
Mathematical Structures in Computer Science (2024), 34, pp. 747–806
doi:10.1017/S0960129524000215

PAPER

Automatic differentiation for ML-family languages:
Correctness via logical relations
Fernando Lucatelli Nunes1,2 and Matthijs Vákár1

1Department of Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands and 2Department of
Mathematics, University of Coimbra, CMUC, Coimbra, Portugal
Corresponding author: Fernando Lucatelli Nunes; Email: fernandolucatellinunes@gmail.com

(Received 19 June 2023; revised 21 July 2024; accepted 27 July 2024; first published online 21 October 2024)

Abstract
We give a simple, direct, and reusable logical relations technique for languages with term and type recur-
sion and partially defined differentiable functions. We demonstrate it by working out the case of automatic
differentiation (AD) correctness: namely, we present a correctness proof of a dual numbers style AD
code transformation for realistic functional languages in the ML-family. We also show how this code
transformation provides us with correct forward- and reverse-mode AD.

The starting point is to interpret a functional programming language as a suitable freely generated cat-
egorical structure. In this setting, by the universal property of the syntactic categorical structure, the dual
numbers AD code transformation and the basic ωCpo-semantics arise as structure preserving functors.
The proof follows, then, by a novel logical relations argument.

The key to much of our contribution is a powerful monadic logical relations technique for term recur-
sion and recursive types. It provides us with a semantic correctness proof based on a simple approach for
denotational semantics, making use only of the very basic concrete model of ω-cpos.

Keywords: Programming language semantics; Differentiable programming languages; Recursive types; Logical relations;
Program transformations; Software correctness

1. Introduction
Logical relations. Logical relations arguments (see, e.g., Mitchell and Scedrov 1992 for a survey)
are proof techniques that can be used to demonstrate properties of typed programming languages
(PL), ranging from strong normalization to canonicity and adequacy. The arguments are essen-
tially type-guided forms of induction. They seem to have been reinvented several times by different
research communities and are also known under various other names, including Tait’s method
of computability, reducibility candidates, Artin gluing, Sierpinski cone, (sub)sconing, and Freyd
cover.

Category theory gives a useful way to organize logical relations arguments: by viewing them as
ways of building a new categorical semantics of a PL out of an existing ones. The new semantics
then equips objects with predicates of some form and restricts the morphisms to those morphisms
that respect the predicates. By choosing the right notion of predicates, we can ensure that the
existence of this new semantics gives us the property we are hoping to prove about our PL.

In this paper, we present novel logical relations methods for languages with recursive fea-
tures, together with an application of these techniques to correctness proofs for automatic
differentiation (AD).

C© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215
https://orcid.org/0000-0002-1817-2797
https://orcid.org/0000-0003-4603-0523
mailto:fernandolucatellinunes@gmail.com
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129524000215&domain=pdf
https://doi.org/10.1017/S0960129524000215


748 F.L. Nunes and M. Vákár

AD and the PL community. Automatic differentiation (AD, see, e.g., Griewank and Walther 2008
for a survey) is a popular family of techniques for computing derivatives of functions implemented
by a piece of code, particularly when efficiency, scaling to high dimensions, and numerical stability
are important. It has been studied in the scientific computing community for many decades and
has been heavily used in machine learning for the last decade. In the last years, the PL community
has turned toward studying AD from a new perspective. Much progress has been made toward
giving a formulation of (forward and) reverse-mode AD that

(1) is simple and purely functional;
(2) scales to the expressive ML-family functional languages that are popular in practice;
(3) admits a simple correctness proof that shows that AD computes the derivative;
(4) provably has the correct asymptotic complexity and is performant in practice;
(5) is parallelism preserving.

Our contributions. In this paper, we present a simple solution to problems (1)–(3), our first major
contribution.

We give a proof of the correctness of the reverse and forward mode dual numbers style AD
in a semantically unified way, making use only of the very simple concrete denotational model
of ω-cpos. In doing so, we simplify existing techniques that relied on sheaf-theoretic machinery
(Vákár 2020; Huot et al. 2023).

A key challenge that we tackle to achieve the correctness proofs of this paper is to have
sufficiently strong categorical logical relations techniques for reasoning about partially defined
differentiable functions and term and type recursion. We believe that our novel methods can be
simpler than existing alternatives such as Pitts (1996) and Ahmed (2006), and they are still widely
applicable, our second major contribution.

We refer to the companion paper (Smeding and Vákár 2022) for a performant implemen-
tation of the dual numbers reverse-mode AD technique proved correct in the present paper. It
shows that it efficiently differentiates most of Haskell98, contributing toward point (4). Parallelism
preservation (point (5)) for this AD technique is discussed in Smeding and Vákár (2024).

In our work, we ensure to keep all constructions sufficiently simple such that they can easily
be generalized to more advanced AD algorithms such as CHAD (Vákár 2021; Vákár and Smeding
2022; Lucatelli Nunes and Vákár 2023), which is one of our key motivations for this work.

Why care and why is this difficult?. Given the central role that AD plays in modern scientific com-
puting and machine learning, the ideal of differential programming has been emerging (Meijer
2018; Plotkin 2018): compilers for general-purpose PL should provide built-in support for AD of
any programs written in the language. Such general-purpose PL tend to include many language
features, however, which we then need to be able to differentiate. What a correct and efficient
notion of derivative is of such features might not be so straightforward as they often go beyond
what is studied in traditional calculus. In this paper, we focus on the challenge posed, in particu-
lar, by partial language features: partial primitive operations, lazy conditionals on real numbers,
iteration, recursion, and recursive types.

Partial primitive operations are certainly key. Indeed, even the basic operations of division and
logarithm are examples. (Lazy) conditionals on real numbers are useful in practice for pasting
together various existing smooth functions, a basic example being the ReLU function:

ReLU(x) def= if x then 0 else x = case (sign x) of inl _→ 0 | inr _→ x,
which is a key component of many neural networks. Conditionals are also frequently used
in probabilistic programming to paste together density functions of different distributions

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 749

(Betancourt 2019). People have long studied the subtle issue of how one should algorithmically
differentiate such functions with “kinks” under the name of the if-problem in AD (Beck and
Fischer 1994). Our solution is the one also employed by Abadi and Plotkin (2020): to treat the
functions as semantically undefined at their kinks (at x= 0 in the case of ReLU(x)). This is justi-
fied given how coarse the semantic treatment of floating-point numbers as real numbers is already.
Our semantics based on partial functions defined on real numbers is sufficient to prove many
high-level correctness properties. However, like any semantics based on real numbers, it fails to
capture many of the low-level subtleties introduced by the floating-point implementation. Our
key insight that we use to prove correctness of AD of partial programs is to construct a suitable
lifting of the partiality monad to a variant of Huot et al. (2020)’s category of Rk-indexed logical
relations used to relate programs to their derivatives. This particular monad lifting for derivatives
of partial functions can be seen as our solution to the if-problem in AD. In Section 11, we briefly
discuss how the more ambitious solution to the if-problem in the style of Lee et al. (2020), Mazza
and Pagani (2021), and Huot et al. (2023) can also be achieved with our methods. In that solution,
we show that the set of non-differentiable points where AD does not compute a correct derivative
is of measure zero, which we achieve by choosing a different monad lifting.

Similarly, iteration constructs, or while-loops, are necessary for implementing iterative algo-
rithms with dynamic stopping criteria. Such algorithms are frequently used in programs that AD
is applied to. For example, AD is applied to iterative differential equation solvers to perform
Bayesian inference in SIR models.1 This technique played a key role in modeling the Covid-19
pandemic (Flaxman et al. 2020). For similar reasons, AD through iterative differential equation
solvers is important for probabilistic modeling of pharmacokinetics (Tsiros et al. 2019). Other
common use cases of iterative algorithms that need to be AD’ed are eigen-decompositions and
algebraic equation solvers, such as those employed in Stan (Carpenter et al. 2015). Finally, itera-
tion gives a convenient way of achieving numerically stable approximations to complex functions
(such as the Conway–Maxwell–Poisson density function (Goodrich 2017). The idea is to con-
struct, using iteration, a Taylor approximation that terminates once the next term in the series
causes floating-point underflow. Indeed, for a function whose i-th terms in the Taylor expansion
can be represented by a program

i : int, x : real� t(i, x) : real,
we would define the underflow-truncated Taylor series by

iterate
( case z of 〈i, y′〉→ let y= t(i, x) in

case − ε < y< ε of inl _→ inr x | inr _→ inl 〈i+ 1, y+ y′〉
)
from z= 〈0, 0〉, (1)

where ε is a cutoff for floating-point underflow.
Next, recursive neural networks (Tai et al. 2015) are oftenmentioned as a use case of AD applied

to recursive programs. While basic Child-Sum Tree-LSTMs can also be implemented with primi-
tive recursion (a fold) over an inductively defined tree (which can be defined as a recursive type),
there are other related models such as Top-Down-Tree-LSTMs that require an iterative or general
recursive approach (Zhang et al. 2016). In fact, Jeong et al. (2018) have shown that a recursive
approach is preferable as it better exposes the available parallelism in the model. In Appendix D,
we show some Haskell code for the recursive neural network of Socher et al. (2011), to give an
idea of how iteration and recursive types (in the form of inductive types of labeled trees) nat-
urally arise in a functional implementation of such neural net architectures. We imagine that
more applications of AD applied to recursive programs with naturally will emerge as the tech-
nique becomes available to machine learning researchers and engineers. Finally, we speculate that
coinductive types like streams of real numbers, which can be encoded using recursive types as
μα.1→ (real ∗ α), provide a useful API for online machine learning applications (Shalev-Shwartz
et al. 2012), where data is processed in real time as it becomes available. Recursion and more

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


750 F.L. Nunes and M. Vákár

notably recursive types introduce one final challenge into the correctness proof of AD of such
expressive functional programs: the required logical relations arguments are notoriously techni-
cal, limiting the audience of any work using them and frustrating application to more complicated
AD algorithms like CHAD. To mend this problem, we introduce a novel, simple but powerful
logical relations technique for open semantic logical relations for recursive types.

Prerequisites.We assume some familiarity with category theory (see, for instance, Mac Lane 2013):
the concepts of and basic facts about categories, functors, natural transformations, (co)limits,
adjunctions, and (co) monads. We also assume that the reader knows the most basic definitions in
enriched category theory (see, for instance, Kelly 1982): the concepts ofV-categories,V-functors,
andV-natural transformations. We recall the definitions and results we need forV-monads and
their KeisliV-categories (the interested reader can find more details in Dubuc 1970). Later in this
paper, we will also considerV-(co)limits,V-adjunctions, andV-(co)monadicity but only for the
specific case of V=ωCpo with its cartesian structure. In these cases, we ensure to spell out all
details to make the paper as self-contained as possible.

Convention. Whenever we talk about strict preservation of some structure (like products, coprod-
ucts, or exponentials), we are assuming that we have chosen structures (chosen products,
coproducts, or exponentials) and the preservation is on the nose, that is to say, the canonical
comparison is the identity.

2. Key Ideas
In this paper, we consider how to perform forward and reverse-mode dual numbers AD on a
functional language with expressive partial features, by using a dual numbers technique.

Language
We consider an idealized functional language with product types τ × σ , sum types τ 	 + σ , and
function types τ → σ generated by

• a primitive type real of real numbers (in practice, implemented as floating-point numbers);
• constants � c : real for c ∈R;
• sets (Opn)n∈N of n-ary primitive operations op, for which we include computations x1 :
real, . . . , xn : real� op(x1, . . . , xn) : real; we think of these as implementing partial functions
R
n ⇀R with open domain of definition, on which they are differentiable; for example, we

can include mathematical operations log, exp ∈Op1 and (+ ), (∗), (/) ∈Op2;
• a construct x : real� sign (x) : 1 	 + 1, where we write 1 for the empty product; sign t com-
putes the sign of a real number t and is undefined at t= 0; we can use it to define a lazy
conditional on real numbers if r then t else s def= case sign r of{_→ t

∣∣ _→ r} of the kind that
is often used in AD libraries like Stan (Carpenter et al. 2015).

Next, we include two more standard mechanisms for defining partial functions:

• (purely functional) iteration: given a computation�, x : τ � t : τ 	 + σ to iterate and a start-
ing value � � s : τ , we have a computation � � iterate t from x= s : σ , which repeatedly
calls t, starting from the value of s until the result lies in σ ;

• recursion: given a computation �, x : τ → σ � t : τ → σ , we have a program � �μx.t : τ → σ

that recursively computes to let x= μx.t in t; note that we can define iteration with recursion.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 751

Dual numbers forward AD code transform
Let us assume that we have programs ∂iop(x1, . . . , xn) that compute the i-th partial deriva-
tive of each n-ary primitive operation op. For example, we can define ∂1(∗)(x1, x2)= x2 and
∂2(∗)(x1, x2)= x1. Then, we can define a very straightforward forward mode AD code transfor-
mation D by replacing all primitive types real by a pair D (real) def= real× real of reals and by
replacing all constants c, n-ary primitive operations op and sign function sign in the program as2

D (c) def= 〈c, 0〉
D (op(r1, . . . , rn))

def= caseD (r1) of 〈x1, x′1〉→ . . . → caseD (rn) of 〈xn, x′n 〉→
〈op(x1, . . . , xn), x′1 ∗ ∂1op(x1, . . . , xn)+ . . .+ x′n ∗ ∂nop(x1, . . . , xn)〉

D (sign r) def= sign (fstD (r)).

We extendD to all other types and programs in the unique homomorphic (structure preserving
way), by using structural recursion. So, for example, D (τ → σ ) def= D (τ )→D (σ ), D (x) def= x,
D (let x= t in s)= let x=D (t) inD (s), and D (t s)=D (t)D (s). We like to think of D as a
structure preserving functorD : Syn→ Syn on the syntax.

Semantics
To formulate correctness of the AD transformation D, we need to assign a formal denotational
semantics [[− ]] to our language. We use the standard interpretation of types τ as ω-cpos [[τ ]]
(partially ordered sets with suprema of countable chains) and programs x1 : τ1, . . . , xn : τn � t : σ
as monotone ω-continuous partial functions [[t]] : [[τ1]]× · · · × [[τn]]⇀ [[σ ]]. We interpret real
as the discrete ω-cpo [[real]] def= R of real numbers, in which r≤ r′ if and only if r= r′. We
interpret c as the constant [[c]] def= c ∈R. We interpret op as the partial differentiable function
[[op(x1, . . . , xn)]] :Rn ⇀R that it is intended to implement. And, finally, we interpret sign as the
partial function [[sign (x)]] :R⇀ 1 	 1 that sends r < 0 to the left copy of 1 and r > 0 to the right
copy and is undefined for r= 0. Having fixed these definitions, the rest of the semantics is entirely
compositional and standard. In particular, we interpret iteration and recursion using Kleene’s fix-
point theorem. We think of this semantics as a structure preserving functor [[− ]] : Syn→ωCpo
from the syntax to the category of ω-cpos and monotone ω-continuous functions.

Correctness statement
Having defined a semantics, we can phrase what it means for D to be correct. We prove the
following, showing thatD (t) implements the usual calculus derivative D[[t]] of [[t]].

Theorem 2.1 (Forward AD correctness, Theorem 9.1 with k= 1 in main text). For any program
x : τ � t : σ for τ = realm, σ = reall (where we write realn for the type real× · · · × real of length
n tuples of reals), we have that [[t]] is differentiable on its domain and

[[D (t)]]((x1, v1), . . . , (xm, vm))=(
π1([[t]](x1, . . . , xm)), π1(D[[t]]((x1, . . . , xm), (v1, . . . , vm))), . . . ,

πl([[t]](x1, . . . , xm)), πl(D[[t]]((x1, . . . , xm), (v1, . . . , vm)))
)

for any (x1, . . . , xm) in the domain of definition of [[t]] and any tangent vector (v1, . . . , vm) to [[τ ]]
at x.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


752 F.L. Nunes and M. Vákár

Importantly, the program t might use higher-order functions, iteration, recursion, etc. In fact,
we also establish the theorem above for general types τ and σ not containing function types, but
its phrasing requires slight bookkeeping that might distract from the simplicity of the theorem.

A proof via logical relations
The proof of the correctness theorem follows a logical relations argument that we found using
categorical methods, but which can be phrased entirely in elementary terms. Let us fix some n ∈
N. We define for all types τ of our language, by induction, relations Tn

τ ⊆ (Rn→ [[τ ]])× ((Rn ×
R
n)→ [[D (τ )]]) and Pnτ ⊆ (Rn ⇀ [[τ ]])× ((Rn ×R

n)⇀ [[D (τ )]]) that relate a (partial) n-curve
to its derivative n-curve:

Tn
real

def= {(γ , γ ′) | γ is differentiable and γ ′ = (x, v) 
→ (γ (x),Dγ (x, v))}
Tn

τ × σ
def= {(x 
→ (γ1(x), γ2(x)), (x, v) 
→ (γ ′1(x, v), γ ′2(x, v))) | (γ1, γ ′1) ∈ Tn

τ and (γ2, γ ′2) ∈ Tn
σ }

Tn
τ 	+σ

def= {(ι1 ◦ γ1, ι1 ◦ γ ′1) | (γ1, γ ′1) ∈ Tn
τ } ∪ {(ι2 ◦ γ2, ι2 ◦ γ ′2) | (γ2, γ ′2) ∈ Tn

σ }
Tn

τ→σ
def= {(γ , γ ′) | ∀(δ, δ′) ∈ Tn

τ .(x 
→ γ (x)(δ(x)), (x, v) 
→ γ ′(x, v)(δ′(x, v))) ∈ Pnσ }
Pnτ

def=
{
(γ , γ ′) | γ−1([[τ ]])×R

n = γ
′−1([[D (τ )]]) is open and for all differentiable

δ :Rn→ γ−1([[τ ]]) we have (γ ◦ δ, (x, v) 
→ (γ (δ(x)), γ ′(Dδ(x, v)))) ∈ Tn
τ

}
.

We then prove the following “fundamental lemma,” using induction on the typing derivation
of t:

If x1 : τ1, . . . , xn : τn � t : σ and for 1≤ i≤ n, (fi, f ′i ) ∈ Tn
τi , then

(x 
→ [[t]](f1(x), . . . , fn(x)), (x, v) 
→ [[D (t)]](f ′1(x, v), . . . , f ′n(x, v))) ∈ Pnσ .

For example, we use that, by assumption, [[∂iop(x1, . . . , xn)]] equals the i-th partial derivative of
[[op(x1, . . . , xn)]] combined with the chain rule, to show that primitive operations op respect the
logical relations. Crucial features to enable the inductive steps for iteration and recursion in the
proof of the fundamental lemma are that Tn

real and Pnτ are closed under suprema of countable
chains and that Pnτ contains the least element.

As Tk
realk contains, in particular, (id, ((x1, . . . , xk), (v1, . . . , vk)) 
→ ((x1, v1), . . . , (xn, vk))), our

correctness theorem follows.

Extending to recursive types via a novel categorical logical relations technique
Next, we extend our language with ML-style polymorphism and recursive types. That is, we
allow the formation of types τ with free type variables α, and we include a type variable binder
μα.τ , which binds α in τ and computes a canonical fixpoint of α 
→ τ . We extend our AD
transformation homomorphically on terms and types. For example, on types, we define

D (α) def= α D (μα.τ ) def= μα.D (τ ).
A type τ with n free type variables gets interpreted in our ω-cpo-semantics as an n-ary mixed-
variance endofunctor [[τ ]] on the category of ω-cpos and partial morphisms that restricts to that
of ω-cpos and total morphisms. Programs with types that have free variables get interpreted as
(di)natural transformations. As the category of ω-cpos and partial morphisms has the structure to
interpret recursive types, we have a canonicalminimal invariant

roll : [[τ ]](μ[[τ ]],μ[[τ ]]) ∼=−→μ[[τ ]]

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 753

for the mixed-variance endofunctors [[τ ]] on ωCpo that types τ denote (Levy 2012). We interpret
[[μα.τ ]] def= μ[[τ ]].

To extend the correctness proof to this larger language, we would like to define the logical
relation

Tn
μα.τ

def= {(roll ◦ γ , roll ◦ γ ′) | (γ , γ ′) ∈ Tn
τ [μα.τ/α]}.

That is, we would like to be able to define relations using type recursion. If we can do so, then
extending the proof of the fundamental lemma is straightforward. We can then establish the
correctness theorem also for τ and σ that involve recursive types.

The traditional method is to follow the technical recipes of Pitts (1996). Instead, we develop a
powerful new logical relations technique for recursive types, which we believe to be more concep-
tually clear and easier to use in situations like ours. To be precise, we prove a general result saying
that under mild conditions, we can interpret recursive types in the category of logical relations
over a category that models recursive types itself. For simplicity, we state an important special
case that we need for our application here.

Given a right adjoint ωCpo-enriched functor G :ωCpon→ωCpo (such as G(X)=
ωCpon(Y , X) for some Y ∈ωCpon), consider the category SScone of n-ary logical relations,
which has objects (X, T), where X ∈ωCpon and T is a (full) sub-ω-cpo of GX, and morphisms
(T, X)→ (T′, X′) are ωCpon-morphisms f : X→ X′ such that y ∈ T implies Gf (y) ∈ T′.

Theorem 2.2 (Logical relations for recursive types, special case of Theorem 10.14 in main text).
Let L be a strong monad on SScone that lifts the usual partiality monad (− )⊥ on ωCpon along the
projection functor SScone→ωCpon.We assume that L takes the initial object to the terminal one
and that G(ηX)−1(L(T, X))= T, where we write ηX : X→ X⊥ for the unit of the partiality monad
on ωCpon. Then, the Kleisli functor SScone ↪→ SSconeL gives a model for recursive types.

Spelled out in non-categorical terms, we are considering logical relations
Tτ ⊆G([[τ ]]) Pτ = L(Tτ , [[τ ]])⊆G([[τ ]]⊥)

and we require that the relation P0 at the initial object (empty type) is precisely the singleton
set {⊥} (containing the least element) and G([[τ ]]⊆ [[τ ]]⊥)−1(Pτ ) (which we think of as the total
elements in Pτ ) coincide with Tτ .

In particular, in our case, we work binary logical relations (n= 2) with

G(X, X′)=ωCpo2((Rn,Rn ×R
n), (X, X′))

and the monad lifting

L(T, (X, X′))=
{
(γ , γ ′) | γ−1(X)×R

n = γ
′−1(X′) is a proper open subset and for all differentiable

δ :Rn→ γ−1(X) we have (γ ◦ δ, (x, v) 
→ (γ (δ(x)), γ ′(Dδ(x, v)))) ∈ T
}

∪ T.
Consequently, we can define the logical relations Tμα.τ using type recursion, as desired.

Dual numbers reverse AD
Similarly to dual numbers forward ADD, we can define a reverse AD code transformation←−D : we
define←−D (real) def= real× vect and

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


754 F.L. Nunes and M. Vákár

←−D (c) def= 〈c, 0v〉
←−D (op(t1, . . . , tn))

def= case←−D (t1) of 〈x1, x′1〉→ . . . case←−D (tn) of 〈xn, x′n〉→
〈op(x1, . . . , xn), x′1 ∗v ∂1op(x1, . . . , xn)+v . . .+vx′n ∗v ∂nop(x1, . . . , xn)〉

←−D (sign t) def= sign (fst←−D (t)).
and extend homomorphically to all other type and term formers, as we did before. In fact, this
algorithm is exactly the same as dual numbers forward AD in code with the only differences being
that

(1) the type real of real numbers for tangents has been replaced with a new type vect, which
we think of as representing (dynamically sized) cotangent vectors to the global input of the
program;

(2) the zero 0 and addition (+ ) of type real have been replaced by the zero 0v and addition (+v)
of cotangents of type vect;

(3) the multiplication (∗) : real× real→ real has been replaced by the operation ( ∗v ) :
vect× real→ vect: (v ∗v r) is the rescaling of a cotangent v by the scalar r.

We write ei for program representing the i-th canonical basis vector ei of type vect, and we
write

Wraps(x)
def= case x of 〈x1, . . . , xs〉→ 〈〈x1, e1〉, . . . , 〈xs, es〉〉. (1.1)

We define [[vect]] def= R
∞ def=∑∞

k=0 Rk as the infinite (vector space) coproduct of k-dimensional
real vector spaces. That is, we interpret vect as the type of dynamically sized real vectors.3 We
show that←−D (t) implements the transposed derivative D[[t]]t of [[t]] in the following sense.

Theorem 2.3 (Reverse AD correctness, Theorem 9.1 with k=∞ in main text). For any program
x : τ � t : σ for τ = reals, σ = reall,

[[let x=Wrapk(x) in
←−D (t)]](x1, . . . , xs)=(

(π1([[t]](x1, . . . , xs)),D[[t]]t((x1, . . . , xs), e1)), . . . , (πl([[t]](x1, . . . , xs)),D[[t]]t((x1, . . . , xs), el))
)

for any (x1, . . . , xs) in the domain of definition of [[t]].

We prove this theorem again using a similar logical relations argument, defining Tn
τ ⊆

(Rn→ [[τ ]])× ((Rn × (R∞)n)→ [[←−D (τ )]]) and Pnτ ⊆ (Rn ⇀ [[τ ]])× (Rn × (R∞)n)⇀ [[←−D (τ )]])
as before for all types τ of language, setting

Tn
real

def= {(γ , γ ′) | γ is differentiable and γ ′ = (x, L) 
→ (γ (x), L(Dγ t(x, e1)))}
Tn

τ × σ
def= {(x 
→ (γ1(x), γ2(x)), (x, L) 
→ (γ ′1(x, L), γ ′2(x, L))) | (γ1, γ ′1) ∈ Tn

τ and (γ2, γ ′2) ∈ Tn
σ }

Tn
τ 	+σ

def= {(ι1 ◦ γ1, ι1 ◦ γ ′1) | (γ1, γ ′1) ∈ Tn
τ } ∪ {(ι2 ◦ γ2, ι2 ◦ γ ′2) | (γ2, γ ′2) ∈ Tn

σ }
Tn

τ→σ
def= {(γ , γ ′) | ∀(δ, δ′) ∈ Tn

τ .(x 
→ γ (x)(δ(x)), (x, L) 
→ γ ′(x, L)(δ′(x, L))) ∈ Pnσ }
Tn

μα.τ
def= {(roll ◦ γ , roll ◦ γ ′) | (γ , γ ′) ∈ Tn

τ [μα.τ/α]}
Pnτ

def=
{
(γ , γ ′) | γ−1([[τ ]])× (R∞)n = γ

′−1([[←−D (τ )]]) is open and for all differentiable

δ :Rn→ γ−1([[τ ]]) we have (γ ◦ δ, (x, L) 
→ γ ′(δ(x), L ◦Dδt(x,−))) ∈ Tn
τ

}
,

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 755

where we consider (R∞)n as a type of linear transformations from R
n to R

∞ and we write ei for
the i-th standard basis vector of Rn. We then prove the following “fundamental lemma,” using
induction on the typing derivation of t:

If x1 : τ1, . . . , xn : τn � t : σ and, for 1≤ i≤ n, (fi, f ′i ) ∈ Tn
τi , then (x 
→

[[t]](f1(x), . . . , fn(x)), (x, L) 
→ [[←−D (t)]](f ′1(x, L), . . . , f ′n(x, L))) ∈ Pnσ .
As Ts

reals contains, in particular,
(id, ((x1, . . . , xs), L) 
→ ((x1, Le1), . . . , (xs, Les))),

our theorem follows.

Extending to arrays
AD tends to be applied to programs that manipulate large arrays of reals. Seeing that such arrays
are denotationally equivalent to listsμα.1 	 + α× real, while only the computational complexity
of operations differs, our correctness result also applies to functional languages with arrays. We
thus differentiate array types τ [] with elements of type τ in the obvious structure preserving way,
for example

D (τ []) def= D (τ )[] D (generate) def= generate D (map) def= map D (foldr) def= foldr
and similarly for dual numbers reverse AD.

Almost everywhere differentiability
Taking inspiration from Lee et al. (2020),Mazza and Pagani (2021), and Huot et al. (2023), we can
increase our ambitions and show that, given sufficiently nice primitive operations, our AD meth-
ods compute correct derivatives almost everywhere for (almost everywhere) terminating programs
in our language. In fact, a minor adaptation of our methods yields these results. Indeed, as long as
we assume that all our (partial) primitive operations denote functions that are piecewise analytic
under analytic partition (PAP) and are defined on a c-analytic subset (meaning: a countable union
of analytic subsets) of Rn, then we can simply redefine our logical relations

Tn
real

def= {(γ , γ ′) | γ is PAP and γ ′ = (x, v) 
→ (γ (x), γ ′′(x, v)) for an intensional derivative γ ′′ of γ }
{Ai ⊆R

n}i∈I of γ ′−1([[D (τ )]]) and there exist open neighbourhoods Ui of Ai with functions
γi :Ui→ [[τ ]], γ ′i :Ui ×R

n→ [[D (τ )]] such that γ |Ai = γi|Ai and γ ′|Ai×Rn = γ ′i |Ai×Rn and

for all analytic δ :Rn→Ui we have that (γi ◦ δ, (x, v) 
→ (γi(δ(x)), γ ′i (Dδ(x, v)))) ∈ Tn
τ

}
.

to conclude that

• any program x : τ � t : σ for τ = realm, σ = reall in our language denotes a partial PAP
function [[t]]defined on a c-analytic subset;

• our AD transformationD (t) computes
(
[[t]], g
)
for an intensional derivative g of [[t]], which

coincides almost everywhere in the domain with the (standard) derivative D[[t]] of [[t]].

Consequently, if our program terminates almost everywhere, the AD transformation computes
the correct derivative almost everywhere.

3. Overview
We briefly sketch the high-level plan of attack that we will follow in this paper. In this work, our
guiding philosophy is to consider categorical models of functional PL as categories with a certain
kind of structure:

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


756 F.L. Nunes and M. Vákár

• certain chosen types real and morphisms op for basic types of real numbers and primitive
operations (such as cos and multiplication) between real numbers;

• finite products, to represent tuples;
• finite coproducts, to represent variants;
• exponentials, to build types of curried and higher-order functions;
• a (partiality) monad such that the Kleisli category supports certain morphism-level fixpoint
operators to represent (call-by-value) iteration (while-loops) and recursion;

• certain object-level fixpoint operators to represent recursively defined types.

Due to its technical complexity, we isolate the discussion of the last feature (recursive types) in
Section 10.

A crisp formulation for the last two bullet points above is hard to find in the literature.
Therefore, we develop such a formulation in detail in Sections 4 and 10.2.We further, in Sections 5
and 10.6, show that there are particularly well-behaved models of these features if we have enrich-
ment over ω-cpos (ω-chain complete partial orders). All the models we consider, except for the
syntax, will fall into this well-behaved class.

We will generally identify the syntax of a PL, up to βη-equality, with the freely generated (or ini-
tial) such category Syn. We can then understand AD as a structure preserving functor (preserving
all the structure described above)

D : Syn→ Syn
that sends real to a type of pairs real× vect (for storing both values and derivatives) and each
primitive operation op to its derivative. We discuss this in Sections 6, 10.1, and 10.4.

In order to phrase the correctness of AD, we first need to fix the meaning of the programs
in our language. That is sometimes done using an operational semantics that describes how
programs are evaluated in time. Here, we work, instead, with a denotational semantics that sys-
tematically assigns spaces (in our case, ω-cpos) to types and mathematical functions (in our
case, ω-cocontinuous, monotone functions) to programs. We can understand such a denotational
semantics as a structure preserving functor to the category ωCpo of ω-cpos:

[[− ]] : Syn→ωCpo,
which sends real to the real numbers R and each primitive operation op to the function [[op]] it
intends to implement. Importantly, we are now in a position to phrase a correctness theorem for
AD by relating the semantics of an AD-transformed program to the mathematical derivative of
that program. We discuss this in Sections 7 and 10.7.

Our proof strategy for this correctness theorem is a logical relations proof, which we again
phrase categorically. Given a functor G :ωCpon→ωCpo, we can consider the category SScone
of n-ary logical relations, which has objects (X, T), where X ∈ωCpon and T is a (full) sub-ω-cpo
GX and morphisms (T, X)→ (T′, X′) are ωCpon-morphisms f : X→ X′ such that y ∈ T implies
Gf (y) ∈ T′. Our proof proceeds by making a sensible choice of G (Section 9.1) and giving a new
categorical semantics [[[− ]]] : Syn→ SScone in the category of logical relations, such that the
following diagram commutes and that the commuting of this diagram immediately implies the
correctness of AD (Sections 9.4, 9.5, 9.6, and 9.7):

Syn SScone

Syn × Syn Cpoω ω× Cpo.

(id,D)

[[[−]]]

forget

[[−]]×[[−]]

How do we construct such a semantics though? For that, we need to show that the category of
logical relations has all the structure needed to interpret our language. That is:

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 757

• we show that products, coproducts, exponentials, and morphism-level fixpoint operators for
iteration and recursion exist in our category of logical relations (Sections 8 and 9.2);

• we show that object-level fixpoint operators for recursive types exist in our category of logical
relations (Section 10.8);

• we choose a sensible logical relation [[[real]]] for real to precisely capture correct differentia-
tion, and we demonstrate that each primitive operation respects the chosen logical relations
(Section 9.3).

The only choices that need to be made to construct this interpretation are the choice of logical
relations associated with real and with partial functions (in the form of a lifting of the partiality
monad to logical relations). All other required structure is unique thanks to a universal property.
Further, the commutativity of the diagram above follows automatically from the initiality of Syn
among all categorical models.

We believe that our methods for interpreting morphism- and object-level fixpoint combina-
tors in categories of logical relations can be a simplification compared to existing methods. We
therefore aim to present them in a reusable way.

4. Categorical Models for CBV Languages: CBV Pairs and Models
The aim of this section is to establish a class of categorical models for call-by-value (CBV) lan-
guages with free notions of recursion and iteration. This material will be of importance as we will
later consider particular examples of suchmodels constructed from (1) the syntax of PL, (2) a con-
crete denotational semantics for PL in terms of ω-cpos, and (3) that concrete semantics decorated
with logical relations to enable correctness proofs of AD.

Given a cartesian closed categoryV, we can see it as aV-enriched category w.r.t. the cartesian
structure. Recall that a strongmonadT on a cartesian closed categoryV is the same as aV-monad
onV. More precisely, it is a triple

T= (T : V→V, m : T2→ T, η : idV→ T
)
, (3)

where T is a V-endofunctor and m, η are V-natural transformations, satisfying the usual asso-
ciativity and identity equations, that is to say, m · (mT)=m · (Tm) and m · (ηT)= idT =m ·
(Tη).4

Let T= (T, m, η) and T ′ = (T′, m′, η′
)
be monads on V and V ′, respectively. Recall that an

oplax morphism (or a monad op-functor) between T and T ′ is a pair(
H : V→V ′, φ : HT→ T′H

)
, (4)

where H is a functor and φ is a natural transformation, such that
φ · (Hη)= (η′H) and

(
m′H
) · (T′φ) · (φT)= φ · (Hm) . (5)

By the universal property of Kleisli categories, denoting by J : V→ C and J : V ′ → C′ the
universal Kleisli functors, the oplax morphims (4) correspond bijectively with pairs of functors(
H : V→V ′,H : C→ C′) such that the diagram (7) commutes.

Definition 4.1 (CBV pair). A CBV pair is a pair (V,T ) where V is bicartesian closed category
(i.e., a cartesian closed category with finite coproducts) and T is a V-monad on V. We further
require thatV has chosen finite products, coproducts, and exponentials.

A CBV pair morphism between the CBV pairs (V,T ) and
(
V ′,T ′) is a strictly bicartesian

closed functor H :V→V ′ that is a strict morphism betweenT and T ′, that is such that HT = T′H
and (H, id) defines a monad op-functor (4). This defines a category of CBV pairs and CBV pair
morphisms, denoted herein by Cp.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


758 F.L. Nunes and M. Vákár

Remark 4.2. If (V,T ) is a CBV pair, since T isV-enriched, we get aV-enriched Kleisli category
C. We denote by

C [−,−]=
(
−⇒k −

)
: Cop ×C→V (6)

the V-enriched hom functor. It should be noted that, if we denote by (X⇒ Y)=V [X, Y] the
exponential inV, we have that C [X, Y]=

(
X⇒k Y

)
= (X⇒ TY), which is the so-called Kleisli

exponential and corresponds to the function types for our language.

Denoting by C and C′ the respective Kleisli categories, each morphism
H : (V,T) → (V ′,T ′)

of CBV pairs gives rise to a commutative square

V

C

V

C
′

CC ′

VV ′

H

H

j j

(7)

where J and J′ are, respectively, the universal Kleisli functors of T and T ′. In this case, H strictly
preserves Kleisli exponentials, finite coproducts, and the action ofV on C. That is to say,

(
H,H
)

strictly preserves the distributive closed Freyd-categorical structure.5

4.1 CBV models: term recursion and iteration
In order to interpret our language defined in Section 6, we need an additional support for term
recursion and iteration. Since we do not impose further equations for the iteration or recursion
constructs in our language, the following definitions establish our class of models for term recur-
sion and iteration. In contrast with most other references we are aware of, we give an explicit
discussion of the case of iteration, even though it is definable in terms of recursion. The reason
is that there are interesting PL with iteration but without recursion, of which we might want to
prove properties.

Definition 4.3 (Free recursion and iteration). Let (V,T ) be a CBV pair and C the corresponding
V-enriched Kleisli category.

• A free recursion for (V,T ) is a family of morphisms

μ= (μW,Y : V [C [W, Y], C [W, Y]]−→ C [W, Y]
)
(W,Y)∈C×C (8)

inV.
• A free iteration for (V,T ) is a family of morphisms

itt= (ittW,Y : C [W,W	Y]−→C [W, Y]
)
(W,Y)∈C×C (9)

inV.

Definition 4.4 (CBV model). A CBV model is a quadruple (V,T,μ, itt) in which (V,T) is a CBV
pair, μ is a free recursion, and itt is a free iteration for (V,T).

A CBV model morphism between the CBV models (V,T,μ, itt) and
(
V ′,T ′,μ′, itt′

)
is a mor-

phism H between the underlying CBV pairs such that H
(
μW,Y)=μ′HW,HY and H

(
ittW,Y)=

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 759

itt′HW,HY , for any (W, Y) ∈V×V. This defines a category of CBV models, denoted herein
by CBV.

It should be noted that CBV has finite products. Given two CBV models (V0,T0,μ0, itt0) and
(V1,T1,μ1, itt1), the product is given by

(V0 ×V1,T0 ×T1, (μ0,μ1) , (itt0, itt1)) (10)

where (μ0 ×μ1)

(
W,W′),(Y ,Y′) =μ

W,Y
0 ×μ

W′,Y′
1 and (itt0 × itt1)

(
W,W′),(Y ,Y′) =(

ittW,Y
0 × ittW′,Y′

1

)
.

5. Canonical Fixed Points from 2-Dimensional Structure
The aim of this section is to specialize to a class of particularly well-behavedCBV pairs andmodels,
as they possess canonical iteration and recursion constructs that arise from a universal property of
being a least fixed point. To phrase this universal property (and thus obtain uniqueness), we need
the homsets of our models to be categories (or, posets, if we do not care to distinguish different
ways of comparingmorphisms), leading us to considerV that areCat- or Pos-enriched. To obtain
existence of these fixed points, it is sufficient to have colimits of countable chains, leading us to
specialize toV that are enriched over ω-cocomplete categories or posets.

We denote byωCpo the usual category ofω-cpos. The objects ofωCpo are the partially ordered
sets with colimits of ω-chains, while the morphisms are functors preserving these colimits. An ω-
cpo is called pointed if it has a least element, denoted herein by ⊥. We say that f ∈ωCpo (W, Y)

is a pointed ωCpo-morphism ifW is pointed and f preserves the least element.
It is well known that ωCpo is bicartesian closed.6 We consider ωCpo-enriched categories w.r.t.

the cartesian structure. Henceforth, ifV is anωCpo-enriched category andW, Y are objects ofV,
we denote byV (W, Y) the ωCpo-enriched hom, that is to say, the ω-cpo of morphisms between
W and Y .

AnωCpo-categoryV has finiteωCpo-products if it has a terminal object and we have a natural
isomorphism of ω-cpos

(−,−) :V(Z,W)×V(Z, Y)∼=V(Z,W × Y),
or, equivalently, if it has finite products and tupling is an ωCpo-morphism. Dually, an ωCpo-
category V has finite ωCpo-coproducts if it has an initial object and we have a natural
isomorphism of ω-cpos

[−,−] :V(W, Z)×V(Y , Z)∼=V(W 	 Y , Z),
or, equivalently, if it has finite coproducts and cotupling is an ωCpo-morphism. We say that
an ωCpo-functor F :V→V ′ has an ωCpo-right adjoint U :V ′ →V if we have a natural
isomorphism of ω-cpos

V ′(FZ,W′)∼=V(Z,UW′),
or, equivalently, if it has a right adjoint functor U :V ′ →V such that the homset bijection
V ′(FZ,W′)→V(Z,UW′) is an ωCpo-morphism. An ωCpo-category V is ωCpo-cartesian
closed if V has finite ωCpo-products, and moreover, for each object Z ∈V, the ωCpo-functor
(Z×−) : V→V has a right ωCpo-adjoint V [, ] Z−, called, herein, the ωCpo-exponential of
Z. An ωCpo-functor H : V→V ′ is strictly ωCpo-cartesian closed if it strictly preserves the
ωCpo-products and the induced comparisonH ◦V [−,−] →V ′ [H(− ),H(− )] is the identity.

LetV beωCpo-cartesian closed. For any Z ∈V, since the hom functorV (Z,−) : V→ωCpo
is cartesian, it induces the change of enriching base 2-functors

GV(Z,−) :V-Cat→ωCpo-Cat (11)

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


760 F.L. Nunes and M. Vákár

between the 2-categories of enriched categories w.r.t. the cartesian structures. Therefore, taking
Z= 1 (the terminal object of V), we get that every V-category (V-functor/V-monad) has a
suitable underlying ωCPO-category (ωCpo-functor/ωCpo-monad), given by its image by
GωCpo :=GV(1,−).

Definition 5.1 (CBV ωCpo-pair). A CBV ωCpo-pair is a CBV pair (V,T ) in which V
is an ωCpo-bicartesian closed category, such that V (W, TY) is a pointed ω-cpo for any
(W, Y) ∈V×V.

A CBV ωCpo-pair morphism between (V,T ) and
(
V ′,T ′) is an ωCpo-functor H :

V→V ′ whose underlying functor yields a morphism between the CBV pairs and such that
H : V (W, TY) →V (HW,HTY) is a pointed ωCpo-morphism for any (W, Y) ∈ obV× obV.
This defines a category of CBV ωCpo-pairs, denoted herein by ωCPO-CBV.

There is, then, an obvious forgetful functorUp : ωCPO-CBV→ Cp.

5.1 Fixpoints: term recursion and iteration
Recall that, if A is a pointed ω-cpo and q : A→A is an endomorphism in ωCpo, then q has a
least fixed point given by the colimit of the chain

⊥ (⊥)(⊥) · · · (⊥)(⊥) · · ·q qn (12)
by Kleene’s fixpoint theorem. Given such an endomorphism, we denote by lfp

(
q
)
its least fixed

point.
Henceforth, let (V,T ) be a CBV ωCpo-pair and J : V→ C the corresponding V-enriched

universal Kleisli functor. We denote by −⊗− : V×C→ C the V-tensor product in C, also
called theV-copower, which, in this case, corresponds to the usual action ofV on C.

By hypothesis, for any W, Y , Z ∈V, the ω-cpo C (Z⊗W, Y) ∼=V (Z,C [W, Y]) is pointed.
Let us write �

W,Y
Z for the isomorphism from left to right. Then, we can define

μ
W,Y
Z : V (Z×C [W, Y],C [W, Y]) →V (Z, C [W, Y])

f 
→ lfp
(
h 
→ f ◦ (Z× h

) ◦ ∂Z
)

(13)

itW,Y
Z : C (Z⊗W,W 	 Y) → C (Z⊗W, Y) (14)

f 
→ lfp

⎛
⎝h 
→ [h, J (πY)] ◦ dZ,W,Y ◦

(
Z⊗ f
)

◦aZ,Z,W ◦ (∂Z ⊗ idW)

⎞
⎠

where ∂Z = (idZ , idZ) : Z→ Z× Z is the diagonal morphism, dZ,W,Y : Z⊗ (W 	 Y)→ (Z⊗
W) 	 (Z⊗ Y) is the distributor, and aZ,W,Y : (Z×W)⊗ Y→ Z⊗ (W ⊗ Y) is the associator. Since
the morphisms above are ωCpo-natural in Z ∈V, they give rise to the families of morphisms

μω =
(
μW,Y

ω

)
(W,Y)∈C×C

def=
(
μ
W,Y
V[C[W,Y],C[W,Y]]

(
evalC[W,Y],C[W,Y]

))
(W,Y)∈C×C (15)

itω =
(
itW,Y

ω

)
(W,Y)∈C×C

def= �
W,Y
V[W,T(W	Y)]

(
itW,Y
V[W,T(W	Y)]

(
evalW,T(W	Y)

))
(W,Y)∈C×C (16)

by the Yoneda lemma, where evalA,B : V [A, B]×A→ B is the evaluation morphism given by
the cartesian closed structure.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 761

Lemma 5.2 (Underlying CBV model). There is a forgetful functor UBV : ωCPO-CBV→ CBV
defined byUBV (V,T )= (V,T,μω, itω), taking every morphism H to its underlying morphism of
CBV models.

Proof Since H is a ωCpo-functor and, for any (W, Y) ∈ obV× obV,
H : V (W, TY) →V ′ (HW, T′HY

)
is a pointed ωCpo-morphism, we get that, indeed,H respects the free iteration and free recursion
as defined in (15) and (16). �

It should be noted that, given CBV ωCpo-pairs (V0,T0) and (V1,T1),
(V0,T0)× (V1,T1)= (V0 ×V1,T0 ×T1) (17)

is the product in ωCPO-CBV. Moreover,UBV preserves finite products.

6. Automatic Differentiation for Term Recursion and Iteration
For our purpose, we could define our macro in terms of total derivatives. However, we choose to
present it in terms of partial derivatives, in order to keep our treatment as close as possible to the
starting point of the efficient implementation of the reverse mode given in Smeding and Vákár
(2023).

Following this choice of presentation, it is particularly convenient to establish our AD macro
D as a program transformation between a source language and a target language (see Section 6.4).
The source language contains the programs that we differentiate, while we use the target language
to represent those derivatives.

6.1 Source language as a standard call-by-value language with iteration and recursion
We consider a standard (coarse-grain) CBV language over a ground type real, certain real con-
stants c ∈Op0, certain primitive operations op ∈Opn for each nonzero natural number n ∈N

∗,
and sign. We denote Op :=

⋃
n∈N

Opn.

As it is clear from the semantics defined in Section 7.3, real intends to implement the real
numbers. Moreover, for each n ∈N, the operations in Opn intend to implement partially defined
functions Rn ⇀R. Finally, sign intends to implement the partially defined function R⇀ 1 	 1
defined on R

− ∪R
+, which takes R− to the left component and R

+ to the right component.
Although it is straightforward to consider more general settings, we also add the assumption

that the primitive operations implement differentiable functions (see Assumption 7.6).
We treat this operations in a schematic way as this reflects the reality of practical AD libraries,

which are constantly being expanded with new primitive operations.
The types τ , σ , ρ, values v,w, u, and computations t, s, r of our language are as follows.

τ , σ , ρ ::= types | 1 | τ1 × τ2 products
| real numbers | τ → σ function
| 0 | τ 	 + σ sums

v,w, u ::= values | 〈 〉 | 〈v,w〉 tuples
| x, y, z variables | λx.t abstractions
| c constants | μx.t term recursion
| inl v | inr v sum inclusions

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


762 F.L. Nunes and M. Vákár

Figure 1. Typing rules for a basic source language with real conditionals, where R⊂R is a fixed set of real numbers
containing 0.

Figure 2. Typing rules for term recursion and iteration.

t, s, r ::= computations | 〈 〉 | 〈t, s〉 tuples
| x, y, z variables | case s of 〈x, y〉→ t product match
| let t= x in s sequencing | λx.t abstractions
| c constant | t s function app.
| op(t1, . . . , tn) operation | iterate t from x= s iteration
| case t of{ } sum match | μx.t term recursion
| inl t | inr t sum inclusions | sign t sign function

| case r of { inl x→ t
| inr y→ s

} sum match

We use sugar if r then t else s def= case sign r of {_→ t
∣∣ _→ r}, fst t def= case t of 〈x, _〉→ x,

snd t def= case t of 〈_, x〉→ x, and let rec f (x)= t in s def= let f =μf .λx.t in s. In fact, we can
consider iteration as syntactic sugar as well:
iterate t from x= s def= (μz.λx.case t of {inl x′ → z x′ | inr x′′ → x′′}) s.

The computations are typed according to the rules of Figs. 1 and 2, where R⊂R is a fixed set
of real numbers containing 0. For now, the reader may ignore the kinding contexts �. They will
serve to support our treatment of ML-style polymorphism later.

We consider the standard CBV βη-equational theory of Moggi (1989) for our language, which
we list in Fig. 3. We could impose further equations for the iteration construct as is done in Bloom
and Ésik (1993) and Goncharov et al. (2015) as well as for the basic operations op and the sign
function sign . However, such equations are unnecessary for our development.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 763

Figure 3. Basic βη-equational theory for our language. We write βη-equality as ≡ to distinguish it from equality in let-
bindings. We write #x1, . . . , xn≡ to indicate that the variables are fresh in the left-hand side. In the top right rule, x may
not be free in r. Equations hold on pairs of computations of the same type.

Figure 4. Extra typing rules for the target languagewith iteration and recursion,wherewedenoteN∗ :=N− {0}, real1 := real
and reali+1 = reali × real.

6.2. Target language
We define our target language by extending the source language adding the following syntax, with
the typing rules of Fig. 4.

τ , σ , ρ ::= types | vect (co)tangent
| . . . as before

v,w, u ::= values | 0 zero
| ei i-th canonical element | t+ s addition of vectors
| . . . as before | t ∗ s scalar multiplication

| hit proj. handler

| 0 zero
t, s, r ::= computations | t+ s addition of vectors

| . . . as before | t ∗ s scalar multiplication
| ei canonical element | hit proj. handler

The operational semantics of the target language depends on the intended behavior for the
AD macro D defined in Section 6.4. In our context, we want vect to implement a vector space
((co)tangent vectors), with the respective operations and the usual laws between the operations
such as distributivity of the scalar multiplication over the vector addition (which is particularly
useful for efficient implementations (Smeding and Vákár 2023).

The terms hit are irrelevant for the definition and correctness of the macro D, but it is par-
ticularly useful to illustrate the expected types in Section 9.6 and 9.7. Although this perspective
is unimportant for our correctness statement, the reader might want to view vect as a computa-
tion type encompassing computational effects for the vector space operations ei, (∗), and (+ ) with
handlers given by the terms hit.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


764 F.L. Nunes and M. Vákár

Figure 5. Assignment that gives the universal property of the source language.

Figure 6. Assignment that gives the universal property of the target language.

We are particularly interested in the case that
(
vect,+, ∗, 0) implements the vector space(

R
k,+, ∗, 0

)
, for some k ∈N∪ {∞},7 where ei implements the i-th element eki ∈R

k of the
canonical basis if k=∞ or if i≤ k, and 0 ∈R

k otherwise. In this case, hit is supposed to
implement

pk→i : Rk→R
i, (18)

which denotes the canonical projection if i≤ k and the coprojection otherwise.
For short, we say that vect implements the vector space R

k to refer to the case above. It
corresponds to the k-semantics for the target language defined in Section 7.4.

6.3 The CBV models (SynV, SynS, Synμ, Synit) and (SyntrV , SyntrS , Syn
tr
μ , Syntrit )

As discussed in Appendix A, we can translate our coarse-grain languages to fine-grain CBV lan-
guages. The fine-grain languages corresponding to the source and target languages correspond to
the CBV models(

SynV , SynS, Synμ, Synit
)

and
(
SyntrV , SyntrS , Syn

tr
μ , Syntrit

)
(19)

with the following universal properties.

Proposition 6.1 (Universal property of CBV models (19)). Let (V,T,μ, itt) be a CBV model.
Assume that Figs. 5 and 6 are given consistent assignments.

1. There is a unique CBV model morphism H : (SynV , SynS, Synμ, Synit
) → (V,T,μ, itt)

respecting the assignment of Fig. 5.
2. There is a unique CBV model morphismH : (SyntrV , SyntrS , Syntrμ , Syntrit ) → (V,T,μ, itt) that

extends H and respects the assignment of Fig. 6.

6.4. Dual numbers AD transformation for term recursion and iteration
Let us fix, for all n ∈N, for all op ∈Opn, and for all 1≤ i≤ n, computations x1 : real, . . . , xn :
real� ∂iop(x1, . . . , xn) : real, which represent the partial derivatives of op. Using these terms for
representing partial derivatives, we define, in Fig. 7, a structure preserving macroD on the types
and computations of our language for performing AD.

We extend D to contexts: D ({x1 : τ1, ..., xn:τn}) def= {x1 :D (τ1), ..., xn :D (τn)}. This turns D
into a well-typed, functorial macro in the following sense.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 765

Figure 7. AD macroD (− ) defined on types and computations. All newly introduced variables are chosen to be fresh. We
provide a more efficient way of differentiating sign in Appendix B.

Lemma 6.2 (Functorial macro). Our macro respects typing, substitution, and βη-equality:

• If � � t : τ , thenD (�)�D (t) :D (τ ).
• D (let x= t in s)= let x=D(t) inD(s).
• If t≡s, thenD (t)≡D (s).

Our macro D can be seen as a class of macros, since it depends on the target language. More
precisely, it depends on what vect implements (see Section 6.2).

As an example, for the program of Equation (1), D computes, modulo some βη-equality
to aid legibility, the following derivative (where we also define D (int) def= int, D (t < s< r) def=
fst (D (t))< fst (D (s))< fst (D (r)), and ∂i(+ )(x, y) def= 1):

iterate
( case z of 〈i, 〈y′1, y′2〉〉→ let 〈y1, y2〉 =D(t)(i, x) in
case−ε < y1 < ε of {inl _→ inr x | inr _→ inl 〈i+ 1, 〈y1 + y′1, y2 + y′2〉〉}

)
from z= 〈0, 0〉.

6.5. AD transformation as a CBV model morphism
By the universal property of

(
SynV , SynS, Synμ, Synit

)
established in Proposition 6.1, the assign-

ment defined in Fig. 8 induces a unique CBV model morphism
D : (SynV , SynS, Synμ, Synit

) → (SyntrV , SyntrS , Syntrμ , Syntrit ) . (20)

The macroD defined in Fig. 7 is encompassed by (20).

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


766 F.L. Nunes and M. Vákár

Figure 8. AD assignment.

7. Concrete Semantics for the AD Transformation
We give a concrete denotational semantics for our source and target languages in terms of ω-
cpos. In fact, our semantics for the target language will be parameterized by k ∈N∪ {∞}. This
parameter allows us to give a uniform treatment of various variants of AD. For basic forward
modeAD, wewill use k= 1. Other k ∈N correspond to vectorized forms of forwardmodeAD, and
k=∞ is primarily of interest for dual numbers reverse AD, which can be viewed as an optimized
version of a vectorized forward AD with dynamically sized tangent vectors.

We will use these semantics to phrase and prove correctness of AD in the rest of this paper.
We also recall some facts about and fix notation for derivatives, in order to phrase sufficient and
necessary conditions on the semantics of primitive operations and their AD transformations.

7.1 Basic concrete model
The most fundamental example of a CBV ωCpo-pair is given by

(
ωCpo, (−)⊥

)
where (−)⊥ is

the (lax idempotent) monad that freely adds a least element ⊥ to each ω-cpo. Indeed, of course,
ωCpo (W, (Y)⊥) is pointed for any pair (W, Y) ∈ obωCpo× obωCpo.

We consider the product
(
ωCpo, (−)⊥

)× (ωCpo, (−)⊥
)= (ωCpo×ωCpo, (−)⊥

)
, where, by

abuse of language,
(
(C, C′)

)
⊥ =
(
(C)⊥ ,

(
C′
)
⊥
)
. By Lemma 5.2, we obtain CBV models

UBV
(
ωCpo, (−)⊥

)
and

UBV
(
ωCpo×ωCpo, (−)⊥

)=UBV (ωCpo, (−)⊥
)×UBV (ωCpo, (−)⊥

)
.

For example, the program from Equation (1) is interpreted as the function
R→R⊥ (21)

x 
→

⎧⎪⎪⎨
⎪⎪⎩
⊥ if N[[t]],x =∞
⊥ if [[t]](i, x)= ε for some i<N[[t]],x∑N[[t]],x−1

i=0 [[t]](i, x) otherwise

(22)

where

• �z�ε = z if |z|> ε, �z�ε = 0 if |z|< ε and �z�ε =⊥ otherwise;
• N[[t]],x is the smallest natural number i such that �[[t]](i, x)�ε = 0.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 767

7.2 Differentiable functions and interleaved derivatives
Henceforth, unless stated otherwise, the cartesian spaces Rn and its subspaces are endowed with the
respective discrete ωCpo-structures, in which r≤ r′ if and only if r= r′.

Definition 7.1 (Interleaving function). For each (n, k) ∈N× (N∪ {∞}), denoting by In the set
{1, . . . , n}, we define the isomorphism (in ωCpo with the respective discrete ωCpo-structures)

φn,k : R
n ×
(
R
k
)n →

(
R×R

k
)n

(23)(
(xj)j∈In , (yj)j∈In

) 
→ (xj, yj)j∈In .
For each open subset U ⊂R

n, we denote by φU
n,k : U ×

(
R
k
)n → φn,k

(
U ×
(
R
k
)n)

the isomor-
phism obtained from restricting φn,k.

In Definition 7.2, Remark 7.3, and Lemma 7.4, let g : U→
∐
j∈L

Vj be a map whereU is an open

subset of Rn, and, for each i ∈ L, Vi is an open subset of Rmi .

Definition 7.2 (Derivative). The map g is differentiable if, for any i ∈ L, g−1 (Vi)=Wi is open in
R
n and the restriction g|Wi : Wi→Vi is differentiable w.r.t the submanifold structures Wi ⊂R

n

and Vi ⊂R
mi . In this case, for each k ∈ (N∪ {∞}), we define the function:

Dkg : φn,k
(
U ×
(
R
k
)n) → ∐

j∈L

(
φmj,k
(
Vi ×
(
R
k
)mi))

(24)

z 
→ ιmj ◦ φ
Vj
mj,k
(
g(x), w̃ · g′(x)t) , if φ−1n,k (z)= (x,w) ∈Wi ×

(
R
k
)n

in which w̃ is the linear transformation R
n→R

k corresponding to the vector w, · is the composition
of linear transformations, ιmi is the obvious ith-coprojection of the coproduct (in the categoryωCpo),
and g′(x)t :Rmi →R

n is the transpose of the derivative g′(x) :Rn→R
mi of g|Wi : Wi→Vi

at x ∈U.

Remark 7.3. It should be noted that, in Definition 7.2,Wi might be empty for some i ∈ L. In this
case, g|Wi : Wi→Vi is trivially differentiable. Analogously, U might be empty. In this case, the
function g is differentiable, and Dkg is the unique morphism with domain ∅ and codomain as
in (6.4).

Lemma 7.4. Let ġ be a function with domain as in (6.4). The map g is differentiable and ġ =Dkg if,
and only if, g ◦ α is differentiable and ġ ◦Dkα =Dk(g ◦ α

)
for any differentiable map α : Rn→U.

Definition 7.5 (Differentiable partial maps). Let h :
∐
r∈K

R
nr →
⎛
⎝∐

j∈L
R
mj

⎞
⎠
⊥

be a morphism

in ωCpo. We say that h is differentiable if, for each i ∈K, the component hi := h ◦ ιi :

R
ni →
⎛
⎝∐

j∈L
R
mj

⎞
⎠
⊥
satisfies the following two conditions:

• h−1i

⎛
⎝∐

j∈L
R
mj

⎞
⎠=Ui is open in R

ni ;

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


768 F.L. Nunes and M. Vákár

• the corresponding total function (25) is differentiable.

hi = h|Ui : Ui→
∐
j∈L

R
mj (25)

dk
(
h
) :∐

r∈K

(
R×R

k
)nr →

⎛
⎝∐

j∈L

(
R×R

k
)mj

⎞
⎠
⊥

(26)

In this case, for each k ∈N∪ {∞}, we define (26) to be the morphism induced by [dk
(
hr
)
]r∈K

where, for each i ∈K, dk
(
hi
)
is defined by (27), which is just the corresponding canonical

extension of the mapDkhi.

dk
(
hi
) : (R×R

k
)ni →

⎛
⎝∐

j∈L

(
R×R

k
)mj

⎞
⎠
⊥

(27)

z 
→
{
Dkhi (z) , if z ∈ φni,k

(
Ui ×
(
R
k
)ni)⊂ (R×R

k
)ni

;
⊥, otherwise.

For example, the partial function h of Equation (21) has the following derivativeDk(h):

R×R
k→ (R×R

k)⊥ (28)

(x, v) 
→

⎧⎪⎪⎨
⎪⎪⎩
⊥ if N[[t]],x =∞
⊥ if [[t]](i, x)= ε for some i<N[[t]],x∑N[[t]],x−1

i=0 Dk([[t]](i,−))(x, v) otherwise
(29)

7.3 The semantics for the source language
We give a concrete semantics for our language, interpreting it in the CBV ωCpo-pair(
ωCpo, (−)⊥

)
.

We denote by R the discrete ω-cpo of real numbers, in which r≤ r′ if and only if r= r′, and
we define sign : R→ (1 	 1)⊥ by (31), where ι1, ι2 : 1→ 1 	 1 are the two coprojections of the
coproduct.

[[− ]] : (SynV , SynT , Synμ, Synit
) →UBV (ωCpo, (−)⊥

)
(30)

sign(x)=

⎧⎪⎨
⎪⎩
⊥, if x= 0
ι1( ∗ ), if x< 0
ι2( ∗ ), if x> 0

(31)

By the universal property of
(
SynV , SynS, Synμ, Synit

)
, there is only one CBV model morphism

(30) consistent with the assignment of Fig. 9 where c is the constant that c intends to implement,
and, for each op ∈Opn, fop is the partial map that op intends to implement.

The CBV model morphism (30) (or, more precisely, the underlying functor of the CBV mor-
phism [[− ]]) gives the semantics for the source language. Although our work holds for more
general contexts, we consider the following assumption over the semantics of our language.

Assumption 7.6. For each n ∈N and op ∈Opn, [[op]]= fop : Rn→ (R)⊥ is differentiable.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 769

Figure 9. Semantics’ assignment for each primitive operation op ∈Opn (n ∈N) and each constant c ∈ R.

7.4 The k-semantics for the target language
For each k ∈N∪ {∞}, we define the k-semantics for the target language by interpreting vect as the
vector spaceRk. Namely, we extend the semantics [[− ]] of the source language into a k-semantics
of the target language. More precisely, by Proposition 6.1, there is a unique CBV model morphism
(32) that extends [[− ]] and is consistent with the assignment given by the vector structure (33)
together with the projection (coprojection) [[hi]]k : Rk→R

i if i≤ k (i≥ k), for each i ∈N
∗.

[[− ]]k :
(
SyntrV , SyntrS , Syn

tr
μ , Syntrit

) → UBV
(
ωCpo, (−)⊥

)
(32)

(
[[vect]]k, [[+ ]]k, [[ ∗ ]]k, [[0]]k

) := (Rk,+, ∗, 0
)

(33)

7.5 Soundness ofD for primitive operations

Definition 7.7 (Sound for primitives). A macro D as defined in Fig. 7 and its corresponding
CBV model morphism D as defined in (20) are sound for primitives if, for any primitive op ∈Op,
[[D (op)]]k = dk

(
[[op]]
)
for any k.

For each j ∈ In, given a differentiable function f : Rn→ (R)⊥, we denote by dj
(
f
) :

R
n→ (R×R)⊥ the function defined by dj

(
f
)
(x1, . . . , xn)= d1

(
f
) ◦ φn,1

(
(x1, . . . , xn), enj

)
,

where enj the j-th vector of the canonical basis of Rn.

Lemma 7.8. The macroD defined in Fig. 7 is sound for primitives provided that
[[〈op(y1, . . . , yn), ∂jop(y1, . . . , yn)〉]]= dj

(
[[op]]
)
, (34)

for any primitive operation op ∈Opn of the source language.

8. Enriched Scone and Subscone
Here, we present general, reusable results about logical relations proofs for languages with recur-
sive features. We phrase these in terms of category theory. Concretely, we discuss two categorical
perspectives on logical relations, both of which are constructions to build a new categorical seman-
tics out of two existing semantics B and D. The first perspective, called the scone, is as simple as
a plain comma category D ↓G of the identity along a suitable functor G :B→D between the
two existing semantics. It gives a proof-relevant perspective in which we may distinguish differ-
ent witnesses demonstrating the truth of a predicate. The second perspective, called the subscone,
arises as a suitable reflective subcategory of the scone. It crucial property is that its objects are
chosen such that they represent only proof-irrelevant predicates, meaning that we can think of its
morphisms simply as B-morphisms that respect the predicates.

Here, we focus, in particular, on characterizing when the scone and subscone are ωCpo-
bicartesian closed categories, getting us most of the way to a CBV ωCpo-pair. We discuss the
remaining ingredient of lifting the (pointed) monad to the subscone in Section 9.2.8

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


770 F.L. Nunes and M. Vákár

8.1 Scone: proof-relevant categorical logical relations
Given an ωCpo-functor G :B→D, the comma ωCpo-categoryD ↓G of the identity along G in
ωCpo-Cat is defined as follows.

– The objects ofD ↓G are triples (D ∈D, C ∈B, j :D→G(C)) in which j is a morphism ofD;
we think of these as pairs of a B-object C and a proof-relevant predicate (D, j) on G(C);

– a morphism (D, C, j)→ (D′, C′, h) between objects ofD ↓G is a pair (35) making (36) com-
mutative inD; we think of these as B-morphisms α1 that respect the predicates, as evidenced
by α0:

α = (α0 : D→D′, α1 : C→ C′
)

(35)

( )

0 ′

( )

ℎ

( ) ( ′)
( 1)

G

j

G

h

α

α
D D

C G C
(36)

– if α = (α0 : D→D′, α1 : C→ C′
)
, β = (β0 : D→D′, β1 : C→ C′

) : (D, C, j) →(
D′, C′, h

)
, are two morphisms of D ↓G, we have that α ≤ β if α0 ≤ β0 in D and α1 ≤ β1

in B.

Following the approach of Lucatelli Nunes and Vákár (Lucatelli Nunes 2022, Section 9), we
have:

Theorem 8.1 (Monadic-comonadic scone). Let G : B→D be a right ωCpo-adjoint func-
tor. Assuming that D has finite ωCpo-products and B has finite ωCpo-coproducts, the
ωCpo-functor

L : D ↓G→D×B, (37)
defined by

(
D ∈D, C ∈B, j :D→G(C)

) 
→ (D, C), isωCpo-comonadic andωCpo-monadic.9 This
implies, in particular, that L creates (and strictly preserves) ωCpo -limits and colimits.10

By Theorem 8.1 and the enriched adjoint triangle theorem,11 we have:

Corollary 8.2. Let G : B→D be a right ωCpo-adjoint functor between ωCpo-bicartesian closed
categories. In this case,D ↓G is an ωCpo-bicartesian closed category. Moreover, if D×B is ωCpo-
cocomplete, so isD ↓G.

Theorem 8.1 and Corollary 8.2 are ωCpo-enriched versions of the fundamental results of
Lucatelli Nunes and Vákár (Lucatelli Nunes 2022, Section 9). The details and proofs are presented
in Appendix C.

8.2 Subscone: proof-irrelevant categorical logical relations
Henceforth, we assume that Sub (D ↓G) is a full12 reflective13 and replete14 ωCpo-subcategory of
D ↓G. We denote, herein, by Tsub the idempotent ωCpo-monad induced by the ωCpo-adjunction.

Recall that a morphism q in ωCpo is full if its underlying functor is full. In this case, the under-
lying functor is also faithful and injective on objects. Moreover, a morphism j in anωCpo-category
B is full if B

(
B, j
)
is full in ωCpo for any B ∈B.

Furthermore, recall that an ωCpo-functor H :W→Z is locally full if, for any (X,W) ∈
obW× obW, the morphism H : W (X,W) →Z (HX,HW) is a full ωCpo-morphism. It
should be noted that the 2-functor underlying a locally full ωCpo-functor is locally fully faithful.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 771

Moreover, since every full morphism in ωCpo is injective on objects, every locally full ωCpo-
functor is faithful (locally injective on objects).

Assumption 8.3. We require that:

(Sub. 1) whenever
(
D ∈D, C ∈B, j) ∈ Sub (D ↓G), j is a full morphism in B;

(Sub. 2) G : B→D is a rightωCpo-adjoint functor betweenωCpo-bicartesian closed categories;
(Sub. 3) Tsub strictly preserves ωCpo-products;
(Sub. 4) Diag. (39) commutes.

Sub (D ↓ ) D ↓D ↓ D × B
L

D × B B
Bπ

G G (38)

D ↓ D ↓D ↓

D × B

L

D ↓

D × B

L

D × B B
B

B B×D
Bπ

GG
𝔗𝑠𝑢𝑏

(39)

We denote byL : Sub (D ↓G) →B the ωCpo-functor given by the composition (38) where the
unlabeled arrow is the full inclusion.

Proposition 8.4. The full inclusion Sub (D ↓G) →D ↓G creates (and strictly preserves) ωCpo-
limits and ωCpo-exponentials. Moreover, if D ↓G is ωCpo-cocomplete, so is Sub (D ↓G).

Proof Sub (D ↓G) →D ↓G is ωCpo-monadic, and hence, it creates ωCpo-limits.
By Assumption (sub. 3) of Assumption 8.3, Tsub is commutative, and hence,

Sub (D ↓G) →D ↓G creates ωCpo-exponentials.
Since Tsub is idempotent, Sub (D ↓G) is ωCpo-cocomplete wheneverD ↓G is. �

Corollary 8.5. Sub (D ↓G) is an ωCpo-bicartesian closed category. Moreover, if D×B is ωCpo-
cocomplete, so is Sub (D ↓G).

Proof It follows from Proposition 8.4 and Corollary 8.2. �

Theorem 8.6. The ωCpo-functor L : Sub (D ↓G) →B is strictly (bi)cartesian closed and locally
full (hence, faithful). Moreover, L strictly preserves ωCpo-colimits.

Proof The ωCpo-functors L :D ↓G→D×B and πB : D×B→B strictly preserve ωCpo-
weighted limits and colimits. Since Tsub is idempotent and (39) commutes, this implies that L
strictly preserves ωCpo-limits and colimits.

The composition πB ◦L has a left ωCpo-adjoint given by C 
→ (0, C, ι0). Since the counit of
this ωCpo-adjunction is the identity and πB ◦L strictly preserves ωCpo-products, we get that
thisωCpo-adjunction strictly satisfies the Frobenius reciprocity condition. This implies that πB ◦L
strictly preserves ωCpo-exponentials.

Since Tsub strictly preserves ωCpo-products, we get that Sub (D ↓G) →D ↓G strictly pre-
serves ωCpo-exponentials as well. Therefore, L strictly preserves ωCpo-exponentials.

The locally fully faithfulness (and, hence, faithfulness) of L follows from Condition (sub. 1) of
Assumption 8.3. �

Remark 8.7 (Proof-irrelevance). Condition (sub. 1) of Assumption 8.3 ensures that our subscone
indeed gives us a proof-irrelevant approach to logical relations: in particular, as stressed above, it

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


772 F.L. Nunes and M. Vákár

implies that L is faithful. Given objects (D, C, j), (D′, C′, j′) and a morphism f : C→ C′ in B, if
there is α : (D, C, j)→ (D′, C′, j′) satisfying L(α)= f , then α is unique with this property. In this
case, we say that f defines a morphism (D, C, j)→ (D′, C′, j′) in Sub (D ↓G) .

Generally, we see a tradeoff between using proof-relevant logical relations proofs via an inter-
pretation in the scone or proof-irrelevant ones via an interpretation in the subscone. The scone
is generally better behaved as a category, as it tends to be both monadic and comonadic by
Theorem 8.1, while the subscone tends to only be monadic. The objects and morphisms of the
subscone, however, can be simpler to work with, as we do not need to track witnesses thanks to
their uniqueness. In the rest of this paper, we work with the (proof-irrelevant) subscone, mostly
to conform to conventions in the literature.

9. Correctness of Dual Numbers AD
In this section, we show that, as long as the macroD defined in Fig. 7 is sound for primitives and
vect implementsRk,D is correct according to the k-specification below. More precisely, we prove
that:

Theorem 9.1. Assume that vect implements the vector space Rk, for some k ∈N∪ {∞}. For any
program x : τ � t : σ where τ , σ are data types (i.e., types not containing function types), we have
that [[t]] is differentiable and, moreover,

[[D (t)]]k = dk ([[t]]) (40)

provided thatD is sound for primitives.

We take the following steps to achieve this result:

• In Section 9.1, we fix a particular functorG :B→D for which to consider the scone, as well as
a particular reflective subscone of the scone. This sets the concrete stage in which our logical
relations proof will take place.

• In Section 9.2, we choose a particular lifting of the partiality monad to this subscone, to
establish a reasoning principle for derivatives of partial functions.

• In Section 9.3, we fix a lifting of the interpretation of the primitive type real to the subscone,
establishing a reasoning principle for derivatives of real-valued functions. We further show
that, for a macro D that is sound for primitives, [[D (− )]]k respects the logical relation and
hence yields an interpretation of our full language in the subscone.

• In Section 9.4, we show that logical relations at data types (composite types not containing
function types) also capture correct differentiation.

• In Section 9.5, we derive our fundamental AD correctness theorem from the interpretation of
our language in the subscone, and in Sections 9.6 and 9.7, we spell out in more detail what
this correctness theorem entails for the choice of semantics [[vect]]k =R

k.

9.1 Fixing a particular subscone Sub
(
ωCpo ↓ Gn,k

)

Henceforth, we follow the notation and definitions established in Section 7. In particular, unless
stated otherwise, the cartesian spaces Rn and its subspaces are endowed with the discrete ωCpo-
structure, in which r≤ r′ if and only if r= r′.

For each
(
n, k
) ∈N× (N∪ {∞}), we define theωCpo-functor (41). We consider the full reflec-

tiveωCpo-subcategory Sub
(
ωCpo ↓Gn,k

)
ofωCpo ↓Gn,k whose objects are triples (42) such that

j is full (and, hence, injective on objects).

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 773

Gn,k
def= ωCpo×ωCpo

((
R
n,
(
R×R

k
)n)

, (−,−)
)
: ωCpo×ωCpo→ωCpo (41)(

D ∈ωCpo,
(
C, C′
) ∈ωCpo×ωCpo,

(
j : D→Gn,k

(
C, C′
)) ∈ωCpo

)
(42)

That is, we are considering what Barthe et al. (2020) calls open logical relations (where closed
logical relations would correspond to the case of Gn,k =ωCpo×ωCpo ((1, 1),−)).

The ωCpo-functor Gn,k together with Sub
(
ωCpo ↓Gn,k

)
satisfies Assumption 8.3. Therefore:

Proposition 9.2. Sub
(
ωCpo ↓Gn,k

)
is a cocomplete ωCpo-cartesian closed category. Moreover,

the forgetful ωCpo-functor Ln,k : Sub
(
ωCpo ↓Gn,k

) →ωCpo×ωCpo is locally full and strictly
cartesian closed. Furthermore, it strictly preserves ωCpo-colimits.

Proof It follows from Corollary 8.5 and Theorem 8.6. �

9.2 Lifting the partiality monad to the subscone
Let (n, k) ∈N× (N∪ {∞}). In order to get a categorical model of our language, we need to define
a partiality monad for Sub

(
ωCpo ↓Gn,k

)
.

We denote byOn the set of proper open non-empty subsets of the cartesian spaceRn. For each
U ∈On, we define

Diff(U,n,k)
def=
({(

g : Rn→U,Dkg
)
: g is differentiable

}
,
(
U, φn,k

(
U ×
(
R
k
)n))

, incl.
)

∈ Sub
(
ωCpo ↓Gn,k

)
.

We define the Sub
(
ωCpo ↓Gn,k

)
-monad Pn,k (−)⊥ on Sub

(
ωCpo ↓Gn,k

)
by

Pn,k
(
D,
(
C, C′
)
, j
)
⊥

def=
(
Pn,k
(
D,
(
C, C′
)
, j
)
⊥,
(
(C)⊥ ,

(
C′
)
⊥
)
, jX
)

(43)

where Pn,k
(
D,
(
C, C′
)
, j
)
⊥ is the union

{⊥} 	D 	
⎛
⎝ ∐

U∈On

Sub
(
ωCpo ↓Gn,k

) (
Diff(U,n,k),

(
D,
(
C, C′
)
, j
))⎞⎠ (44)

with the full ωCpo-substructure of Gn,k
(
(C)⊥ ,

(
C′
)
⊥
)
induced by the inclusion jX which is

defined by the following components:

• the inclusion {⊥} →Gn,k
(
(C)⊥ ,

(
C′
)
⊥
)

of the least mor-
phism ⊥ :

(
R
n,
(
R×R

k
)n) → ((C)⊥ ,

(
C′
)
⊥
)

in ωCpo×
ωCpo

((
R
n,
(
R×R

k
)n)

,
(
(C)⊥ ,

(
C′
)
⊥
))
;

• the inclusion of the total functions Gn,k (ηC, ηC′) ◦ j :
D→Gn,k

(
C, C′
) →Gn,k

(
(C)⊥ ,

(
C′
)
⊥
)
;

• the injections Sub
(
ωCpo ↓Gn,k

) (
Diff(U,n,k),

(
D,
(
C, C′
)
, j
)) →Gn,k

(
(C)⊥ ,

(
C′
)
⊥
)
, for

U ∈On, defined by(
α0, α1 =

(
β0 : U→ C, β1 : φn,k

(
U ×
(
R
k
)n) → C′

))

→
(
β0 : Rn→ (C)⊥ , β1 :

(
R×R

k
)n → (C′)⊥) ,

where β0 and β1 are the respective corresponding canonical extensions. The image of jX
forms a sub-ω-cpo because the union

⋃
n∈N Un of open sets Un is open and because D is an

ω-cpo.
https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


774 F.L. Nunes and M. Vákár

For each (C, C′) ∈ωCpo×ωCpo, the component (mC, mC′) and (ηC, ηC′) of the multiplica-
tion and the unit of the monad (−)⊥ on ωCpo×ωCpo define morphisms

m(D,(C,C′),j) : Pn,k
(
Pn,k
(
D,
(
C, C′
)
, j
)
⊥
)
⊥ →Pn,k

(
D,
(
C, C′
)
, j
)
⊥ (45)

η(D,(C,C′),j) :
(
D,
(
C, C′
)
, j
) →Pn,k (D, (C, C′) , j)⊥ . (46)

in Sub
(
ωCpo ↓Gn,k

)
. Therefore, m and η define the multiplication and the unit for

Pn,k (−)⊥, completing the definition of our monad. Analogously, we lift, as morphisms
of Sub

(
ωCpo ↓Gn,k

)
, the strength of (−)⊥, making Pn,k (−)⊥ into a strong monad

(i.e., Sub
(
ωCpo ↓Gn,k

)
-enriched monad).

In order to finish the proof that
(
Sub
(
ωCpo ↓Gn,k

)
,Pn,k (−)⊥

)
is a CBV

ωCpo-pair, it is enough to see that, for any pair of objects
(
D0,
(
C0, C′0

)
, j0
)
,(

D1,
(
C1, C′1

)
, j1
)
of Sub

(
ωCpo ↓Gn,k

)
, the least morphism ⊥ : (C0, C′0

) → ((C1)⊥ ,
(
C′1
)
⊥
)
,

of ωCpo (C0, (C1)⊥)×ωCpo
(
C′0,
(
C′1
)
⊥
)

defines the least morphism(
D0,
(
C0, C′0

)
, j0
) →Pn,k (D1,

(
C1, C′1

)
, j1
)
⊥ in Sub

(
ωCpo ↓Gn,k

)
.

Finally, since the underlying endofunctor of the monad Pn,k (−)⊥, the multiplication and the
identity are clearly lifted from (−)⊥ through Ln,k as defined above, we have:

Proposition 9.3. For each (n, k) ∈N× (N∪ {∞}), (Sub (ωCpo ↓Gn,k
)
,Pn,k (−)⊥

)
is a CBV

ωCpo-pair. Moreover, Ln,k : Sub
(
ωCpo ↓Gn,k

) →ωCpo×ωCpo is a CBV ωCpo-pair mor-
phism between

(
Sub
(
ωCpo ↓Gn,k

)
,Pn,k (−)⊥

)
and
(
ωCpo×ωCpo, (−)⊥

)
.

Therefore, by Lemma 5.2, UBV
(
Ln,k

)
is a CBV model morphism between the underlying

CBV models of
(
Sub
(
ωCpo ↓Gn,k

)
,Pn,k (−)⊥

)
and
(
ωCpo×ωCpo, (−)⊥

)
.

9.3 Logical relations for real and deriving a CBV model morphism
Henceforth, we assume that the macro D is sound for primitives (see Definition 7.5). We establish
the CBV model morphism (55). We start by establishing the logical relations’ assignment.

Let (n, k) ∈N× (N∪ {∞}).We define the object (47) in Sub
(
ωCpo ↓Gn,k

)
.

[[[real]]]n,k
def=
({(

f : Rn→R, f ∗
) : f is differentiable, f ∗ =Dkf

}
,
(
R,R×R

k
)
, incl.
)

(47)

For each m ∈N, op ∈Opm, and c ∈ R, we define the morphisms (48), (49), and (50) in ωCpo×
ωCpo, in which D, [[− ]], and [[− ]]k are the functors underlying the CBV model morphisms,
respectively, defined in (20), (30), and (32).

[[[sign ]]]k
def=
(
sign, dk (sign)

)
= (sign, [[D (sign ) ]]k) : (R,R×R

k
)
→ ((1 	 1)⊥ , (1 	 1)⊥)

(48)

[[[c]]]k
def=
(
c, dk (c)

)
: (1, 1) →

(
R,R×R

k
)

(49)

[[[op]]]k
def=
(
[[op]], dk

(
[[op]]
)) : (Rm,

(
R×R

k
)m) → ((R)⊥ ,

(
R×R

k
)
⊥

)
(50)

By Proposition 8.4, we have that the product [[[real]]]mn,k in Sub
(
ωCpo ↓Gn,k

)
is given by (51).

Therefore, by the chain rule for derivatives, we have that (48), (49), and (50), respectively, define
the morphisms (52), (53), and (54) in Sub

(
ωCpo ↓Gn,k

)
, where 1 	 1 denotes the coproduct of

the terminal 1= (1, (1, 1) , id) with itself.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 775

({(
fj : Rn→R, f ∗j

)
j∈Im

: f ∗j is differentiable and f ∗j =Dkfj, ∀j ∈ Im

}
,
(
R,R×R

k
)m

, incl.
)

∼=
({(

f : Rn→R
m, f ∗
) : f is differentiable, f ∗ =Dkf

}
,
(
R
m,
(
R×R

k
)m)

, incl.
)
. (51)

[[[sign ]]]n,k : [[[real]]]n,k→Pn,k
(
1 	 1)⊥ (52)

[[[c]]]n,k : 1→ [[[real]]]n,k (53)

[[[op]]]n,k : [[[real]]]mn,k→Pn,k
(
[[[real]]]n,k

)
⊥ (54)

By the universal property of the CBV model
(
SynV , SynS, Synμ, Synit

)
, we get:

Proposition 9.4. For each (n, k) ∈N× (N∪ {∞}), there is only one CBV model morphism

[[[− ]]]n,k :
(
SyntrV , SyntrS , Syn

tr
μ , Syntrit

) →UBV (Sub (ωCpo ↓Gn,k
)
,Pn,k (−)⊥

)
(55)

that is consistent with the assignment given by (47), (52), (54), and (53). Moreover, Diag. (56)
commutes.

Syn , SynS, Syn , Syn Syn , SynS, Syn , Syn × Syntr,Syntr
S

,Syntr,Syntr
(id,D)

Syn , SynS, Syn , Synit × Syntr,Syntr
S

,Syntr,Syntrit

UBV ( Cpo × Cpo, (−)⊥)

[[−]]×[[−]]

Syn , SynS, Syn , Synit

UBV Sub Cpo ↓ , P (−)⊥

[[[−]]]

UBV Sub Cpo ↓ , P (−)⊥ UBV ( Cpo × Cpo, (−)⊥)
UBV L

𝑉

𝑛,𝑘𝐺𝑛,𝑘

𝑛,𝑘

𝑛,𝑘

𝑘

𝑉𝜇 𝜇 𝑉 𝜇

𝝎 𝝎 𝝎

(56)
Proof Both ([[− ]]× [[− ]]k) ◦ (id×D) andUBV

(
Ln,k

)
◦ [[[− ]]]n,k yieldCBV modelmorphisms

that are consistent with the assignment given by the object
(
R,R×R

k
)
together with (48), (49),

and (50). �

9.4 AD logical relations for data types
As a consequence of Proposition 9.4, we establish a fundamental result on the logical rela-
tions [[[− ]]]n,k for data types (i.e., types not containing function types) in our setting: namely,
Proposition 9.6. Observe that, by distributivity of products over coproducts, any such data type
is isomorphic to

⊔
j∈L reallj for some finite set L and lj ∈N. Therefore, we start by establishing

Lemma 9.5 about our logical relations and the coproducts in Sub
(
ωCpo ↓Gn,k

)
.

Lemma 9.5. Let
(
n, k
) ∈N× (N∪ {∞}). If (g, ġ) ∈∐

j∈L
[[[real]]]ljn,k, then g : Rn→

∐
j∈L

R
lj is differ-

entiable and ġ =Dkg.

Proof By Proposition 9.2, Sub
(
ωCpo ↓Gn,k

)
has coproducts. Moreover, we can conclude that(

g, ġ
) ∈∐

j∈L
[[[real]]]ljn,k implies that, for some r ∈ L, we have a pair(

g : Rn→R
lr ,Dkg :

(
R×R

k
)n → (R×R

k
)lr)

(57)

such that
(
g, ġ
)= (ι

Rlr ◦ g, ι(R×Rk)
lr ◦Dkg

)
. Following Definition 7.2, this completes our

proof. �

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


776 F.L. Nunes and M. Vákár

Proposition 9.6. Let
(
n, k
) ∈N× (N∪ {∞}). If

(
g, ġ
) ∈Pn,k

⎛
⎝∐

j∈L
[[[real]]]ljn,k

⎞
⎠
⊥
, then

g : Rn→
⎛
⎝∐

j∈L
R
lj

⎞
⎠
⊥
is differentiable and ġ = dk

(
g
)
.

Proof Indeed, by the definition of Pn,k (−)⊥, we have one of the following situations:

s1. g and ġ are the least morphisms, that is to say, they are constantly equal to⊥;
s2. the pair

(
g, ġ
)
come from a pair of total functions

(
g, ġ
)
∈
∐
j∈L

[[[real]]]ljn,k;

s3. g−1
⎛
⎝∐

j∈L
R
lj

⎞
⎠=W is open. Moreover, denoting by (58) the pair consisting of the corre-

sponding total functions, we have that (59) holds for any differentiable map α : Rn→W.⎛
⎝g : W→

⎛
⎝∐

j∈L
R
lj

⎞
⎠ , ġ

⎞
⎠ (58)

(
g ◦ α, ġ ◦Dkα

)
∈
∐
j∈L

[[[real]]]ljn,k. (59)

If (s1.) holds, following Definition 7.5, we get that g is differentiable and ġ = dk
(
g
)
by Remark 7.3.

In case of (s2.), we get g is differentiable and ġ =Dkg by Lemma 9.5. Hence g is differentiable
and ġ = dk

(
g
)
.

Finally, in case of (s3.), by Lemma 9.5, we get that, for any differentiable α : Rn→W, g ◦ α

is differentiable and ġ ◦Dkα is well defined and equal to Dk
(
g ◦ α
)
. By Lemma 7.4, this implies

that g is differentiable and Dkg = ġ. Following Definition 7.5, this completes the proof that g is
differentiable and ġ = dk

(
g
)
. �

Corollary 9.7. Let k ∈N∪ {∞}. If, for each i ∈L, the morphism
(
g, ġ
)
in ωCpo×ωCpo defines

the morphism (60) in Sub
(
ωCpo ↓Gsi,k

)
, then g :

∐
r∈L

R
sr →
⎛
⎝∐

j∈L
R
lj

⎞
⎠
⊥
is differentiable and

ġ = dk
(
g
)
.

g :
∐
r∈L

[[[real]]]srsi,k→Psi,k
⎛
⎝∐

j∈L
[[[real]]]ljsi,k

⎞
⎠
⊥

(60)

ιi : [[[real]]]sisi,k→
∐
r∈K

[[[real]]]srsi,k (61)

Proof From the hypothesis, for each i ∈L, we conclude that the pair (62) defines the morphism
(64), since

(
ιRsi , ι(R×Rk)

si

)
defines the coprojection (61) in Sub

(
ωCpo ↓Gsi,k

)
.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 777

(
gi

def= g ◦ ιRsi , ġi
def= ġ ◦ ι(R×Rk)

si

)
(62)

gi
def= g ◦ ιi : [[[real]]]sisi,k→Psi,k

⎛
⎝∐

j∈L
[[[real]]]ljsi,k

⎞
⎠
⊥

(63)

Since idRsi : Rsi →R
si is differentiable, and Dk(idRsi ) is given by the identity(

R×R
k
)si → (R×R

k
)si

, we conclude that

(
gi, ġi
) ∈Psi,k

⎛
⎝∐

j∈L
[[[real]]]ljsi,k

⎞
⎠
⊥
. (64)

By Proposition 9.6, (64) proves that gi is differentiable and ġi = dk
(
gi
)
. Since this result holds for

any i ∈L, we conclude that g is differentiable and ġ = dk
(
g
)
. �

9.5 Fundamental AD correctness theorem
We prove Theorem 9.8, which completes the proof of Theorem 9.1.

Theorem 9.8. Let t :
∐
r∈L

realsr → SynS

⎛
⎝∐

j∈L
reallj
⎞
⎠ be a morphism in SynV .We have that [[t]] :

∐
r∈L

R
sr →
⎛
⎝∐

j∈L
R
lj

⎞
⎠
⊥
is differentiable and, for any k ∈ (N∪ {∞}), [[D (t) ]]k = dk ([[t]]).

Proof We assume that we have t as above. For each i ∈L, the pair (65) is in the image of
([[− ]]× [[− ]]k) ◦ (id×D)=UBV

(
Lsi,k

)
◦ [[[− ]]]si,k. This implies that (65) defines the mor-

phism (66) in Sub
(
ωCpo ↓Gsi,k

)
. Therefore, by Corollary 9.7, we conclude that [[t]] is differ-

entiable and [[D(t)]]k = dk ([[t]]).
([[t]], [[D(t)]]k) (65)

[[[t]]]si,k :
∐
r∈K

[[[real]]]srsi,k→Psi,k
⎛
⎝∐

j∈L
[[[real]]]ljsi,k

⎞
⎠
⊥

(66)
�

9.6 Correctness of the dual numbers forward AD
We assume that vect implements the vector space R. It is straightforward to see that we get for-
ward mode AD out of our macro D: namely, for a program x : τ � t : σ (where τ and σ are data
types) in the source language, we get a program x :D (τ )�D (t) :D (σ ) in the target language,
which, by Theorem 9.1, satisfies the following properties:

• [[t]] : ∐r∈K R
nr →
(∐

j∈L Rmj
)
⊥ is differentiable as in Definition 7.5;

• if y ∈R
ni ∩ [[t]]−1 (Rmj)=Wj for some i ∈K and j ∈ L, we have that, for anyw ∈R

ni , denoting
z := φni,1

(
y,w
)
,

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


778 F.L. Nunes and M. Vákár

[[D (t)]]1
(
φni,1
(
y,w
)) = d1 ([[t]]) (z)=D1[[t]]|Wj (z)= φmj,1

(
[[t]]
(
y
)
, w̃ · [[t]]′(y)t)

= φl,1
(
[[t]]
(
y
)
, [[t]]′(y)(w)

)
, (67)

where [[t]]′(y) : Rni →R
mj is the derivative of [[t]]|Wj : Wj→R

mj at y.

9.7 Correctness of the dual numbers reverse AD
We assume that vect implements the vector space Rk, for some fixed k ∈N∪ {∞}. We consider
the respective (co)projections pk→s for each s ∈N∪ {∞}, as defined in (18) . The following shows
how our macro encompasses reverse-mode AD.

For each s ∈N
∗ with s≤ k, we can define the morphism wraps

def= (πj, ej
)
j∈Is :

reals→ (real× vect)s in SyntrV , which corresponds to the wrapper defined in (2) in the
target language. We denote wraps

def= [[wraps]]k. By the definition of the k-semantics, it is clear
that wraps

(
y
)= φs,k

(
y, ek1, . . . , eks

)
.

For a program x : reals � t : reall (where s, l ∈N
∗), we have that, for any y ∈ [[t]]−1

(
R
l
)
⊂R

s,

[[D (t) ◦wraps]]k
(
y
) = dk ([[t]]) ◦ wraps

(
y
)=Dk[[t]] ◦ wraps

(
y
)

= Dk[[t]] ◦ φs,k
(
y, ek1, . . . , e

k
s

)
= φl,k

(
[[t]]
(
y
)
, ps→k[[t]]′(y)t

)
by Theorem 9.1. This gives the transpose derivative ps→k[[t]]′(y)t as something of the type vectl.
This should be good enough whenever k= s, since, in this case, [[vectl]]k = (Rs)l and ps→k =
pk→k = id.

In case of s< k, if needed, the type can be fixed by using the handler hs. More precisely, we can
define the morphism

hl,s
def= (id, hs)i∈Il : (real× vect)l → (real× reals

)l
and, by the definition of k-semantics, we conclude that

[[hl,s ◦D (t) ◦wraps]]k
(
y
) = [[hl,s]]k ◦ φl,k

(
[[t]]
(
y
)
, ps→k[[t]]′(y)t

)
= φl,k

(
[[t]]
(
y
)
, pk→s ◦ ps→k[[t]]′(y)t

)
= φl,k

(
[[t]]
(
y
)
, [[t]]′(y)t

)
,

since pk→s ◦ ps→k = id whenever s≤ k.
Again, by Theorem 9.1, it is straightforward to generalize the correctness statements above to

more general data types σ . Furthermore, it should be noted that, for k=∞ (representing the case
of a type of dynamically sized array of cotangents), the above shows that our macro gives the
reverse-mode AD for any program x : τ � t : σ for data types τ and σ . This choice of k=∞ is the
easiest route to take for a practical implementation of this form of dual numbers reverse AD, as it
leads to a single type of cotangent vectors that works for any program.

10. AD for Recursive Types and ML-Polymorphism
10.1 Syntax for recursive types
We extend both our source and target languages of Sections 6.1 and 6.2 with ML-style polymor-
phism and type recursion in the sense of FPC (Fiore and Plotkin 1994). That is, we extend types,
values, and computations for each of the two languages as

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 779

Figure 10. Typing rules for the recursive types extension.

Figure 11. The standard βη-equational theory for recursive types in CBV.

τ , σ , ρ ::= types | α, β , γ type variables
| . . . as before | μα.τ recursive type

v,w, u ::= values | roll v recursive type introduction
| . . . as before

t, s, r ::= computations | roll t recursive type introduction
| . . . as before | case t of roll x→ s recursive type elimination

The new values and computations according to the rules in Fig. 10.
Here, kinding contexts � are lists of type variables α1, . . . , αn. We consider judgments � |

� � t : τ , where the types in � and τ may contain free type variables from �. They should be
read as specifying that t is a program of type τ , with free variables typed according to �, that is
polymorphic in the type variables of �.

We use the βη-rules of Fig. 11.
Once a language has recursive types, it is already expressive enough to get term recursion and,

hence, iteration. Namely, we can now consider term recursion at type τ = σ → ρ as syntactic
sugar. Namely, we first define χ

def= μα. (α→ τ) and then:

unroll t def= case t of roll x→ x

μx : τ .t def= let body : χ → τ = (λy : χ .λz : σ .let x : τ = unroll y y in t z) in body(roll body).
(68)

The semantics of the language is, of course, expected to be consistent – meaning that the inter-
pretations of term recursion and recursive types should be compatible according to the definition
above. Alternatively, we can consider that the source language is given by the basic language with
the typing rules given by Fig. 1 with the corresponding grammar plus the recursive types estab-
lished above, while the target language is the source language plus the extension given by the
grammar and typing rules defined in Section 6.2.

10.2 Categorical models for recursive types: rCBV models
Here, we establish the basic categorical model for the syntax of CBV languages with recur-
sive types. Let (V,T) be a CBV pair and J :V→C the corresponding universal Kleisli functor.
Moreover, let Cat (2,V-Cat) be the category of morphisms ofV-Cat.

For each n ∈N, an n-variable (V,T )-parametric type (or a (V,T )-parametric type of degree
n) is a morphism E : (Jop × J)n→ J in Cat (2,V-Cat). In other words, it consists of a pair E=
(EV, EC) ofV-enriched functors such that (69) commutes. A (V,T )-parametric type of degree 0
(71) can be identified with the corresponding objectV.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


780 F.L. Nunes and M. Vákár

(Vop ×V)

(Cop × C)

( op× )

V

C

(Vop ×V) V
V

(Cop × C) C
C

𝑛

𝑛

𝑛

𝐸

𝐸

𝐽 𝐽 𝐽

C

(69)

We denote by Param (V,T) the collection of all (V,T )-parametric types E= (EV, EC) of any
degree n ∈N. As the terminology indicates, the objects of Param (V,T) play the role of the seman-
tics of parametric types in our language. However, the parametric types in the actual language
could be a bit more restrictive. They usually are those constructed out of the primitive type for-
mers: namely, in our case, tupling (finite products), cotupling (finite coproducts), exponentiation
(Kleisli exponential), and type recursion.

Definition 10.1 (Free type recursion). A free decreasing degree type operator (fddt operator) for
(V,T) is a function (70) identity on parametric types of degree 0 which takes each (n+ 1)-variable
(V,T )-parametric type E= (EV, EC) to a (V,T )-parametric type νE= (νEV, νEC) of degree n,
provided that n ∈N.

: Param (V, T) → Param (V, T)

(Vop ×V) +1

(Cop × C) +1

( op× ) +1

V

C

(Vop ×V) +1 V
V

(Cop × C) +1 C
C

(Vop ×V)

(Cop × C)

( op× )

V

C

(Vop ×V) V
V

(Cop × C) C
C𝐸

𝐸 𝜈

𝜈

𝐸

𝜈𝐸𝑛 𝑛

𝑛

𝑛

𝐽𝐽𝐽𝐽𝐽𝐽

𝑛

𝑛

(70)

A rolling for (70) is a collection (72) of natural transformations such that (73) is invertible for any
E= (EV, EC), that is to say, J

(
rollE
)
is a natural isomorphism.((

V op ×V)0 →V,
(
Cop ×C)0 → C) (71)

roll= (rollE)E=(EV,EC)∈Param(V,T)
(72)

(Vop ×V) (Vop ×V) +1
(id op

V V)
(Vop ×V)

V

(Vop ×V) +1

V

V

C V

roll

V𝜈𝐸
𝐸

𝜈𝐸𝜈𝐸 ,,

𝐸

𝑛𝑛

𝐽 (73)
A free type recursion for (V,T) is a pair ν = (ν, roll) where ν is an fddt operator and roll is a

rolling for ν.

Definition 10.2 (H-compatible). Let H be a CBV pair morphism between CBV pairs (V,T ) and(
V ′,T ′).A pair

(
E, E′
) ∈ Param (V,T)× Param (V ′,T ′) of parametric types is H-compatible if

they have the same degree n and the diagram (74) commutes. In particular, if n= 0, the pair
(
E, E′
)

is H-compatible if H (EV)= E′V.

(Vop ×V) V
V

(Vop ×V)

(V op ×V )

( op× )

V

V(V′op ×V′) V′
′
V′

𝐸

𝐸

𝐻 𝐻 𝐻

𝑛

𝑛

𝑛

(74)

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 781

Definition 10.3 (rCBV models). An rCBV model is a triple
(
V,T, ν

)
where (V,T) is a CBV pair

and ν is a free type recursion for (V,T).
An rCBV model morphism between the rCBV models

(
V,T, ν

)
and
(
V ′,T ′, ν′

)
consists of a

CBV pair morphism between (V,T ) and
(
V ′,T ′) such that, for every H-compatible pair

(
E, E′
) ∈

Param (V,T)× Param (V ′,T ′) of n-variable parametric types,
(
νE, νE′

)
is H-compatible and,

if n> 0, (75) holds, that is to say, H
(
rollE
)= rollE

(Hop×H)n−1 . The rCBV models and rCBV model
morphisms define a category, denoted herein by CRBV.

(Vop ×V) −1 (Vop ×V)
(id op

V V)
(Vop ×V

V

) −1

V

V

(Vop ×V

V

V

V′

roll =

V op ×V
−1

V op ×V
id ′op

V′
′
V′

V op ×V
−1

V

′
V′

V′op ×V′

V′

V′

(Vop ×V) −1

V′op ×V′ −1

( op× ) −1 roll
′

𝐸
𝜈𝐸

𝐸
𝐸

𝐸

𝐻

𝐻 𝐻

𝜈𝐸,𝜈𝐸

𝜈𝐸

, 𝜈𝐸, ,𝜈𝐸

𝑛

𝑛 𝑛 𝑛

𝑛

𝑛
�
�

�
�

(75)

There is, then, an obvious forgetful functorUrp : CRBV→ Cp.

Remark 10.4. We do not use this fact in our work, but every rCBV model has an underlying CBV
model. More precisely, free term iteration can be defined out of the free term recursion, while the
latter can be defined out of the free type recursion (see (68) ). This defines a forgetful functor

R : CRBV→ CBV. (76)

10.3 The rCBV models (SynRV , SynRS, νSyn) and (Syn
Rtr
V , SynRtrS , νtrSyn)

We consider the rCBV model generated by each syntax, that is to say, the free rCBV models com-
ing from the fine-grain CBV translations of the source and target languages. This provides us with
the rCBV models (

SynRV , SynRS, νSyn
)

and
(
SynRtrV , SynRtrS , νtrSyn

)
(77)

with the universal property described in Proposition 10.5.

Proposition 10.5 (Universal property of the rCBV models (75)). Let
(
V,T, ν

)
be an rCBV model.

Assume that Figs. 7 and 8 are given consistent assignments.

1. There is a unique rCBV model morphism H :
(
SynRV , SynRS, νSyn

)
→ (V,T, ν

)
respecting the

assignment of Fig. 7.

2. There is a unique rCBV model morphism H :
(
SynRtrV , SynRtrS , νtrSyn

)
→ (V,T, ν

)
that

extends H and respects the assignment of Fig. 8.

Remark 10.6. By Proposition 6.1, we have (unique) CBV model morphisms

s : (SynV , SynS, Synμ, Synit
) →R (SynRV , SynRS, νSyn)

and

st : (SyntrV , SyntrS , Syntrμ , Syntrit ) →R (SynRtrV , SynRtrS , νtrSyn
)

that are identity on the primitive operations and types.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


782 F.L. Nunes and M. Vákár

Figure 12. The definitions of AD on recursive types.

Proposition 10.5 states that H 
→R (H) ◦ s and H 
→R (H) ◦ st give the bijections (78) and
(79), respectively, showing that our syntax extension for recursive types give a free rCBV model
on the syntax without recursive types.

CRBV
((

SynRV ,SynRS,νSyn
)
,
(
V,T,ν

)) ∼= CBV
((
SynV ,SynS,Synμ,Synit

)
,R
(
V,T,ν

))
(78)

CRBV
((

SynRtrV , SynRtrS , νtrSyn
)
,
(
V,T,ν

)) ∼= CBV
((
SyntrV , SyntrS , Syn

tr
μ , Syntrit

)
,R
(
V,T,ν

))
(79)

10.4 Automatic differentiation for languages with recursive types
We extend our definition of AD to recursive types in Fig. 12. We note that our extension is
compatible with our previous definitions if we view term recursion (and iteration) as syntactic
sugar.

Lemma 10.7 (Type preservation). If � | � � t : τ , then � |D (�)�D (t) :D (τ ).

10.5 AD transformation as an rCBV model morphism
By Proposition 10.5, the assignment defined in Fig. 8 induces a unique rCBV model morphism
(80), which encompasses the macroD defined by Fig. 7 and extended in Fig. 12.

ID :
(
SynRV , SynRS, νSyn

)
→
(
SynRtrV ,SynRtrS ,νtrSyn

)
. (80)

10.6 ωCpo-enriched categorical models for recursive types: rCBV ωCpo-pairs
Although the setting of bilimit compact expansions is the usual reasonable basic framework for
solving recursive domain equations, we do not need this level of generality. Instead, we consider
a subclass of ωCpo-enriched models, the rCBV ωCpo-pairs established in Definition 10.8.15

We are back again to the setting of ωCpo-enriched categories. Recall that an embedding-
projection-pair (ep-pair) u : A ↪→

↽ B in an ωCpo-category C is a pair u= (ue, up) consisting of a
C-morphism ue :A→ B, the embedding, and a C-morphism up : B→A, the projection, such that
ue ◦ up ≤ id and up ◦ ue = id.

It should be noted that, when considering the underlying 2-category of the ωCpo-category, an
ep-pair consists of an adjunction16 whose unit is the identity. In this context, it is also called a
lari adjunction (left adjoint right-inverse) (see Clementino and Lucatelli Nunes 2024, Section 1).
In particular, as in the case of any adjunction, an embedding ue : A→ B uniquely determines the
associated projection up : B→A and vice versa.

A zero object17 O in an ωCpo-category C is an ep-zero object if, for any object A, the pair
ιA =
(
ιe : O→A, ιp : A→O

)
consisting of the unique morphisms is an ep-pair.

Definition 10.8 (rCBV ωCpo-pair).An rCBV ωCpo-pair is a CBV pair (V,T ) such that, denoting
by J : V→ C the corresponding universal KleisliV-functor,

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 783

[rω.1] V is a cocomplete ωCpo-cartesian closed category18;
[rω.2] the unit of T is pointwise a full morphism (hence, J is a locally full ωCpo-functor);
[rω.3] C has an ep-zero object O= J (0), where 0 is initial inV;

[rω.4] whenever u : J(A) ↪→
↽ J(B) is an ep-pair in C, there is one morphism û : A→ B inV such

that J
(
û
)= ue.

An rCBV ωCpo-pair morphism from (V,T ) into
(
V ′,T ′) is an ωCpo-functor H : V→V ′

that strictly preserves ωCpo-colimits and whose underlying functor is a morphism between the CBV
pairs. This defines a category of rCBV ωCpo-pairs, denoted herein by ωCPO-CrBV.

Every rCBV ωCpo-pair (V,T ) has an underlying ωCpo-pair, and this extends to a forgetful
functor ωCPO-CrBV→ωCPO-CBV. More importantly to our work, we have the following.

10.6.1 rCBV ωCpo-pairs are rCBV models
Let (V,T ) be an rCBV ωCpo-pair. It is clear that we have an underlying CBV pair which, by
abuse of language, we denote by (V,T ) as well. Hence, we can consider (V,T )-parametric types.

Let n ∈N
∗ and (69) be an n-variable (V,T )-parametric type. For each A ∈ (Vop ×V)n−1, we

get an 1-variable (V,T )-parametric type EA = (EAV, EAC), where EAV (W, Y)
def= EV (A,W, Y) and

EAC
(
W′, Y ′

) def= EC
(
J(A),W′, Y ′

)
. LetEEA be the diagram (82) inC given by the chain of morphisms(

aen : An→An+1
)
n∈N, where (an)n∈N is the chain of ep-pairs inductively defined by (81).

a0
def= (ιe : O→ EAC (O,O) , ιp : EAC (O,O) →O

)
an+1

def=
(
EAC
(
apn, aen
)
, EAC
(
aen, a

p
n
))

(81)

1
0

1 2
1

2 3
2

3 · · ·
3

𝔄 𝔄 𝔄𝔒
𝑎 𝑎 𝑎 𝑎𝑒𝑒𝑒𝑒

(82)

1
0

1 2
1

2 3
2

3 · · ·
3

𝔄𝔄𝔄𝔒
𝑎 𝑎 𝑎

𝑝𝑝𝑝
𝑎

(83)

There is a unique diagram ÊEA such that J ◦ ÊEA = EEA by (rω.4) of Definition 10.8. SinceV has
ωCpo-colimits, we conclude that the conical ωCpo-colimit of ÊEA exists and is preserved by J
(being an ωCpo-left adjoint) – hence, EEA has a conical ωCpo-colimit in C as well.

We recall the following variation on Smyth and Plotkin (1982)’s celebrated limit-colimit
coincidence result.

Lemma 10.9 (Limit-colimit coincidence, à la Smyth and Plotkin 1982). For any ω-chain (aen "
apn)n∈N of ep-pairs in an ωCpo-category C, any ωCpo-colimiting cocone on (aen)n∈N consists of
embeddings and the corresponding projections form an ωCpo-limiting cone on (apn)n∈N.

Since (82) is the chain of embeddings of a chain of ep-pairs, the ωCpo-colimit of these embed-
dings coincides with the ωCpo-limit of the associated chain

(
apn
)
n∈N of projections (84), denoted

herein byPEA. Such a bilimit of ep-pairs is absolute in the sense that anyωCpo-functorH : C→ C′
preserves the conical ωCpo-colimit (and ωCpo-limit) of EEA (respectively, PEA).

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


784 F.L. Nunes and M. Vákár

Since the conical ωCpo-colimit of EEA is absolute, the diagram (69) commutes, and J strictly
preserves ωCpo-colimits, we have the invertible morphism (85) given by the composition of the
respective canonical comparison morphisms.

◦
V

colim Ê ,colim Ê
C

colim E ,colim E
�

colim E ,colim E colim E
�

colim E colim Ê
�

𝐸𝐸𝐽 𝐸 𝐸 𝐴
𝐴

𝐸
𝐴

𝐸
𝐴

𝐸
𝐴

𝐸
𝐴𝐴

𝐴

(84)

It should be noted that, for each f : (Jop × J)n−1 (A)→ (Jop × J)n−1 (B) in (Cop ×C)n−1,
we have an induced V-natural transformation EEf : EEA→ EEB. This association extends to a V-

functor EE from (Cop ×C)n−1 into the V-category of chains in C. The association A 
→ ÊEA also
extends to aV-functor ÊE from

(
Vop ×V)n−1 into theV-category of chains by theV-faithfulness

of J, .
We define the fddt operator νω as follows. For each n ∈N

∗, given a (V,T )-parametric type
E= (EV, EC), we define:

νωE= (νωEV, νωEC)
def=
(
colim ◦ ÊE, colim ◦ EE

)
(85)

where, by abuse of language, colim is the V-functor from the V-category of chains in V
(respectively, in C) into theV-categoryV (respectively, C).

Since every isomorphism is an embedding, there is only one ωrollEA inV such that J
(
ωrollEA

)
is equal to (85). The morphisms ωrollE = (ωrollEA)A∈(Vop×V)

n−1 gives a V-natural transfor-

mation EV
(
id, νωE

op
V , νωEV

)→ νωEV such that J
(
ωrollE

)
is invertible. Therefore, rollω

def=(
ωrollE

)
E∈Param(V,T)

is a rolling for νω, and we can define the (free) type recursion νω

def=(
νω, rollω

)
.

Lemma 10.10 (Underlying rCBV model). There is a forgetful functor UrBV :
ωCPO-CrBV→ CRBV defined by UrBV (V,T )= (V,T, νω

)
that takes every morphism H

to its underlying morphism of CBV models.

Proof From the definition of νω and the fact that H strictly preserves V-colimits, we con-
clude that, indeed, H respects the conditions of a rCBV model morphism described in
Definition 10.3. �

Remark 10.11. The product of rCBV ωCpo-pairs is computed as expected: (V0,T0)×
(V1,T1) ∼= (V0 ×V1,T0 ×T1). Moreover, it is clear thatUrBV preserves finite products.

10.7 Concrete semantics
The CBV pair

(
ωCpo, (−)⊥

)
as in Section 7.1 clearly satisfies the conditions of Definition 10.8,

and hence, it is also an rCBV ωCpo-pair. By Proposition 10.5, for each k ∈N∪ {∞}, we have
unique rCBV model morphisms (87) and (88) respecting the assignments of Fig. 12 and (33). In
other words, following Remark 10.6, we have only one extension of the semantics (30) and (32) to
the respective languages with recursive types.

[[− ]] :
(
SynRV , SynRS, νSyn

)
→UrBV

(
ωCpo, (−)⊥

)
(86)

[[− ]]k :
(
SynRtrV , SynRtrS , νtrSyn

)
→UrBV

(
ωCpo, (−)⊥

)
. (87)

Moreover, by Remark 10.11, we have that the product
(
ωCpo×ωCpo, (−)⊥

)
as in Section 7.1

is an rCBV ωCpo-pair.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 785

10.8 Subscone for rCBV ωCpo-pairs
The first step for our logical relations proof is to verify that, for each (n, k) ∈N× (N∪ {∞}), the
CBV ωCpo-pair

(
Sub
(
ωCpo ↓Gn,k

)
,Pn,k (−)⊥

)
as in Proposition 9.3 yields an rCBV ωCpo-

pair. In order to do that, we rely on Theorem 10.13 about lifting the rCBV ωCpo-pair structure.

Definition 10.12 (Impurity preserving/purity reflecting). Let (V,T ) and
(
V ′,T ′) be CBV pairs.

A CBV pair morphism H : V→V ′ is impurity preserving (or, purity reflecting) if, whenever
H(f )= η′Y ◦ g, there is f̂ inV such that ηY ◦ f̂ = f .

Theorem 10.13. Let
(
V ′,T ′) be an rCBV ωCpo-pair and (V,T ) a CBV pair such that V is a

cocomplete ωCpo-cartesian closed category and T(0) is terminal.
If H : V→V ′ is a locally full ωCpo-functor that yields an impurity preserving CBV pair mor-

phism (V,T ) →Urp
(
V ′,T ′), then (V,T ) is an rCBV ωCpo-pair. If, furthermore, H strictly

preserves ωCpo-colimits, then H yields an rCBV ωCpo-pair morphism.

Proof We prove that (V,T ) yields an rCBV ωCpo-pair. By hypothesis, (V,T ) satisfies (rω.1).
We prove the remaining conditions of Definition 10.8 below.

(rω.2) Let η and η′ be, respectively, the unit of T and T ′. Since H is locally full, it reflects full
morphisms. This implies that, for any C ∈V, ηC is full since η′H(C) =H (ηC) is full.

(rω.3) Since T(0) is terminal, J (0) is a zero object. Thus, for each A ∈C, we have the pair (89)
of unique morphisms in C. Since H preserves initial objects and

(
V ′,T ′) is an rCBV

ωCpo-pair, we have that (90) is the ep-pair of the unique morphisms. Finally, sinceH is a
locally full ωCpo-functor, it reflects ep-pairs, and hence, (89) is an ep-pair.(

ιA : J (0) →A, ιA : A→ J (0)
)

(88)
(
H (ιA) ,H

(
ιA
) : H (A) →O

)
(89)

(rω.4) Given an ep-pair u : J(A) ↪→
↽ J(B) in C, the image H(u) :HJ(A)

↪→
↽HJ(B) by H is

an ep-pair. Since
(
V ′,T ′) is an rCBV ωCpo-pair, there is one morphism ˆH (u) :

H(A)→H(B) in V ′ such that J′
( ˆH (u)

)
=H (ue). Since the CBV pair morphism H :

(V,T ) →Urp
(
V ′,T ′) is impurity preserving, we conclude that there is û : A→ B

such that J
(
û
)= ue. �

As a consequence, in the setting of subscones satisfying Assumption 8.3, we get:

Theorem 10.14. Let (V,T ) be an rCBV ωCpo-pair and (91) the forgetful ωCpo-functor coming
from a pair (G : V→D,Tsub) satisfying Assumption 8.3.

If D is cocomplete and T=
(
T, m, η

)
is a strong monad that is a lifting of the monad T along

(91) such that (c.1) and (c.2) hold, then
(
Sub (D ↓G) ,T

)
is an rCBV ωCpo-pair and L yields an

rCBV ωCpo-pair morphism (92).

c.1 T takes the initial to the terminal object;

c.2 for any
(
D, C, j

) ∈ Sub (D ↓G), denoting T
(
D, C, j

)= (T (D, C, j), T(D),Tj), Diag (93)
induced by the unit η is a pullback inD.

L : Sub (D ↓G) →V (90)

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


786 F.L. Nunes and M. Vákár

(
Sub (D ↓G) ,T

) → (V,T ) (91)

T

T

( )

𝐷 𝐷, 𝐶, 𝑗

𝑗𝑗

𝐶𝑇𝐺
𝐺 𝐶𝜂

𝐺 𝐶

)

) ))

(

( ( (′
(92)

Proof By Corollary 8.5, Sub (D ↓G) is cocomplete ωCpo-cartesian closed. Moreover,L is locally
full, strict ωCpo-cartesian closed, and ωCpo-colimit preserving by Theorem 8.6. Therefore, the
fact that T is a lifting of T through L implies that it yields a CBV pair morphism (92).

(c.2) implies that the CBV pair morphism (92) is purity reflecting. Assuming (c.1), this implies
that
(
Sub (D ↓G) ,T

)
is indeed an rCBV ωCpo-pair morphism and L yields an (92) is an rCBV

ωCpo-pair morphism by Theorem 10.13. �

In the particular case of interest, we conclude:

Proposition 10.15. For each (n, k) ∈N× (N∪ {∞}), (Sub (ωCpo ↓Gn,k
)
,Pn,k (−)⊥

)
is an

rCBV ωCpo-pair. Moreover,Ln,k : Sub
(
ωCpo ↓Gn,k

) →ωCpo×ωCpo yields an rCBV ωCpo-
pair morphism (

Sub
(
ωCpo ↓Gn,k

)
,Pn,k (−)⊥

) → (ωCpo×ωCpo, (−)⊥
)
. (93)

Proof In fact, we already know that Ln,k comes from a pair that satisfies Assumption 8.3.
Moreover,

(
ωCpo×ωCpo, (−)⊥

)
is an rCBV ωCpo-pair and Pn,k (−)⊥ is a lifting of (−)⊥ along

Ln,k satisfying the conditions of Theorem 10.14. �

By Proposition 10.15 and Lemma 10.10, we get:

Corollary 10.16. Ln,k yields an rCBV model morphism

UrBV
(
Sub
(
ωCpo ↓Gn,k

)
,Pn,k (−)⊥

) →UrBV
(
ωCpo×ωCpo, (−)⊥

)
.

10.9 Logical relations as an rCBV model morphism
Let (n, k) ∈N× (N∪ {∞}), and let’s assume thatD is sound for primitives (see Definition 7.7). By
the universal property of the rCBV model

(
SynRV , SynRS, νSyn

)
and the chain rule for derivatives,

there is only one rCBV model morphism

[[[− ]]]n,k :
(
SynRV , SynRS, νSyn

)
→UrBV

(
Sub
(
ωCpo ↓Gn,k

)
,Pn,k (−)⊥

)
(94)

that is consistent with the assignment given by (47), (52), (54), and (53).

Lemma 10.17. For any (n, k) ∈N× (N∪ {∞}), Diag. (96) commutes.

SynR , SynR
S Syn SynR , SynR

S Syn × SynRtr,SynRtr
S

tr
Syn

(id,ID)
SynR , SynR

S Syn × SynRtr,SynRtr
S

tr
Syn

U BV ( Cpo × Cpo, (−)⊥)

[[−]]×[[−]]

SynR , ,SynR
S Syn

U BV Sub Cpo ↓ , P (−)⊥

[[[−]]]

U BV Sub Cpo ↓ , P (−)⊥ U BV ( Cpo × Cpo, (−)⊥)
U BV L

𝝎𝝎 𝝎𝑟
𝑟

𝑟 𝑛𝐺

𝑉 𝑉 𝑉𝜈 ,𝜈 ,𝜈

𝑘

𝑘,

𝑛 𝑘,

𝑛 𝑘,

𝑛 𝑘,

(95)

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 787

Proof Both ([[− ]]× [[− ]]k) ◦ (id× ID) and UrBV
(
Ln,k

)
◦ [[[− ]]]n,k yield rCBV model mor-

phisms that are consistent with the assignment given by the object
(
R,R×R

k
)

and the

morphisms (48), (49), and (50). Therefore, by the universal property of
(
SynRV , SynRS,νSyn

)
, we

conclude that Diag. (96) indeed commutes. �

10.10 AD correctness theorem for non-recursive data types
The correctness theorem for non-recursive data types (i.e., types formed from real, products, and
coproducts) follows from Lemma 10.17 and Corollary 9.7. That is to say, we have:

Theorem 10.18. Let t :
∐
r∈L

realsr → SynRS

⎛
⎝∐

j∈L
reallj
⎞
⎠ be a morphism in SynRV . We have that

[[t]] :
∐
r∈L

R
sr →
⎛
⎝∐

j∈L
R
lj

⎞
⎠
⊥
is differentiable and, for any k ∈ (N∪ {∞}), [[ID (t) ]]k = dk ([[t]]).

10.11 AD on recursive data types
The logical relations argument we presented provides us with an easy way to compute the logical
relations of general recursive types: namely, since

(
Sub
(
ωCpo ↓Gn,k

)
,Pn,k (−)⊥

)
is an rCBV

ωCpo-pair, the recursive types will be computed out of suitable colimits. This gives us useful
information about the semantics ofD (t) for a program x : τ � t : σ , where τ and σ are recursive
types. In particular, we can extend the correctness result of Theorem 10.18 to any recursive data
type. By that, we mean any type τ built from the grammar

τ , σ ::= α | real | 0 | 1 | τ × σ | τ 	 σ |μα.τ ,
that is, any type not involving function types.

We can define these (recursive) data type more formally as follows. We denote by SynRC the
Kleisli SynRV-category associated with

(
SynRV , SynRS

)
. Moreover, we, respectively, denote by (97)

and (98) the coproduct, product, and n-diagonal functors.

	,× : SynRV × SynRV → SynRV (96)

diagn :
(
SynRV
)op × SynRV →

((
SynRV
)op × SynRV

)n
(97)

Definition 10.19. Let R, I,O : (SynRV)op × SynRV → SynRV be the constant functors which are,
respectively, equal to real, 1 and 0. We define the set Pd

(
SynRV , SynRS, νSyn

)
inductively by (D1),

(D2), and (D3).

(D1) The functors R, I,Oare inPd
(
SynRV , SynRS, νSyn

)
.Moreover, the projectionπ2 :

(
SynRV
)op ×

SynRV → SynRV belongs toPd
(
SynRV , SynRS, νSyn

)
.

(D2) For each n ∈N
∗, if the functors (99) belong to Pd

(
SynRV , SynRS, νSyn

)
, then the functors

(100) and (101) are inPd
(
SynRV , SynRS, νSyn

)
.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


788 F.L. Nunes and M. Vákár

(D3) If E=
(
ESynRV , ESynRC

)
∈ Param (SynRV , SynRS) is such that ESynRV ∈Pd

(
SynRV , SynRS, νSyn

)
,

then
(
νSynESynRV

)
is inPd

(
SynRV , SynRS, νSyn

)
.

We define the set Paramd
(
SynRV , SynRS, νSyn

)
of parametric data types by (102).

G,G′ :
((
SynRV
)op × SynRV

)n → SynRV (98)

G ◦ diagn :
(
SynRV
)op × SynRV → SynRV (99)

× ◦ (G×G′
)
, 	 ◦ (G×G′

) : ((SynRV)op × SynRV
)2n → SynRV (100)

Paramd
(
SynRV , SynRS, νSyn

)
:=
{
E ∈ Param (SynRV , SynRS) : ESynRV ∈Pd

(
SynRV , SynRS, νSyn

)}
(101)

All such (recursive) data types are, up to isomorphism, of a particularly simple form: a sum of
products.

Proposition 10.20. Let E be an n-variable
(
SynRV , SynRS, νSyn

)
-parametric data type, where n ∈

N
∗. There is a countable family of natural numbers

(
m(j,T)

)
(j,T)∈(In∪{0})×Tree

such that, for any

rCBV model morphism H :
(
SynRV , SynRS, νSyn

)
→UrBV (V,T) and any H-compatible pair

(E, F), we have that (104) holds, where the isomorphism ∼= is induced by coprojections and
projections19.

H (τ )=
∐
j∈L

H (real)lj (102)

FV
(
Wj, Yj

)
j∈In

∼=
∐

T∈Tree

⎛
⎝H (real)m(0,T) ×

n∏
j=1

Y
m(j,T)
j

⎞
⎠ (103)

As a consequence, if τ ∈ SynRV corresponds to a data type τ , then there is a countable fam-
ily
(
lj
)
j∈L ∈N

L of natural numbers such that (103) holds for any rCBV model morphism H :(
SynRV , SynRS, νSyn

)
→UrBV (V,T).

Proof The result follows from induction. The nontrivial part is a consequence of the following.
Let
(
Ẽ, F̃
) ∈ Paramd

(
SynRV , SynRS

)× Param(UrBV (V,T )) be an H-compatible pair of
(n+ 1)-variable parametric types where F̃V is given by (105) for some countable family(
s(i,r)
)
(i,r)∈(In+1∪{0})×L of natural numbers. We prove below that

(
νSynẼ, F

)
is H-compatible for

some F such that FV satisfies Equation (104). By the definition rCBV model morphism, we have
that
(
νSynẼ, νωF̃

)
is H-compatible. Hence, we only need to prove that νωF̃V is given by (104).

(I) We inductively define the set Tree by the following. Let r ∈L: (a) if s(n+1,r) = 0, then r ∈ Tree;
(b) if s(n+1,r) #= 0, then, for any T ∈ Trees(n+1,r) , the pair (T, r) is in Tree.

(II) We inductively define the family
(
m(j,T)

)
(j,T)∈(In∪{0})×Tree

of indices by the following. Let

r ∈L: (a) if s(n+1,r) = 0, we define m(j,r) := s(j,r) for each j; (b) if s(n+1,r) #= 0, given T=
(Ti)i∈Is(n+1,r) ∈ Trees(n+1,r) , we definem(j,(T,r)) by (106) for each j.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 789

F̃V (Wi, Yi)i∈In+1 =
∐
r∈L

(
H (real)s(0,r) ×

n+1∏
i=1

Ys(i,r)i

)
(104)

m(j,(T,r)) = s(j,r) +
s(n+1,r)∑
i=1

m(j,Ti) (105)

Let X= (Wi, Yi)i∈In ∈
(
Vop ×V)n, FX := F̃XV (0,−) and ι the obvious unique morphism. The

colimit of (107) is isomorphic to (108). Hence, by the definition of the fddt operator νω of
UrBV (V,T)= (V,T, νω

)
, νωF̃V is given by the formula given in (104). This completes the

proof.

0 (0)(0) 2 (0)
( )

2 (0) 3 (0)

2 ( )
3 (0) · · ·𝔉

𝔉 𝔉
𝔉 𝔉𝑋𝑋

𝑋 𝑋
𝑋

𝜄 𝜄 𝜄

(106)

∐
T∈Tree

⎛
⎝H (real)m(0,T) ×

n∏
j=1

Y
m(j,T)
j

⎞
⎠ (107)

Finally, if τ ∈ SynRV corresponds to a data type τ , then the constant parametric type τ equal
to τ is an

(
SynRV , SynRS

)
-parametric data type of degree 1. Hence, denoting by Hτ the constant

parametric type equal to H (τ ), since
(
τ ,Hτ
)
is H-compatible, we conclude that (104) holds for

some
(
lj
)
j∈L where L is countable. �

In particular, for any nonparametric (meaning: 0-variable parametric) recursive data type R,
we have the following:

[[[R]]]n,k =
∐
j∈L

[[[real]]]ljn,k (108)

[[R]]=
∐
j∈L

R
lj . (109)

This lets us strengthen our correctness theorem to apply also to programs between recursive
data types:

Proposition 10.21. Let t : τ → σ be a morphism in SynRV . If τ and σ data types, [[t]] :
∐
r∈L

R
sr →
⎛
⎝∐

j∈L
R
lj

⎞
⎠
⊥
is differentiable and, for any k ∈ (N∪ {∞}), [[ID (t) ]]k = dk ([[t]]).

Proof First of all, indeed, by Proposition 10.20, we have that there are countable families (sr)r∈L
and
(
lj
)
j∈L such that

[[[t]]]si,k :
∐
r∈L

[[[real]]]srsi,k→Psi,k
⎛
⎝∐

j∈L
[[[real]]]ljsi,k

⎞
⎠
⊥

(110)

is a morphism in Sub
(
ωCpo ↓Gsi,k

)
, for each i ∈L and any k ∈N∪ {∞}.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


790 F.L. Nunes and M. Vákár

By the commutativity of (96) for any (si, k) ∈N× (N∪ {∞}), we get that the pair
([[t]], [[ID(t)]]k) defines the morphism (111) for each i ∈L. By Corollary 9.7, this implies that [[t]]
is differentiable and [[ID (t) ]]k = dk ([[t]]). �

Finally, as a consequence, we get:

Theorem 10.22. Assume that vect implements the vector space Rk, for some k ∈N∪ {∞}. For any
program x : τ � t : σ where τ , σ are data types (including recursive data types), we have that [[t]] is
differentiable and, moreover,

[[D (t)]]k = dk ([[t]]) (111)

provided thatD is sound for primitives.

Following the considerations of Section 9.6 and 9.7, it follows from Theorem 10.18 that D as
defined in Section 10.4 correctly provides us with forward and reverse AD transformations for
data types.

10.12 AD on arrays
Arrays are semantically the same as lists: in our language, if τ is a data type, an array of τ is given
by μα.1 	 + τ × α. It should be noted that, if x :μα.1 	 τ × α � t :μα.1 	 τ × β , we have that

[[t]] :
∞∐
i=1

[[τ ]]→
( ∞∐
i=1

[[σ ]]

)
⊥
.

By Theorem 10.22, if τ and σ are data types, we get that dk ([[t]]) (as defined in (27)) is equal
to [[D (t)]]k. Therefore, Theorem 10.22 already encompasses the correctness for arrays (of data
types).

11. Almost Everywhere Correct AD
Here, we show how some of the arguments of Huot et al. (2023) about almost everywhere differ-
entiability can be accommodated in our framework, by making use of a minor variation of our
chosen logical relations over ω-cpos. The resulting arguments use plain logical relations over ω-
cpos and do not rely on sheaf-structure. They are also a bit more general, as they apply to languages
with coproduct and recursive types.

The central notion is Lee et al. (2020)’s concept of functions that are PAP. We recall some of
the required notions to talk about PAP functions first.

Definition 11.1 (Analytic function). A function f :U→V , for U ⊆R
n and V ⊆R

m, is analytic
if, for all x ∈U, its Taylor series converges pointwise to f on an open neighborhood of x.

Definition 11.2 ((c)-Analytic set). A subset A⊆R
n is called analytic if there exist analytic

functions g1, . . . , gm :U→R defined on an open neighborhood U of A, such that
A= {x ∈U | gi(x)≥ 0 for 1≤ i≤m}.

A subset A⊆R
n is called c-analytic if it is the countable union of analytic subsets.

As noted by Huot et al. (2023), we can equivalently define a c-analytic set as a countable disjoint
union of analytic subsets.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 791

Definition 11.3 (PAP function). A function f :U→V , for U ⊆R
n and V ⊆R

m, is called piece-
wise analytic under analytic partition (PAP) if it has a PAP representation in the sense of a countable
family {(Ai,Ui, fi)}i∈I such that:

• the sets Ai are analytic and form a partition of U;
• each fi : Ui→V is an analytic function defined on an open neighborhood Ui of Ai;
• fi|Ai = f |Ai in the sense that fi(x)= f (x) for all x ∈Ai.

A crucial observation by Lee et al. (2020) is that PAP functions are closed under composition.
As noted by Huot et al. (2023), a subset A⊆R

n is c-analytic if and only if the inclusion A ↪→R
n

is a PAP function.
We consider the following notion of partial PAP function.

Definition 11.4 (Partial PAP function). We call a partial function f :U ⇀V a partial PAP
function if its domain of definition is c-analytic and it restricts to a (total) PAP function on its
domain.

As noted by Huot et al. (2023), such partial PAP functions are closed under composition.

Definition 11.5 (Intensional derivative). Each particular PAP representation {(Ai,Ui, fi)}i∈I of a
PAP function f gives rise to a unique intensional derivative {(Ai,Ui,Dfi)}i∈I , where we write Dfi for
the (standard) derivative of fi, such that Dfi =Df on Ai.

A given PAP function may therefore have several distinct intensional derivatives, arising from
the different PAP representations. However, Lee et al. (2020) show that such PAP functions f
are differentiable almost everywhere and that each intensional derivative corresponds almost
everywhere with the (standard) derivative of f .

Next, we redefine our logical relations for real and monadic types from Sections 9.3 and 9.2.
First, we redefine

[[[real]]]n,k
def=
({(

f : Rn→R, f ∗
) : f is analytic, f ∗ =Dkf

}
,
(
R,R×R

k
)
, incl.
)
.

Second, we denote by On the set of countable families {(Ai,Ui)}i∈I of pairs of analytic subsets
Ai ⊆R

n and open neighborhoodsUi of Ai in, such that all Ai are pair-wise disjoint and
⊔

i∈I Ai #=
∅,Rn. Then, for each {(Ai,Ui)}i∈I ∈On, we redefine

Diff({(Ai,Ui)}i∈I ,n,k)
def=
⊔
i∈I

({(
g : Rn→Ui,Dkg

)
: g is analytic

}
,
(
Ui, φn,k

(
Ui ×
(
R
k
)n))

, incl.
)

∈ Sub
(
ωCpo ↓Gn,k

)
.

We redefine the Sub
(
ωCpo ↓Gn,k

)
-monad Pn,k (−)⊥ on Sub

(
ωCpo ↓Gn,k

)
by

Pn,k
(
D,
(
C, C′
)
, j
)
⊥

def=
(
Pn,k
(
D,
(
C, C′
)
, j
)
⊥,
(
(C)⊥ ,

(
C′
)
⊥
)
, jX
)

where Pn,k
(
D,
(
C, C′
)
, j
)
⊥ ⊆Gn,k(C⊥, C′⊥) is the union

{⊥} 	D 	
⎛
⎝ ∐
{(Ai,Ui)}i∈I∈On

Sub
(
ωCpo ↓Gn,k

) (
Diff({(Ai,Ui)}i∈I ,n,k),

(
D,
(
C, C′
)
, j
))⎞⎠ /∼,

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


792 F.L. Nunes and M. Vákár

where we identify [(γi, γ ′i) | i ∈ I]∼ [(γ j, γ ′j) | j ∈ J] if their domains of definition coincide
(
⊔

i∈I Ai =⊔j∈J Aj) and they define the same function on this domain. To be more for-
mal, we define the identification [(γi, γ ′i) | i ∈ I]∼ [(γ j, γ ′j) | j ∈ J] if

⊔
i∈I Ai =⊔j∈J Aj and [γi ◦

ιi | i ∈ I]= [γ j ◦ ιj | j ∈ J] and [γ ′i ◦ φn,k ◦ (ιi × id(Rk)n) ◦ φ−1n,k | i ∈ I]= [γ ′j ◦ φn,k ◦ (ιj × id(Rk)n) ◦
φ−1n,k | j ∈ J], where we use the inclusions ιi :Ai ↪→Ui and ιj :Aj ↪→Uj. The structure of the monad
is defined entirely analogously to that in Section 9.2. Closure under suprema of ω-chains follows
from (Huot et al. 2023, Corollary B.9). It is easy to see that the conditions of Theorem 10.14 are
satisfied as before.

The rest of the development remains essentially unchanged, except for the minor modifica-
tion that we work with (1) PAP functions rather than differentiable functions and (2) countable
families of analytic subsets with open neighborhoods rather than open subsets.

If we spell out the resulting definitions for the logical relations (focusing on the k-semantics for
k= 1), the result is as follows:

Tn
real

def= {(γ , γ ′) | γ is PAP and γ ′ = (x, v) 
→ (γ (x), γ ′′(x, v)) for an intensional derivative γ ′′ of γ }
Pnτ

def=
{
(γ , γ ′) | γ−1([[τ ]])×R

n = γ
′−1([[D (τ )]]) and there exists a countable analytic partition

{Ai ⊆R
n}i∈I of γ ′−1([[D (τ )]]) and there exist open neighbourhoods Ui of Ai with functions

γi :Ui→ [[τ ]], γ ′i :Ui ×R
n→ [[D (τ )]] such that γ |Ai = γi|Ai and γ ′|Ai×Rn = γ ′i |Ai×Rn and

for all analytic δ :Rn→Ui we have that (γi ◦ δ, (x, v) 
→ (γi(δ(x)), γ ′i (Dδ(x, v)))) ∈ Tn
τ

}
.

We see that Pnrealm precisely captures Huot et al. (2023)’s notion of partial PAP functions and their
intensional derivatives, if we note that we can use (analytic) δ to define for any point y ∈R

n an
arbitrary small neighborhood: x 
→ x∗ε√

1+||x||2 + y is an analytic isomorphism between R
n and an

ε-ball centered at y. We can show (by induction) that Pnτ is closed under suprema of ω-chains
using (Huot et al. 2023, Corollary B.9).

With these new definitions, our entire development goes through again. As long as we ensure
that all our primitive operations denote partial PAP functions, we obtain versions of Theorem III.2
and Corollary III.3. of Huot et al. (2023) for a language that additionally includes recursive types,
by using a plain logical relations argument over ω-cpos:

Theorem 11.6 (Almost everywhere differentiability). Assume that vect implements the vector
space Rk, for some k ∈N∪ {∞}. For any program x : τ � t : σ where τ , σ are data types (includ-
ing recursive data types), we have that [[t]] is differentiable almost everywhere on its domain and,
moreover,

[[D (t)]]k = dk ([[t]]) (112)

almost everywhere, provided that D is sound for primitives.

Consequently, we obtain the correct derivative almost everywhere for any program t that ter-
minates almost everywhere. Importantly, this result remains true if we change the semantics of
sign t to be defined even for t= 0, as is done in Huot et al. (2023) and Mazza and Pagani (2021):

[[sign t]] def=
⎧⎨
⎩ ι1() if [[t]]≤ 0

ι2() otherwise
.

Indeed, this semantics is still logical relation respecting, thanks to our choice of lifting of the
partiality monad to logical relations.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 793

12. Related Work
This is an improved version of the unpublished preprint Vákár (2020). In particular, we have
simplified the correctness argument to no longer depend on diffeological or sheaf-structure and to
have it apply to arbitrary differentiable (rather than merely smooth) operations. We have further
simplified the subsconing technique for recursive types.

There has recently been a flurry of work studying AD from a PL point of view, a lot of it focusing
on functional formulations of AD and their correctness. Examples of such papers are Pearlmutter
and Siskind (2008), Elliott (2018), Shaikhha et al. (2019), Brunel et al. (2020), Abadi and Plotkin
(2020), Barthe et al. (2020), Lee et al. (2020), Huot et al. (2020), Mazza and Pagani (2021), Vákár
(2021), Lucatelli Nunes (2022), Huot et al. (2021), Vákár and Smeding (2022), Krawiec et al.
(2022), Smeding and Vákár (2023), and Huot et al. (2023). Of these papers, Pearlmutter and
Siskind (2008), Abadi and Plotkin (2020), Lee et al. (2020), Mazza and Pagani (2021), Smeding
and Vákár (2023),and Huot et al. (2023) are particularly relevant as they also consider AD of
languages with partial features.

Here, Pearlmutter and Siskind (2008) consider an implementation that differentiates recursive
programs and the implementation of Smeding and Vákár (2022) even differentiates code that uses
recursive types. They do not give correctness proofs, however.

Abadi and Plotkin (2020) pioneer a notion of correctness that we use for most of this paper,
where points of non-differentiability are essentially ignored by making a function undefined at
such points. They use it to give a denotational correctness proof of AD on a first-order func-
tional language with (first-order) recursion. The first-orderness of the language allows the proof
to proceed by plain induction rather than needing a logical technique.

Lee et al. (2020) introduce a more ambitious notion of correctness in the sense of almost
everywhere correct AD. Mazza and Pagani (2021) prove the correctness of basically the same AD
algorithms that we consider in this paper when restricted to PCF with a base type of real numbers
and a real conditional. Importantly, they also take care to prove almost everywhere correct differ-
entiation for a language that supports conditionals on real numbers and primitives that can have
points of non-differentiability. Their proof relies on operational semantic techniques. Huot et al.
(2023) combine the ideas of Lee et al. (2020) with those of Vákár (2020) to give a denotational
proof of almost everywhere correct AD for PCF, by using sheaves of logical relations. Section 11
of the present paper shows how their arguments can be reproduced without any sheaf-theoretic
machinery, essentially by choosing a different lifting of the partiality monad to logical relations.

Barthe et al. (2020) have previously used (open) logical relations over the syntax, rather than
semantics, to prove correctness of AD on total languages. It would be interesting to see whether
and how their techniques could be adapted to languages with partial features. We suspect that the
choice between logical relations over the syntax or semantics is mostly a matter of taste but that
the extra (co)completeness properties that the semantics has can help, particularly when proving
things about recursion and recursive types.

There is an independent line of inquiry into differential λ-calculus (Ehrhard and Regnier 2003)
and differential categories (Blute et al. 2020; Cockett et al. 2020). A conceptual distinction with
the work on AD is that differentiation tends to be a first-class construct (part of the language) in
differential λ-calculus, rather than a code transformation in a metalanguage. Further, there is a
stronger emphasis on the axioms that derivatives need to satisfy and less of a focus on recipes for
computing derivatives. In this setting, differential restriction categories Cockett et al. (2012) gives
a more abstract semantic study of the interaction between (forward) differentiation and partiality.
We found that for our purposes, a concrete semantics in terms of ω-cpos sufficed, however.

Our contribution is to give an alternative denotational argument, which we believe is sim-
ple and systematic, and to extend it to apply to languages, which, additionally, have the complex
features of recursively defined data structures that we find in realistic ML-family languages.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


794 F.L. Nunes and M. Vákár

Such AD for languages with expressive features such as recursion and user-defined data types
has been called for by the machine learning community (Jeong et al. 2018; van Merrienboer
et al. 2018). Previously, the subtlety of the interaction of AD and real conditionals had first been
observed by Beck and Fischer (1994).

Our work gives a relatively simple denotational semantics for recursive types, which can be
considered as an important special case of bilimit compact categories (Levy 2012). Bilimit com-
pact categories are themselves, again, an important special case of the very general semantics of
recursive types in terms of algebraically compact categories (Freyd 1991).We believe that working
with this special case of the semantics significantly simplifies our presentation.

In particular, this simplified semantics of recursive types allows us to give a very simple but
powerful (open, semantic) logical technique for recursive types. It is an alternative to the two
existing techniques for logical relations for recursive types: relational properties of domains (Pitts
1996), which is quite general but very technical to use, in our experience, and step-indexed logical
relations (Ahmed 2006), which are restricted to logical relations arguments about syntax, hence
not applicable to our situation.

Finally, we hope that our work adds to the existing body of PL literature on AD and recursion
(and recursive types). In particular, we believe that it provides a simple, principled denotational
explanation of how AD and expressive partial language features should interact. We plan to use
it to generalize and prove correct the more advanced AD technique CHAD (Elliott 2018;Vákár
2021; Vákár and Smeding 2022; Lucatelli Nunes 2022; Kerjean and Pédrot 2022) when applied to
languages with partial features.

Acknowledgments. This project has received funding via NWO Veni grant number VI.Veni.202.124 as well as the
European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement no.
895827.

This research was supported through the program “Oberwolfach Leibniz Fellows” by the Mathematisches
Forschungsinstitut Oberwolfach in 2022. It was also partially supported by the CMUC, Centre for Mathematics of the
University of Coimbra – UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.

We are grateful to the anonymous reviewers for their helpful comments on this manuscript.

Notes
1 For this particular case of an iterative algorithm, it is actually possible and better (but more laborious!) to implement a
custom derivative rather than differentiating through the while-loop (Margossian and Betancourt 2021).
2 Actually, while our definition forD(sign r) given here is correct, there exist more efficient implementation techniques, as
we discuss in Appendix B.
3 Note that, in practice, Smeding andVákár (2023) actually implement vect as a type of ASTs of simple expressions computing
a dynamically sized vector. This allows us to first build up the expression during execution of the program (the forward pass)
and to only evaluate this cotangent expression later (in a reverse pass) making clever use of a distributivity law of addition and
multiplication (also known as the linear factoring rule in Brunel et al. 2020) to achieve the correct computational complexity
of reverse AD.
4 See Dubuc (1970, p. 60) for the classical enriched case. For the general case of monads in 2-categories, see Street (1972,
p. 150) or, for instance, Lucatelli Nunes (2016, Section 3).
5 Although this level of generality is not needed in our work, the interested reader can find more about Freyd-categorical
structures and basic aspects of the modeling of call-by-value languages in Levy et al. (2003)
6 In fact, it is locally presentable, hence complete and cocomplete, and its internal hom X⇒ Y is given by using the order
f ≤X⇒Y g defined as ∀x ∈ X.f (x)≤Y g(x) on the homset ωCpo(X, Y). Its products %i∈IXi carry the lexicographic order, and
its coproducts

⊔
i∈I Xi have the disjoint union of the orders of all Xi, making elements in different components incomparable.

See, for example, Vákár, Kammar, and Staton (2019) for more details.
7 R

∞ is the vector space freely generated by the infinite set
{
ei : i ∈N

∗}. In other words, it is the infinity coproduct of Ri

(i ∈N
∗). In order to implement it, one can use lists/arrays and pattern matching for the vector addition.

8 Goubault-Larrecq et al. (2002) develop some general methods for obtaining monad liftings to the scone and subscone.
However, there are many choices for such monad liftings, and they need to be chosen depending on the specific application.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 795

9 That is, this ωCpo-functor is up to equivalence, the forgetful ωCpo-functor from the ωCpo-Eilenberg–Moore category of
a (co)monad onD×B. Dubuc (1970) gives a good introduction to the theory of enriched (co)monads.
10 In this work, we are only concerned with conical ωCpo-limits and colimits of functors J :E→C in the sense ofC-objects
such that we have natural ωCpo-isomorphisms

C(C, lim J)∼=Cat(E,C)(�C , J) and C(colimJ, C)∼=Cat(E,C)(J,�C),

where we write �C for the constantly C functor. For the more general theory of (weighted)V-(co)limits, we refer the reader
to Kelly (1982).
11 See Dubuc (1968) for the original adjoint triangle theorem and Lucatelli Nunes (2016, Section 1) for the enriched version.
12 That is, all Sub

(D ↓G
)
((D, C, j), (D′, C′, h))→ (D ↓G)((D, C, j), (D′, C′, h)) are isomorphisms of ω-cpos.

13 That is, Sub
(D ↓G

) →D ↓G has an ωCpo-left adjoint.
14 That is, Sub

(D ↓G
)
is closed under isomorphisms inD ↓G.

15 See Levy (2012, 4.2.2) or Vákár (2020, Section 8) for the general setting of bilimit compact expansions.
16 See, for instance, Kelly and Street (1972, Section 2) or Lucatelli Nunes (2016, 3.10) for adjunctions in 2-categories.
17 Recall that a zero object is an object that is both initial and terminal.
18 BecauseV is cartesian closed, any colimit inV is a conicalV-colimit (Kelly 1982). BecauseV isωCpo-cartesian closed,
any conicalV-colimit inV is, in particular, a conical ωCpo-colimit.
19 That is to say, it is just a reorganization of the involved coproducts and products.
20 This is a type theory for the Freyd category given by the Kleisli functor of the partiality monad. In the presence of the
connectives we consider (in particular, function types), it is equivalent to Moggi’s monadic metalanguage (Moggi 1991).

References
Abadi, M. and Plotkin, G. (2020). A simple differentiable programming language. In: Proc. POPL 2020, ACM.
Ahmed, A. J. (2006). Step-indexed syntactic logical relations for recursive and quantified types. In: Sestoft, P.(ed.) 15th

European Symposium on Programming, ESOP 2006, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Proceedings, Springer, vol. 3924, 69–83, Lecture Notes in
Computer Science.

Barthe, G., Crubillé, R., Lago, U. D. and Gavazzo, F. (to appear). On the versatility of open logical relations: Continuity,
automatic differentiation, and a containment theorem. In: Proc. ESOP 2020, Springer.

Beck, T. and Fischer, H. (1994). The if-problem in automatic differentiation. Journal of Computational and Applied
Mathematics 50 (1-3) 119–131.

Betancourt, M. (2019). Double-pareto lognormal distribution in stan.
Bloom, S. and Ésik, Z. (1993). Iteration Theories - The Equational Logic of Iterative Processes, EATCS Monographs on

Theoretical Computer Science, Springer.
Blute, R., Cockett, J. R. B., Lemay, J. P. and Seely, R. A. G. (2020). Differential categories revisited. Applied Categorical

Structures 28 (2) 171–235.
Brunel, A., Mazza, D. and Pagani, M. (2020). Backpropagation in the simply typed lambda-calculus with linear negation. In:

Proc. POPL.
Carpenter, B., Hoffman, M., Brubaker, M., Lee, D., Li, P. and Betancourt, M. (2015). The stan math library: reverse-mode

automatic differentiation in C++. arXiv preprint arXiv: 1509.07164.
Clementino, M. and Lucatelli Nunes, F. (2024). Lax comma 2-categories and admissible 2-functors. Theory and Applications

of Categories 40 180–226.
Cockett, J. R. B., Cruttwell, G. S. and Gallagher, J. D. (2012). Differential restriction categories. arXiv preprint arXiv:

1208.4068.
Cockett, J. R. B., Cruttwell, G. S. H., Gallagher, J., Lemay, J. P., MacAdam, B., Plotkin, G. D. and Pronk, D. (2020). Reverse

derivative categories. In: 28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020,
Barcelona, Spain, Fernández, M. and Muscholl, A. (eds.), vol. 152.

Dubuc, E. (1968). Adjoint triangles. In: Reports of the Midwest Category Seminar, II, Berlin, Springer, 69–91.
Dubuc, E. (1970). Kan Extensions in Enriched Category Theory, Lecture Notes in Mathematics, vol. 145, Berlin-New York,

Springer-Verlag.
Ehrhard, T. and Regnier, L. (2003). The differential lambda-calculus. Theoretical Computer Science 309 (1-3) 1–41.
Elliott, C. (2018). The simple essence of automatic differentiation. Proceedings of the ACM on Programming Languages 2

(ICFP) 70.
Fiore, M. and Plotkin, G. (1994). An axiomatisation of computationally adequate domain theoretic models of fpc. In:

Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science, IEEE, 92–102.
Flaxman, S., Mishra, S., Gandy, A., Unwin, H. J. T., Mellan, T. A., Coupland, H., Whittaker, C., Zhu, H., Berah, T., Eaton,

J. W., et al. (2020). Estimating the effects of non-pharmaceutical interventions on covid-19 in europe. Nature 584 (7820)
257–261.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


796 F.L. Nunes and M. Vákár

Freyd, P. (1991). Algebraically complete categories. In: Category Theory, Springer, 95–104.
Goncharov, S., Rauch, C. and Schröder, L. (2015). Unguarded recursion on coinductive resumptions. Electronic Notes in

Theoretical Computer Science 319 183–198.
Goodrich, B. (2017). Conway-maxwell-poisson distribution.
Goubault-Larrecq, J., Lasota, S. and Nowak, D. (2002). Logical relations for monadic types. In: International Workshop on

Computer Science Logic, Springer, 553–568.
Griewank, A. and Walther, A. (2008). Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation,

vol. 105, SIAM.
Huot, M., Lew, A. K., Mansinghka, V. K. and Staton, S. (2023). ωpap spaces: Reasoning denotationally about higher-order,

recursive probabilistic and differentiable programs. In: 2023 38th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), IEEE, 1–14.

Huot, M., Staton, S. and Vákár, M. (2020). Correctness of automatic differentiation via diffeologies and categorical gluing.
Full version. arxiv:2001.02209.

Huot, M., Staton, S. and Vákár, M. (2021). Higher order automatic differentiation of higher order functions. CoRR,
abs/2101.06757.

Jeong, E., Jeong, J. S., Kim, S., Yu, G.-I. and Chun, B.-G. (2018). Improving the expressiveness of deep learning frameworks
with recursion. In: Proceedings of the Thirteenth EuroSys Conference, 1–13.

Kelly, G. M. (1982). Basic Concepts of Enriched Category Theory, vol. 64, CUP Archive.
Kelly, G. M. and Street, R. (1974). Review of the elements of 2-categories. In: Lecture Notes in Mathematics, Category Seminar

(Proc. Sem., Sydney, 1972/1973), 420, Springer, vol. 75–103.
Kerjean, M. and Pédrot, P.-M. (2022). ∂ is for Dialectica. working paper or preprint.
Krawiec, F., Jones, S. P., Krishnaswami, N., Ellis, T., Eisenberg, R. A. and Fitzgibbon, A. W. (2022). Provably correct,

asymptotically efficient, higher-order reverse-mode automatic differentiation. Proceedings of the ACM on Programming
Languages 6 (POPL) 1–30.

Lee, W., Yu, H., Rival, X. and Yang, H. (2020). On correctness of automatic differentiation for non-differentiable functions.
In: Advances in Neural Information Processing Systems, 33, 6719–6730.

Levy, P. (2012). Call-by-Push-Value: A Functional/Imperative Synthesis, vol. 2, Springer Science & Business Media.
Levy, P., Power, J. and Thielecke, H. (2003). Modelling environments in call-by-value programming languages. Information

and Computation 185 (2) 182–210.
Lucatelli Nunes, F. (2016). On biadjoint triangles. Theory and Applications of Categories 31 217–256. Paper No. 9.
Lucatelli Nunes, F. (2022). Semantic Factorization and Descent. Applied Categorical Structures 30 (6), 1393–1433.
Lucatelli Nunes, F. and Vákár, M. (2023). CHAD for expressive total languages.Mathematical Structures in Computer Science

33 (4-5) 311–426.
Mac Lane, S. (2013). Categories for the Working Mathematician, Vol. 5, Springer Science & Business Media.
Margossian, C. C. and Betancourt, M. (2021). Efficient automatic differentiation of implicit functions. arXiv preprint arXiv:

2112.14217.
Mazza, D. and Pagani, M. (2021). Automatic differentiation in PCF. Proceedings of the ACM on Programming Languages 5

(POPL) 1–27.
Meijer, E. (2018). Behind every great deep learning framework is an even greater programming languages concept (keynote).

In: Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 1–1.

Mitchell, J. C. and Scedrov, A. (1992). Notes on sconing and relators. In: International Workshop on Computer Science Logic,
Springer, pp. 352–378.

Moggi, E. (1989). Computational lambda-calculus and monads. In: Proceedings of the Fourth Annual Symposium on Logic in
Computer Science (LICS ’89), June 5-8, 1989, Pacific Grove, California, USA, IEEE Computer Society, 14–23.

Moggi, E. (1991). Notions of computation and monads. Information and Computation 93 (1) 55–92.
Pearlmutter, B. and Siskind, J. (2008). Reverse-mode AD in a functional framework: lambda the ultimate backpropagator.

ACM Transactions on Programming Languages and Systems (TOPLAS) 30 (2) 7–36.
Pitts, A. (1996). Relational properties of domains. Information and Computation 127 (2) 66–90.
Plotkin, G. (2018). Some principles of differential programming languages. In: Invited talk, POPL, 2028.
Shaikhha, A., Fitzgibbon, A., Vytiniotis, D. and Peyton Jones, S. (2019). Efficient differentiable programming in a functional

array-processing language. Proceedings of the ACM On Programming Languages 3 (ICFP) 97–30.
Shalev-Shwartz, S., et al. (2012). Online learning and online convex optimization. Foundations and Trends R© in Machine

Learning 4 (2) 107–194.
Smeding, T. and Vákár, M. (2023). Efficient dual-numbers reverse AD via well-known program transformations. Proceedings

of the ACM on Programming Languages 7 (POPL) 1573–1600.
Smeding, T. J. and Vákár, M. I. (2024). Parallel dual-numbers reverse ad. arXiv preprint arXiv: 2207.03418v3.
Smyth, M. and Plotkin, G. (1982). The category-theoretic solution of recursive domain equations. SIAM Journal on

Computing 11 (4) 761–783.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 797

Socher, R., Lin, C. C., Manning, C. and Ng, A. Y. (2011). Parsing natural scenes and natural language with recursive neural
networks. In: Proceedings of the 28th international conference on machine learning (ICML-11), 129–136.

Street, R. (1972). The formal theory of monads. Journal of Pure and Applied Algebra 2 (2) 149–168.
Tai, K. S., Socher, R. and Manning, C. D. (2015). Improved semantic representations from tree-structured long short-term

memory networks. arXiv preprint arXiv: 1503.00075.
Tsiros, P., Bois, F. Y., Dokoumetzidis, A., Tsiliki, G. and Sarimveis, H. (2019). Population pharmacokinetic reanalysis of a

diazepam pbpk model: a comparison of stan and gnu mcsim. Journal of Pharmacokinetics and Pharmacodynamics 46 (2)
173–192.

van Merrienboer, B., Breuleux, O., Bergeron, A. and Lamblin, P. (2018). Automatic differentiation in ml: where we are and
where we should be going. In: Advances in Neural Information Processing Systems, 8757–8767.

Vákár, M. (2020). Denotational correctness of forward-mode automatic differentiation for iteration and recursion. arXiv
preprint arXiv: 2007.05282.

Vákár, M. (2021). Reverse AD at higher types: pure, principled and denotationally correct. In: 30th European Symposium on
Programming, ESOP 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021,
Luxembourg City, Luxembourg, March 27 – April 1, 2021. Proceedings, Springer. 607–634.Proceedings,

Vákár, M., Kammar, O. and Staton, S. (2019). A domain theory for statistical probabilistic programming. Proceedings of the
ACM on Programming Languages 3 (POPL) 36:1–36:29.

Vákár, M. and Smeding, T. (2022). CHAD: combinatory homomorphic automatic differentiation. ACM Transactions on
Programming Languages and Systems 44 (3) 20:1–20:49.

Zhang, X., Lu, L. and Lapata, M. (2016). Top-down tree long short-term memory networks. In: Proceedings of NAACL-HLT,
310–320.

A. Fine grain call-by-value and AD

In Section 6, we have discussed a standard coarse-grain CBV language, also known as the λC-
calculus, computational λ-calculus (Moggi 1989), or, plainly, CBV. In this appendix, we discuss
an alternative presentation in terms of fine-grain CBV20 (Levy et al. 2003; Levy 2012). While it is
slightly more verbose, this presentation clarifies the precise universal property that is satisfied by
the syntax of our language.

A.1 Fine grain call-by-value
We consider a standard fine-grain call-by-value language (with complex values) over a ground
type real of real numbers, real constants c ∈Op0 for c ∈R, and certain basic operations op ∈Opn
for each natural number n ∈N.

The types τ , σ , ρ, (complex) values v,w, u, and computations t, s, r of our language are as
follows.

τ , σ , ρ ::= types | 1 | τ1 × τ2 products
| real numbers | τ → σ function
| 0 | τ + σ sums

v, y, u ::= values | case v of{ inl x→w
| inr y→ u

} sum match

| x, y, z variables | 〈 〉 | 〈v,w〉 tuples
| c constant | case v of 〈x, y〉→w product match
| case v of{ } sum match | λx.t abstractions
| inl v | inr v inclusions | μx.v term recursion

t, s, r ::= computations
| t to x. s sequencing | case v of { inl x→ t

| inr y→ s
} sum match

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


798 F.L. Nunes and M. Vákár

Figure A1. Typing rules for the our fine-grain CBV language with iteration and real conditionals. We use a typing judgement
�v for values and �c for computations.

| return v pure comp. | case v of 〈x, y〉→ t product match
| op(v1, . . . , vn) operation | v w function app.
| case v of{ } sum match | iterate t from x= v iteration

| sign v sign function

We will use sugar

if v then t else s def= sign (v) to x. case x of {_→ s
∣∣ _→ r}

fst v def= case v of 〈x, _〉→ x

snd v def= case v of 〈_, x〉→ x

let rec f (x)= t in s def= (μf . return (λx.t)) to f . s.

We could also define iteration as syntactic sugar: iterate t from x= v def=(
μz.λx.t to y. case y of{inl x′ → z x′ | inr x′′ → return x′′}) v.
The typing rules are in Fig. A1.

A.2 Equational theory
We consider our language up to the usual βη-equational theory for fine-grain CBV, which is
displayed in Fig. A2.

Under the translation of coarse-grain CBV into fine-grain CBV, this equational theory induces
precisely that of Section 6.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 799

Figure A2. Standard βη-laws for fine-grain CBV.Wewrite #x1, . . . , xn≡ to indicate that the variables are fresh in the left-hand
side. In the top right rule, xmay not be free in r. Equations hold on pairs of terms of the same type.

A.3 The CBV model
(
SynV , SynS, Synμ, Synit

)
Our fine grain call-by-value language corresponds with a CBV model (see Definition 4.4).

We define the category SynV of values, which has types as objects. SynV (τ , σ ) consists of (α)βη-
equivalence classes of values x : τ �v v : σ , where identities are x : τ �v x : σ and composition of
x : τ �v v : σ and y : σ �v w : ρ is given by x : τ �v w[v/y] : ρ.
Lemma A.1. SynV is bicartesian closed.

Similarly, we define the category SynC of computations, which also has types as objects.
SynC(τ , σ ) consists of (α)βη-equivalence classes of computations x : τ �c t : σ , where iden-
tities are x : τ �c return x : σ and composition of x : τ �c t : σ and y : σ �c s : ρ is given by
x : τ �c t to y. s : ρ.
Lemma A.2. SynC is a SynV-category.

We define the SynV-functors

SynG : SynC ↪→ SynV SynJ : SynV ↪→ SynC
τ 
→ (1→ τ) τ 
→ τ

t 
→ λ〈 〉.t v 
→ return v.

We have that SynJ " SynG is a (Kleisli) SynV-adjunction SynJ " SynG and, hence, denoting
by SynS the induced SynV-monad,

(
SynV , SynS

)
is a CBV pair, as defined in Definition 4.1.

Moreover, considering the free recursion and free iteration
Synit : (x : σ �c t : σ 	 + τ) 
→ λy.

(
iterate t from x= y

)
Synμ : (x : τ �v v : τ) 
→μx.v (τ = σ → ρ),

we get the CBV model
(
SynV , SynS, Synμ, Synit

)
which has the following universal property.

Proposition A.3 (Universal property of the syntax). Let (V,T,μ, ) be a CBV model with chosen
finite products, coproducts and exponentials. For each consistent assignment

H(real) ∈ obV (A1)

H(c) ∈ V (1,H(real)) (A2)

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


800 F.L. Nunes and M. Vákár

H(op) ∈ C (H(real)n,H(real)
)=V (H(real)n, TH(real)

)
, for each op ∈Opn (A3)

H(sign ) ∈ C (H(real), 1 	 1)=V (H(real), T (1 	 1)) (A4)
there is a unique CBV model morphism H between

(
SynV , SynS, Synμ, Synit

)
and (V,T,μ, )

respecting it.

Proposition A.4 (Universal property of the syntax). Let (V,T,μ, ) be a CBV model with chosen
finite products, coproducts and exponentials. For each consistent assignment

H(real) ∈ obV (A5)

H(c) ∈ V (1,H(real)) (A6)

H(op) ∈ C (H(real)n,H(real)
)=V (H(real)n, TH(real)

)
, for each op ∈Opn (A7)

H(sign ) ∈ C (H(real), 1 	 1)=V (H(real), T (1 	 1)) (A8)
there is a unique CBV model morphism H between

(
SynV , SynS, Synμ, Synit

)
and (V,T,μ, )

respecting it.

A.4 A translation from coarse-grain CBV to fine-grain CBV
This translation (− )† operates on types and contexts as the identity. It faithfully translates terms
� � t : τ of coarse-grain CBV into computations � �c t† : τ of fine-grain CBV. This transla-
tion illustrates the main difference between coarse-grain and fine-grain CBV: in coarse-grain
CBV, values are subset of computations, while fine-grain CBV is more explicit in keeping val-
ues and computations separate. This makes it slightly cleaner to formulate an equational theory,
denotational semantics, and logical relations arguments.

We list the translation (− )† below where all newly introduced variables are chosen to be fresh.

coarse-grain CBV computation t fine-grain CBV translation t†

x return x
let x= t in s t† to x.s†
c return c
inl t t† to x. return inl x
inr t t† to x. return inr x
〈〉 return 〈〉
〈t, s〉 t† to x.s† to y. return 〈x, y〉
λx.t return λx.t†
op(t1, . . . , tn) t†1 to x1.. . . t†n to xn. op(x1, . . . , xn)
case tof { } t† to x.case x of{ }
case t of {inl x→ s | inr y→ r} t† to z.case z of {inl x→ s† | inr y→ r†}
case t of 〈x, y〉→ s t† to z.case z of 〈x, y〉→ s†
t s t† to x.s† to y.x y
iterate t from x= s s† to y.iterate t† from x= y
sign t t† to x.sign x
μz.t μz.λx.t† to y. yx

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 801

Figure A3. A forward-mode ADmacro defined on types asD (− ), values asDV(− ), and computations asDC(− ). All newly
introduced variables are chosen to be fresh.

A.5 Dual numbers forward AD transformation
As before, we fix, for all n ∈N, for all op ∈Opn, for all 1≤ i≤ n, computations x1 : real, . . . , xn :
real�c ∂iop(x1, . . . , xn) : real, which represent the partial derivatives of op. Using these terms for
representing partial derivatives, we define, in Fig. A3, a structure preservingmacroD on the types,
values, and computations of our language for performing forward-mode AD. We observe that
this induces the following AD rule for our sugar: DC(if v then t else s )= caseDV(v) of〈x, _〉→
if x thenDC(t) elseDC(s) .

In fact, by the universal property of SynJ , D is the unique structure preserving functor on D
that has the right definition for constants, primitive operations and sign . It automatically follows
thatD respects βη-equality.

Under the translation of coarse-grain CBV into fine-grain CBV, this code transformation
induces precisely that of Section 6.

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


802 F.L. Nunes and M. Vákár

B. A more efficient derivative for sign
We can define by mutual induction (for bothD=D,←−D k)

x : D (τ )� pτ (x) : τ

x : D (real)� fst (x) : real
x : D (τ )×D (σ )� 〈pτ (fst x), pσ (snd x)〉 : τ × σ

x : D (τ ) 	 +D (σ )� case x of {inl y→ inl pτ (y) | inr z→ inr pσ (z)} : τ 	 + σ

x : D (τ )→D (σ )� λy.pσ (x(zτ (y))) : τ → σ

x : μα.D (τ )� case x of roll yroll pτ (x) : μα.τ
x : α � x : α

and
x : τ � zτ (x) : D (τ )

x : real� 〈x, 0〉 : D (real)
x : τ × σ � 〈zτ (fst x), zσ (snd x)〉 : D (τ )×D (σ )

x : τ 	 + σ � case x of {inl y→ inl zτ (y) | inr z→ inr zσ (z)} : D (τ ) 	 +D (σ )
x : τ → σ � λy.zσ (x(pτ (y))) : D (τ )→D (σ )
x : μα.τ � case x of roll y→ roll zτ (x) : μα.D (τ )

x : α � x : α.
Then, observe that, for any x1 : τ1, . . . , xn : τn � t : real, we have [[sign (fstD (t))]]= [[let x1 =
pτ1 (x1) in · · ·let xn = pτn(xn) in · · ·sign t]]. Therefore, we can define, for x1 : τ1, . . . , xn : τn � t :
real,

D (sign t) def= let x1 = pτ1 (x1) in · · ·let xn = pτn(xn) in · · ·sign t.
This yields more efficient definitions of the forward and reverse derivatives of sign and
if then else as we do not need to differentiate t at all.

C. Enriched scone
We present straightforward generalizations (enriched versions) of the results presented in
Lucatelli Nunes and Vákár (2023, Section 9) below.

Considering the ωCpo-category 2with two objects and only one nontrivial morphism between
them, the ωCpo-category 2�D of morphisms of D can be described as the ωCpo-category
ωCpo-Cat [2,D] of ωCpo-functors 2→D.

Explicitly, the objects of 2�D are morphisms f : Y0→ Y1 ofD. A morphism between f and g
is a pair α= (α0, α1) : f → g such that α1f = gα0, that is to say, a (ωCpo-)natural transformation.
Finally, the ωCpo-structure is defined by (α0, α1)≤ (β0, β1) if α0 ≤ β0 and α1 ≤ β1 inD.

Given an ωCpo-functor G : C→D, the comma category D ↓G of the identity on D along G
in ωCpo-Cat is also known as the ωCpo-scone or Artin glueing of G. It can be described as the
pullback (C1) inωCpo-Cat, in which codom : 2�D→D, defined by (α = (α0, α1) : f → g

) 
→
α1, is the codomain ωCpo-functor.

D ↓

C

projC

D ↓ 2 D
proj2⑂D

2 D

D

codom

C D

𝐺

𝐺 (C1)

Since codom is an isofibration, the pullback (C1) is equivalent to the pseudo-pullback of codom
along G, which is the ωCpo-category defined as follows. The objects of the pseudo-pullback are

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 803

triples ((
f : Y0→ Y1

) ∈ 2�D, C ∈C, ξ : (codomf
) ∼=−→G(C)

)
where ξ is an isomorphism in D. A morphism (f , C, ξ )→ (f ′, C′, ξ ′) is a pair of morphisms(
α : f → f ′, h : C→ C′

)
such that G(h) ◦ ξ = ξ ′ ◦ codom (α). Finally, the ωCpo-structure of the

homs are given pointwise. That is to say,
(
α, h
)≤ (α′, h′) if α ≤ α in 2�D and h≤ h′ in C.

LemmaC.1. The forgetful ωCpo-functorL : D ↓G→D×C, defined in (37), creates all absolute
(weighted) limits and colimits.

Proof Clearly, the ωCpo-functor L reflects isomorphisms.
LetD be a diagram inD ↓G such that the weighted (co)limit (co)lim (W,LD) exists and is pre-

served by any ωCpo-functor. SinceD ↓G is the pullback (C1), there is a unique pair of diagrams
(D0,D1) such that

proj2�D ◦D=D0, projC ◦D=D1, codom ◦D0 =G ◦D1,
hold.

Since dom ◦D0 = πD ◦L ◦D and codom ◦D0 =G ◦ πC ◦L ◦D, we get that
(co)lim (W, domD0) ∼= πD ((co)lim (W,L ◦D)) and (co)lim (W, codom ◦D0) ∼=G ◦
πC ((co)lim (W,L ◦D)). Therefore, (co)lim (W,L ◦D0) exists in 2�D, pointwise constructed
out of (co)lim (W, dom ◦D0) and (co)lim (W, codom ◦D0).

Moreover, since D1 = πC ◦L ◦D, we have that (co)lim (W,D1) ∼= πC ((co)lim (W,L ◦D)).
Therefore, the isomorphism ξ given by

codom ((co)lim (W,D0)) ∼= (co)lim (W, codom ◦D0)
∼= G ◦ πC ((co)lim (W,L ◦D))

∼= G ((co)lim (W,D1))

together with the pair ((co)lim (W,D0) , (co)lim (W,D1)) defines, up to isomorphism, an object
ofD ↓G, which satisfies the universal property for (co)lim (W,D)= (co)lim (W, (D0,D1)).

Moreover, by the construction above, we conclude that (co)lim (W,D) is preserved by L. In
particular:

L ((co)lim (W,D0) , (co)lim (W,D1), ξ)= ((co)lim (W, dom ◦D0), (co)lim (W,D1)) .
The above completes the proof that the ωCpo-functor L creates (co)lim (W,D). �

The ωCpo-functor L has a right ωCpo-adjoint provided thatD has binary ωCpo-products. It
is given by (D ∈D, C ∈C) 
→ (D×G (C) , C, πG(C)

)
. Therefore:

Theorem C.2. The forgetful ωCpo-functor L : D ↓G→D×C is ωCpo-comonadic provided
thatD has binary ωCpo-products.

By duality, we get that the forgetful ωCpo-functor F ↓ C→D×C is ωCpo-monadic provided
that C has finite ωCpo-coproducts. Therefore:

Theorem C.3. The forgetful ωCpo-functor L : D ↓G→D× C is ωCpo-monadic whenever G
has a left ωCpo-adjoint and C has finite ωCpo-coproducts.

Proof Indeed, by the ωCpo-adjunction F "G, we get an isomorphism D ↓G∼= F ↓ C, which
composed with the forgetful ωCpo-functor F ↓ C→D×C is equal to L : D ↓G→D×C. �

As a consequence, we conclude that:

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


804 F.L. Nunes and M. Vákár

Theorem C.4. Let G : C→D be a right ωCpo-adjoint functor between ωCpo-bicartesian closed
categories. We have that the forgetful ωCpo-functor L is ωCpo-monadic and comonadic. In
particular,D ↓G is an ωCpo-bicartesian closed category.

D. Some Haskell Code for a Recursive Neural Network
1 −− example implementation of https :// icml . cc /2011/ papers /125_icmlpaper . pdf

2 −− Some of the basic datatypes we use −− we elide the implementation of some

3 data Tree a

4 = Leaf a

5 | Node (Tree a) (Tree a)

6 deriving (Eq) −− \mu b. a + (b x b ), leaf a = roll ( iota_1 a ), node l r = roll ( iota_2 ( l , r ))

7

8 data Vector

9

10 data Scalar

11

12 data Matrix

13

14 type ActivationVectors = [Vector]

15

16 type AdjacencyMatrix = [(Tree Int , Tree Int )]

17

18 −− Some basic data and operations that we need for the RNN

19 −− Again, we elide much of the implementation as it is beside the point of this example

20 f :: Vector −> Vector −− some non−linear function , usually elementwise applied sigmoid function

21 f =

22

23 conc :: Vector −> Vector −> Vector −− concatenate vectors

24 conc =

25

26 mult :: Matrix −> Vector −> Vector −− matrix vector multiplication

27 mult =

28

29 add :: Vector −> Vector −> Vector −− elementwise vector addition

30 add =

31

32 innerprod :: Vector −> Vector −> Scalar −− vector inner product

33 innerprod =

34

35 a :: ActivationVectors

36 a = −− input ( for example, sequence of words as vectors or image segments as vectors )

37

38 adjMat :: AdjacencyMatrix

39 −− start with matrix that only stores (Leaf i , Leaf j ) pairs in case i is a neighbour of j ;

40 −− we later extend adjacency to parent nodes

41 adjMat = −− input ( specify which words/image segments are neighbours )

42

43 w :: Matrix

44 w = −− parameter to learn : weights

45

46 b :: Vector

47 b = −− parameter to learn : biases

48

49 wScore :: Vector

50 wScore = −− parameter to learn : scoring vector

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

undefined

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


Mathematical Structures in Computer Science 805

51

52 −− The implementation of the RNN

53 −− version 1, without caching

54 modelH ((w, b, wScore), (adjMat, globalScore )) =

55 let getNode (Leaf i ) = a !! i

56 in let getNode (Node l r ) = f (w mult conc (getNode l ) (getNode r )) add b

57 in let parentsScores =

58 map

59 (\ i −> ( i , innerprod wScore (getNode (uncurry Node i ))))

60 adjMat −− compute scores for all parent nodes of neighbours ;

61 −−

62 in let (( bp1, bp2 ), bestScore ) =

63 foldl

64 (\( i , s ) ( i ', s ') −>

65 if s > s '

66 then ( i , s )

67 else ( i ', s '))

68 (head parentsScores)

69 parentsScores −−

70 in let globalScore2 = globalScore + bestScore

71 −− add the local contribution of our chosen neighbour pair to the global score

72 in let bestPar = Node bp1 bp2

73 −− actually compute our favourite parent ;

74 −− I guess we'd already done this before but it ' s cheap to redo

75 in let mergeParH i

76 | i == bp1 || i == bp2 = bestPar

77 in let mergeParH i

78 | otherwise = i

79 in let mergePar ( i , j ) =

80 (mergeParH i, mergeParH j)

81 in let adjMat2 =

82

83 (/= ( bestPar , bestPar ))

84 [ mergePar ( i , j )

85 | ( i , j ) <− adjMat

86 ]

87 −− replace bp1 and bp2 with bestPar in adjacencyMatrix ,

88 −− but we have a convention that nodes are not neighbours

89 −− of themselves

90 in if null adjMat2

91 then Right

filter

globalScore2

92 else Left (adjMat, globalScore2 )

93 −− if we run out of neighbours that can be merged, we are done;

94 −− otherwise iterate with new adjacency matrix and score

95

96 it :: (( c , a) −> Either a b) −> (c , a) −> b −− functional iteration

97 it f (c , a) =

98 case f (c , a) of

99 Left a ' −> it f (c , a ')

100 Right b −> b

101

102 model :: ((Matrix, Vector , Vector ), (AdjacencyMatrix, Scalar )) −> Scalar

super    inefficient    without  caching  getNode,   but   conceptually    cleaner

find   the  neighbours   that  have  the   higest   score

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215


806 F.L. Nunes and M. Vákár

103 model = it modelH

104

105 −− The implementation of the RNN

106 −− version2 , with caching of getNode

107 modelH2 ((w, b, wScore), (adjMat, values , globalScore )) =

108 let getNode (Leaf i ) = look (Leaf i ) values

109 in let getNode (Node l r ) =

110 let lv = look l values

111 in let rv = look r values

112 in f (w mult conc lv rv) add b

113 in let parentsValScores =

114 map

115 (\ i −>

116 let v = getNode (uncurry Node i)

117 in ( i , v , innerprod wScore v))

118 adjMat

119 in let (( bp1, bp2 ), bestVal , bestScore ) =

120 foldl

121 (\( i , v , s ) ( i ', v ', s ') −>

122 if s > s '

123 then ( i , v , s )

124 else ( i ', v ', s '))

125 (head parentsValScores)

126 parentsValScores

127 in let globalScore2 = globalScore + bestScore

128 in let bestPar = Node bp1 bp2

129 in let mergeParH i

130 | i == bp1 || i == bp2 = bestPar

131 in let mergeParH i

132 | otherwise

filter

= i

133 in let mergePar ( i , j ) =

134 (mergeParH i, mergeParH j)

135 in let adjMat2 =

136

137 (/= ( bestPar , bestPar ))

138 [ mergePar ( i , j )

139 | ( i , j ) <− adjMat

140 ]

141 in if null adjMat2

142 then Right globalScore2

143 else Left

144 ( adjMat

145 , ( bestPar , bestVal ) : values

146 , globalScore2 )

147

148 −− initial values will be zip (map Leaf [0..], a)

149 look :: Tree Int −> [(Tree Int , b )] −> b −− a map operation for looking up cache

150 look k m =

151 case lookup k m of

152 Just x −> x

153

154 model2 :: ((Matrix, Vector , Vector ), (AdjacencyMatrix, Scalar )) −> Scalar
155 model2 ((w, b, wScore), (adjMat, globalScore )) =

156 it modelH2 ((w, b, wScore), (adjMat, zip (map Leaf [0 ..]) a , globalScore ))

Cite this article: Lucatelli Nunes F and Vákár M (2024). Automatic differentiation for ML-family languages: Correctness via
logical relations.Mathematical Structures in Computer Science 34, 747–806. https://doi.org/10.1017/S0960129524000215

https://doi.org/10.1017/S0960129524000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000215
https://doi.org/10.1017/S0960129524000215

	
	Introduction
	Key Ideas
	Language
	Dual numbers forward AD code transform
	Semantics
	Correctness statement
	A proof via logical relations
	Extending to recursive types via a novel categorical logical relations technique
	Dual numbers reverse AD
	Extending to arrays
	Almost everywhere differentiability
	Overview
	Categorical Models for CBV Languages: CBV Pairs and Models
	CBV models: term recursion and iteration


	Canonical Fixed Points from 2-Dimensional Structure
	Fixpoints: term recursion and iteration
	Automatic Differentiation for Term Recursion and Iteration
	Source language as a standard call-by-value language with iteration and recursion
	Target language
	The CBV models ( "026E30F mathbfSyn_V, "026E30F mathbfSyn_"026E30F mathcalS,"026E30F mathbfSyn_"026E30F mu, "026E30F mathbfSyn_"026E30F mathsfit ) and ( "026E30F mathbfSyn_V2 "026E30F mathbftr, "026E30F mathbfSyn_"026E30F mathcalS2 "026E30F mathbftr, "026E30F mathbfSyn_"026E30F mu 2 "026E30F mathbftr, "026E30F mathbfSyn_"026E30F mathsfit2 "026E30F mathbftr )

	Dual numbers AD transformation for term recursion and iteration
	AD transformation as a CBV model morphism

	Concrete Semantics for the AD Transformation
	Basic concrete model
	Differentiable functions and interleaved derivatives
	The semantics for the source language
	The k-semantics for the target language
	Soundness of "026E30F mathcalD for primitive operations

	Enriched Scone and Subscone
	Scone: proof-relevant categorical logical relations
	Subscone: proof-irrelevant categorical logical relations
	Correctness of Dual Numbers AD
	Fixing a particular subscone  "026E30F mathbfSub"026E30F left ( "026E30F boldsymbol"026E30F omega  "026E30F mathbfCpo"026E30F downarrow G_n, k "026E30F right )

	Lifting the partiality monad to the subscone
	Logical relations for "026E30F mathbfreal and deriving a CBV model morphism

	AD logical relations for data types
	Fundamental AD correctness theorem
	Correctness of the dual numbers forward AD
	Correctness of the dual numbers reverse AD
	AD for Recursive Types and ML-Polymorphism
	Syntax for recursive types
	10.2 Categorical models for recursive types: rCBV models
	The

	Automatic differentiation for languages with recursive types
	AD transformation as an rCBV model morphism
	"026E30F boldsymbol"026E30F omega  "026E30F mathbfCpo-enriched categorical models for recursive types: rCBV "026E30F boldsymbol"026E30F omega  "026E30F mathbfCpo-pairs
	 rCBV "026E30F boldsymbol"026E30F omega  "026E30F mathbfCpo-pairs are rCBV models


	Concrete semantics
	Subscone for rCBV "026E30F boldsymbol"026E30F omega  "026E30F mathbfCpo-pairs
	Logical relations as an rCBV model morphism

	AD correctness theorem for non-recursive data types
	AD on recursive data types
	AD on arrays
	Almost Everywhere Correct AD
	Related Work
	
	Fine grain call-by-value
	Equational theory
	The CBV model

	A translation from coarse-grain CBV to fine-grain CBV
	Dual numbers forward AD transformation
	
	

