
London Mathematical Society ISSN 1461–1570

LENS SPACES, ISOSPECTRAL ON FORMS
BUT NOT ON FUNCTIONS
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Abstract

We study the p-form spectrum of the Laplace-Beltrami operator
acting on lens spaces as considered by Ikeda [Geometry of mani-
folds (Academic Press, Boston, MA, 1989) 383–417]. Ikeda gave
examples of such spaces that are non-isometric but isospectral for all
p � p0. In this paper we exhibit examples of such spaces that are
not isometric, and are isospectral for various, but not for all, values
of p. In particular, examples are given of non-isometric lens spaces
that are isospectral for some values of p but not for the case p = 0.

1. Introduction

The purpose of this paper is to study the p-form spectrum of the Laplacian �p acting on
lens spaces. Examples of non-isometric lens spaces that are isospectral for all p < p0 and
not for p � p0 (up to duality) were given by Ikeda in [16]. Here we consider the opposite
situation: Can there exist non-isometric pairs of lens spaces that are isospectral for some
p0 > 0, and not for any p < p0? We affirmatively answer this question by presenting
examples of such pairs that have been found computationally. We discuss the approach to
these computations, results of the computations and applications to representation theory,
as well as the representation theory underlying the problem.

The Laplace spectrum of a closed Riemannian manifold is the set of eigenvalues of the
Laplace–Beltrami operator �, counted with multiplicity. Two manifolds are isospectral on
functions if they share the same Laplace spectrum. The operator � may be extended to act
on smooth p-forms by �p = dδ + δd , where δ is the (metric) adjoint of d. Two manifolds
are p-isospectral if they share the same spectrum of �p. Of interest is determining to what
extent the p-spectrum of a manifold determines the geometry of the manifold.

Until the 1990s, almost all examples of isospectral manifolds were also strongly iso-
spectral, that is, isospectral for any natural, elliptic differential operator; see [8]. This
relation between the function and form spectrum on early examples was due to the purely
representation-theoretic nature of early constructions of isospectral manifolds. As such, ex-
amples of manifolds isospectral on functions were also p-isospectral, for p = 1, . . . , dim.
The notable exceptions were examples of Ikeda, who showed that for any p0 > 0 there
exist examples of pairs of lens spaces that are isospectral on p-forms for p = 0, . . . , p0
and not isospectral for (p0 + 1)-forms. A lens space is a manifold of the type Sn/G, where
G is a cyclic subgroup of isometries acting freely on Sn.
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Lens spaces, isospectral on forms but not on functions

Since the 1990s, there has been a growth of methods for producing isospectral manifolds,
almost all of which involve bundles and submersions of some kind. See for example [7, 8,
9, 10, 13, 14, 15, 17, 22, 23, 24, 25, 26, 27]. These more recent methods of Szabo, Gordon,
and Schueth are for functions only; that is, the methods employed do not extend to the
spectrum on forms. In fact, Schueth [21] shows the non-isometry of some of the examples
by showing that the 1-form heat invariants cannot be equal, that is, by showing that they
are not isospectral on forms. For other examples of manifolds with different p-spectra, see
[6, 9, 10, 11]. In particular, [12] exhibits examples of manifolds of even dimension n that
are isospectral on (n/2)-forms but not on functions.

Most notably, in 2001, R. Miatello and J. P. Rossetti [18] methodically studied the
function and p-form spectrum of compact flat manifolds. They produced beautiful examples
of pairs of compact flat manifolds that are isospectral on forms, not isospectral on functions,
and with different lengths in the length spectrum.

In this paper, we methodically study the function and p-form spectrum of lens spaces in
a way that allows us to study just a single p-spectrum. We produce conditions under which
we may have examples of lens spaces that are isospectral on p0-forms for some p0, and not
p-isospectral for p < p0. We show computationally that such examples exist. (For basics
on the p-form spectrum, see, for example, [4, Appendix] or [19].)

This paper is organized as follows. In Section 2, we give background information for lens
spaces and their generating functions. In Section 3 we present the computational results.
In Section 4, we present applications of the existence of these examples to representation
theory (see Corollary 2), and we present the representation theory behind the construction
of p-isospectral lens spaces. In Appendix A we include the Mathematica code used to
find our examples. Notebooks containing this code are given in Appendix B; PDF files of
the code are in Appendix C, and the original Maple code is in Appendix D.

2. Lens spaces

Ikeda [16] considered lens spaces, defined as follows. Let q be a positive integer, and let
p1, . . . , pλ be integers prime to q. Given

R(θ) =
(

cos 2πθ sin 2πθ

− sin 2πθ cos 2πθ

)
,

define the matrix

g =




R(
p1
q

) 0 0 0 0
0 R(

p2
q

) 0 0 0

0 0
. . . 0 0

0 0 0 R(
pλ−1

q
) 0

0 0 0 0 R(
pλ

q
)




. (1)

Let G ⊂ O(2λ) be the cyclic group generated by g, and recall that O(2λ) acts isometrically
on the canonical sphere S

2λ−1.. We define a lens space

L = S
2λ−1/G.

We generate known non-isometric pairs of lens spaces in a manner similar to Ikeda’s.
Choose k ∈ N, k < φ(q)/2 = q0, and define n = q0 − k. Here φ denotes the Euler

phi-function, so that φ(m) is the number of integers between 1 and m (inclusive) that are
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prime to m, which is always even when m > 2. Consider the set

RP =
{

± i | i ∈ N, i <
q
2 , (i, q) = 1

}
.

Here N = {1, 2, . . . }. Note that the elements of RP form a representative set for the units
in the ring Zq , so that the order of RP is φ(q) = 2q0 = 2n + 2k.

For a given q and k, we consider pairs of disjoint subsets R of order 2n and S of order 2k

of RP , under the condition that: if α ∈ R, then −α ∈ R, and if α ∈ S, then −α ∈ S. Note
that a choice of R determines a choice of S, and vice versa. We refer to the pairs (R, S) for
convenience in what follows; it is enough just to consider the sets R or the sets S.

By viewing elements of RP as equivalence classes of Zq , we define an equivalence
relation on subsets {t1, . . . , th} of RP as follows: for all j ∈ RP ,

{t1, . . . , th} ∼ {±j t1, . . . , ±j th} (mod q), (2)

where the choices of ± are independent; that is, some may be plus and others minus. For a
given q and k, we then define an equivalence relation on the set of all pairs (R, S) by

(R, S) ∼ (R′, S′) if and only if R ∼ R′ and/or S ∼ S′

where R ⊂ RP has order 2n and S ⊂ RP has order 2k.
Let G(q, k) be a set of representative elements of equivalence classes of pairs (R, S),

and denote the order of G(q, k) by |G(q, k)|.
Now define a lens space LR,S using as the pi of matrix (1) above, the elements of R. It

is well known that LR1,S1 and LR2,S2 are isometric if and only if R1 ∼ R2. (See references
in [16].) Thus, distinct elements of G(q, k) produce nonisometric associated lens spaces.

Our goal is to find distinct elements of G(q, k) with associated lens spaces that are
isospectral for isolated values of p.

We continue to follow the approach of Ikeda, who used a generating function in order
to compare the p-form spectrum of pairs of lens spaces constructed as above. The primary
difference between the work here and that of Ikeda is that Ikeda required that q be prime,
which permitted a systematic analysis of the p-isospectrality behavior. We do not require
that q be prime in what follows. The interested reader is encouraged to read Ikeda’s paper,
where the motivation and computation of the generating function are given in detail.

Given a pair (R, S) representative of an equivalence class, the generating function for
the p-form spectrum of the Laplacian on a lens space LR,S is given by

η
p

(R,S)(z) =
2k∑

a=0

p∑
t=0

(−1)t+a
(
za−t − za+t+2

)
C

a,p−t

(R,S) (3)

where

C
α,β

(R,S) = q

∣∣∣∣
{
(A, B) : A ⊂ R, B ⊂ S, |A| = 2n − β,

|B| = 2k − a,
∑
a∈A

a +
∑
b∈B

b = 0 (mod q)

}∣∣∣∣, (4)

where by |A| we mean the cardinality of A, and so on. Note that |A| = 2n − β and
|B| = 2k − α, and that C

α,β

(R,S) is just

q ∗ Number of pairs (A, B) with the sum of elements in (A, B) = 0 mod(q),

so computing values for C requires only determining the number of such pairs of subsets
that add correctly.
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Theorem 1 (see [16], Proposition 2.1). The lens spaces L(R1,S1) and L(R2,S2) are p-
isospectral if and only if

η
p

(R1,S1)
(z) = η

p

(R2,S2)
(z) and η

p−1
(R1,S1)

(z) = η
p−1
(R2,S2)

(z).

The reason that we need two generating functions has to do with closed and exact forms.
In particular, for lens spaces the p-form spectrum splits as Exact ⊕ Closed, and for full
isospectrality we need both to match. Again, see [16] for more details. Notice that if two
lens spaces are 1-isospectral, they must also be 0-isospectral, that is, isospectral on functions.

We are left with the following problem.

Problem 1. For what values of q and k is it possible to find non-equivalent pairs (R1, S1)

and (R2, S2) in G(q, k) with

(i) η
p

(R1,S1)
(z) = η

p

(R2,S2)
(z) , η

p−1
(R1,S1)

(z) = η
p−1
(R2,S2)

, for some p > 0 and

(ii) ηm
(R1,S1)

(z) �= ηm
(R2,S2)

(z), for all m < p?

3. Computational results

Our approach is to check the equivalence of all possible η
p

(R,S) for various choices of q

and k.
Checking the equivalence of the η

p

(R,S) reduces to checking the coefficients of the powers
of z, which are given by

coefficient of zb = (−1)b
p∑

t=0

(
Cb+t,p−t − Cb−t−2,p−t

)
. (5)

These computations are related to the known problem of subset sums. Specifically, here
we are computing double subset sums (see [2, 3] for information on multiple subset sums),
and we could find no general results in the literature.

Our hope was that relatively low-dimensional examples would be found computationally,
and then verified by hand. The simplest examples are for relatively large values of q, and thus
are computable only using computers. Computations have been done using Maple, MuPaD
and Mathematica, with both integer and floating-point algorithms (see Appendix A for
code in Mathematica, which is most efficient and does not involve the use of floating-point
numbers).

We have run computations for all q � 100 with k = 2, 3, and for all q � 50 with
k = 4. What we know from these numerical computations is that there are many examples
of p-isospectral lens spaces that are not isospectral for m < p (see Table 1 for some
examples when k = 2). No examples of spaces which are not isospectral on functions, but
are isospectral for higher-degree forms, have been found when k = 2 or k = 3; however
examples exist when k = 4 (see Table 3).

Also of interest are examples of ‘half-isospectral’ lens spaces; that is, examples where
the lens spaces are isospectral on (say) closed 2-forms and nothing else. We know of no
obvious application for this property, but mention it here for completeness; we discuss
the representation theory behind these ‘half-isospectral’ examples in the next section. (See
Remark 5).

Examples of this sort of behavior seem to exist in essentially any possible combination
(as even a quick check using the Mathematica code in Appendix A will demonstrate). In
Table 2 we show the case with k = 2 and q = 56, where the rows are the equivalence
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classes of lens spaces and the columns are the values of p. The entries in the array track the
ηp equivalence classes for each row, so if two rows have the same entry then the given lens
spaces are isospectral for co-exact forms of that degree. In the example shown, the spaces
represented by rows two and three are isospectral for forms of degree zero, one, and two,
and also eight, nine, and ten, while the spaces for rows six and seven are also isospectral
for forms of degree zero, one, and two, but then only ‘half-isospectral’ for degree six.

Table 1: Isospectralities for k = 2. For larger q, there are multiple isospectral pairs with
varying p values.

q Lens Space Dim Isospectral for p =
43 37 0 – 5, 14
44 15 0 – 1, 6 – 8
47 41 0 – 5, 14
49 37 0 – 2, 13
53 47 0 – 7, 18
56 19 0 – 3, 8 – 10
58 23 0 – 3, 9 – 11
62 25 0 – 5, 10 – 13
64 27 0 – 5, 12 – 14

Table 2: Various isospectralities for q = 56 and k = 2, lens spaces of dimension 21.
Each row represents an equivalence class of lens spaces, and the entries track the matching
generating functions.

p = 0 1 2 3 4 5 6 7 8 9 10




(
1

) (
1

) (
1

) (
3

) (
2

) (
4

) (
2

) (
3

) (
2

) (
5

) (
2

)
(

1
) (

1
) (

3
) (

1
) (

4
) (

3
) (

4
) (

1
) (

5
) (

2
) (

5
)

(
1

) (
1

) (
3

) (
1

) (
5

) (
2

) (
5

) (
1

) (
5

) (
2

) (
5

)
(

1
) (

1
) (

1
) (

3
) (

2
) (

4
) (

1
) (

4
) (

1
) (

5
) (

1
)

(
1

) (
1

) (
2

) (
2

) (
3

) (
4

) (
3

) (
2

) (
4

) (
3

) (
4

)
(

1
) (

1
) (

1
) (

3
) (

2
) (

4
) (

1
) (

4
) (

1
) (

5
) (

1
)

(
1

) (
1

) (
1

) (
3

) (
1

) (
5

) (
1

) (
3

) (
3

) (
4

) (
3

)
(

1
) (

1
) (

3
) (

1
) (

6
) (

1
) (

6
) (

1
) (

6
) (

1
) (

6
)




Table 3: Some examples of spaces isospectral for p > 0 but not for p = 0.

k q Isospectral for p = Dimension Defining sets (S)

4 39 2 17 {±1, ±2, ±4, ±10} {±1, ±2, ±14, ±17}
4 44 2 15 {±1, ±3, ±7, ±13} {±1, ±3, ±17, ±19}
4 49 6,13 37 {±1, ±6, ±8, ±13} {±1, ±6, ±8, ±22}
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We note that the first two examples in Table 3 are in some sense the ‘best’ possible, since
it is not possible to have lens spaces isospectral on forms of degree one, and not on functions.
Given the seemingly random behavior of the isospectrality exhibited, an obvious question
that was formulated by Miatello and Rossetti in [17] is whether any possible combination
of isospectrality is possible with the right choice of q and k?

To illustrate the techniques described above, and implemented in the code, we now
present a typical calculation using k = 2, 3 and low values of q. The lens spaces involved
do not yield any of the new examples, but as mentioned earlier, the new examples have such
large values of q, that the computations must be done mechanically.

For q = 28, k = 2 the set RP = {±1, ±3, ±5, ±9, ±11, ±13}. Since k = 2 and q0 = 6,
we have n = 4. We seek a list of inequivalent pairs (R, S) with |R| = 8 and |S| = 4 with
the condition that if α ∈ R then −α ∈ R, and likewise for S. Because the set RP comprises
the units of Zq , using the equivalence relation (2) we may assume that one element of S

is 1. After using (2) again, we see that a complete list of possible S sets is S3 = {±1, ±3},
S5 = {±1, ±5} and S13 = {±1, ±13}, and we compute the corresponding R = RP − S.

Note that because k = 2, the maximum p-value that we consider is p = 3, due to
symmetries in the table of C values. For S3 = {±1, ±3}, we carefully compute Cα,β :=
C

α,β

(R,S) for 0 � α � 4 and 0 � β � 3. We merely state the C-values for the other two
possible S-sets.

First note that if α is odd and β is even, then C
α,β

(R,S) = 0, since in this case there is no
way to take (8 − β) odd elements of R and (4 − α) odd elements of S and add them to 0
mod 28: that is, an even number. Now C0,0/q = 1 since there is only one way to take eight
elements of R3 and four elements of S3, which must add to 0 mod 28. Likewise, C0,2/q = 4
since there are only four ways to take 6 elements of R, and four elements of S3, and still
add to 0 mod q. In particular, A = {±5, ±9, ±11}, {±5, ±9, ±13}, {±5, ±11, ±13} or
{±9, ±11, ±13} and B = S3 when using (4).

The value C1,1 = 0, as there is no way to add seven elements of R3 and three elements of
S3 to 0. The value C1,3/q = 12. We list six (A, B) pairs that satisfy the necessary conditions
for (4). The other six pairs are obtained by negating all elements of A and of B:

A = {5, 9, 11, ±13} and B = {±1, 3};
A = {5, ±9, 11, 13} and B = {−1, ±3};
A = {5, 9, ±11, 13} and B = {1, ±3};
A = {5, 9, ±11, −13} and B = {−1, ±3};
A = {5, 9, −11, ±13} and B = {±1, −3};
A = {5, ±9, 11, −13} and B = {±1, −3}.
The value C2,0 = 2, since there are only two ways to take eight elements of R3, which

must add to 0, and two elements of S3 and still add to 0. In particular, A = R3 and either
B = {±1} or B = {±3}. The value C2,2/q = 18. We obtain eight of the (A, B) pairs by
removing an arbitrary element of R3 and its inverse, and an arbitrary element of S3 and its
inverse. We list five of the remaining (A, B) pairs, with the other five obtained by negating
all A and B elements:

A = {±5, −9, ±11, 13} and B = {−1, −3};
A = {−5, 9, ±11, ±13} and B = {−1, −3};
A = {±5, −9, 11, ±13} and B = {1, −3};
A = {±5, ±9, −11, 13} and B = {1, −3};
A = {±5, ±9, 11, 13} and B = {1, 3}.
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The value C3,1 = 0, as there is no way to add seven elements of R3 and one element of S3
to have them add to 0. Using the definition of C, one easily checks that C3,3 = C1,3 = 12q.
Likewise, one easily checks that C4,0 = q and C4,2 = C0,2 = 4q.

We thus have the following values of Cα,β for S3 = {±1, ±3} with α = 0, . . . , 4 and
β = 0, . . . , 3:

Cα,β =




q 0 4q 0
0 0 0 12q

2q 0 18q 0
0 0 0 12q

q 0 4q 0


 .

A similar calculation shows that for S5 = {±1, ±5}, we have

Cα,β =




q 0 4q 0
0 0 0 16q

2q 0 16q 0
0 0 0 16q

q 0 4q 0


 ,

and for S13 = {±1, ±13},

Cα,β =




q 0 4q 0
0 0 0 8q

2q 0 20q 0
0 0 0 8q

q 0 4q 0


 .

Applying equation (3) to these C-values, we obtain

η0
(R3,S3)

(z) = η0
(R5,S5)

(z) = η0
(R13,S13)

(z)

and

η1
(R3,S3)

(z) = η1
(R5,S5)

(z) = η1
(R13,S13)

(z),

and hence the resulting three lens spaces are isospectral on functions and on 1-forms.
However, there are no remaining ηp equalities for any pair of lens spaces; that is, no pair
of lens spaces is isospectral (or half-isospectral) on 2-forms or 3-forms.

We now give two particular C-values for the case q = 17, and k = 3. In this case,
the set RP = {±1, ±2, ±3, ±4, ±5, ±6, ±7, ±8}. Two inequivalent choices for S are
S = {±1, ±2, ±4} and S′ = {±1, ±3, ±4}.

We compute the following values of Cα,β for S = {±1, ±2, ±4} with α = 0, . . . , 6 and
β = 0, . . . , 5:

Cα,β =




17 0 85 68 272 170
0 0 340 578 1462 1360
51 136 833 1598 3366 3434
0 102 986 2176 4522 4828
51 136 833 1598 3366 3434
0 0 340 578 1462 1360
17 0 85 68 272 170




.
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For S′ = {±1, ±3, ±4}, we have

Cα,β =




17 0 85 102 238 238
0 0 306 646 1292 1462
51 102 799 1700 3230 3706
34 102 1020 2278 4318 4964
51 102 799 1700 3230 3706
0 0 306 646 1292 1462
17 0 85 102 238 238




.

Using the computer to apply equation (3) to these C-values, we obtain

η1
(R,S)(z) = η1

(R′,S′)(z),

with no other η-polynomials equal. Hence the resulting lens spaces are isospectral on co-
exact 1-forms (and hence also on exact 2-forms), and are not isospectral on functions. See the
following section for a discussion of the representation theory behind these half-isospectral
examples.

4. Representation theory and the examples

In this section we explain the behavior of the examples in Section 3 in terms of represen-
tation theory; that is, there is a representation-theoretic explanation as to why the examples
in Section 3 behave the way they do. Most of the results below can be found in [20]; we
include a summary and some proofs not found in [20], for expository purposes.

Let G be a unimodular Lie group, and let K be a compact subgroup of G. Recall that
there are two basic procedures in representation theory that relate representations of G to
representations of K .

Definition 1 (Restriction and induction). The restriction of a unitary representation
(ρ, V ) of G to K is is denoted ResG

K(ρ). Let (τ, W) be a finite-dimensional unitary repre-
sentation of K on the Hilbert space W with inner product 〈 , 〉. Define

Xτ :=
{
f : G → W : f is measurable ;

∫
K\G

〈f, f 〉 dx < ∞;

f (kg) = τ(k)f (g) ∀k ∈ K, ∀g ∈ G

}
. (6)

The space Xτ is a Hilbert space. Define an action ρ of G on Xτ by

(ρ(g)f )(x) = f (xg)

for all x, g ∈ G and all f ∈ Xτ . One may check that this is a unitary group representation,
denoted IndG

K(τ); it is called the representation of G induced from the representation τ

of K . See [20] for details.

Definition 2 (Subrepresentation of ρ relative to τ , denoted ρτ ). Let G be a uni-
modular Lie group, and let (ρ, V ) be a unitary representation of G. Let K be a compact
subgroup of G, and let (τ, W) be an irreducible unitary representation of K . We define Vτ to
be the smallest closed G-invariant subspace of V that contains all K-invariant subspaces of
(ResG

K(ρ), V ) that are isomorphic to τ . That is, if (ResG
K(ρ), V̂ ) is a K-invariant subspace

of (ResG
K(ρ), V ) and (ResG

K(ρ), V̂ ) is unitarily equivalent to τ , then V̂ ⊂ Vτ , and Vτ is the
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smallest closed G-invariant subspace with this property. If τ is not an irreducible represen-
tation of K , then we let Vτ be the closure of the sum of the Vµ where µ is an irreducible
component of τ . Let ρτ denote the representation (ρ, Vτ ) of G.

Remark 1. Note that if (ResG
K(ρ), V ) has no irreducible components that are equivalent

to τ , then Vτ = {0} and ρτ = 0.

Definition 3 (τ -equivalence, K-equivalence). Let ρ and π be unitary representations
of G, and let τ be a unitary representation of K . The representations ρ and π are τ -equivalent
if ρτ and πτ are unitarily equivalent representations of G. The representations ρ and π are
K-equivalent if they are 1K -equivalent. That is, they are τ -equivalent in the special case
where τ = 1K , the trivial representation of K .

Definition 4 (Stabilizer). Let G act on the left on a manifold X. Let x ∈ X. The stabilizer
of x is defined as

Gx := {g ∈ G : g · x = x}.
If G acts properly and smoothly, then Gx is a compact subgroup of G. Note that G acts
properly if and only if the mapping G × X → X × X defined by (g, x) 
→ (gx, x) for all
g ∈ G and all x ∈ X is a proper map.

The following is a basic property; see [1].

Proposition 1 (Generic stabilizer). Let G act properly and smoothly on the left on the
manifold X. There exists a compact subgroup K of G such that the following properties
hold.

(i) For all x ∈ X, K is conjugate to a subgroup of Gx .

(ii) There exists an open dense subset U ⊂ X such that if x ∈ U , then K and Gx are
conjugate.

Definition 5. Let πG
�i

denote the induced representation on G arising from the trivial
representation on �i ; that is, for i = 1, 2,

πG
�i

:= IndG
�i

(1�i
).

Theorems 2 and 3 are the main theorems of [20].

Theorem 2 (Isospectrality on functions [20]). Let (X,m) be a Riemannian manifold.
Let G be a closed subgroup of isometries of (X, m), and K the generic stabilizer of the
action of G on X. Let �1 and �2 be discrete subgroups of G such that �1\X and �2\X are
compact manifolds. If πG

�1
and πG

�1
are K-equivalent, then (�1\X, m1) and (�2\X, m2)

are isospectral on functions.

Remark 2. Pesce proved Theorem 2 using three different methods: one proof uses the
method of transplantation developed by Berard; a second proof uses the Selberg trace
formula; the last proof uses Frobenius reciprocity, which is valid only in the case where X

is compact. Each proof has its advantages; for example, the transplantation proof extends
to orbifolds. See [20] for more details.
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Theorem 3 (Necessity and sufficiency on functions [20]). Let (X,m) be a com-
pact Riemannian manifold, G a group of isometries of (X,m), K the generic stabilizer
of the action of G on X, and �1 and �2 discrete subgroups such that (�1\X, m1) and
(�2\X, m2) are compact. If the real eigenspaces of (X, m) are irreducible under the action
of G, then (�1\X, m1) and (�2\X, m2) are isospectral on functions if and only if they are
K-equivalent.

Remark 3. Actually, Pesce proves that Theorem 3 is necessary and sufficient in two addi-
tional cases:

(i) (X,m) is a rank one symmetric space of noncompact type, and

(ii) (X,m) is Euclidean space with the canonical metric.

Theorem 4 (Isospectrality on forms [20]). Let E be a natural fiber bundle over (X,m),
and let D be a natural, self-adjoint, elliptic differential operator on E. Let G be a group
of isometries of (X,m) and K the generic stabilizer of the action of G on X. Let τ be the
representation of K on the fiber Ex over x ∈ X, where Gx , the stabilizer of x, is isomorphic
to K . Let �1 and �2 be discrete subgroups of G such that �1\X and �2\X are compact
manifolds. If πG

�1
and πG

�2
are equivalent relative to τ , then D1 and D2 are isospectral.

Definition 6 (Representation τp). We denote by τp the representation of K on the fibre
Ex over x ∈ X where Gx is isomorphic to K for the special case where D is �p and E is
the bundle of differential p-forms over X.

Theorem 5 (Necessity and sufficiency on forms [20]). Let (X,m) be a compact
Riemannian manifold, G a group of isometries of (X, m) and �1 and �2 discrete subgroups
such that (�1\X, m1) and (�2\X, m2) are compact. If the real p-eigenspaces of (X,m)

are irreducible under the action of G, then (�1\X, m1) and (�2\X, m2) are isospectral on
p-forms if and only if they are τp-equivalent.

Corollary 1. The examples described in Section 3, Table 3, are τp-equivalent for the
given value of p but not τq -equivalent for q �= p.

Proof. The p-form eigenspaces of the canonical sphere are irreducible [16]. Thus, by the
previous theorem, since they are isospectral on p-forms, the bundle of differential p-forms
must be τp-equivalent. Note that τp is equivalent to the natural representation of K = O(m)

on ∧p
C

m, where m is the dimension of the lens space.

Remark 4. The proof of sufficiency is given in [20], using transplantation. We include
the proof using Frobenius reciprocity, which was mentioned in [20]. The necessity of the
condition is likewise mentioned in the last remark in [20]; thus the proof given below is due
to Pesce, and we provide more details here for completeness of the literature.

Remark 5. In the case of lens spaces, τp = τpc ⊕ τpe, where τpc is τp restricted to closed
forms, and τpe is τp restricted to exact forms. The examples in Section 3 that are half-p-
isospectral are τpc-equivalent but not τpe-equivalent.

The following is an application of the examples of Section 3 to representation theory.

Corollary 2. There exist (X, m) a compact Riemannian manifold and �1, �2 discrete
groups of isometries acting on X that, with definitions as in Theorem 4, are τpc-equivalent
but not τpe-equivalent.
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Proof of Theorems 4 and 5 using Frobenius reciprocity. Assume that (X,m) is a compact
Riemannian manifold, G a group of isometries of (X, m), and K the generic stabilizer of
the action of G on X. Let �1 and �2 be discrete subgroups of G such that (�1\X, m1) and
(�2\X, m2) are compact.

Since �p on (X,m) has discrete spectrum, let specp denote the spectrum of �p without
multiplicity. If λ ∈ specp, then let V

p
λ denote the eigenspace of λ. The multiplicity of the

eigenvalue λ is the dimension of V
p
λ ; that is, dimC V

p
λ = mult(λ).

Any closed group of isometries H of (X, m) acts on V
p
λ by

πH
λ (h)ω = (h−1)∗ω

for all ω ∈ V
p
λ and all h ∈ H .

Thep-eigenforms of (�i\X, mi) correspond to eigenforms of (X,m) that are�i-invariant
with the same eigenvalue, i = 1, 2. Thus, (�1\X, m1) and (�2\X, m2) are isospectral on
p-forms if and only if for all λ ∈ specp, we have[

1�1 : π
�1
λ

]
=

[
1�2 : π

�1
λ

]
;

that is, an eigenform ω is left �i-invariant if and only if for all γ ∈ �i , γ · ω = ω if and
only if spanC{ω} is an invariant subspace of π

�i

λ , i = 1, 2.
Now [

1�i
: π

�i

λ

]
=

[
1�i

: ResG
�i

(πG
λ )

]

=

1�i

: ResG
�i

( ∑
ρ∈Ĝ

[
ρ : πG

λ

]
ρ

)


=
∑
ρ∈Ĝ

[
ρ : πG

λ

] [
1�i

: ResG
�i

(ρ)
]
.

Using Frobenius reciprocity, we have[
1�i

: π
�i

λ

]
=

∑
ρ∈Ĝ

[
ρ : πG

λ

] [
IndG

�i
(1�i

) : ρ
]

=
∑
ρ∈Ĝ

[
ρ : πG

λ

] [
πG

�i
: ρ

]
.

Now, let

Ĝp = {ρ ∈ Ĝ : ρτp �= 0}.
By Theorem 6 below, the value

[
ρ : πG

λ

] �= 0 if and only if ρ ∈ Ĝp. We thus have[
1�i

: π
�i

λ

]
=

∑
ρ∈Ĝp

[
ρ : πG

λ

] [
πG

�i
: ρ

]
.

Now, note that [ρ : πG
λ ] is independent of �i . Clearly, if πG

�1
and πG

�2
are τp-equivalent,

then (�1\X, m1) and (�2\X, m2) are isospectral on p-forms.
To see the converse using the hypothesis of the theorem, note that if π is a real, irreducible

representation of G, then its complexification πC satisfies exactly one of the following
conditions:
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(i) πC is an irreducible complex representation, (π is real type), or

(ii) πC = σ ⊕σ ∗, where σ ∗ is the contragredient representation of σ (π is complex type),
or

(iii) πC = σ ⊕ σ (π is quaternionic type).

Assume that the eigenspaces (πG
λ , V

p
λ ) are real and irreducible. If πG

λ is real or quater-
nionic, then πG

λ = σ or πG
λ = σ ⊕ σ for some σ ∈ Ĝp. Thus[
1�i

: π
�i

λ

]
=

∑
ρ∈Ĝp

[
ρ : πG

λ

] [
π�i

: ρ
]

=
[
σ : πG

λ

] [
π�i

: σ
]
.

If (�1\X, m1) and (�2\X, m2) are isospectral on p-forms, then [π�1 : σ ] = [π�2 : σ ]. If
πG

λ is complex, then πG
λ = σ ⊕ σ ∗, so[

1�i
: π

�i

λ

]
=

∑
ρ∈Ĝp

[
ρ : πG

λ

] [
π�i

: ρ
]

=
[
σ : πG

λ

] [
π�i

: σ
] +

[
σ ∗ : πG

λ

] [
π�i

: σ ∗] .

Now note that a subspace Wλ ⊂ V
p
λ is equivalent to σ if and only if W̄λ ⊂ V

p
λ is equivalent

to σ ∗. That is, �ω = λω if and only if �ω̄ = λω̄. We thus have [σ : πG
λ ] = [σ ∗ : πG

λ ]
and [σ : πG

�i
] = [σ ∗ : πG

�i
]. Therefore, if (�1\X, m1) and (�2\X, m2) are isospectral on

p-forms, then [π�1 : σ ] = t[π�2 : σ ].
Theorem 6. An irreducible representation ρ of G appears as an eigenspace of �p if and
only if ResG

K(ρ) is composed of irreducible representations isomorphic to τp.

Proof. The proposition is proved carefully and completely in the case of functions in [5].
We briefly comment on the extension of this proof to the Laplace operator on differential
forms, and note that the idea extends naturally to any natural fiber bundle, as stated in [20].

With notation as in [5],
∑
λ

ηp(λ, ρ)e−tλ =
∑
λ

e−tλ 1

vol G

∫
G

χ
p
λ (g)χρ(g) dg

=
∑
λ

1

vol G

∫
G

e−tλ trace(gλ)χρ(g) dg.

Here, gλ is the action of g on the Eigenspace of λ; that is,

g · ω = (g−1)∗ω.

Now, by the definition of trace,

trace(gλ) =
mult(λ)∑

i=1

∫
M

(ωi(x), g · (ωi)(x)) dx

where this is a finite sum over a basis of eigenforms of λ.
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Thus ∑
λ

ηp(λ, ρ)e−tλ = 1

vol G

∫
G

χρ(g)

∫
M

∑
λ

(ωx, (g · ωλ)x) dx dg

= 1

vol G

∫
G

χρ(g)

∫
M

trace(K(t, x, gx) ◦ g) dx dg.

Now we may plug in the asymptotics (see [5]) and obtain as a leading term, just as in [5],

a0 = vol M̄[ρK : τp],
as desired.

The rest of the argument follows from [5] without comment.

Acknowledgement. The authors wish to thank the referee for a very careful reading of the
manuscript.

Appendix A. Mathematica code

Below is the Mathematica code for generating all examples when k = 2. The code is
identical for other values of k, except for the initialization.We note that a simple modification
of this code allows one to print the subsets R and S that give the generating functions, which
would allow one (if one had the time) to check the calculations by hand.

Links to Mathematica notebooks with code to generate the examples cited above can
be found in Appendix B. For people without Mathematica, PDF files with the code and
computations can be found in Appendix C. Finally, for historical comparison, our original
Maple code can be found in Appendix D.

/* This portion computes the
generating functions */

For[q = 1, q <= 100, q++,
Print["q= ", q];
qlist = Table[i, {i, 1, q - 1}];

q0 = EulerPhi[q]/2 ; k = 2; n = q0 - k; pmax = n - 1; relprime =
{}; For[i = 2, i <= Floor[q/2], i++,

If[GCD[i, q] == 1, relprime = Append[relprime, i]]
];

schoices = {}; subsetlist = Subsets[relprime, {k - 1}]; For[i = 1,
i <= Length[subsetlist], i++,

schoices = Append[
schoices, Join[subsetlist[[i]], q - subsetlist[[i]], {1}, {q - 1}]]];

valid = Table[i, {i, Length[schoices]}]; numgoodtups =
Length[schoices]; For[sx = 1, sx <= Length[schoices], sx++,

If[MemberQ[valid, sx],
For[mult = 2, mult <= q0, mult++,

tset = Mod[mult*schoices[[sx]], q];
m = 1;
dn = False;
While[dn True && m <= Length[schoices],

If[MemberQ[valid, m],
tset2 = schoices[[m]];
If[Sort[tset2] == Sort[tset],

dn = True;
valid = Complement[valid, {m}];
numgoodtups--;
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]
]

m++;
]

]
]

];
complete = Union[relprime, q - relprime, {1}, {q - 1}];
ReducePower = Function[mono,

Coefficient[mono, x, Exponent[mono, x]]*xˆMod[Exponent[mono, x], q]];
Q = Table[q, {k}]; eta = ZeroMatrix[Length[valid], n + 1]; For[m =
1, m <= Length[valid], m++,

s = schoices[[valid[[m]]]];
r = Complement[complete, s];
sizes = 2*k;
sizer = 2*n;
sumofs = Plus @@ s;
sumofr = Plus @@ r;
S = ZeroMatrix[sizes + 1, q];
R = ZeroMatrix[q, sizer + 1];
Gs = Expand[Product[(1 + xˆs[[i]]*y), {i, sizes}]];
Gr = Expand[Product[(1 + xˆr[[i]]*y), {i, sizer}]];
Gs = Map[ReducePower, Gs];
Gr = Map[ReducePower, Gr];
For[pick = 0, pick <= sizes, pick++,

p = Coefficient[Gs, y, pick];
For[sidx = 1, sidx <= q, sidx++,

S[[pick + 1, sidx]] = Coefficient[p, x, (sidx - 1)];
];

];
For[pick = 0, pick <= sizer, pick++,

p = Coefficient[Gr, y, pick];
For[ridx = 1, ridx <= q, ridx++,

R[[q - Mod[ridx - 2, q], pick + 1]] = Coefficient[p, x, (ridx - 1)];
];

];
Cs = q*(S.R);
For[p = 0, p <= n, p++,

eta[[m, p + 1]] =
Sum[Sum[(-1)ˆ(t + a)*(xˆ(a - t) - xˆ( a + t + 2))*Cs[[a +1, p - t + 1]],

{t, 0, p}], {a, 0, 2*k}];
];

];

/* Now we look for examples by comparing the generating functions */

rows = Dimensions[eta][[1]]; eta = Simplify[eta];
PositionsOfRunsZero[x_List] :=

{First[#], Last[#]} & /@ DeleteCases[Map[Last, Split[Transpose[
{x,Range[Length[x]]}], First[#1] === First[#2] && First[#1] == 0 &], {2}],
\{_}];

matchsets = ZeroMatrix[Length[valid], n + 1]; For[pidx = 1, pidx
<= n + 1, pidx++,

matchpolys = Union[eta[[All, pidx]]]; Print[Length[matchpolys]];
For[rowidx = 1, rowidx <= Length[valid],

rowidx++,matchsets[[rowidx, pidx]] =
Position[matchpolys, eta[[rowidx, pidx]]];
]

];
Print[matchsets // MatrixForm]; For[i = 1, i <= rows, i++,
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For[j = i + 1, j <= rows, j++,
diffs = eta[[i]] - eta[[j]];
zeroruns = PositionsOfRunsZero[diffs];
If[Length[zeroruns] > 1,
If[diffs[[1]] == 0, Print["Match on Functions"]];

Print["i= ", i, "j = ", j, " ", zeroruns];,
If[Length[zeroruns] == 1,

If[zeroruns[[1, 1]] > 1,
If[diffs[[1]] == 0, Print["Match on Functions"]];

Print["i= ", i, "j = ", j, " ", zeroruns]
]

]
]

]
]]

Appendix B. Links to Mathematica notebooks

Links to Mathematica notebooks with code to generate the examples cited above can
be found at:

http://www.lms.ac.uk/jcm/9/lms2006-001/appendix-b.

Appendix C. Links to PDF files of the code

For people without Mathematica, PDF files with the code and computations can be
found at:

http://www.lms.ac.uk/jcm/9/lms2006-001/appendix-c.

Appendix D. Link to the original Maple code

Finally, for historical comparison, our original Maple code can be found at:

http://www.lms.ac.uk/jcm/9/lms2006-001/appendix-d.
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