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Abstract

We develop classification results for max-stable processes, based on their spectral repre-
sentations. The structure of max-linear isometries and minimal spectral representations
play important roles. We propose a general classification strategy for measurable max-
stable processes based on the notion of co-spectral functions. In particular, we discuss
the spectrally continuous-discrete, the conservative-dissipative, and the positive-null
decompositions. For stationary max-stable processes, the latter two decompositions
arise from connections to nonsingular flows and are closely related to the classification of
stationary sum-stable processes. The interplay between the introduced decompositions of
max-stable processes is further explored. As an example, the Brown–Resnick stationary
processes, driven by fractional Brownian motions, are shown to be dissipative.
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1. Introduction

Max-stable processes have been studied extensively in the past 30 years. The works of
Balkema and Resnick [2], de Haan [7], [8], de Haan and Pickands [9], Giné et al. [11], and
Resnick and Roy [24], among many others, have led to a wealth of knowledge on max-stable
processes. The seminal works of de Haan [8] and de Haan and Pickands [9] laid the foundations
of the spectral representations of max-stable processes and established important structural
results for stationary max-stable processes. Since then, however, while many authors focused
on various important aspects of max-stable processes, the general theory of their representation
and structural properties has not been thoroughly explored. At the same time, the structure and
classification of sum-stable processes have been vigorously studied. Rosiński [26], building on
the seminal works of Hardin [12], [13] about minimal representations, developed the important
connection between stationary sum-stable processes and flows. This led to a number of
important contributions on the structure of sum-stable processes (see, e.g. [21], [22], [27],
[29], and [30]). There are relatively few results of this nature about the structure of max-stable
processes, with the notable exceptions of de Haan and Pickands [9], Davis and Resnick [6],
and the very recent works of Kabluchko et al. [16] and Kabluchko [14].

Our goal here is to develop representation and classification theory for max-stable processes,
similar to that available for sum-stable processes. We are motivated by the strong similarities
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between the spectral representations of sum- and max-stable processes. For max-stable pro-
cesses, it turns out that the notion of minimal extremal integral representation plays a key
role, as does the minimal integral representation for α-stable processes (see [12], [13], [26],
and [28]). Before we can fruitfully handle the minimal extremal integral representations, we
should first thoroughly investigate the structure of max-linear isometries, also known as the
pistons of de Haan and Pickands [9]. We refine and extend their work and give a brief summary
in Section 3. A detailed and complete treatment is provided in [35]. Note that a recent work
by Pipiras [20] provides a general framework to obtain minimal representations from any
nonminimal representation for α-stable processes. This framework could also be applied to
max-stable processes.

In Section 4 we establish general classification results for max-stable processes using the
developed theory of minimal spectral representations. In Section 4.1 we first show that essen-
tially any max-stable process can be represented uniquely as the maximum of two independent
components, characterized as spectrally continuous and spectrally discrete, respectively. In
Section 4.2, for a large class of max-stable processes, we introduce the notion of co-spectral
functions, which are invariant to the choice of spectral representations (up to a constant factor).
This allows us to develop a general strategy for the classification of these processes, based on
positive cones of co-spectral functions. As particular examples, we obtain the conservative-
dissipative and the positive-null decompositions.

Section 5 is devoted to the classification of stationary max-stable processes. As in the
sum-stable case, the minimal representations allow us to associate a measurable nonsingular
flow to every measurable stationary max-stable process. This correspondence enables us to
apply existing ergodic theory results about the flow to characterize the max-stable process.
The conservative-dissipative and positive-null decompositions introduced in Examples 4.3
and 4.4 are in fact motivated by the corresponding decompositions of the underlying flow.
These two results are in close correspondence with the classifications of Rosiński [26] and
Samorodnitsky [30] for sum-stable processes. As in Rosiński [26], we find that the class of
stationary max-stable processes generated by dissipative flows is precisely the class of mixed
moving maxima.

In Section 6 we apply the results in Section 5 to Brown–Resnick processes. We give simple
necessary and sufficient conditions for a generalized Brown–Resnick stationary process to be
a mixed moving maxima. This extends and complements the recent results of Kabluchko
et al. [16]. In particular, if the Brown–Resnick process is generated by a fractional Brownian
motion, then it is a mixed moving maxima.

The recent work of Kabluchko [14] established some classification results very similar to
the ones appearing in Sections 4 and 5, using an association device between max- and sum-
stable processes. This association allows one to transfer existing classifications of sum-stable
processes to the max-stable domain. It also clarifies the connection between these two classes
of processes. Our results were obtained independently and by using rather different technical
tools. The combination of the two approaches provides a clearer picture on the structure of
max- and sum-stable processes as well as their interplay.

2. Preliminaries

The importance of max-stable processes stems from the fact that they arise in the limit of
componentwise maxima of independent processes. It is well known that the univariate marginals
of a max-stable process are necessarily extreme value distributions, i.e. up to rescaling and shift
they are either Fréchet, Gumbel, or negative Fréchet. The dependence structure of the max-
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stable processes, however, can be quite intricate and it does not hinge on the extreme value type
of the marginal distributions (see, e.g. Proposition 5.11 of [23]). Therefore, for convenience and
without loss of generality, we will focus here on max-stable processes with Fréchet marginal
distributions. Recall that a positive random variable Z ≥ 0 has α-Fréchet distribution, α > 0, if

P(Z ≤ x) = exp{−σαx−α}, x ∈ (0, ∞).

We will let ‖Z‖α := σ > 0 denote for the scale coefficient of Z. It turns out that a stochastic
process {Xt }t∈T with α-Fréchet marginals is max-stable if and only if all positive max-linear
combinations:

max
1≤j≤n

ajXtj ≡
∨

1≤j≤n

ajXtj for all aj > 0, tj ∈ T , 1 ≤ j ≤ n, (2.1)

are α-Fréchet random variables (see, e.g. [7] and [34]). This feature resembles the definition
of Gaussian or, more generally, symmetric α-stable (sum-stable) processes, where all finite-
dimensional linear combinations are univariate Gaussian or symmetric α-stable, respectively
(see, e.g. [31]). We will therefore refer to the max-stable processes with α-Fréchet marginals
as α-Fréchet processes.

The seminal work of de Haan [8] provided convenient spectral representations for stochas-
tically continuous α-Fréchet processes in terms of functionals of Poisson point processes on
(0, 1)× (0, ∞). Here, we adopt the slightly more general, but essentially equivalent, approach
of representing max-stable processes through extremal integrals with respect to random sup-
measures (see [34]). We do so in order to emphasize the analogies with the well-developed
theory of sum-stable processes (see, e.g. [31]).

Given a measure space (S, BS, µ) and α > 0, {Mα(A)}A∈BS
is said to be an α-Fréchet

random sup-measure with control measure µ, if (i) the Mα(Ai)s are independent random
variables for disjoint Ai ∈ BS, 1 ≤ i ≤ n, (ii) Mα(A) is α-Fréchet with scale coeffi-
cient ‖Mα(A)‖α = µ(A)1/α , and (iii) for all disjoint Ais, i ∈ N, we have Mα(

⋃
i∈N

Ai) =∨
i∈N

Mα(Ai) almost surely.
We can then define the extremal integral of a nonnegative simple function f (u) := ∑n

i=1ai

× 1Ai
(u) ≥ 0, Ai ∈ BS :∫e

S

f dMα ≡
∫e

S

f (u)Mα(du) :=
∨

1≤i≤n

aiMα(Ai).

Hence,
∫e
S

f dMα is an α-Fréchet random variable with scale coefficient (
∫
S

f α dµ)1/α . The
definition of

∫e
S

f dMα can, by continuity in probability, be extended to integrandsf in the space
of nonnegative, Lα-integrable measurable functions Lα+(S, µ) := {f ∈ Lα(S, µ) : f ≥ 0}.
Here and in the sequel, we write (S, µ) = (S, BS, µ) for simplicity. It turns out that the
random variables

∫e
S

fj dMα, 1 ≤ j ≤ n, are independent, if and only if the fj s have pairwise
disjoint supports (mod µ). Furthermore, the extremal integral is max-linear:∫e

S

(af ∨ bg) dMα = a

∫e
S

f dMα ∨ b

∫e
S

g dMα

for all a, b > 0 and f, g ∈ Lα+(S, µ). For more details, see [34].
Now, for any collection of deterministic functions {ft }t∈T ⊂ Lα+(S, µ), we can construct

the stochastic process

Xt =
∫e

S

ft (u)Mα(du) for all t ∈ T .
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In view of the max-linearity of the extremal integrals and (2.1), the resulting process X =
{Xt }t∈T is α-Fréchet. Furthermore, for any n ∈ N, xi > 0, ti ∈ T , 1 ≤ i ≤ n,

P(Xt1 ≤ x1, . . . , Xtn ≤ xn) = exp

{
−

∫
S

( ∨
1≤i≤n

x−1
i fti (u)

)α

µ(du)

}
. (2.2)

This shows that the deterministic functions, {ft }t∈T , completely characterize the finite-dimen-
sional distributions of the process X. In general, if

{Xt }t∈T
d=

{ ∫e
S

ft dMα

}
t∈T

(2.3)

for some {ft }t∈T ⊂ Lα+(S, µ), we will say that the process X has the extremal integral or
spectral representation {ft }t∈T over the space Lα+(S, µ). The ft s in (2.3) are also referred to
as spectral functions of X.

Our goal in this paper is to characterize α-Fréchet processes in terms of their spectral
representations. Many α-Fréchet processes of practical interest have tractable spectral rep-
resentations, with (S, BS, µ) being a standard Lebesgue space (see, e.g. Appendix A of [22]).
For example, a Polish space with σ -finite measure on its Borel sets is standard Lebesgue, and one
often chooses (S, BS, µ) = ([0, 1], B[0,1], Leb) in (2.3). As shown in Proposition 3.2 of [34],
an α-Fréchet process X has representation (2.3) with (S, BS, µ) being standard Lebesgue, if
and only if X satisfies the following condition.

Condition S. There exists a countable subset T0 ⊆ T such that, for every t ∈ T , we have
Xtn

p−→ Xt for some {tn}n∈N ⊂ T0.

Note that without Condition S, every max-stable process X can still have a spectral rep-
resentation as in (2.3), but the space (S, µ) may not be standard Lebesgue (see Theorem 1
of [14]).

In the sequel, we focus only on the rich class of α-Fréchet processes that satisfy Condition S.
This includes, for example, all measurable max-stable processes X = {Xt }t∈T , indexed by a
separable metric space T (see Proposition 4.1 below). Recall that we write (S, µ) = (S, BS, µ).
The fact that (S, µ) is a standard Lebesgue space implies that the space of integrands Lα+(S, µ)

is a complete and separable metric space with respect to the metric

ρµ,α(f, g) =
∫

S

|f α − gα| dµ.

This metric is natural to use when handling extremal integrals, since, as n → ∞,∫e
S

fn dMα
p−→ ξ if and only if ρµ,α(fn, f ) =

∫
S

|f α
n − f α| dµ → 0,

where ξ = ∫e
S

f dMα (see, e.g. [6] and [34]). In the sequel, we equip the space Lα+(S, µ) with
the metric ρµ,α and often write ‖f ‖Lα+(S,µ) for (

∫
S

f α dµ)1/α .
The max-linear (sub)spaces of functions in Lα+(S, µ) play a key role in the representation and

characterization of max-stable processes. We say that F is a max-linear subspace of Lα+(S, µ)

if af ∨ bg ∈ F for all a, b > 0 and f, g ∈ F , and F ⊂ Lα+(S, µ) is closed with respect to
the metric ρµ,α . In particular, provided a class of functions {ft }t∈T ⊂ Lα+(S, µ), we will fre-
quently encounter the max-linear spaceF := ∨-span(ft , t ∈ T ), which is the smallest subset of
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Lα+(S, µ) that contains all max-linear combinations
∨

1≤i≤n aifti , ti ∈ T , ai > 0, and is closed
with respect to ρµ,α . A map U from a max-linear subspace F ⊂ Lα+(S1, µ1) to Lα+(S2, µ2)

is said to be a max-linear isometry if (i) U(a1f1 ∨ a2 f2) = a1(Uf1) ∨ a2(Uf2), µ2-almost
everywhere (µ2-a.e.) for all f1, f2 ∈ F and a1, a2 ≥ 0; and (ii) ‖Uf ‖Lα+(S2,µ2) = ‖f ‖Lα+(S1,µ1)

for all f ∈ F . A max-linear isometry U is called a max-linear isomorphism if it is onto. For
more details, see [34].

3. Minimal representations

We discuss here the notion of a minimal representation of an α-Fréchet process, used
extensively in the following sections. First, we remark that different spectral representations
of the same process {Xt }t∈T can be related by max-linear isometries. Namely, assume that
{f (i)

t }t∈T ⊂ Lα+(Si, µi), i = 1, 2, are two spectral representations for the α-Fréchet process
X = {Xt }t∈T . By (2.2), for all tj ∈ R, cj > 0, 1 ≤ j ≤ n, we have

P(Xtj ≤ c−1
j , 1 ≤ j ≤ n) =

∫
S1

( n∨
j=1

cjf
(1)
tj

)α

dµ1 =
∫

S2

( n∨
j=1

cjf
(2)
tj

)α

dµ2.

We can thus define the natural max-linear isometry U from F1 := ∨-span({f (1)
t }t∈T ) to F2 :=

∨-span({f (2)
t }t∈T ) by

Uf
(1)
t := f

(2)
t for all t ∈ T . (3.1)

In the sequel, U will be called the relating max-linear isometry of the two representations.
Our definition of a minimal representation is as in [26] (see also [9] and [13]). Other

equivalent definitions have been investigated in [20] and [28]. This concept plays a key role in
developing results on the structure of the relating max-linear isometry.

Definition 3.1. Given an α-Fréchet process, a spectral representation {ft }t∈T ⊂ Lα+(S, µ) is
said to be minimal if:

(i) supp{ft : t ∈ T } = S, µ-a.e., where by supp{ft : t ∈ T } we denote the minimal (mod µ)
set A ∈ BS such that µ{s : ft (s) �= 0, s ∈ Ac} = 0 for every t ∈ T ; and

(ii) for any B ∈ BS , there exists A ∈ ρ({ft : t ∈ T }) := σ({ft/fs : t, s ∈ T }) such that
µ(A�B) = 0. Here the ratios ft/fs take values in [0, ∞], with the conventions that
1/0 = ∞ and 0/0 = 0.

We now state the main results on minimal representations. A complete treatment and the
proofs can be found in [35]. The first result ensures the existence of minimal representations.

Theorem 3.1. Every α-Fréchet process satisfying Condition S has a minimal representation
{ft }t∈T ⊂ Lα+(S, µ), where (S, µ) is a standard Lebesgue space. Namely,

{Xt }t∈T
d=

{∫e
S

ft (s)Mα(ds)

}
t∈T

,

where Mα is the α-Fréchet random sup-measure with control measure µ.

The next result shows that a general spectral representation can be related to a minimal one
via point mappings.
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Theorem 3.2. Let {gt }t∈T ⊂ Lα+(S1, µ1) and {ft }t∈T ⊂ Lα+(S2, µ2) be two spectral represen-
tations of an α-Fréchet process {Xt }t∈T . Let U be the relating max-linear isometry of {gt }t∈T

and {ft }t∈T . If {gt }t∈T is minimal and {ft }t∈T is arbitrary, then

(i) U can be uniquely extended to Lα+(S1, µ1);

(ii) U can be represented by measurable functions � : S2 → S1 and h : S2 → R+ \ {0},
such that � is onto, and the following statements hold:

ft (s) = Ugt (s) = h(s)(gt ◦ �)(s) µ2-a.e. for all t ∈ T (3.2)

and
µ1 = µh ◦ �−1, (3.3)

where µh(ds) = h(s)αµ2(ds). Moreover, � is unique modulo µ2.

We will also consider minimal representations with standardized support. A similar idea of
standardization was mentioned in [25].

Definition 3.2. A minimal representation {ft }t∈T ⊂ Lα+(S, µ) has standardized support if, up
to µ-null sets,

(i) S ⊂ (0, 1) ∪ N;

(ii) S ∩ (0, 1) = ∅ or (0, 1) and µ|S∩(0,1) is the Lebesgue measure;

(iii) S ∩ N = ∅, N or {1, . . . , N}, where N ∈ N and µ|S∩N is the counting measure.

Let (SI,N , λI,N ) denote the standard support with I = 0 or 1 respectively according to the two
cases in (ii), and N = 0, N = ∞, or N ∈ N respectively according to the three cases in (iii),
e.g. S0,∞ = N and S1,N = (0, 1) ∪ {1, . . . , N}.

The next two corollaries refine Theorems 3.1 and 3.2, respectively.

Corollary 3.1. The minimal spectral functions {ft }t∈T ⊂ Lα+(S, µ) in Theorem 3.1 can be
chosen to have standardized support.

For convenience, write SI := SI,N ∩ (0, 1) and SN := SI,N ∩ N, and, for all f ∈ Lα+(S, µ),
write f I := f 1SI and f N := f 1SN . The following corollary shows that the standardized
support does not depend on the choice of the minimal representation.

Corollary 3.2. Let {ft }t∈T and {gt }t∈T be two minimal representations of an α-Fréchet process
{Xt }t∈T with standardized supports (SIi ,Ni

, λIi ,Ni
), i = 1, 2, respectively. Then

I1 = I2 = I and N1 = N2 = N.

Moreover, the relating max-linear isometry U of these representations has the form

Uf I
t =

(
d(λ ◦ �I )

dλ

)1/α

(f I
t ◦ �I ) = gI

t λ-a.e. and Uf N
t = f N

t ◦ �N = gN
t

for all t ∈ T , where λ is the Lebesgue measure on (0, 1), �I : SI → SI and �N : SN → SN

are bijections, and �I is bi-measurable.
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Remark 3.1. We briefly sketch how to show Theorem 3.2, since (3.2) and (3.3) play a crucial
role in the sequel.

First, we can represent the relating max-linear isometry U in (3.1) in terms of a regular set
isomorphism T (see Definition 3.2 of [35]) from (S1, ρ(F1)) to (S2, ρ(F2)). The regular set
isomorphism T is a set mapping, which induces a function mapping for all ρ(F1)-measurable
functions f (see, e.g. [10, pp. 452–454]). Next, we can extend U to a max-linear isometry �U
on a larger subspace of Lα+(S1, µ1), consisting of all functions in the product form rf , where r

is ρ(F1)-measurable, f ∈ F1, and rf ∈ Lα+(S1, µ1). The mapping �U has the following form:

�U(rf ) = (Tr)(Uf ) for all r ∈ ρ(F1), f ∈ F1.

Under the minimality assumption, Theorem 32.5 of [32] implies that T is generated by a point
mapping from S2 to S1. This will eventually yield Theorem 3.2 (see the proof of Theorem 4.2
of [35]).

4. Classification of α-Fréchet processes

We now apply the abstract results on max-linear isometries and minimal representations to
classify α-Fréchet processes. We start by dealing with the measurability of spectral functions
ft (s), seen as functions from (T , S) to R+. Suppose that T is a σ -algebra on T . We say
that the spectral representation {ft (s)}t∈T ⊂ Lα+(S, µ) is jointly measurable if the mapping
(t, s) �→ ft (s) is measurable with respect to the product σ -algebra T ⊗ BS := σ(T × BS).
By Theorem 18.1 of [3], f·(s) is T -measurable for all s ∈ S. The following result clarifies the
connection between the joint measurability of the spectral functions ft (s) and the measurability
of its corresponding α-Fréchet process. The proof is given in Appendix A.

Proposition 4.1. Let (S, µ) be a standard Lebesgue space, and let Mα (α > 0) be an α-Fréchet
random sup-measure on S with control measure µ. Suppose that (T , ρT ) is a separable metric
space and that T is the Borel σ -algebra.

(i) Let X = {Xt }t∈T have a spectral representation {ft }t∈T ⊂ Lα+(S, µ) as in (2.3). Then,
X has a measurable modification if and only if {ft (s)}t∈T has a jointly measurable
modification, i.e. there exists a (T ⊗BS)-measurable mapping (s, t) �→ gt (s), such that
ft (s) = gt (s), µ-a.e. for all t ∈ T .

(ii) If an α-Fréchet process {Xt }t∈T has a measurable modification then it satisfies Condi-
tion S, and, hence, it has a representation as in (2.3).

From now on, we assume that (T , ρT ) is a separable metric space and that T is the Borel
σ -algebra. By Proposition 4.1, any measurable α-Fréchet process {Xt }t∈T always has a jointly
measurable spectral representation and satisfies Condition S.

4.1. Continuous-discrete decomposition

Consider an α-Fréchet process X = {Xt }t∈T , which has a minimal representation with
standardized support {gt }t∈T ⊂ Lα+(SI,N , λI,N ). By Corollary 3.2, the support (SI,N , λI,N ) is
unique. We therefore call SI,N the standardized support of X and focus on the continuous and
discrete parts, respectively. We can write

{Xt }t∈T
d= {XI

t ∨ XN
t }t∈T , (4.1)

where XI
t := ∫e

SI gI
t (s)Mα(ds) and XN

t := ∫e
SN gN

t (s)Mα(ds) are two independent α-Fréchet
processes.
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We will provide next a classification rule, which allows us to obtain decomposition (4.1) for
essentially any jointly measurable spectral representation F = {ft }t∈T ⊂ Lα+(S, µ). Recall
that X satisfies Condition S, i.e. there exists a countable subset T0 ∈ T and, for all t ∈ T ,
there exist {tn}n∈N ⊂ T0 such that Xtn → Xt in probability as n → ∞. This implies that
ftnk

→ ft , µ-a.e. for some subsequence nk → ∞ as k → ∞ (see Theorem 2.1 of [34]). In
this way, the spectral functions F are determined by FT0 = {ft }t∈T0 , and we can show that
ρ(FT0) ∼ ρ(F ), i.e. for all A ∈ ρ(F ), there exists Ã ∈ ρ(FT0) such that µ(A�Ã) = 0. From
now on, we fix T0 and our classification rule depends only on FT0 .

First, define an equivalence relation on S as follows:

s ∼ r if ft (s) = qs,rft (r) for all t ∈ T0 and some constant qs,r > 0. (4.2)

Let [s] = {r : r ∈ S, r ∼ s} denote the equivalence class of s. To see that [s] is measurable, it
suffices to find a measurable function QFT0

(s, r) such that s ∼ r if and only if QFT0
(s, r) = 0.

A possible choice is

QFT0
(s, r) =

∑
t1,t2∈T0

1
{

ft1(s)

ft1(r)
�= ft2(s)

ft2(r)

}
+

∑
t∈T0

1
{

ft (s)

ft (r)
= ∞ or

ft (r)

ft (s)
= ∞

}
,

where 0/0 = 0 and 1/0 = ∞. The equivalence relation (4.2) will help us obtain the desired
decomposition. The idea is that the union of all [s] with µ([s]) > 0 corresponds to the spectrally
discrete component. Indeed, observe that (4.2) implies that, for all t1, t2 ∈ T0,

ft1(s)

ft2(s)
= ft1(r)

ft2(r)
equals a constant in [0, ∞] for all s ∈ [r]. (4.3)

This shows that the atoms of ρ(FT0) correspond to classes [s] with µ([s]) > 0. This suggests
defining the spectrally discrete support of {ft }t∈T by

S̃N :=
⋃

{s : µ([s])>0}
[s] =

{
s :

∫
S

1{QFT0
(s,r)=0} µ(dr) > 0

}
(4.4)

and the spectrally continuous support by S̃I := S \ S̃N = {s : µ([s]) = 0}.
Since the measure µ is σ -finite, there are at most countably many classes [s] with µ([s]) > 0.

Therefore, their union S̃N is measurable and so is S̃I . Now, we can consider decomposition (4.1)
with

XI
t :=

∫e
S̃I

ft (s)Mα(ds) and XN
t :=

∫e
S̃N

ft (s)Mα(ds) for all t ∈ T . (4.5)

Theorem 4.1. Let {Xt }t∈T be an α-Fréchet process with jointly measurable representation
{ft }t∈T ⊂ Lα+(S, µ). Then,

(i) decomposition (4.1) with components defined by (4.5) is unique in distribution; and

(ii) the processes XI = {XI
t }t∈T and XN = {XN

t }t∈T are independent, and their minimal
representations can be chosen to have standardized supports SI and SN , respectively.

Proof. See Appendix A.

The processes {XI
t }t∈T and {XN

t }t∈T will be referred to as the spectrally continuous and
spectrally discrete components of X, respectively.
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Remark 4.1. The choice of the appropriate set T0 in (4.2) is delicate. Other natural choices
would either lead to inconsistent classification rules, or they would not yield the desired
continuous-discrete decomposition. Indeed, suppose first that we replace ‘for all t ∈ T0’
by ‘for all t ∈ T ’ in (4.2) and consider ft (s) = 1 with S = T = (0, 1), µ = λ = Leb. Clearly,
we have S̃N = (0, 1). Let, however, f̃t (s) = ft (s) + 1{t=s} be a modification of ft (s). Now,
by replacing T0 with T and FT0 with F̃T = {f̃t : t ∈ T } in (4.4), we obtain S̃N = ∅, since in
this case [s] = {s} for all s ∈ (0, 1). Hence, this classification rule is inconsistent because it
depends on the choice of the (equivalent) spectral representation.

Next, suppose that ‘for all t ∈ T0’ is replaced by ‘for λ-almost all t ∈ T ’ in (4.2). Consider
ft (s) = 1 + s 1{t=1/2} with S = T = (0, 1) and µ = λ = Leb. This representation is
minimal with standardized support and, in particular, with trivial spectrally discrete component.
The modified classification rule would yield, however, S̃N = (0, 1), since [s] = (0, 1) for all
s ∈ (0, 1). To obtain the continuous-discrete decomposition, in this case it is important to
include the point t = 1

2 in the index set used in (4.2).

The following two examples illustrate typical spectrally discrete and spectrally continuous
processes.

Example 4.1. Let Zi, i ∈ N, be independent standard α-Fréchet variables, and let ft (i) ≥ 0,
t ∈ T , be such that

∑
i∈N

f α
t (i) < ∞ for all t ∈ T . The α-Fréchet process

Xt :=
∨
i∈N

ft (i)Zi ≡
∫e

N

ft dMα, t ∈ T ,

is spectrally discrete.

Example 4.2. Consider the well-known α-Fréchet extremal process (α > 0)

{Xt }t∈R+
d=

{∫e
R+

1(0,t](u)Mα(du)

}
t∈R+

, (4.6)

where Mα has the Lebesgue control measure on R+. The process X = {Xt }t∈R+ can be viewed
as the max-stable counterpart to a sum-stable Lévy process. The α-Fréchet extremal process
X is spectrally continuous.

4.2. Classification via co-spectral functions

Here we present a characterization of α-Fréchet processes based on a different point of
view. Namely, instead of focusing on the spectral functions s �→ ft (s), we now consider the
co-spectral functions t �→ ft (s), which are functions of t , with s fixed. Let λ now be a σ -finite
Borel measure on (T , T ) and view each f·(s) as an element of the classes L0+(T , T , λ) of
nonnegative T -measurable functions, identified with respect to equality λ-a.e.

We start with some intuition. Observe that, for the two spectral representations of the same
α-Fréchet process {Xt }t∈T as in Theorem 3.2, relation (3.2) implies that the co-spectral functions
t �→ ft (s) are proportional to gt ◦ �(s). This motivates us to classify the process X according
to, roughly speaking, the ‘shape’ of the co-spectral functions f·(s). To explore this idea, it is
natural to consider positive cones, as g· ◦ �(s) and f·(s) are in the same positive cone. Recall
that a set P ⊂ L0+(T , T , λ) is said to be a positive cone if cP ⊂ P for all c ≥ 0. Two cones
P1 and P2 are disjoint if P1 ∩ P2 = {0}.

We propose a general strategy for classification of α-Fréchet processes, based on any
collection of disjoint positive cones Pj ⊂ L0+(T , T , λ), 1 ≤ j ≤ n. For any α-Fréchet process
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X = {Xt }t∈T with jointly measurable representation of {ft (s)}t∈T ⊂ Lα+(S, µ) with full
support (i.e. supp(F ) = S), we say that the representation has a co-spectral decomposition
with respect to {Pj }1≤j≤n if there exist measurable sets S(j), 1 ≤ j ≤ n, such that

S(j) ⊂ {s ∈ S : f.(s) ∈ Pj }, 1 ≤ j ≤ n, and µ

(
S \

n⋃
j=1

S(j)

)
= 0. (4.7)

The sets S(j), 1 ≤ j ≤ n, are modulo µ disjoint. Indeed, let A := {s ∈ S : f·(s) ≡ 0} and
note that µ(A) = 0 by the fact that supp{ft , t ∈ T } = S modulo µ and Fubini’s theorem.
Since Pj ∩ Pk = {0}, we have S(j) ∩ S(k) = A for all 1 ≤ j �= k ≤ n. That is, the space S is
partitioned into n modulo µ disjoint components:

S = S(1) ∪ · · · ∪ S(n) mod µ, with µ(S(j) ∩ S(k)) = 0, j �= k. (4.8)

This yields the decomposition

{Xt }t∈T
d= {X(1)

t ∨ · · · ∨ X
(n)
t }t∈T , (4.9)

with

X
(j)
t :=

∫e
S(j)

ft (s)Mα(ds) for 1 ≤ j ≤ n and all t ∈ T .

The next result shows that decomposition is invariant with respect to the choice of spectral
representation.

Theorem 4.2. Suppose that {Pj }1≤j≤n are disjoint positive cones in L0+(T , T , λ). For any α-
Fréchet process {Xt }t∈T with jointly measurable spectral representation {ft }t∈T ⊂ Lα+(S, µ),
suppose that {ft }t∈T has a co-spectral decomposition with respect to {Pj }1≤j≤n. Then,

(i) decomposition (4.9) is unique in distribution; and

(ii) the components {X(j)
t }t∈T , 1 ≤ j ≤ n, are independent α-Fréchet processes.

Proof. See Appendix A.

In the special case in which n = 1, Theorem 4.2 yields the following result.

Corollary 4.1. Let X = {Xt }t∈T be an α-Fréchet process with two jointly measurable repre-
sentations {f (i)

t (s)}t∈T ⊂ Lα+(Si, µi), i = 1, 2. Consider a positive cone P ⊂ L0+(T , T , λ).
If f

(1)· (s) ∈ P for µ1-almost all s ∈ S1 then f
(2)· (s) ∈ P for µ2-almost all s ∈ S2.

Corollary 4.1 can be used to distinguish between various α-Fréchet processes in terms of their
co-spectral functions. For example, any measurable representation of the α-Fréchet extremal
process in (4.6) should involve simple indicator-type co-spectral functions with one jump down
to 0. The next result shows another application of Corollary 4.1.

Corollary 4.2. Consider the moving maxima α-Fréchet random fields

{Xt }t∈Rd
d=

{ ∫e
Rd

f (t − s)Mα(ds)

}
t∈Rd

and {Yt }t∈Rd
d=

{ ∫e
Rd

g(t − s)Mα(ds)

}
t∈Rd

,

with d ∈ N and f, g ∈ Lα+(Rd , λ), where λ is the Lebesgue measure. Here Mα is an α-Fréchet
random sup-measure on R

d with the Lebesgue control measure. We have {Xt }t∈T
d= {Yt }t∈T if

and only if, for some fixed τ ∈ R
d , g(·) = f (· + τ) in Lα+(Rd , λ).
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Proof. The ‘if’ part is trivial. To prove the ‘only if’ part, introduce the cone Pf = {cf (· +
τ), c ≥ 0, τ ∈ R

d}. Recall that f is viewed as an equivalence class (modulo λ) of functions
in L0+(T , T , λ). Corollary 4.1 implies that g(·) ∈ Pf , and, hence, g(·) = cf (· + τ) in
L+

0 (T , T , λ) for some τ ∈ R
d . Since

‖X0‖α
α =

∫
Rd

gα(x) dx =
∫

Rd

f α(x) dx,

it follows that c = 1. This completes the proof.

Theorem 4.2 is a general result in the sense that the cones {Pj }1≤j≤n may be associated with
various properties of the co-spectral functions t �→ ft (s) of the process X. If T ≡ R

d , d ≥ 1,
for example, we can consider the cones of co-spectral functions that have differentiable,
continuous, integrable, or β-Hölder continuous versions. Note that here we see the co-spectral
functions as elements in L0+(T , T , λ). Every choice of cones leads to different types of
classification for measurable α-Fréchet processes or fields X = {Xt }t∈T . We conclude this
section by giving two important examples of classifications, motivated by existing results in
the literature on sum-stable processes.

Remark 4.2. Note that, instead of (4.7), we may want to set S(j) := {s : f·(s) ∈ Pj }, 1 ≤
j ≤ n. However, for certain cones, the measurability of the so-defined S(j)s will be hard to
prove. See Example 4.4 below.

Example 4.3. (Conservative-dissipative decomposition.) Let X = {Xt }t∈T be an α-Fréchet
process with jointly measurable representation {ft (s)}t∈T ⊂ Lα+(S, µ). Consider the following
cones:

PC =
{
h : h ∈ L0+(T , T , λ),

∫
T

hα(t)λ(dt) = ∞
}

∪ {0},

PD =
{
h : h ∈ L0+(T , T , λ),

∫
T

hα(t)λ(dt) < ∞
}
,

and define

C := {s : s ∈ S, f·(s) ∈ PC} and D := {s : s ∈ S, f·(s) ∈ PD}. (4.10)

By Fubini’s theorem, the sets C and D are both measurable. This partition of S yields the
decomposition

{Xt }t∈T
d= {XC

t ∨ XD
t }t∈T , (4.11)

where XC = {XC
t }t∈T and XD = {XD

t }t∈T are defined as

XC
t =

∫e
C

ft dMα and XD
t =

∫e
D

ft dMα for all t ∈ T .

Here Mα is an α-Fréchet random sup-measure with control measure µ.
By Theorem 4.2, decomposition (4.11) does not depend on the choice of representation.

The components XC and XD of X are independent and they are called the conservative and
dissipative parts of X, respectively. Decomposition (4.11) is referred to as the conservative-
dissipative decomposition.
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Example 4.4. (Positive-null decomposition.) Following Samorodnitsky [30], consider T = R

or Z. Introduce the class W of positive weight functions w : T → R+:

W :=
{
w :

∫
T

w(t)λ(dt) = ∞, w(t) and w(−t) are nondecreasing on T ∩ (0, ∞)

}
.

(4.12)
Now we consider the cone

Ppos :=
{
h ∈ L0+(T , T , λ) :

∫
T

w(t)hα(t)λ(dt) = ∞ for all w ∈ W

}
∪ {0}

and its complement cone Pnull := {0} ∪ (L0+(T , T , λ) \ Ppos).
This choice of cones yields the decomposition

{Xt }t∈T
d= {Xpos

t ∨ Xnull
t }t∈T , (4.13)

where

X
pos
t :=

∫e
P

ft (s)Mα(ds) and Xnull
t :=

∫e
N

ft (s)Mα(ds) for all t ∈ T , (4.14)

with P and N , measurable subsets of S, satisfying µ(P ∩ N) = 0, µ(S \ (P ∪ N)) = 0, and

f·(s) ∈ Ppos for all s ∈ P and f·(s) ∈ Pnull for all s ∈ N. (4.15)

The components Xpos = {Xpos
t }t∈T and Xnull = {Xnull

t }t∈T in (4.14) are said to be the positive
and null components of the process X, respectively. By Theorem 4.2, decomposition (4.13)
does not depend on the choice of the measurable representation {ft (s)}t∈T ⊂ Lα+(S, µ). It is
referred to as the positive-null decomposition.

Note that, a technical difference between this example and Example 4.3 is that, to the best
of the authors’ knowledge, it is not clear how to show whether the set P̃ := {s : f·(s) ∈ Ppos}
is (or not) measurable, even when ft (s) is jointly measurable.

In the following section, we will study the above decompositions in more detail, for the case
of stationary max-stable processes.

5. Classification of stationary α-Fréchet processes

In this section we focus on stationary, measurable max-stable processes X = {Xt }t∈T , where
T = R or T = Z is equipped with the Lebesgue or the counting measure λ, respectively. In this
case, the process X can be associated with a nonsingular flow. Therefore, as in the symmetric
α-stable case, the ergodic theoretic properties of the flow yield illuminating structural results.

5.1. Nonsingular flows associated with max-stable processes

Following Rosiński [26], we recall some notions from ergodic theory.

Definition 5.1. A family of functions φ = {φt }t∈T , φt : S → S for all t ∈ T , is a flow on
(S, B, µ) if

(i) φt1+t2(s) = φt2(φt1(s)) for all t1, t2 ∈ T , s ∈ S;

(ii) φ0(s) = s for all s ∈ S.
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A flow φ is said to be measurable if φt (s) is a measurable map from T × S to S. A flow φ is
said to be nonsingular if µ(φ−1

t (A)) = 0 is equivalent to µ(A) = 0 for all A ∈ B, t ∈ T .

The next result relates the spectral functions of stationary α-Fréchet processes to flows.

Theorem 5.1. Let {Xt }t∈T be a stationary α-Fréchet process with a measurable minimal
representation {ft }t∈T ⊂ Lα+(S, µ). Then, there exists a unique, modulo µ, nonsingular, and
measurable flow {φt }t∈T such that

ft (s) =
(

d(µ ◦ φt )

dµ

)1/α

(s)(f0 ◦ φt )(s) µ-a.e. for all t ∈ T . (5.1)

Theorem 5.1 is stronger than Theorem 6.1 of [9], where the measurability is not considered
and the flow structure is not explicitly explored. The proof is given in [35]. For the readers
familiar with Rosiński’s work [26], this result is similar to Theorem 3.1 therein. In view
of this result, we will say that a stationary α-Fréchet measurable process {Xt }t∈T is gener-
ated by the nonsingular measurable flow {φt }t∈T on (S, µ) if it has a spectral representation
{ft }t∈T ⊂ Lα+(S, µ) as in (5.1) and

supp{f0 ◦ φt : t ∈ T } = S µ-a.e. (5.2)

Here the spectral representation {ft }t∈T ⊂ Lα+(S, µ) is not necessarily minimal, but it is
assumed to have full support in the sense that (5.2) holds. The minimality condition plays
a crucial role in the proof of the existence of flow representations in Theorem 5.1.

Not all flow representations are minimal. We can show (see Proposition 6.1 of [35]), however,
that any two flows corresponding to minimal representations of the same α-Fréchet process are
equivalent. We say that two measurable, nonsingular flows {φ(i)

t }t∈T on (Si, µi), i = 1, 2, are
equivalent, written {φ(1)

t }t∈T ∼� {φ(2)
t }t∈T , if there exists a measurable map � : S2 → S1 such

that (i) there exist Ni ⊂ Si with µi(Ni) = 0, i = 1, 2, such that � is a Borel isomorphism
between S2 \ N2 and S1 \ N1; (ii) µ1 and µ2 ◦ �−1 are mutually absolutely continuous; and
(iii) φ

(1)
t ◦ � = � ◦ φ

(2)
t , µ2-a.e. for each t ∈ T .

5.2. Decompositions induced by nonsingular flows

The decompositions introduced in Examples 4.3 and 4.4 are motivated by corresponding
notions from ergodic theory. Consider a measure space (S, µ) and a measurable, nonsingular
map φ : S → S. A measurable set B ⊂ S is said to be (i) wandering if φ−n(B), n = 0, 1, 2, . . . ,

are disjoint; and (ii) weakly wandering if φ−nk (B), nk ∈ N, are disjoint for some infinite
sequence 0 = n0 < n1 < · · · .

Now we give two decompositions for max-stable processes. Their counterparts for sum-
stable processes have been thoroughly studied (see [26] and [30]).

Hopf (conservative-dissipative) decomposition. The map φ is said to be conservative if
there is no wandering measurable set B ⊂ S, with positive measure µ(B) > 0. We can show
that, for any measurable, nonsingular map φ : S → S, there exists a partition of S into two
disjoint measurable sets S = C ∪ D, C ∩ D = ∅, such that (i) C and D are φ-invariant;
(ii) φ : C → C is conservative and D = ⋃

k∈Z
φk(B) for some wandering set B ⊂ S. This

decomposition is unique (modulo µ) and is called the Hopf decomposition of S with respect
to φ. If the component C is trivial, i.e. µ(C) = 0, then φ is said to be dissipative. The
restrictions φ : C → C and φ : D → D are the conservative and dissipative components of the
mapping φ, respectively.
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Now, given a jointly measurable, nonsingular flow (t, s) �→ φt (s), t ∈ T , s ∈ S, we can
consider the Hopf decompositions S = Ct ∪Dt for each φt , t ∈ T \ {0}. By the measurability,
however, it follows that µ(Ct�C) = µ(Dt�D) = 0 for some C ∩ D = ∅, S = C ∪ D (see,
e.g. [18] and [26]). We thus find that any measurable, nonsingular flow {φt }t∈T has a Hopf
decomposition S = C ∪D, where φC := {φt |C}t∈T and φD := {φt |D}t∈T are conservative and
dissipative flows, respectively.

The following result is an immediate consequence from the proofs of Theorem 4.1 and
Corollary 4.2 of [26].

Theorem 5.2. Let X = {Xt }t∈T be a stationary α-Fréchet process with measurable represen-
tation {ft (s)}t∈T ⊂ Lα+(S, µ) of full support. Then

(i) X is generated by a conservative flow if and only if∫
T

f α
t (s)λ(dt) = ∞ for µ-almost all s ∈ S;

(ii) X is generated by a dissipative flow if and only if∫
T

f α
t (s)λ(dt) < ∞ for µ-almost all s ∈ S;

(iii) if X is generated by a conservative or dissipative flow in one measurable representation,
then in any other measurable representation of X, it is still generated by a conservative
or, respectively, dissipative flow.

This result justifies the terminology in the conservative-dissipative decomposition of Exam-
ple 4.3. In particular, the sets C and D in (4.11) correspond precisely to the conservative and
dissipative parts in the Hopf decomposition of the flow {φt }t∈T associated with the process X.

Positive-null decomposition. If we replace ‘wandering’ by ‘weakly wandering’ in the Hopf
decomposition, we obtain the so-called positive-null decomposition of S. Alternatively, the
map φ is said to be positive if there exists a finite measure ν ∼ µ such that φ is ν-invariant.
In this case, there are no weakly wandering sets B of positive µ-measure (or, equivalently,
ν-measure). For any nonsingular map φ, there exists a partition S = P ∪ N , unique modulo
µ, such that P and N are disjoint, measurable, and φ-invariant. Furthermore, φ : P → P is
positive, and N = ⋃

k≥0 φ−nk (B) for some disjoint φ−nk (B)s, where B is weakly wandering.
The sets N and P are called the null-recurrent and, respectively, positive-recurrent parts of S,
with respect to the map φ (see, e.g. Section 1.4 of [1]).

As in the case of the Hopf decomposition, a jointly measurable, nonsingular flow {φt }t∈T

gives rise to a positive-null decomposition: S = P ∪ N, where µ(Pt�P ) = µ(Nt�N) = 0
for all t ∈ T \ {0}, and where S = Pt ∪ Nt is the positive-null decomposition of the map
φt , t ∈ T \ {0} (see, e.g. [18] and [30]).

Theorem 2.1 of Samorodnitsky [30] about symmetric α-stable processes applies mutatis
mutandis to the max-stable case.

Theorem 5.3. Let X = {Xt }t∈T be a stationary α-Fréchet process with measurable represen-
tation {ft (s)}t∈T ⊂ Lα+(S, µ) of full support. Then

(i) X is generated by a positive flow if and only if, for all w ∈ W ,∫
T

w(t)f α
t (s)λ(dt) = ∞ for µ-almost all s ∈ S,

where W is as in (4.12);
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(ii) X is generated by a null flow if and only if, for some w ∈ W ,∫
T

w(t)f α
t (s)λ(dt) < ∞ for µ-almost all s ∈ S;

(iii) if X is generated by a positive or null flow in one measurable representation, then in any
other measurable representation of X, it is still generated by a positive or, respectively,
null flow.

As in the Hopf decomposition, Theorem 5.3 shows that the components Xpos and Xnull in
decomposition (4.13) are generated by positive- and null-recurrent flows, respectively. This
is because the sets P and N in (4.15) yield the positive-null decomposition of a flow {φt }t∈T

associated with X.

5.3. Examples

Here, we collect some structural results and observations on the interplay between the
three types of classification of max-stable processes discussed above. Namely, (i) continuous-
discrete; (ii) conservative-dissipative; and (iii) positive-null.

Theorems 5.2 and 5.3 imply that the positive component of a max-stable process is con-
servative and the dissipative component is null-recurrent. Thus, for a measurable stationary
α-Fréchet process {Xt }t∈T , we have the decomposition

{Xt }t∈T
d= {Xpos

t ∨ X
C,null
t ∨ XD

t }t∈T ,

where XC
t = X

pos
t ∨ X

C,null
t and Xnull

t = X
C,null
t ∨ XD

t , t ∈ T . Here Xpos, XC,null, and XD

are independent α-Fréchet processes; Xpos is positive-recurrent and conservative, XD is dis-
sipative and null-recurrent, and XC,null is conservative and null-recurrent. We will see that
XD is precisely the mixed moving maxima. Moreover, we show that the spectrally discrete
component has no conservative-null component XC,null.

The following theorem shows that the purely dissipative stationary α-Fréchet processes are
precisely the mixed moving maxima.

Theorem 5.4. Let {Xt }t∈T be a measurable stationary α-Fréchet process. This process is
generated by a dissipative flow if and only if there exist a Borel space W , a σ -finite measure ν

on W , and a function g ∈ Lα+(W × T , ν ⊗ λ) such that

{Xt }t∈T
d=

{∫e
W×T

g(x, t + u)Mα(dx, du)

}
t∈T

.

Here Mα is an α-Fréchet random sup-measure on W × T with the control measure ν ⊗ λ, and
λ is the Lebesgue measure if T = R and the counting measure if T = Z. Moreover, we can
always choose (W, ν) and g such that the representation gt (x, u) := g(x, t + u) is minimal.

Proof. Since g ∈ Lα+(W × T , ν ⊗ λ), Fubini’s theorem implies that, for almost all (x, u) ∈
W × T ,

∫
T

g(x, t + u)αλ(dt) < ∞. This, in view of (4.10) implies that X is dissipative.
The ‘only if’ part follows as in the proof of Theorem 4.4 of [26] from the results of [17].

Remark 5.1. Theorem 5.4 parallels the fact that the class of stationary and dissipative symmet-
ric α-stable processes is precisely the class of mixed moving averages (see Theorem 4.4 of [26]).
Recently, Kabluchko [14] established the same result as in Theorem 5.4 using an interesting
association device between α-Fréchet (α ∈ (0, 2)) and symmetric α-stable processes.
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As shown in [33], the mixed moving maxima processes are mixing and, hence, ergodic.
See also the recent work of Kabluchko and Schlather [15]. Thus, Theorem 5.4 implies that the
dissipative component of a max-stable process is mixing. On the other hand, Samorodnitsky [30,
Theorem 3.1] showed that stationary symmetric α-stable processes are ergodic if and only if they
are generated by a null-recurrent flow. Kabluchko [14, Theorem 8] showed that this continues
to be the case for stationary α-Fréchet processes.

The previous discussion shows that the ergodic and mixing properties of the null and
dissipative components are in line with the decomposition Xnull

t = XD
t ∨ X

C,null
t , t ∈ T . An

example of conservative-null flow can be found in [30]. This yields nontrivial examples of
sum- and max-stable processes that are conservative and null. We are not aware, however, of
an example of an ergodic max-stable process that is not mixing.

The next two results clarify the structure of the stationary spectrally discrete processes
in discrete (T = Z) and continuous (T = R) time, respectively. We first show that, for
spectrally discrete stationary max-stable time series, the conservative-dissipative and positive-
null decompositions coincide. That is, such processes have no conservative-null components.
Moreover, the dissipative (equivalently, null-recurrent) component does not exist if the time
series has only a finite number of principal components. Recall the definition of the spectrally
discrete component XN = {XN

t }t∈T in (4.1).

Proposition 5.1. Let X = {Xt }t∈T , with T = Z, be a stationary α-Fréchet process (time
series).

(i) XN has no conservative-null component, i.e. XN,C,null = 0.

(ii) If 1 ≤ N < ∞ then XN is necessarily conservative, and, equivalently, positive recurrent.

Proof. Without loss of generality, suppose that X = XN and {ft (s)}t∈T ⊂ Lα+(SN, λN) is
a minimal representation with standardized support for X. We have

ft =
(

d(λN ◦ φt )

dλN

)1/α

f0 ◦ φt for all t ∈ T ,

where φt : SN → SN is a nonsingular flow on (SN, λN). Since SN ⊂ N and λN is the counting
measure, the nonsingular transformations are necessarily measure preserving, i.e. permutations.
Thus, the term d(λN ◦ φt )/dλN ≡ 1 and ft (s) = f0 ◦ φt (s).

We start by proving (ii). Since φ1 : {1, . . . , N} → {1, . . . , N} is a permutation, it has a finite
invariant measure and, hence, the flow {φt }t∈T is positive-recurrent and hence conservative.

Now we prove (i). Note that when 1 ≤ N < ∞, we have shown in (ii) that XN is conservative
and positive-recurrent. For N = ∞, we consider two cases. First we suppose that, for every
s ∈ SN , the recurrent time

τs := inf{t > 0 : φt (s) = s} (5.3)

is finite. Let O(s) denote the orbit of state s with respect to flow {φt }t∈T , i.e. O(s) := {φt (s) :
t ∈ T }. Every orbit of {φt }t∈T is τs-periodic, i.e. |O(s)| < ∞. Since N = ∞, the total
number of different orbits must be infinite. Enumerate all the orbits by O1, O2, . . . , so that
O(s) = Oπ(s) with π : SN → N and SN = ⋃

k∈N
Ok . Observe that the orbits are disjoint. We

now define a finite invariant measure on SN , equivalent to the counting measure:

λ̃({s}) := 2−π(s) 1

|Oπ(s)| for all s ∈ SN .
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This measure is clearly invariant on each Ok for all k ∈ N. Since λ̃(Ok) = 2−k , the measure λ̃ is
finite and it is clearly equivalent to the counting measure. Thus, XN is positive and conservative.

On the other hand, suppose that there exists a state s with τs = ∞. Then, its orbit is
infinite and nonrecurrent, i.e. |Ok(s)| = ∞. Then, the flow {φt }t∈T is both null-recurrent
and dissipative on Ok(s). Indeed, the null recurrence follows from the fact that there is no
positive finite invariant measure on Ok(s). The dissipativity follows from the remark that
Ok(s) = ⋃

j∈Z
φj (s) is a disjoint union. We have thus shown that {φt }t∈T is dissipative and

null-recurrent on nonrecurrent orbits.

The following result shows that the continuous-time stationary, measurable, and spectrally
discrete max-stable processes are trivial.

Theorem 5.5. Let X = {Xt }t∈T , with T = R, be a stationary and measurable α-Fréchet
process. If N ≥ 1 then it must be N = 1. That is, the spectrally discrete component XN is the
random constant process: {XN

t }t∈R

d= {Z}t∈R for some α-Fréchet variable Z.

Proof. Let {ft }t∈T and {φt }t∈T be as in Proposition 5.1. Observe moreover that in this
case the φt s are measure-preserving bijections, and in view of Theorem 5.1, the flow {φt (s)}
is measurable. For any fixed s ∈ SN , consider τs defined in (5.3). The proof consists of three
steps.

Step 1: show that τs = 0 implies that φt (s) ≡ s for all t ∈ R. Indeed, suppose that
τs = 0 and note that, by definition, for all n > 0, there exist 0 < tn,1 < tn,2 < 1/n such
that φtn,1(s) = φtn,2(s) = s. Set T0 := ⋃

n∈N

⋃
k∈Z

{tn,1 + k(tn,2 − tn,1)}. It follows that T0 is
dense in R and φt (s) = s for all t ∈ T0. Hence, ft (s) = f0 ◦ φt (s) = f0(s) for all t ∈ T0.
Now, we define a new α-Fréchet process Y = {Yt }t∈T :

Yt :=
∫e

SN

1{φt (r)=s} Mα(dr) for all t ∈ T . (5.4)

Since {φt }t∈T is a flow, φt is invertible for any t ∈ T0. Hence, for all t ∈ T0, we have
φt (r) = φt (s) ≡ s if and only if r = s. This shows that, for all t ∈ T0,

1{φt (r)=s} = 1{φ0(r)=s} = 1{r=s},

which implies that Yt = Y0 almost surely (a.s.) for all t ∈ T0. Moreover, as {φt }t∈T is
measurable, so is {Yt }t∈T by Proposition 4.1. Also, Y = {Yt }t∈T is stationary, since it is
generated by a measure-preserving flow. Thus, the stationarity and measurability of Y imply
that it is continuous in probability (see Theorem 3.1 of [33]). This, and the fact that Yt = Y0
a.s. for all t in a dense subset T0 of R, imply that Yt = Y0 a.s. for all t ∈ R. Therefore, by (5.4),
for the spectral functions, we obtain 1{φt (r)=s} = 1{r=s} for all r ∈ SN, t ∈ R. This shows that
φt (s) = s for all t ∈ R.

Step 2: show that τs > 0 implies that φτs (s) = s. Suppose that φτs (s) �= s. Then, as
above, there exist t1, t2 ∈ (τs, τs + τs/2) such that φt1(s) = φt2(s) = s. But, it follows that
φt1+k(t2−t1)(s) = s for all k ∈ Z. This, since {t1 + k(t2 − t1)}k∈Z ∩ (0, τs) �= ∅, contradicts
the definition of τs .

Step 3: show that it is impossible to have τs > 0 for all s ∈ SN . Write Ts = {t : φt (s0) =
s for some s0 ∈ SN }. Observe that the set Ts is countably infinite for all s ∈ SN such that
τs > 0, since by step 2 above, Ts = {kτs}k∈Z. Note also that

⋃
s∈SN Ts = R. However, the

assumption that τs > 0 for all s ∈ SN would imply that
⋃

s∈SN Ts has the cardinality of N,
which is a contradiction.
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We now conclude the proof. By step 3 above, there must exist s ∈ SN such that τs = 0. Set
R = {s ∈ SN : φt (s) = s for all t ∈ R}. We have already seen in step 1 that τs = 0 implies
that φt (s) ≡ s for all t ∈ R, whence R is φ-invariant. Consider now a new α-Fréchet process:

{Yt }t∈T
d=

{∫e
SN\R

ft (r)Mα(dr)

}
t∈T

.

Since SN \ R is φ-invariant, the last representation is also minimal and has standardized
support. Moreover, the process Y is generated by the flow {φt }t∈R, restricted to SN \ R. Since
τs > 0 for all s ∈ SN \ R, by step 3, it follows that SN \ R = ∅.

On the other hand, since φt (s) ≡ s for all t ∈ R, s ∈ R, the minimality of {ft }t∈T implies
that |R| = |SN | = 1. Therefore, {Xt }t∈T

d= {Z}t∈T for some α-Fréchet random variable Z.

Example 5.1. In contrast with Proposition 5.1(i), the spectrally discrete component of a sta-
tionary α-Fréchet time series may be dissipative if it involves an infinite number of principal
components. Indeed, by Theorem 5.4, the moving maxima Xt := ∫e

Z
f (t + s)Mα(ds) ≡∨

i∈Z
f (t + i)Mα({i}) is dissipative and spectrally discrete, where Mα has the counting control

measure on Z.

6. Brown–Resnick processes

Consider the following doubly stochastic process (see, e.g. [16] and [33]):

{Xt }t∈R

d=
{∫e

E

eWt−σ 2
t /2 dM1

}
t∈R

. (6.1)

Here Wt is a zero-mean Gaussian process defined on the probability space (E, E , µ) with
variance σ 2

t , and M1 is a 1-Fréchet random sup-measure on E with control measure µ. Since
Eµ eWt−σ 2

t /2 = 1 < ∞, the 1-Fréchet process in (6.1) is well defined. The processes having
representation (6.1) were first introduced by Brown and Resnick [4] with Wt being the standard
Brownian motion. In general, we will call {Xt }t∈R as in (6.1) a Brown–Resnick 1-Fréchet
process.

Kabluchko et al. [16] showed that if {Wt }t∈R has stationary increments then the Brown–
Resnick process {Xt }t∈R in (6.1) is stationary. The following interesting result about an arbitrary
zero-mean Gaussian process with stationary increments and continuous paths is obtained by
combining the results of [16] and our Theorems 5.2 and 5.4.

Theorem 6.1. Let W = {Wt }t∈R be a Gaussian zero-mean process with stationary increments
and continuous paths. If

lim|t |→∞
(
Wt − 1

2σ 2
t

) = −∞ a.s. (6.2)

then ∫ ∞

−∞
eWt−σ 2

t /2 dt < ∞ a.s., (6.3)

where σ 2
t = E W 2

t = var(Wt ).

Proof. Let {Xt }t∈R be the Brown–Resnick process defined in (6.1). The process {log Xt }t∈R

is also max-stable but it has Gumbel marginals. Kabluchko et al. [16] showed that {log Xt }t∈R is
stationary and, hence, so is {Xt }t∈R. Moreover, by Theorem 13 of [16], condition (6.2) implies
that {log Xt }t∈R, or, equivalently, {Xt }t∈R has a mixed moving maxima representation. On the
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other hand, Theorem 5.4 implies that any process with mixed moving maxima representation
is dissipative. Dissipativity of {Xt }t∈R is equivalent to (6.3) by Theorem 5.2. This completes
the proof.

The following question arises.

Question 6.1. For what general classes of continuous-path, zero-mean Gaussian processes
{Wt }t∈R with stationary increments is the Brown–Resnick stationary process (6.1) dissipative?

The next result provides a partial answer to this question for the interesting case when
W = {Wt }t∈R is the fractional Brownian motion (FBM). Recall that the FBM is a zero-
mean Gaussian process with stationary increments, which is self-similar. The process W

is said to be self-similar with self-similarity parameter H > 0 if, for all c > 0, we have
{Wct }t∈R

d= {cH Wt }t∈R. The FBM necessarily has the covariance function

E WtWs = σ 2

2
(|t |2H + |s|2H − |t − s|2H ) with t, s ∈ R, (6.4)

where 0 < H ≤ 1 is the self-similarity parameter of W . The fractional Brownian motions have
versions with continuous paths (see, e.g. [31, p. 490]).

Proposition 6.1. The stationary Brown–Resnick processes X = {Xt }t∈R associated with the
FBMs {Wt }t∈R in (6.4) are dissipative and, hence, they have mixed moving maxima represen-
tations.

Proof. Without loss of generality, we suppose that the FBM W has continuous paths. As
indicated above, the stationarity of X follows from the fact that W has stationary increments
(see [16]). Now, by Theorem 5.2, X is dissipative if and only if (6.3) holds. By Theorem 6.1,
it suffices to show that (6.2) holds.

By the law of the iterated logarithm for Gaussian processes (see [19]), we have

lim sup
t→∞

Wt√
2σ 2

t log log t

= 1 a.s., (6.5)

with σ 2
t = σ 2|t |2H . It is clear that (6.2) follows from (6.5). The proof is thus complete.

Observe that the above result continues to hold even in the degenerate case H = 1. We then
have Wt = tZ, t ∈ R, where Z is a zero-mean Gaussian random variable. In this case, the
corresponding Brown–Resnick process has a simple moving maxima representation. Indeed,
for simplicity, let σ 2 = var(Z) = 1 and observe that

Xt :=
∫e

E

etZ(u)−t2/2M1(du) =
∫e

E

eZ2(u)/2e−(t−Z(u))2/2M1(du).

Note that the measure ν(A) := ∫
E

1{Z(u)∈A} eZ2(u)/2µ(du) ≡ λ(A)/
√

2π is up to a constant
factor equal to the Lebesgue measure λ on R. Therefore, we can show that

{Xt }t∈R

d=
{

1√
2π

∫e
R

e−(t−z)2/2M̃1(dz)

}
t∈R

,

where M̃1 is a 1-Fréchet random sup-measure with the Lebesgue control measure. This shows
that X in this simple case is merely a moving maxima rather than a mixed moving maxima.
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We have thus shown that the Brown–Resnick process (6.1) driven by FBM {Wt }t∈T is purely
dissipative. Thus, by Theorem 5.4, {Xt }t∈T is a mixed moving maxima. In two very recent
papers [14], [16], Kabluchko and co-authors established very similar classification results by
using very different methods based on Poisson point processes on abstract path spaces. Their
approach directly yielded the moving maxima representation (and, hence, dissipativity) of the
Brown–Resnick-type processes X under the alternative condition (6.2). This condition is only
shown to be sufficient for dissipativity of X. Its relationship with our necessary and sufficient
condition (6.3) is a question of independent interest.

The question raised in Kabluchko [14] on whether there exist stationary Brown–Resnick
processes X of mixed type, i.e. with nontrivial dissipative and conservative components, still
remains open. In view of our new necessary and sufficient condition (6.3), this question is
equivalent to the following.

Question 6.2. Is it true that µ{∫ ∞
−∞ eWt−σ 2

t /2 dt < ∞} ∈ {0, 1} for Gaussian processes W =
{Wt }t∈R with stationary increments and continuous paths?

Appendix A. Proofs

Proof of Proposition 4.1. To prove part (i), observe that, since µ is σ -finite, it is enough to
focus on the case when µ is a probability measure: µ(S) = 1. Thus, {ft (s)}t∈T may be viewed
as a stochastic process, defined on the probability space (S, BS, µ).

Note that Lα+(S, µ) equipped with the metric ρµ,α(f, g) = ∫
S

|f α − gα| dµ is a complete
separable metric space. Furthermore, ρµ,α metrizes the convergence in probability in the
space (S, µ). Therefore, Theorem 3 of [5] (see also Proposition 9.4.4 of [31]) implies that
the stochastic process f = {ft (s)}t∈T has a measurable modification if and only if the map
hf : t �→ [ft ] is Borel-measurable and has separable range hf (T ). Here [f ] denotes the class
of all Lα+(S, µ)-functions, equal to f , µ-a.e.

Similarly, X = {Xt }t∈T has a measurable modification if and only if hX : t �→ [Xt ] is
Borel-measurable and has separable range hX(T ), where [Xt ] ∈ L0(
, A, P) is equipped
with a metric, which metrizes the convergence in probability. Here L0(
, A, P) denotes the
collection of equivalence classes of random variables, with respect to the relation of almost-sure
equality. We focus on the set M = {[ξ ] : ξ = ∫e

S
g dMα, g ∈ Lα+(S, µ)}, which is a closed

subset of L0(
, A, P) with respect to the convergence in probability. Theorem 2.1 of [34]
shows that since (Lα+(S, µ), ρ) is complete and separable, so is M with respect to the metric

ρM(ξ, η) := 2‖ξ ∨ η‖α
α − ‖ξ‖α

α − ‖η‖α
α.

Furthermore, ρM metrizes the convergence in probability and we have

ρM(ξ, η) =
∫

S

|f α − gα| dµ ≡ ρµ,α(f, g) (A.1)

for all ξ = ∫e
S

f dMα and η = ∫e
S

g dMα , with f, g ∈ Lα+(S, µ).
Now, the separability of Lα+(S, µ) and M implies the separability of the ranges hf (T ) ⊂

Lα+(S, µ) and hX(T ) ⊂ M, respectively. On the other hand, equivalence (A.1) of the two
metrics ρM and ρ implies that hf : T → Lα+(S, µ) is Borel-measurable if and only if hX : T →
M is Borel-measurable. This, in view of Theorem 3 of [5], yields (i).

In view of Proposition 3.2 of [34], to establish (ii), we should show that any measurable
α-Fréchet process X satisfies Condition S. As argued above, the map hX : t �→ [Xt ] has a
separable range in the metric space L0(
, A, P). Hence, there exists a countable set T0 ⊂ T
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such that, for all t ∈ T and some tn ∈ T0, we have Xtn

p−→ Xt as n → ∞. This shows that the
process X is separable in probability (satisfies Condition S) and the proof is complete.

Proof of Theorem 4.1. Let {gt }t∈T ⊂ Lα+(SI,N , λI,N ) be a jointly measurable minimal rep-
resentation of {Xt }t∈T with standardized support. By Condition S, it suffices to focus on {ft }t∈T0

and {gt }t∈T0 . We will show that{∫e
S̃N

ft dMα

}
t∈T0

d=
{∫e

SN

gt dMα

}
t∈T0

and

{∫e
S̃I

ft dMα

}
t∈T0

d=
{∫e

SI

gt dMα

}
t∈T0

.

(A.2)
By Theorem 3.2 we assume without loss of generality that there exists measurable functions
� : S → SI,N and h : S → R+ \ {0} such that supp{ft : t ∈ T } = S and ft (s) = h(s)gt ◦
�(s) for all t ∈ T0 and s ∈ S. It suffices to show that

�(S̃N) = �

( ⋃
{s : µ([s])>0}

[s]
)

= SN λI,N -a.e.,

and then (A.2) will follow by a change of variables.
Observe that, since h(s) > 0,

s ∼ r ⇐⇒ ft (s) = qs,rft (r) for all t ∈ T0

⇐⇒ gt ◦ �(s) = q̃s,rgt ◦ �(r) for all t ∈ T0

⇐⇒ �(s) ∼ �(r)

for some constants qs,r > 0 and q̃s,r > 0. Therefore, �([s]) = [�(s)] for all s ∈ S. Since
[�(r)] is measurable (recall (4.2)), �([r]) = [�(r)] is also measurable. Now (3.3) implies
that

λI,N ([�(r)]) = λI,N (�([r])) =
∫

�([r])
hα ◦ �−1(s)µ ◦ �−1(ds) =

∫
[r]

hα(s)µ(ds),

where the last equality follows from the fact that �−1(�([r])) = [r]. Thus, µ([r]) > 0 if and
only if λI,N ([�(r)]) > 0 since h(s) > 0.

We first show that�(S̃N) ⊂ SN moduloλI,N . It is enough to show that, for all r ∈ S such that
µ([r]) > 0, �([r]) = [�(r)] ⊂ SN modulo λI,N . Note that (4.3) holds with ft replaced by gt .
It follows that the atoms of ρ(gt , t ∈ T0) correspond to {[�(s)], λI,N (�(s)) > 0, s ∈ S}. In
addition, observe that ρ(gt , t ∈ T0) ∼ ρ(gt , t ∈ T ) by Condition S, and ρ(gt , t ∈ T ) ∼ BSI,N

by the minimality of {gt }t∈T . Therefore, for all r ∈ S such that µ([r]) > 0, there exists r∗ ∈ SN

such that λI,N (�([r])�{r∗}) = 0. This completes the proof of �(S̃N) ⊂ SN modulo λI,N .
Conversely, since � is onto and nonsingular, for all r∗ ∈ SN and r ∈ �−1(r∗), we have

�([r]) = [�(r)] = [r∗] = {r∗} , λI,N -a.e. and µ([r]) > 0. We have thus shown that
�(S̃N) ⊃ SN modulo λI,N .

Proof of Theorem 4.2. Part (ii) follows immediately from (4.8). To prove (i), consider
another measurable representation {f (2)

t }t∈T ⊂ Lα+(S2, µ2) of the same process {Xt }t∈T . We
show that {f (2)

t }t∈T also admits a co-spectral decomposition and, letting the corresponding
decomposition of the process be

{Xt }t∈T
d= {X̂(1)

t ∨ · · · ∨ X̂
(n)
t }t∈T ,
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we have
{X(j)

t }t∈T
d= {X̂(j)

t }t∈T , 1 ≤ j ≤ n. (A.3)

Let {f (1)
t }t∈T ⊂ Lα+(S1, µ1) denote the representation in assumption, which admits a co-

spectral decomposition with respect to {Pj }1≤j≤n. Without specification, the following
arguments hold for both i = 1, 2.

First, by Proposition 4.1, the process X has the representation in (2.3), and, hence, it has
a minimal representation with standardized support {gt (s)}t∈T ⊂ Lα+(SI,N , λI,N ) by Theo-
rem 3.1. This representation can also be chosen to be jointly measurable. Recall (3.2) in
Theorem 3.2. By Fubini’s theorem we can assume that, for all s ∈ Si ,

f (i)· (s) = hi(s)g· ◦ �i(s) λ-a.e., (A.4)

where hi : Si → R+ \ {0} and �i from Si onto SI,N are both measurable.
Now, suppose that S1 has a co-spectral decomposition S1 = ⋃n

j=1 S
(j)
1 modulo µ1. We

show that this induces a co-spectral decomposition of SI,N . Set

SI,N
(j) := �1(S

(j)
1 ), 1 ≤ j ≤ n, and SI,N

(0) := SI,N \
n⋃

j=1

SI,N
(j).

By (A.4), SI,N
(j) ⊂ {s : g·(s) ∈ Pj }, 1 ≤ j ≤ n. Note that the assumption that S

(j)
1 ∩ S

(k)
1 ⊂

{s ∈ S1 : f
(1)· (s) ≡ 0} implies that SI,N

(j) ∩ SI,N
(k) ⊂ {s ∈ SI,N : g·(s) ≡ 0} for all 1 ≤ j <

k ≤ n. Moreover, �−1
1 (SI,N

(0)) ⊂ S1 \ ⋃n
j=1 S

(j)
1 , whence λI,N (SI,N

(0)) = 0. We have thus

shown that {SI,N
(j)}1≤j≤n is a co-spectral decomposition of {gt }t∈T ⊂ Lα+(SI,N , λI,N ) with

respect to {Pj }1≤j≤n.
Next, we show that, for any spectral representation {f (2)

t }t∈T ⊂ Lα+(S2, µ2), there exists a
co-spectral decomposition of S2 with respect to {Pj }1≤j≤n. Indeed, the decomposition is in-
duced by setting S

(j)
2 := �−1

2 (SI,N
(j)) ∩ S2, 1 ≤ j ≤ n. We can easily verify that {S(j)

2 }1≤j≤n

is a co-spectral decomposition with respect to {Pj }1≤j≤n.
Finally, by the construction of {S(j)

i }1≤j≤n, i = 1, 2, above, we have

λI,N (�i(S
(j)
i )�SI,N

(j)) = 0 for all 1 ≤ j ≤ n.

Note that (A.4) induces a max-linear isometry from Lα+(SI,N , λI,N ) to Lα+(Si, µi). By a change
of variables, we can show that, for all 1 ≤ j ≤ n, m ∈ N, ak ∈ R+, and tk ∈ T ,

∫
S

(j)
i

( m∨
k=1

f
(i)
tk

(s)

ak

)α

µi(ds) =
∫

S
(j)
i

( m∨
k=1

gtk ◦ �i(s)

ak

)α

hi(s)µi(ds)

=
∫

S
(j)
I,N

( m∨
k=1

gtk (s)

ak

)α

λI,N (ds).

This implies (A.3).

Acknowledgements

The authors gratefully acknowledge the numerous helpful and constructive suggestions by
an anonymous referee. The authors were partially supported by the NSF grant DMS-0806094
at the University of Michigan.

https://doi.org/10.1239/aap/1282924066 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924066


Structure of max-stable processes 877

References

[1] Aaronson, J. (1997). An Introduction to Infinite Ergodic Theory. American Mathematical Society, Providence,
RI.

[2] Balkema, A. A. and Resnick, S. I. (1977). Max-infinite divisibility. J. Appl. Prob. 14, 309–319.
[3] Billingsley, P. (1995). Probability and Measure, 3rd edn. John Wiley, New York.
[4] Brown, B. M. and Resnick, S. I. (1977). Extreme values of independent stochastic processes. J. Appl. Prob.

14, 732–739.
[5] Cohn, D. L. (1972). Measurable choice of limit points and the existence of separable and measurable processes.

Z. Wahrscheinlichkeitsth. 22, 161–165.
[6] Davis, R. A. and Resnick, S. I. (1993). Prediction of stationary max-stable processes. Ann. Appl. Prob. 3,

497–525.
[7] De Haan, L. (1978). A characterization of multidimensional extreme-value distributions. Sankhyā A 40, 85–88.
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