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1. Introduction. A path of maximum length in a graph G is
referred to as a detour path of G and the length of such a path is
called the detour number of G. Itis not surprising that the study of
detour paths is closely associated with the problem of investigating
hamiltonian paths in graphs. Evidently few results have been obtained
in this area, although Ore [3] has shown that any two detour paths
intersect. It is the purpose of this article to further investigate
these concepts. In particular, we obtain bounds for several graph-
theoretic parameters in terms of the detour number and also present
formulae for the detour numbers of several important classes of
graphs.

2. Basic definitions and preliminary results. Let G be a
connected graph and u and v any two points of G. The distance
between u and v is defined to be the length of a shortest path between
u and v with endpoints u and v and is denoted d(u,v). Let
V (u, v) denote a path between u and v having maximum length. Such
a path is called a detour path between u and v and its length is
denoted by 9(u,v). The distance functions d and 0 are metrics on
the point set V of G, For any point u in G, we define
9(u) = max 0(u,v). By a detour path in G is meant a pathin G of

ve V
maximum length. The length of a detour path in G denoted 9(G), is
called the detour number of G, i.e. 9(G) = max{d(u)iue V} . For
example, if G is any graph on p points having a hamiltonian path,
then 9(G) =p - 1. Itis also easy to see that for any connected graph
G having p > 3 points, 9(G) > 2, with equality holding if and only if
G is a triangle or a star.

Our first result gives a bound for the detour number of a graph
in terms of the minimum degree of its points. The method of proof
we use is essentially due to Ore [3].

1The authors thank Professor Gary Chartrand for his helpful
suggestions.
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PROPOSITION 1. If G is a connected graph with p points
having minimum degree r, then 8(G)> min (p - 1, 2r).

Proof. If 9(G) =p - 1, the result clearly follows. Thus we
assume 9(G) < min (p - 1, 2r). Let P be a path of length 8(G) = 8

FERER ,Va. The subgraph G'

induced by the set of points of P cannot contain a cycle having all

whose points are successively v _,v
o

points of G', for otherwise there would necessarily exist a point v

not in G' adjacent with some point A in G' producing a path of

length 9+ 1. Similarly, v, and v, are adjacent only to points of G',
but not to each other. By hypotheses, the sum of the degrees of v and
vy is at least 2r. Since 98(G)< 2r, there must exist points vi_1 and

v, in G, where Vs is adjacent to v, and v, 1 is adjacent to Vo This

however. implies the existence of the cycle v v.v. ...vv. v .
o1 it 0i-1i-2

which contains all points of G', but we have seen that this is impossible.
Therefore a contradiction arises and the desired result follows.

.. v
Vi o

Since every n-connected graph has minimum degree at least n,
we obtain the following corollary.

COROLILARY 1a. If G is an n-connected graph with p points,
then 0(G) > min (p - 1, 2n).

As with the metric d, one can define a radius and centre with
respect to 0. The detour radius of a graph G, denoted ra(G), is

defined to be the number min 9(u) and the set CB(G) = {VeVIB(v) = ra(G)}
ueV
is called the detour centre of G.

A block of a graph G is a maximal connected subgraph of G
containing no cutpoints.

PROPOSITION 2. If G is a connected graph, then CB(G) lies

in a block of G.

Proof. Let G be a connected graph with detour number 8(G) = 9,
and assume that CB(G) fails to lie in any block of G. Then G has a
cutpoint v with the property that at least two components G1 and G2
of the graph G - v (obtained from G by deleting v and all incident
lines) contain points of CB(G)' Let P1 be a path of length 9(v)

having an endpoint at v. Since v 1is a cutpoint, at least one of the

subgraphs G1 and GZ, say GZ’ contains no points of P1. Let u

be a point of G2 belonging to CB(G). If P2 is a path having endpoints
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at u and v, then the paths P1 and P2 determine a path P3 having

length exceeding 8(v), i.e., 9(u) > 8(v). This, however, contradicts
the fact that u belongs to Ca(G). Thus Ca(G) is contained in a block

of G.

Since every block of a tree contains two points, we obtain the
following.

COROLLARY 2a. The detour centre of a tree consists of one
point or two adjacent points.,

It is an elementary observation that for a tree, the detour number
equals its diameter, every detour path is a diametrical path, and the
detour centre coincides with the centre. Such is not the case in general
however. For the graph of Figure 1, {Ci’ s 03} constitutes the

centre and {d1, dZ} the detour centre.

Figure 1

3. Detour paths and Hamiltonian graphs. A graph with a

hamiltonian path is called traceable while a hamiltonian graph is one
containing a hamiltonian cycle. Clearly, every hamiltonian graph is
traceable. It is also immediate that if G is a traceable graph with
p points, then 9(G) = p - 4, and conversely.

A graph G is detour-connectedif for every two distinct points u
and v of G, there exists a detour path with u and v as endpoints.

If G is a detour-connected, traceable graph, then every pair of points
are joined by a hamiltonian path., Such graphs are called hamiltonian-
connected and have been studied by Ore [4].

PROPOSITION 3. For any graph G, G is detour-connected if
and only if it is hamiltonian-connected.

Proof. Itis obvious that every hamiltonian~connected graph is
detour-connected., For the converse, let G be a detour-connected
graph. If G has only two points, then certainly G is hamiltonian-
connected. If G has more than two points, then let u and v be any
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two adjacent points of G. Since G is detour-connected, there exists
a detour path P having u and v as endpoints. We now claim that

P contains all points of G implying G 1is traceable and therefore
hamiltonian-connected. To see this consider the cycle C determined
by the path P and the line uv. If C does not contain all points of

G, then, since G 1is connected, there exists a point w not on C but
adjacent with a point of C. This produces a path of length one greater
than that of P, which leads to a contradiction. Thus C and therefore
P contains all points of G.

The preceding proof also provides the following corollary.

COROLLARY 3a. If G is a detour-connected graph with p >3
points, then G is hamiltonian.

4. The detour number and other graph-theoretic parameters.
A graph G is homeomorphic from a graph H if it is possible to
obtain G from H by inserting new points of degree 2 into lines
of H. In[1], a graph was said to have property Pn, n>1, ifit

fails to contain a subgraph homeomorphic from either the complete

+2 +2
or the complete bipartite graph K([n2 1, {%‘} ),

graph Kn+1

where [x] and {x} denote the greatest integer not exceeding x and
the least integer not less than x, respectively. As was shown in [1],
the first 4 values of n correspond to totally disconnected graphs,
forests, outerplanar graphs, and planar graphs.

For each graph G and positive integer n there is associated a

(n)

number ¥  (G), defined as the minimum number of subsets into
which the point set of G may be partitioned so that each subset
induces a subgraph with property Pn' For n =1, 2, 3, 4, these

parameters have been referred to as chromatic number, point-
arboricity, point-outerthickness, and point-thickness. It is possible
to give bounds for all of these parameters in terms of the detour
number.

PROPOSITION 4. For any graph G and positive integer n,

(n)

e (AL

1.

Proof. Let n be an arbitrary but fixed positive integer. If the

(n)

graph G has property Pn, then ' '(G) =1 so that the desired

inequality holds. Otherwise we proceed as follows.

Let V1 be a set with a minimum number of points such that the
subgraph G - V1 of G has property Pn. Let Cr1 be the subgraph

of G induced by V'l'
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We now claim that S(Gi) < 9(G) - n, for let Q be apathin Cr1
of length 8(G1) having endpoints u and v. If v, say, is added to
the point set of G - V1, the resulting induced subgraph necessarily
does not have property Pn due to the minimality of Vi' In this

subgraph then v belongs either to a subgraph homeomorphic from

+2
K 4 OF ome homeomorphic from K([n2 1, {n;Z }). In either case
n

there exists a path Q' of length n with v as endpoint. Hence Q
and Q' determine a path Q" of length 8(G1) +n so that B(Gi) <9(G) - n.

Next let V2 be a set with the minimum number of points such
that the subgraph G1 - V2 of G‘_l has property Pn' Also let G2 be
the subgraph of G1 induced by VZ. As before, we have
a(GZ) < a(Gi) - n< 8(G) - 2n.

We continue the above procedure until finally arriving at a

subgraph Gk for which B(Gk) < n. We also have B(Gk)g 9(G) - kn.

Clearly, Gk has property Pn. Thus each of the subgraphs

- - ey -V, .
G V'l’ G1 VZ’ Gk-1 K Gk has property Pn Therefore
X(n)(G) <k +1. On the other hand, 8(G) > 8(Gk) + kn so that
9
1+ LG) ]>k + 1. This completes the proof.

5. Complete n-partite graphs. The complete n-partite graph
K(pi,pz, .. .,pn), P, < P, <...< P has its point set V partitioned

n
into n subsets Vi’ where 'Vil =P and X p,=p and such that two
i=1
points u and v are adjacent if and only if u e Vj and Vv ¢ Vk’ j# k.

The class of complete n-partite graphs contains such familiar graphs
as the complete graphs and the complete bipartite graphs.

PROPOSITION 5. If the graph G = K(p1,p2, cee pn), then
9(G) = min (2p - an, p-1).

Proof. We consider two cases.

Case 1. p - P, 2P - 1. This implies that p - P > (p -1)/2.

n-1

Clearly, mindeg G = X pi =p- pnz (p - 1)/2. Thus by Proposition 1,
i=1

9(G) =p - 1.
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Case 2. p - pn< P - 1. In this case min(2p - 2pn, p-1)=2p - an.
Since the number of points in Vn exceeds the number of points in
vV - Vn by at least two, there exists a path P beginning and ending in
Vn such that every point in V - Vn is on P. The length of such a
path P is 2p - 2p - Thus a(G) > 2p - an. If 9(G)> 2p - an, then
there exists a path P' having at least 2p - an + 2 points. However,
at least p - P + 2 of these points must belong to Vn’ implying that

P' contains two consecutive points from Vn' which is contrary to the
definition of G.

COROLLARY 5a. The graph G = K(p1, Pyreees pn) is traceable
if and only if p > an - 1.

6. Unsolved problems. As mentioned in the introduction, Ore
has shown that every two detour paths in a graph intersect. I G is a

traceable graph with p points; i.e., if 8(G) = p - 1, thenall p
points of G belong to each detour path. It is natural to inquire
whether all detour paths intersect if 8(G)< p - 1. In particular, if
9(G) = p - 2 and all the detour paths have a point in common, this
implies that no graph is hypo-traceable. (A graph G with p points
is hypo-traceable if it is not traceable, but every induced subgraph
with p - 1 points is traceable.) Hypo-hamiltonian graphs are known
to exist and have been investigated by Herz, Duby and Vigué [2].

The graph in Figure 2 shows that a diametrical path (namely,

v1v2v3v4v5) need not contain points of the centre. Whether the

analogous situation holds for detour paths and the detour centres is
unknown.

Figure 2

Added in proof. H. Walther has constructed a graph in which all
the detour paths don't have a point in common. His construction will
appear in the Journal of Combinatorial Theory. -
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