) ||p]| =2 for all i.

We have to show for a suitable choice of x we have y_; = Oin the firstcase,y_; =1
in the second case and y_; = 2 in the third case.

In Case (i), the action of Frobenius on @;L, is nilpotent, so y_; = 0. Case (ii)
follows from Proposition 6.7. Case (iii) follows from Lemma 7.5. O

PROPOSITION 7.8. Suppose p = —1(mod ¢). Leta = ({; a1, ..., a,) bea type. There

exist X1, ..., x, such that for the t-cyclic cover Y — P! of type a, branched at the x;,
we have a(Y) = B(a, 0).
Proof. Letn: ¥ — P! be a cover of typea=(¢;ay,...,a,) with 0 < a; < £ # 2.

Suppose that p = —1 (mod ¢). The coset of (p) in (Z/€)* containing i consists of
two elements: i and —i. We want to show

Y = min([[l, | — £l

We may suppose i = 1.

From Lemma 4.5 we know that ||[1|| + || — 1|| = r — 2. Put n = ||1||. We may sup-
pose 0 < n < [(r—2)/2]. If n = 0 the matrix of Frobenius on L; & L_; is nilpotent
and y, = 0. Suppose that n > 0.

We will prove the proposition by induction. For r = 3, 4 the statement follows
from Corollary 6.8 and Proposition 7.7. Suppose the statement holds for ' < r.

Case 1. Suppose n < (r —2)/2. For r odd this always holds. Choose i #j with
ai+a; <€ We can do this since if ay_1+axy > for each s, then
ar+---4a =[r/2lt. Buta; +---+a, =nl < (r—2)¢/2 < [r/2]¢, so we get a con-
tradiction. Put a; = (a;,4j, —a; —a;) and ar = (a; +aj,ai,...,4;,...,4;,...), 1e.
in a, we omit a; and g;. For a cover f: X — P! of type a; we find

ai+a_/+(ﬁ—a,<—aj)
Il = ;

—1=0 and | -1, =1.

For a cover g: Z — P! of type a, we find

ai+---+a
Iy, === =1=n and |1l =r—=3-n
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Note k <r—n— 3. By induction y,(f) = 0 and y,(g) = n. As in the proof of the
previous proposition, Proposition 7.3 implies y;(n) = y,(g) = n. Hence y,(n) = n.

Case 2. Suppose r =2s with s >2 and n=s—1. Then a; +... + a, = st.
CLAIM. There exist distinct h, i, j, such that £ < a, + a; + a; < 24.

To prove the claim, put x; = @;/¢ — 1/2. Note

—1/2<x;<1/2 and x1+...+x =0

We will see that for any m there exist distinct 7j,..., %, € {1,...,r} such that
-1/2 < Z]m:l x;; < 1/2. The claim follows from this by taking m = 3.
Use induction. For m = 1 itis trivial. Let m > 1. Choose I = {iy, ... i,—1} such that

—1/2 < Sp_1:=) ;0 xi < 172, 1If S,1 = 0 then (3 x;) — S,u—1 <0, so there is an
j &1 with x; < 0. We can add j to I to fulfill the condition for m. Analogously
for S,,_1 < 0. This proves the claim.

Choose h,i,j as in the claim. Put a; = (a;, a;, aj, —a, —a; — a;), and a, =
(ap + a; + a;, rest of the a;). Then |1, =Il—1l,, =1 and |1, = —1ll,, =
s — 1. As in the previous case, the proposition follows by induction. O

Remark 7.9. In this section, we showed several results of the form: under this
condition there exists a position of the branch points such that all covers have
maximal p-rank. Recall that by Lemma 4.6 the set U of all branch points with this
property is open. So in fact, we could reformulate, e.g. Proposition 7.4 as follows.
Suppose p = 1 (mod ¢£). Then there exists a dense open subset U C (P')" — A such
that all ¢-cyclic covers branched at (xi, ..., x,) € U are ordinary. Similar for the
other results.

8. Cyclic Covers of Generic Curves

Let X be an ordinary elliptic curve or the generic curve of genus > 2. In this section
we will show that we can reduce Question 3.3 on the p-rank of an £-cyclic cover of X
to the case of ¢-cyclic covers of P!.

PROPOSITION 8.1. Let X be the generic curve of genus g = 2 or an ordinary elliptic
curve. Let a be a type such that there exists a (not necessarily connected) cover ofP1
of type a with p-rank B(a, 0). Then there exist xi, ...x, € X such that each cover of X
of type a, unbranched outside the x;, has p-rank B(a, g) + g(X).

We need to consider nonconnected covers of P! in the statement of the proposition
because of the following. Suppose gcd(¢, ay, ..., a,) # 1 and suppose g(X) = 1. Then

https://doi.org/10.1023/A:1017513122376 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017513122376

320 IRENE I. BOUW

there exist connected covers of X of type a := (¢; ay, .. ., a,), but the covers of P! of
type a are nonconnected.

Proof. Let g = 1 be an integer. Let X be the generic curve of genus gif g > 2 or an
ordinary elliptic curve if g = 1 and let k be some algebraically closed field of charac-
teristic p over which X is defined. Put S = Speck{[7]] and K = Q(k{[#]]). Construct a
semistable curve X — § as follows. The generic fiber X is a trivial deformation
of X and the special fiber X; consist of two components X; and X, meeting in
one point 7, where X; >~ X and X; is a nonsingular curve of genus zero. A curve
like this can be constructed by blowing up the trivial deformation of X over S
in one point of the special fiber. Choose distinct sections xi, ..., x, of § — X such
that the x; meet the special fiber X in X, — {t}. Let n = ged(¢y, ay, . . ., a,) and write
a’'=({y4d,,...,a,), where a; = a;/ny and £, = £/n,. We assume that the £,-cyclic
cover Y) — X, of type a’ with branch locus x(s), ..., x,(s) has p-rank B(a’, 0). (This
is equivalent to the assumption in the statement of the proposition.)

Recall that starting from the cover Y, — X> we can form a (nonconnected)
Z/t-cover by taking the induced cover, i.e. take n, = £/¢, copies of Y, and let
7./¢ permute the copies suitably. Call the resulting cover Y, — Xp; it is of type
a. Consider all admissible covers Y — X; whose restriction to X, is isomorphic
to Y» — X. (These covers are what one could call ‘admissible covers of X of type
a with branch locus xi(s), ..., x,(s)’.) We would like to show that all these covers
have p-rank equal to B(a, g) + g. The proposition follows from this, as in the proof
of Proposition 7.4.

We will now compute the p-rank of the ‘admissible covers of X of type a with
branch locus xi(s), ..., x,(s)’. Let ¥ — X be such a cover. Write ¥} = Y|y, and
let n; be the number of connected components of Y; and put £; = £/n;. Note
ged(m, m) =1 since Y is supposed to be connected. Let Y| be a connected
component of Y;. If g(X;) = 1 then Y] — X is an étale cover of an ordinary elliptic
curve and Y| is ordinary. If g(X7) = 2 it follows from [11, Section 5.III] that Y|
is ordinary.

By assumption, the curve Y; has p-rank

o(¥;) = 3_f/ min (i("f%} - 1>,

iel’ n=1 2

where I’ is a set of representatives of the cosets of (p) in Z/¢, — {0} and f] is the
number of elements of the coset containing i. Of course, since all components of
Y, are isomorphic, the same statement holds for the other components of Y;. Note

that H'(Y,, Oy,) = Ind%z H'(Y}, Oy,) as a k[Z/f]-module. This yields

o(Y2) = m(o(Y3) = }_fimin (Z<zﬂanez> - 1) +m—1,

iel n=1

where 7 is a set of representatives of the cosets of (p) in Z /¢ — {0} and f; is the number
of elements of the coset containing i.

https://doi.org/10.1023/A:1017513122376 Published online by Cambridge University Press


https://doi.org/10.1023/A:1017513122376

THE p-RANK OF RAMIFIED COVERS OF CURVES 321

The curve Y contains 1 + £ — n; — ny loops. Therefore, we find for the p-rank of Y
that

o(Y)=n-g(Y)+14+L—n —ny+0(Y2)

=g+ f; mj.in (i<lﬂ;> - 1) = B(a,g) +¢.

iel n=1

Recall that

B@.g) =) f; min (Z<ip/;"> . 1) (- Dy

iel n=1

Note that for i divisible by ¢;, we have
S 1o
n=1 ¢

since all a,,’s are divisible by n,.This finishes the proof of the proposition. O

In fact, the proof applies to every curve X such that all étale cyclic covers ¥ — X
whose order m divides ¢, have p-rank a(X) + (m — 1)(g — 1). In [11] it is proved that
this holds for curves in a dense open subset of the moduli space M,.

COROLLARY 8.2. Let X be the generic curve of genus g = 2 or an ordinary elliptic
curve. Let £ be an integer prime-to-p, and suppose one of the following holds:

(i) p=r-23),
(i) <4,
(iii) p=+1 (mod®).

Then there exists xy, ..., x, € X such that all £-cyclic covers Y — X, unbranched
outside the x; of type a satisfy

o(Y)=B(a,g) +g.
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