Astin Bulletin 10 (1979) 318-324

ON THE NUMERICAL EVALUATION OF STOP-LOSS PREMIUMS

F. Covens, M. VAN WouwE aND M. GOOVAERTS

A numerical procedure is described to evaluate the stop-loss premium in case
the risk process is a compound Poisson process. The method is mainly based on
an algorithm of R. Piessens and M. Branders for the numerical evaluation of
Fourier transforms.

1. INTRODUCTION

Until now a lot of attempts have been made for computing the stop-loss
premium in the case of a compound Poisson process. Some of these procedures
are exposed in a contribution of BorMaN and EsscHER (1963). A more recent
procedure was proposed by HALMSTAD (1976). He considers a discrete claim
amount distribution. His method is based on the use of generating functions.
The algorithm performs good results if one is able of determining the largest
claimsize, which is included in the computation of the approximated generating
function.

The numerical procedure, here presented, computes the stop-loss premium
for the compound Poisson process, involving a continous density function
g(x) for the individual claim amounts. In this sense, it can be considered as
an extension of the procedure proposed by David Halmstad in the discrete risk
theory. The plan of the present paper is as follows: in section 2 the analytical
steps in transforming the representation of the stop-loss premium are given
and applied to three different cases. The next section gives a brief discussion
of the numerical procedure. The last section contains some numerical results.

2. ANALYTICAL STEPS

Recently SeAL (1977) described a numerical procedure to invert numerically
some characteristic functions. In fact he uses a classical trapezoidal quadrature
formula in connection with the also classical cosinus transform, applied on
e~¢*f(x). In fact the following set of inversion formulae hold

0 #0) = [ cos (wn)f(x)dx

®

(2) f6) = = cos (wrypudu

0

and, some elementary calculus shows that in case:

@

(3) flx) = [ (v—%) dF(v, 1)

T
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where F(v, ) denotes the distribution function of the compound Poisson pro-
cess, with cosinus transform ¢r(u), f(x) can be cast into the form:

o

(4) flx) = z f cos {ux) 1= orl) du X220
b1 u2
where
(s) oplt) = ¢ M ] eos WRAR@ cog (at [ sin (ux)dF ().

o

Let us consider next three special cases, namely a sum of exponentials, a
gamma and a Bessel density. Successively the following results can be obtained:

"

6) 1) fx(x) = X a;e” ™"

(7) f cos (ux)fx(x)dx = }: a E:‘f%??
. < u

(8) f sin (ux)fx(x)dx = :; a,e, T

L]

These results can be inserted in the r.h.s. of (5) in order to get an elegant
analytical expression for the Fourier transform ¢p(u).

(9) 1i) fx(x) = e-oxv=1[T(v).

Again performing an elementary calculation gives:

w

(10) f cos {ux)fx(x)dx = o ;Z)V/Z cos (vArctg u)
(11) fsin (ux)fx(x)dx = -(1—; 1%2)\'/2 sin (vArctg u)

0

consequently the r.h.s. of (5) can be evaluated numerically in a rather easy
manner.

As a last example we consider the Bessel density !

2\v-1 B _ v-1
(12) iii) fx(a) = (5) 0 B eI, (B V)

t The Bessel density is obtained in the following manner: consider a random variable X
distributed according to a gamma distribution with scale parameter « and mean
(p+ &+ 1)/ and take % as an integer valued random variable with a Poisson distribution
with parameter A. The compound distribution of X obtained by summing over £ has the

density ae 1722 (xa/M)P/2 I (2 V&)\_x) Introducing some other parameters gives raise to (12).
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iy 1 1 ik+e
where [,(x) = > i ITIKE (g) denotes a modified Bessel function
o P
1 B2
with E(X) = g\t 20
Eixe 1 [ gz p2 ]
( )=02 v(v+1)+226(v+1>+1662'

Making use of some of the results appearing in GRADSHTEYN and RvyzHIK
(1965) one gets:

3

1 B w? B2 u
fcos (ux)fx(x)dx = (T e e 1 ®ru cos <v Awrctg (6) + N 62+u2)
(13)
as well as
“ . 1 g u? 2w
fsm (ux)fx(x)dx = (:!-W e 98 83w’ sin (v Arctg (0) + Ty uz)

14)
And once more inserting these results into the r.h.s. of (5) gives raise to an
expression for op(u) which is extremely elegant to compute numerically.

3. THE NUMERICAL PROCEDURE

Recalling (4) the numerical inversion can be reduced to one over a finite interval

b

f cos (ux) 1;—%5&—) du a>o0

u

a

in case the remaining contributions resulting from the integration outside
[a, b] can be estimated with a satisfactory accuracy. But

1— 2
'fcos (es) ——CP—F-(—) d%/ < b

consequently it is sufficient to choose b sufficiently large. On the other hand:

oo o

1
< — a(ad)
M’ 72a(a)
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Hence it is sufficient to choose a sufficiently small in order that

sin (ax)
} ME(X?) + NME(X)?]

represents with the desired accuracy
1—op(u
f cos (ux) L() dun.
u2

The numerical procedure is based on an algorithm of PIESSENs and BRANDERS
(1975) who gave an adaptive quadrative method for the automatic computa-
tion of integrals with strongly oscillating integrands. The integration of this
method is based on a truncated Chebyshev series approximation. In fact the
algorithm gives an adaptive quadrative method for the automatic computation
of one or both of the integrals:

} sin (wx)f(x)dx and } cos (wx)f(x)dx

to within a user-specified absolute tolerance. This excellent algorithm has as
main components

i) a procedure for evaluating
Sp(w) = [ sin (wx)f(x)dx
o

where [; is a subinterval of [a, 0];

ii) a method for calculating e, (w), an estimate for the error

| Sty(w) — f sin (wa)f(x)dx |

The interval [a, b] is divided into # steps where » is also specified by the
user. The algorithm also gives an estimate of the total error and has also
a feature for detecting round-off errors. Consequently there are two possibili-
ties for the algorithm to give wrong results, namely in case the number of
steps specified by the user is not large enough, secondly in case round-off
errors occur on a too large scale.

However the estimate of the error gives the possibility to decide whether
the desired accuracy is reached. In our examples we have indicated with an
asterisk the results that are not accurate enough, we also have written down
the estimate of the error in order that the reader will be able to check that
even a negative result can be obtained for the stop-loss premium in case the
error estimate is larger than the absolute value of the final result.

21

https://doi.org/10.1017/5051503610000595X Published online by Cambridge University Press


https://doi.org/10.1017/S051503610000595X

F. COVENS, M. VAN WOUWE AND M. GOOVAERTS

322

(e-170) (z-m10) (€-gro) (E-g10) (E-gro) (E-g1o) (€-yio) (1-gro) (€-g1o) (z-gro) (eg1'0)
6z 01 91601 99911 0lSz1 Y99°€1 900°S1 0.9'91 64'g1 Yo 1z €Lz 00'z€ ofz
(€-g10) (€-gr0o) (z-gio) (e-gio) (€-gio) (€xg10) (E-mgio) (€-gro) (Egmgio) (v-gro) (¥-71°0)
95€°6 9£6°6 €19'01 €1t 9S€-z1 Sgb €1 Logb1 €z9'91 Lgb6'gr  €69f-zz  SSSPle oot
(S-g10) (S-gro) (S-yio) (t-gro) (y-gio) (v-gro) (b-gio) (v-gio) (b-gro) (v-gro) (b-71-0)
€962°g 006/°g 96¥¢6 Z166°6 99€/:01  €129'11  zgol'zl  gl6obi 1846°61 gbEgg1  P6E€S-2e oS1
(b-g10) (b-g10) (b-gro) (b-gro) (b-gro) (b-gr0) (b-gio) (b-3y10) (¥-gro) (z-gro) (b-gi-0)
6€6g'9 YSheL o1vg'/ v€60°g €€z9°g €€92°6 1¥go-o1 1bor 11 €ooS'z1 zrb1 g¥6olt 001
(b-g1°0)  (b-gio) (b-myio) (b-mgio) (b-gro) (b-gro) (b-gio) (F-gio) (b-gr0) (b-gr0o) (h-mgio)
991L¥ 126 ¥ 1991°S YECh g 1008°'S ofzz'g LzSl9g 15 § 47 S¥Szg 662€'6 gz69-01 oS
(S-g10) (S-gro) (S5-7gro) (S-gro) (S-groy (S-gro) (S-gro) (b-ygio) (b-gro) (b-gro) (b-zi-o)
6L10°z 6101°2 or61°2 ¥S62° < Llo¥z z€€6 2 SYlgz (49 %44 6610°€ gr€z € €ogh € o1
: ) . : . i . . ) . . !
o1 6'0 g0 JALY) 90 <o Vo €0 z'0 10 oo %\
029596Y000°0 08622£600°0 Svvivv6o 0 €9o911L0 zl¥Slg € 0
9202g810000°0 +.SSzvgooo o Y99Sotzoo glg¥11€0 g¥6S5€99°0 *p
S 14 € 1 A ISYAIANVIV HIIM STVIINANOAXE 40 WAS : T TTEVL

https://doi.org/10.1017/5051503610000595X Published online by Cambridge University Press


https://doi.org/10.1017/S051503610000595X

323

STOP-LOSS PREMIUMS

(9-710) (9-g10) (9-710) (9-gro) (9-gro) (9-gt0) (9-gt0o) (9-gt'0) (9-7g1'0) (E-g1'0) (b-71°0)
€6goooo  Lzlioo Stozico  PeSzg'o  z6gib'z zgbzol  ofbgl'S1  S€96E°gz  €QOfE-EY 28065  0100°SL oS1
(9-71°0)  (9-71'0) (9-g10) (9-g10) (9-71°0) (9-71'0) (9-7gl0) (9-gi'o) (1-gi'0) (b-gr0) (2-71°0)
66¥10'0  oozloo Sg9lgzo  gLES60  LEgzgz V6809  zLSEL11 0£19961 916z  1€516¢€ 000§ oot
(9-71°0)  (9-7y1'0) (9-7t0) (9-710) (9-71'0) (9-71'0) (9-710) (9-71°0) (10) (€-g10) (z-71°0)
tgSzi'o  z€tofo  18g8L9'0  6116€1  LEE€zo'z  z19SSv  Vloi€l S¥6g°01 1°S1 166°61 60°Sz oS
(9-g10) (9-y1'0) (9-71'0} (9-71'0) (9-71'0) (¥-zgi0) (S-gio) (S-zi0) (S-gio) (S-gio) (S-gro)
1z6¥9'c  600Sg'0 06660t  ¥6Sob'1  €1GLL 1 16€12'z  §.S2l'z  oghi€€  6bog6€ Lzizlt  612€6°S ot
o'l 60 80 Lo 9'0 S0 to €o z0 10 oo /Mﬁ/
z2=0 ‘€=¢ ‘c=n SUHLANVIAVI HLIM TISSHI : € d4I19VL
(e-g170)  (b-g1°0) (€-710) (1-710) (L-mgro) (L-mio) (L-mgio) (L-mgro) (L-gro) (L-guio) (L-g1-0)
7000070, 7000000°0 4700000°0 4£000°'0— Z000000°0 g10000°0 Fgooo'o z€zzo'o 668z€0  gzlS9'z  $0996°11 oSt
(8-10) (g-710) (8-71°0) (L-gr0) (L-gro) (L-gro) (Lgro) (L-gro) (L-gio) (e-gro) (L-zgi-o)
£L10000°0 ,Z00000°0 4, 100000°0 1000000 €0000°0 ggooo'o obboo'o gFE6o0 €r1¥g'0o  Lgoro€  €E€69L'6 ool
(L-g10)  (L-gro) (L-mgro) (Lgro) (L-gro) (L-gro) (L-gro) (Lygio) (Lgro) (Lgio) (L-710)
2000000 L10000°0  €1000°0 680000 S1S00'0 9g9Szoo  1¥b6ol'0  6g96€0  6Igiz'l  zLPG1'E  +o9ob'g oS
(L-g10)  {(L-mgio) (L-gro) (Lmguio) (L-gto) (Lgro) (L-guo) (L-mgro) (L-gro) (L-gi0) (L-71°0)
Lovoo ogloo 08210 09020 Svz€o Y0oS-0 g¥SLlo [ TARER | t109°1 vovz -z 9180°€ ot
: : . : . : . . . . . \¢
o1 6'0 {0 Lo 90 S0 to €0 zo 10 oo %\

Z =\ YEIAWVAVd HLIM VIWVD :Z TTIVL

https://doi.org/10.1017/5051503610000595X Published online by Cambridge University Press


https://doi.org/10.1017/S051503610000595X

324 F. COVENS, M. VAN WOUWE AND M. GOOVAERTS

4. NUMERICAL RESULTS

We will give here the numerical results obtained for the three particular cases
considered in section 2.

Let the stop loss point be given by (1 +x) tE(X), then the following results
are obtained for different values of the time parameter and for different
values of %. An estimate of the error is given in parentheses.
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