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Abstract

Drug development is essential to the advancement of human health, however, the process is
slow, costly, and at high risk of failure at all stages. A promising strategy for expediting and
improving the probability of success in the drug development process is the use of naturally
randomized human genetic variation for drug target identification and validation. These data
can be harnessed using the Mendelian randomization (MR) analytic paradigm to proxy the
lifelong consequences of genetic perturbations of drug targets. In this review, we discuss the
myriad applications of the MR paradigm for human drug target identification and validation.
We review the methodology and applications ofMR, key limitations ofMR, and potential future
opportunities for research. Throughout the review, we refer to illustrative examples of MR
analyses investigating the consequences of genetic inhibition of interleukin 6 signaling which, in
some cases, have anticipated results from randomized controlled trials. As human genetic data
become more widely available, we predict that MR will serve as a key pillar of support for drug
development efforts.

Impact statement

Mendelian randomization (MR) is a method that uses naturally randomized human genetic
variation to study the lifelong effects of genetic perturbations of drug targets. This approach has
great promise to help speed up and improvef the drug development process. In this review, we
discuss how MR is used for identifying and testing drug targets, its limitations, and future
opportunities for research. As more human genetic data become available, we expect MR to play
a major role in drug development.

Introduction

The last century has seen major advances in pharmacotherapy within all medical specialties and
with consequent reductions inmorbidity andmortality (Fuchs, 2010; Lichtenberg, 2019). Despite
this, there remainmany unmet medical needs that necessitate ongoing drug development efforts.
The challenges inherent to the process of drug development are highlighted by the poor success
rate of drug development programs, which has been estimated to be as low as four percent (Hay
et al., 2014; Finan et al., 2017). Challenges contributing to this high failure rate include substantial
costs (DiMasi et al., 2003; Schlander et al., 2021), a low probability of passing preclinical testing
(van Norman, 2019), poor concordance between efficacy in preclinical studies and clinical trials
(Perel et al., 2007), and limitations in accurately predicting drug toxicity in human (Bailey et al.,
2014; Paglialunga et al., 2019; vanNorman, 2019). A common theme underlying these challenges
is the poor translatability of findings from animal models to humans (Akhtar, 2015).

These limitations of preclinical data in predicting drug efficacy and toxicity have motivated
the use of alternative strategies for drug target selection and validation. An increasingly popular
strategy is to leverage human genetic variation influencing protein-coding genes, as most small
molecules and biologics target proteins (Santos et al., 2016). There are several features of human
genetic variation that make it an attractive source of data for this endeavor (Figure 1). First,
germline genetic variants are randomly allocated at gametogenesis (Davies et al., 2018). Thus, if
confounding by genetic ancestry is appropriately controlled for (Price et al., 2006), the inherit-
ance of genetic variants is not confounded by environmental variables. This is in contrast to
conventional observational analyses that investigate efficacy or repurposing potential for drugs
used in clinical practice (also referred to as pharmacoepidemiologic analyses). Second, the
assignment of a germline genetic variant is fixed at gametogenesis and is therefore not susceptible
to change following development of disease. This phenomenon of reverse causality commonly
biases pharmacoepidemiologic analyses. These two inherent properties allow for genetic variants
to be leveraged in naturally randomized experiments that can increase confidence in the causal
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relationship between an exposure and an outcome of interest
(Davies et al., 2018). Third, human genetic variants can be linked
to clinically relevant efficacy and safety outcomes in humans rather
than in model organisms. Fourth, large genetic datasets from
millions of study participants are readily available for a wide variety
of clinically relevant phenotypes including clinical risk factors,
disease outcomes, circulating proteins, and diverse imaging pheno-
types (Sudlow et al., 2015; Elliott et al., 2018; Hemani et al., 2018;
Kurki et al., 2022). In many cases, these data are publicly available,
and statistical methods may be used to combine information from
different datasets, thus rendering their use efficient and highly cost-
effective.

The potential for human genetics to inform drug development is
exemplified by the development of PCSK9 inhibitors, a cholesterol-
lowering drug approved in record time for the prevention of
coronary artery disease (CAD) (Hall, 2013). This drug target was
first discovered on the basis of damaging variants in the PCSK9
gene that reduced circulating low-density lipoprotein (LDL) chol-
esterol levels and reduced the risk of CAD (Cohen et al., 2006). In
effect, these variants served as proxies for the potential clinical
benefits of LDL-cholesterol lowering via PCSK9 inhibition. The
safety profile of PCSK9 inhibition was corroborated by identifica-
tion of a patient with complete genetic inactivation of PCSK9 due to
loss-of-function variants (Hall, 2013). Careful phenotyping of this
patient identified no major health consequences and served as
proof-of-concept for the safety of complete PCSK9 inhibition.
PCSK9 inhibitors, such as evolocumab and alirocumab, were sub-
sequently approved (Shapiro et al., 2018), and have demonstrated
consistent efficacy in clinical trials for the lowering of LDL-
cholesterol and prevention of CAD (Karatasakis et al., 2017;
Shapiro et al., 2018).

Although the success of human genetics in identifying PCSK9 as
a promising drug target is an outlier, there is broader evidence that

drug targets with genetic support are more likely to be approved
(Nelson et al., 2015; King et al., 2019). This was initially evidenced
by a seminal analysis (Nelson et al., 2015) that matched drug-
disease pairs with genetic association-phenotype pairs and deter-
mined that approved drugs were more likely to have supporting
genetic mechanisms. Moreover, drug targets with this form of
genetic support had higher odds of progression within each phase
of a clinical trial (e.g., phase 1 to 2, phase 2 to 3). It was estimated
that selecting a target with genetic support could double the success
rate for drugs in clinical development. This finding was replicated
in a subsequent study which also found that the strongest form of
genetic evidence was in the form of genetic variation that impacts
the protein-coding sequence of a gene (King et al., 2019). Of note,
these retrospective analyses did not select for drug target programs
that were initially motivated or supported by genetic data prior to
approval of the drug. Thus, although these data are encouraging, it
remains unclear the extent to which human genetic support may
prospectively increase the odds of a successful drug program.
Moreover, these estimates were obtained prior to the widespread
use of the methods detailed in this review and may therefore be an
underestimate of the true utility of genetics for drug discovery.

Mendelian randomization

Mendelian randomization (MR) is the paradigm by which ran-
domly assorted germline genetic variants can be used as proxies for
a disease risk factor or for drug target perturbation (Smith and
Ebrahim, 2003, 2004; Davies et al., 2018; Burgess et al., 2019).
Specifically, MR leverages naturally randomized genetic variants
as proxies (also referred to as instrumental variables) for modifying
a given exposure to test causal effects on an outcome of interest. The
features of human genetic variation outlined above – namely the

Figure 1. Structure and assumptions of Mendelian randomization analyses (A) and application to the example of genetically proxied inhibition of interleukin 6 (IL-6) signaling (B).
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random assortment at gametogenesis that renders genetic variants
less susceptible to confounding and to reverse causality – increase
confidence in causal inference from MR analyses (Davies et al.,
2018). Several key assumptions are necessary for causal inference in
this paradigm, including that the genetic variants used as proxies
are strongly associated with the exposure of interest (the relevance
assumption), that the association of the genetic variants with the
exposure and with the outcome are not confounded by environ-
mental variables or by nearby genetic signals (the independence
assumption), and that the association of the genetic variants with
the outcome is not explained by pathways independent of the
exposure of interest (also known as pleiotropy) (Davies et al.,
2018). These assumptions are summarized in Figure 1. A discussion
of the impact of confounding due to nearby genetic signals and the
statistical method of colocalization for overcoming this bias is
discussed at length by Zuber et al. (2022). The last assumption, also
referred to as the exclusion restriction condition, will be discussed
later in this review.

AnMR analysis may be conducted when a genetic variant(s) has
met the above criteria to be used to proxy a drug target. In the
simplest form of an MR analysis, these genetic proxies may be
directly tested for their association with a clinical outcome of
interest (Gill et al., 2021). For PCSK9, this involved testing for an
association of the genetic variants with risk of CAD. Statistical
methods may be implemented to weigh the effect on the outcome
by a unit increase in the biomarker of interest, such as mmol/L of
LDL-cholesterol (Gill et al., 2021).

The PCSK9 example exemplifies these key principles for the
application of MR for drug development. First, the genetic variants
proxying PCSK9 inhibition were strongly associated with lower
LDL-cholesterol (Cohen et al., 2006). These variants, therefore,
satisfy the MR assumption of relevance. Second, the variants were
positioned within the protein-coding sequence of PCSK9 and could
thus more confidently, but not definitively, be predicted to exert
their effects via influencing PCSK9 function. This contrasts with
intronic variants in or around the gene that are more likely to tag
causal variants in nearby genes (Acosta et al., 2021). Third, the
genetic variants in PCSK9 were not associated with confounding

variables such as age, sex, smoking status, and type 2 diabetes. This
supports theMR independence assumption of no confounding and
the exclusion restriction assumption that the variants do not exert
pleiotropic effects via these pathways.

Scope of review

The recent years have seen an explosion in the methodology and
application of drug target-focused MR (Acosta et al., 2021; Gill
et al., 2021). In this review, we discuss applications and case studies
of thesemethodologies and approaches. The sections are structured
to highlight how MR may be used to provide guidance and sup-
porting data at all stages of drug development (Figure 2). It is our
hope that this review will serve as an accessible resource for under-
standing applications and key limitations ofMR for informing drug
development.

Throughout, we incorporate examples from genetic analyses
investigating inhibition of interleukin 6 (IL-6) signaling, a pleio-
tropic inflammatory cytokine that is the target of Food and Drug
Administration-approved drugs including tocilizumab, sarilumab,
and satralizumab (Figure 1; Kang et al., 2019). These genetic
analyses (summarized in Table 1) serve as examples for how MR
may inform all stages of drug development, including anticipation
of results from ongoing clinical trials investigating inhibition of
IL-6 signaling for the prevention of cardiovascular disease and
preservation of kidney function (Ridker and Rane, 2021). We focus
on IL-6 as we anticipate that, in contrast to the established example
of PCSK9 inhibitors, these ongoing trials will serve as prospective
tests for howMRmay inform drug development. Relevant citations
were identified in the MEDLINE database using the keyword
combinations ‘“IL-6” þ “Mendelian randomization”’ and ‘“inter-
leukin 6” þ “Mendelian randomization”’. The present study was
not designed as a systemic review.

Planning the analysis: Drug target discovery or selection

A drug target may first be identified from a genome (GWAS) or
exome-wide association study conducted using a clinical phenotype

Figure 2. Applications of Mendelian randomization (MR) to each phase of drug development. PheWAS, phenome-wide association study.
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Table 1. Selected examples of MR analyses cited in this Review that investigated effects of genetically proxied inhibition of IL-6 signaling on a diverse range of
outcomes

Study citation
(year)

Genetic proxy for inhibition of IL-6
signaling Primary outcome(s)

Key secondary
outcomes

Effect of genetically
proxied inhibition of IL-6
signaling

Parallel clinical
trial stages

Rahman et al.
(2022)62

30 genetic variants cis to the IL6R gene
and influencing levels of CRP

40 circulating
cytokines

NA Reduced levels of 10
cytokines

Phase 1/2 – Target
engagement and
identifying
molecular
signatures

Larsson et al.
(2021)83

7 genetic variants cis to the IL6R gene
and influencing levels of CRP

COVID-19
susceptibility,
severity, and
hospitalization

Pneumonia Protective for COVID-19
susceptibility, severity,
and hospitalization
Increases risk of
pneumonia

Phase 1/2 –
Toxicity
Phase 3 – Efficacy
Repurposing

Rosa et al.
(2019)60

34 genetic variants associated with
soluble IL-6 receptor (a negative
regulator of IL-6 signaling)

8 CVD outcomes Rheumatoid
arthritis, atopic
dermatitis, asthma,
longevity

Protective for all
cardiovascular outcomes
and for rheumatoid
arthritis. Associated with
longer lifespan.
Adverse effects on atopic
dermatitis and asthma.

Phase 1/2 -
Toxicity
Phase 3 – Efficacy
Repurposing

Georgakis et al.
(2021)54

7 genetic variants cis to the IL6R gene
and influencing levels of CRP

PheWAS Protective for CAD, AAA,
T2D, and varicose veins
Increased risk for
infection and atopic
dermatitis

Phase 1/2 –
Toxicity
Repurposing

Georgakis et al.
(2022)69

26 genetic variants cis to the IL6R gene
and influencing levels of CRP

Combined CVD
endpoint: CAD,
ischemic stroke, AAA,
and PAD within
population subgroups

NA Greater relative benefit
in individuals with high
LDL-cholesterol.
Greatest absolute benefit
in individuals with high
baseline CRP levels

Phase 3: informing
clinical trial
design in relation
to population
subgroups

Georgakis et al.
(2022)72

26 genetic variants cis to the IL6R gene
and influencing levels of CRP.
This genetic proxy was stratified
across levels of genetically proxied
HMGCR inhibition to query potential
interactions of IL-6 inhibitors with
statin therapy.

Combined CVD
outcome: CAD,
ischemic stroke, PAD,
AA, cardiovascular
death

Genetically proxied
inhibition of IL-6 signaling
and of HMGCR additively
reduce CVD risk

Phase 3: informing
clinical trial
design in relation
to drug-drug
interactions

Sarwar et al.
(2012)38

A single genetic variant: rs2228145 -
Asp358Ala (reduces membrane bound
IL-6 receptor and thus increases
serum IL-6 receptor levels)

CAD NA Protective for CAD Phase 3 - Efficacy
Repurposing

Georgakis et al.
(2020)59

7 genetic variants cis to the IL6R gene
and influencing levels of CRP

Ischemic stroke, CAD AAA, AF, heart
failure,
thromboembolism,
PAD, carotid plaque

Protective for CAD,
ischemic stroke, AAA, AF,
and carotid plaque.
Null effects for heart
failure and
thromboembolism,
and PAD.

Phase 3 – Efficacy
Repurposing

Toshner et al.
(2022)76

rs7529229, a variant that tags the
variant used by Sarwar et al. above

Pulmonary arterial
hypertension (PAH)

Mortality in PAH Null effect on PAH Phase 3 – Efficacy
Repurposing

Zhao and Gill
(2022)80

7 genetic variants cis to the IL6R gene
and influencing levels of CRP

Polymyalgia
rheumatica (PMR)

NA Protective for PMR Phase 3 – Efficacy
Repurposing

Bovjin et al.
(2021)84

7 genetic variants cis to the IL6R gene
and influencing levels of CRP

COVID-19
susceptibility,
severity,
hospitalization

NA Protective for COVID-19
susceptibility,
hospitalization, but
not severity

Phase 3 – Efficacy
Repurposing

Cai et al. (2018)85 rs2228145, as described above PheWAS Protective for CAD and
AAA

Repurposing

Levin et al.
(2021)75

rs2228145 PAD and disease
subtypes

NA Protective for PAD and
all subtypes

Phase 3 – Efficacy
Repurposing

Abbreviation: AA: aortic aneurysm; AAA: abdominal aortic aneurysm; AF: atrial fibrillation: CAD: coronary artery disease; CRP: c-reactive protein; CVD: cardiovascular disease; PAD: peripheral
artery disease; PheWAS: phenome-wide association study; T2D: type 2 diabetes.

4 Iyas Daghlas and Dipender Gill

https://doi.org/10.1017/pcm.2023.5 Published online by Cambridge University Press

https://doi.org/10.1017/pcm.2023.5


of interest. For example, a 2013 GWAS of CAD identified a lead
variant in the IL6R gene (Deloukas et al., 2013). This finding, in the
context of independent human genetic evidence for a role of IL-6
signaling in the development of cardiovascular disease (Sarwar
et al., 2012), motivated further investigation of IL-6 signaling as a
therapeutic target for CAD (Ridker and Rane, 2021). Several heur-
istics may aid in linking an identified genetic variant to the gene it
causally influences, including the proximity of the variant to the
gene and the functional consequence of the variant (Forgetta et al.,
2022). With the increasing availability of exome data, a ‘gene-first’
approach utilizes the gene as the unit of analysis (Backman et al.,
2021). In these analyses, loss-of-function or deleterious missense
variants are aggregated and tested for their associations with the
outcome of interest. A causal link with the gene can more confi-
dently bemade in this setting.Multi-omics in silico datamay also be
integrated to help identify causal genes. One such approach priori-
tizes causal genes using machine learning methods to integrate
multimodality functional data from proteomics, transcriptomics,
and epigenomics across multiple tissue and cell types (https://
genetics.opentargets.org/; Mountjoy et al., 2021). Additional
methods for linking genetic variant to causal gene, and the respect-
ive strengths and weaknesses of these methods, are discussed at
length elsewhere (Gallagher and Chen-Plotkin, 2018).

The drug targetmay also be identified frompreclinical hypothesis-
driven studies, or from high-throughput in vitro or in vivo screens.
Results from hypothesis-free scans utilizing libraries of genetic prox-
ies for protein levels can also be used to prioritize a drug target
(Folkersen et al., 2020; Henry et al., 2022). Finally, an established
drug target may be investigated for drug repurposing opportunities.

Approaches to the identification of a genetic proxy for use in
drug target MR analyses

The first step in designing a drug target MR analysis is to select a
strategy for the identification of a genetic proxy for a drug target. This
involves several decisions regarding location of the genetic variants in
relation to the protein-coding gene sequence, the functional conse-
quence of the variant, and the choice of phenotype used to weigh the
effects of the genetic proxy. Genetic variants are cis-acting when they
are located within or close to the gene of interest. This distance from
variant to gene is not standardized, with some studies using variants

within 100 kb (Daghlas et al., 2021) upstream or downstream of the
gene, and others using up to 1 Mb ranges (Pietzner et al., 2021; Yang
et al., 2021). Efforts have been made to empirically define the optimal
variant to gene distance for determination of cis versus trans function,
but this is still a work in progress (Fauman and Hyde, 2022). Trans-
acting variants are positioned outside this genomic range, are not as
confidently linked to the gene of interest and are thus considered to be
less robust proxies for use in drug targetMR analyses (Swerdlow et al.,
2016;Gill et al., 2021). This is in part due to the potential for the variant
to influence genes and biological pathways independent of the drug
target of interest and hence violate the exclusion restriction condition
(see Said et al. (2022) for an example of this phenomenon with MR
analyses of C-reactive protein [CRP]). As previously outlined, plausi-
bility that the genetic proxy for the drug target relates to function of the
gene of interest may be enhanced by selecting damaging or predicted
loss-of-function variants in the protein-coding sequence of the gene
(Deboever et al., 2018; Emdin et al., 2018; Daghlas et al., 2021).
However, empiric studies have shown that reliable inference may still
be obtained from MR analyses that only leverage intronic variants
(Schmidt et al., 2020).

The second consideration is what phenotype to use to weigh
the effect of the genetic variant (Figure 3). One possibility is to use
a phenotype of molecular function, such as gene expression or
protein abundance (where the variants are known as protein
quantitative trait loci, or pQTLs; Porcu et al., 2019; Zheng et al.,
2020). Of these, pQTLs measured in the relevant tissue may be
preferable given the proximity of protein levels to clinical pheno-
types (Schmidt et al., 2020; Gill et al., 2021), and the fact that drug
targets are typically proteins. Several large genome-wide associ-
ation studies (GWAS) have been published that catalog pQTL
associations in different tissues and have made their results pub-
licly available (Yao et al., 2018; Zheng et al., 2020; Pietzner et al.,
2021; Suhre et al., 2021; Yang et al., 2021). A key limitation in the
analytic application of pQTLs is confounding due to variant
effects that interfere with the aptamer assay used to measure
protein levels (Suhre et al., 2021). These biases may be examined
by using, when available, multiple independent pQTL datasets
that utilize different assays for measurement of protein levels
(Zheng et al., 2020). Finally, molecular phenotypes may include
measures of target engagement, such as the use of an acute phase
reactant like CRP when examining effects of perturbing IL-6
signaling (Georgakis et al., 2021).

Figure 3.Different approaches toweighting the effect of a genetic variant on a drug target. The absence of an arrowbetween the ‘molecular biomarkers’ and ‘clinical risk factors and
outcomes’ box demonstrates that a molecular biomarker does not necessarily have to be causal for a disease outcome.
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An alternative or complementary strategy for weighting gen-
etic variants for use in MR is to use disease risk factors or
outcomes. An advantage of these approaches relative to molecu-
lar phenotypes is confirmation that the variant influences the
clinical phenotype of interest. Examples of disease risk factors
with relevance to drug targets include glycated hemoglobin for
proxying effects of antidiabetic drugs (e.g., glucagon-like peptide
1 receptor agonists; Daghlas et al., 2021) and blood pressure for
proxying effects of anti-hypertensive drugs (e.g., beta-blockers)
(Gill et al., 2019). Alternatively, genetic variants may be
weighted by their association with a binary disease outcome
such as hypertension (Burgess and Labrecque, 2018). The gen-
etic variants must be strongly and reliably associated with this
phenotype of interest to meet the first MR assumption of
relevance (Davies et al., 2018). In MR analyses, this statistical
strength can be measured using the F-statistic (Davies et al.,
2018). If multiple variants are used, they should either be
independently inherited, or specialized methods should be
employed to account for their correlation (Yavorska and Bur-
gess, 2017). Such methods can, for example, use correlation
matrices to account for linkage disequilibrium between genetic
variants, thus ensuring that each genetic variant provides
‘unique’ information for the analysis.

Several analytic approaches have been used to proxy inhibition
of IL-6 signaling. One approach is to use the rs2228145 variant,
which is a missense variant that reduces membrane-bound IL-6
receptor levels, increases soluble IL-6 receptor levels, which serves
as a decoy receptor that negatively regulates IL-6 signaling (Sarwar
et al., 2012; Ferreira et al., 2013). A second approach is to use
independent cis variants associated with CRP, an established
inflammatory biomarker of IL-6 signaling (Georgakis et al.,
2020). A third approach is to use pQTLs for soluble IL-6 receptor
levels (Rosa et al., 2019). These approaches are not mutually
exclusive and may be combined in complementary sensitivity
analyses.

Phase 1 and 2: Using MR to identify measures of target
engagement

Once a genetic proxy for perturbation of a drug target has been
identified, the association of the proxy with circulating molecules
may be characterized to understand the biology of perturbation of
the drug target and to identify target engagement biomarkers
(Stefaniak and Huber, 2020). Such biomarkers may be considered
for further investigation as measurable outcomes in clinical stud-
ies. This genetic approach has been applied to characterize the
molecular signature of inhibition of IL-6 signaling. For instance,
the IL-6 receptor antagonist tocilizumab is known to raise circu-
lating IL-6 and soluble IL-6 receptor levels while reducing serum
fibrinogen levels (Georgakis et al., 2020). An MR analysis using a
cis genetic proxy for inhibition of IL-6 signaling recapitulated
these same effects, validating use of this genetic proxy for testing
the effects of perturbation of IL-6 signaling (Georgakis et al.,
2020). In a more novel application of MR for this aim, a genetic
proxy for IL-6 signaling was tested for its effects on 40 circulating
cytokines to characterize the inflammatory signature of IL-6
signaling (Rahman et al., 2022). Significant associations of gen-
etically proxied inhibition of IL-6 signaling were identified for ten
inflammatory molecules, providing novel insights into the
molecular signature of pharmacologic inhibition of IL-6 signal-
ing.

Phase 1 and2: Use of MR to assess for adverse effects of drug
target perturbation

Genetic association data may be used in MR analyses for the investi-
gation of on-target safety outcomes. On-target toxicity represents
effects secondary to modulation of the drug target and can be inves-
tigated using MR. In contrast, off-target toxicity represents effects
attributable to pleiotropic biochemical effects of the drug compound
itself on proteins and pathways independent of the drug target of
interest and cannot be investigated using MR (Rudmann, 2013).

One approach, known as a ‘phenome-wide association study’
(PheWAS), uses MR to perform hypothesis-free scans for adverse
effects of drug targets across the human phenome (Denny et al.,
2010). Outcomes in PheWAS are often defined using International
Classification of Disease (ICD) codes and therefore sample sizes may
be smaller than those available from large-scale GWAS consortia. In
the case of genetically proxied inhibition of IL-6 signaling, a PheWAS
identified safety signals for increased risk of atopic dermatitis, cellu-
litis, urinary tract infections, and cholecystitis. In such cases, it may
be unclear whether adverse effects of a drug target outweigh its
benefit. One approach to address this question is to investigate the
outcome of lifespan (Daghlas and Gill, 2021). In the considered
population, a net benefit in lifespan due to perturbation of a drug
target suggests that adverse effects do not outweigh the clinical
efficacy outcome and that the drug target may yield a mortality
benefit in clinical trials (Daghlas and Gill, 2021). Using the outcome
of parental lifespan, an MR analysis that demonstrated a possible
lifespan benefit for genetically proxied inhibition of IL-6 signaling in
a general population (Rosa et al., 2019). This finding supports the
notion that adverse effects of inhibition of IL-6 signaling (e.g.,
infection) are outweighed by the benefits of inhibiting this pathway
(e.g., reduced risk of cardiovascular disease). It is important to
appreciate that these analyses are typically performed using genetic
associations with lifespan in the general population (Timmers et al.,
2019) and therefore may not accurately represent effects anticipated
in population subgroups targeted in clinical trials.

Pre-phase 3: Informing clinical trial design

Constructing a primary outcome

Investigators designing a clinical trial must select a primary efficacy
outcome which is often a composite of related clinical outcomes
(Andrade, 2015). MRmay be leveraged to test the drug target across
multiple related outcomes, and this information may be used to
prioritize outcomes to include in a primary efficacy outcome in a
clinical trial (Gill and Burgess, 2020). This is helpful because the
inclusion of an outcome unaffected by the drug reduces statistical
power and increases the odds of failure of a drug candidate in a phase
3 trial. For instance, the concordant effects of genetically proxied
inhibition of IL-6 signaling on risk of stroke and CAD suggest that
combining these clinical outcomes in a clinical trial could increase
statistical power of a phase 3 clinical trial (Georgakis et al., 2020). In
contrast, the null associations with venous thromboembolism sug-
gests that inclusion of this phenotype in an efficacy outcome would
reduce the statistical power of a clinical trial (Georgakis et al., 2020).

Investigating drug effects in population subgroups

Investigators and clinicians are typically interested in the effect of a
drug in particular population subgroups. For instance, a clinical trial
of an IL-6 inhibitor may enroll a patient population with evidence of
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elevated levels of IL-6 driven inflammation. Similarly, clinical trials
typically stratify their enrolled population across covariates of inter-
est to test for consistency of treatment effect in patient subgroups.
MR analyses may be designed to mimic these conditions and to test
for heterogeneous effects across subgroups. This application is dem-
onstrated by anMR analysis of genetically proxied inhibition of IL-6
signaling that stratified across numerous covariates including sex,
age, kidney function, body mass index, LDL-cholesterol, blood pres-
sure, and hemoglobin A1C (Georgakis et al., 2022). The relative
benefit of inhibition of IL-6 signaling was consistent across strata
of all covariates except for LDL-cholesterol, where a greater magni-
tude of benefit was seen at levels of LDL-cholesterol greater than
160 mg/dL (Georgakis et al., 2022). A larger absolute benefit was
observed in the population subgroup with highest baseline high-
sensitivity CRP levels, suggesting that clinical trials should prioritize
this population for IL-6 inhibition therapies. MRmay also be used to
identify population subgroups that are less likely to benefit from
perturbation of a given drug target. This is illustrated by the null
effect of genetically proxied inhibition of IL-6 signaling on risk of the
cardioembolic stroke subtype relative to the small and large vessel
ischemic stroke subtypes (Georgakis et al., 2020).

Testing for drug–drug interactions

New drugs are often used in concert with other drugs, such as the
combination of antiplatelet therapies with statins for the secondary
prevention of ischemic stroke. Indeed, polypharmacy is becoming
more common despite the absence of evidence for the safety of drug
combinations (Oktora et al., 2019). The potential consequences of
such drug–drug interactions may be queried in appropriately
designedMR analyses. One approach is to perform a 2� 2 factorial
analysis stratified across levels of genetic proxies for two drug
targets (see the citation for alternative modeling approaches; Rees
et al., 2020). This approach can determine whether genetically
proxied drug effects on a clinical outcome are additive, or if they
have supra-additive effects. An additive effect was identified in a
2 � 2 factorial analysis investigating interactions between genetic-
ally proxied inhibition of IL-6 signaling and genetically proxied
HMGCR (the target of statins) inhibition (Georgakis et al., 2022).

Phase 3: Use of genetic proxies in MR to test clinical efficacy
of a drug target

Once a genetic proxy for a drug target of interest has been selected,
statistical associations of the genetic variants with the outcome of
interest may be extracted from a GWAS. The effect of drug target
perturbation, weighted by changes in the levels of a relevant bio-
marker, may then be estimated using conventional statistical
methods (Burgess et al., 2017; Hemani et al., 2018; Teumer, 2018).
This approach was used in an MR analysis to support a protective
effect of inhibition of IL-6 signaling on risk of the efficacy outcome of
CAD (Sarwar et al., 2012). Subsequent studies identified similar
effects for additional cardiovascular outcomes including abdominal
aortic aneurysm, peripheral artery disease (Levin et al., 2021), atrial
fibrillation (Rosa et al., 2019), and ischemic stroke (Georgakis et al.,
2020). In contrast to the above studies, MR may be used to identify
drug targets that are less likely to causally affect an outcome of
interest. For example, MR analyses did not support causal effects
of IL-6 signaling on pulmonary arterial hypertension, which was
concordant with a null effect from a phase 2 clinical study (Toshner

et al., 2022). This result supports the redirection of resources away
from further testing of IL-6 inhibition for this indication.

Post-phase 3: UsingMR to identify repurposing opportunities
for an established drug

There is great interest in drug repurposing (also referred to as drug
repositioning), whereby a drug that has undergone safety and efficacy
testing for one indication is proven to be effective for a separate
indication (Glenn Begley et al., 2021). Such an approach circumvents
several challenges and expenses in drug development outlined in the
Introduction (Pushpakom et al., 2018). MR may be used to provide
evidence for these repurposing efforts (Gill andVujkovic, 2022). This
approach requires identification of a genetic proxy that is validated to
influence the clinical outcomes for which a drug target has been
approved (Gill and Burgess, 2020). A clinical outcome may then be
selected for investigation, or a hypothesis-free PheWAS may be
performed to identify novel repurposing opportunities.

As an example of a hypothesis-driven approach, genetically prox-
ied inhibition of IL-6 signaling was investigated for its effects on the
outcome of polymyalgia rheumatica (PMR), an inflammatory mus-
culoskeletal disorder (Zhao and Gill, 2022). A protective effect of
inhibition of IL-6 signaling was identified for this disease outcome, a
finding which has been corroborated by clinical trial evidence for a
beneficial effect of tocilizumab on disease activity in PMR
(Devauchelle-Pensec et al., 2022). This approach was also used to
identify a protective effect of genetically proxied IL-6 signaling on
risk of COVID-19 incidence and severity, a finding consistent with
results from clinical trials of IL-6 receptor inhibitors (Bovijn et al.,
2020; Larsson et al., 2021; Rajasundaram et al., 2022). As an example
of a hypothesis-free approach, an MR-PheWAS analysis using gen-
etic data from the Million Veterans Program identified a potential
repurposing opportunity for IL-6 receptor antagonists for prevention
of aortic aneurysm (Cai et al., 2018), a finding replicated in the UK
Biobank dataset (Georgakis et al., 2021).

Limitations and context

Despite the potential for MR to inform drug development efforts,
the methodology has several limitations that must be considered
when contextualizing any findings. The first set of limitations relate
to interpretation of the effect size from an MR analysis. First, these
numeric estimates reflect the consequence of lifelong perturbation
of a drug target. In effect, the ‘time zero’ for the natural experiment
is set either at gametogenesis or when the variant becomes bio-
logically relevant, and so the magnitude of effect over this duration
may not be predictive of the magnitude of benefit from a clinical
intervention of shorter duration. This is illustrated by the larger
magnitude of effect estimates for LDL-cholesterol lowering from
MR analyses relative to those from clinical trials (Ference et al.,
2017). Second, MR estimates may be biased by canalization,
whereby lifelong genetic effects on a phenotype are buffered by
compensatory developmental processes and hence may differ from
shorter-term targeting of a protein later in life (Lawlor et al., 2008).
Third, effect estimates in conventional MR analyses correspond to
differences in exposure levels around the population mean and
cannot inform the consequences of large changes in levels or
function of the drug target. Exceptions to this principle include
variants with large magnitudes of effect, such as protein-truncating
variants, or the use of analyses that employ nonlinear statistical
methodologies (Burgess et al., 2014).
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A second set of limitations correspond to the assumption of no
bias due to pleiotropy, or the exclusion restriction condition. For
instance, a genetic variant may be a cis pQTL for a drug target of
interest and a trans pQTL for another protein. The association of this
variant with a given outcome may be mediated through pathways
independent of the protein of interest. Given the widespread plei-
otropy in the human genome (Verbanck et al., 2018), the exclusion
restriction assumption may be violated in many instances, although
careful analysis may mitigate this bias. For instance, numerous
statistical methods have been developed that recover consistent
causal effect estimates despite varying degrees of pleiotropic effects
of the genetic variants (Bowden et al., 2017; Hemani et al., 2018).
Additionally, cis variants are generally less likely to be pleiotropic
than trans variants (Schmidt et al., 2020). Finally, databases (Kamat
et al., 2019) of genetic associations may be used to test for pleiotropic
associations of the genetic variants used as proxies.

In some cases, theremay not be genetic variants available to proxy
a drug target of interest. This can be due to a lack of sufficient human
genetic variation in the gene region that influences the phenotype of
interest within a given ancestry group, or theremay not be variants at
a locus that meet the assumptions for a valid MR analysis (e.g., at a
highly pleiotropic locus). This limits the number of genes available
for potential investigation using MR. Further, the selection of genes
to be investigated is typically guided by the hypothesis or scientific
question being addressed in the analysis. Additional limitations
include lack of availability of a GWAS of the relevant phenotype or
biomarker for that drug target, or lack of a GWAS of molecular data
from the appropriate tissue or cell type. Another related limitation is
that MR cannot necessarily instrument a drug that concurrently
influences multiple parallel biological pathways. Rather, molecular
mediators may be proxied individually, or in combination using a
factorial MR approach (Yarmolinsky et al., 2020).

Additionally, target phenotypes, disease outcomes, or disease
subtypes may not yet be available as outcomes in sufficiently large
genetic association datasets. For certain outcomes such as heart
failure, clinical trials test interventions separately in patient sub-
groups, such as in patients with preserved, rather than reduced
ejection fraction (Anker et al., 2021). In such cases, MR cannot yet
be implemented to test hypotheses that parallel those investigated
in clinical trials. Finally, in contrast to studies of disease suscepti-
bility, data for genetic predictors of disease progression or disease
outcomes are scarce (Paternoster et al., 2017).

The conventional principles that guide interpretation of observa-
tional research also apply to MR analyses. Statistical power and
precision of effect estimates should always be considered when
interpreting a null result, particularly for outcomeswith small sample
sizes.Most genetic studies are performed using data from individuals
of European ancestry and are therefore of unclear generalizability to
individuals of different ancestries. This limitation may be addressed
by the inclusion of diverse ancestry groups in future GWAS of
clinical andmolecular traits.When possible, independent replication
and triangulation (Lawlor et al., 2016) of results with those from
orthogonal research methodologies enhances confidence in any
given finding. Finally, the strength of inference from an MR analysis
is heavily influenced by the quality of the phenotype used in genetic
association analyses. Modern statistical techniques and large sample
sizes cannot overcome biases created by misdiagnosis, diagnostic or
phenotypic heterogeneity, and ascertainment bias.

At this point, it is worth noting the similarities and differences
between anMR finding and a genetic association at the same locus.
For example, GWAS of CAD identify genetic variants in IL6R.
(Deloukas et al., 2013). Indeed, such an association could be used

as evidence for a causal effect of IL-6 signaling on CAD risk. The
MR paradigm offers several additional benefits. First, the MR
paradigm explicitly formalizes the assumptions for causality and
provides methods to test the plausibility of the assumptions. For
example, numerous sensitivity analyses have been developed that
provide results that are robust to inclusion of variants that affect the
outcome through pathways unrelated to the exposure (Bowden
et al., 2015, 2016). Second, MR can be used to produce effect
estimates weighted by changes in levels of a clinical phenotype or
biomarker. Third, MR can be used to aggregate the effects of
multiple independent genetic variants and hence identify effects
that are not genome-wide significant when using a single variant in
a GWAS. Fourth, in hypothesis-driven MR the association of the
variants with the exposure typically does not require as stringent of
a statistical significance threshold as does a GWAS for a given locus
(Davies et al., 2018). Thus, findings from drug target MR analyses
should be viewed as complementary to results from a genetic
association at a given locus.

Conclusion

There is great potential for MR to aid in the drug development
process. Ongoing clinical trials of inhibition of IL-6 signaling and
for other drug targets prioritized in MR analyses will ultimately
serve as tests for the utility of MR in drug development efforts and
the advancement of human health.
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