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Abstract

The completions of certain nilpotent groups with respect to some ascending sequences of integral
domains are constructed. These completions are generalizations of Lazard completions for the
groups under consideration and they are Lie algebras over the first integral domain in the
sequence. The construction is possible in particular for finite p-groups of exponent/? and class <p.

1980 Mathematics subject classification (Amer. Math. Soc): 20 E 15.

Given a finitely generated group G of a certain type we show how to construct a
completion (j(f2,) of it with respect to a sequence of appropriate integral domains

This works in particular for a finite p-group of exponent p and class <p. We
start off by considering the case of torsion-free groups. Here the construction is
known when every ft, =nt is a binomial ring. It is due to P. Hall (1957), §6, and
our method makes fundamental use of his construction. (Developments of some
parts of Hall's paper can also be found in Duguid (1957) and Warfield (1976).)
Besides Hall (1957), §6, we assume that the reader is familiar with Lazard (1954).
For the groups here considered, their Lazard completions are completions with
a particular choice of the sequence (fij. It follows from results of Lazard (1954)
that G(f2() is a Lie algebra over ill. Finally, we note that we also make use of a
method given in Moran (1973) for constructing a set of free generators for certain
subalgebras of free Lie algebras.

We would like to record our gratitude to Brian Hartley for a number of useful
remarks which helped us overcome some local difficulties.
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462 Siegfried Moran and Janet Williams [2]

Completions of torsion-free nilpotent groups

Let G be a torsion-free finitely generated nilpotent group. Suppose that

G = G1=>G2=>...=><?,=>...

is a central series in G such that every Gj/GJ+l is torsion-free. Now for every j
one can choose a finite set of elements of G, so that modulo GJ + 1 they form a
basis for the abelian group Gj/GJ+1. We take the union of all such bases to give
M1;M2 ,"„• In this ordering we write an element of the basis for Gj modulo
GJ+1 before an element of the basis for Gj+1 modulo Gj+2. Then every element
of G has a unique representation of the form

«;««?...«*,
w h e r e <xu<x2, •••,<*„ a r e in tegers . W e cal l t h e a b o v e set o f e lements ut,uz, •-.,«„ a

canonical basis for G.
Let x and y be elements of G. Then

X = M'1 «?...«"" and y = u\iu{1..Mfi
n

n.

For every integer X we have that

and
= u\lu2

h...ui
n
n.

We have a function n defined as follows. (i(i) is the positive integer such that ut

belongs to G,,(l) but ut does not belong to G,,(0+1, for all /. By Qj we denote the
ring of rational numbers r/s such that r and s are coprime and the prime divisors
of s do not exceed j .

The following result gives information about the functions y,- and 5t. It is a
refinement of Hall (1957), Theorem 6.5. We omit the proof as it is similar to the
one given by Hall. One only needs to introduce the obvious refinements in the
induction hypotheses.

THEOREM 1. The functions yx and St are integer-valued polynomials in the argu-
ments a 1 ) a 2 , .. . ,an,X and a 1 , a 2 , . . . ,an , /?i,/?2, •••>/*« respectively. The constant

terms of the polynomials are zero and the coefficients belong to Q^iy This holds
fori = 1 , 2 , . . . , n.

We are now in a position to give completions of torsion-free finitely generated
nilpotent groups which are generalizations of the construction of Hall (1957).
Let
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[3] Completions of certain nilpotent groups 463

where c is the class of G, be an ascending chain of integral domains such that

g y £ Q . for all;.

By G (£2j) we denote the set of all elements of the form ]~p= t u"', where uu u2, • -.,«„
is a canonical basis for the torsion-free finitely generated nilpotent group G and
a, belongs to £2^(0 for all /. Then as in Hall (1957), §6, one can prove

THEOREM 2. If the product of two elements ofG(Qt) is defined by the polynomials
dt of Theorem 1, then G(£lt) is a group. If exponentiation by an element o/fij is
defined by the polynomials yh then G(Cl^) is an Q,l-powered group.

One only has to note that the above assertions reduce to polynomial identities
which are true for all integer values of the arguments. The definition of a powered
group can be found in Hall (1957), §6.

Subgroups of free nilpotent groups generated by original commutators

We begin by defining original commutators and original Lie monomials.

DEFINITION 1. Let F denote a free nilpotent group of class c. By 'F we denote
the rth member of the lower central series of F. A set of elements of F which are
linearly independent modulo 2F is called a set of original commutators (in F) of
weight 1. Suppose that original commutators (in F) of weight <i(<c) have
been chosen. Let B(i) denote the smallest isolated subgroup of F which contains
I+1F and all complex commutators of the following type. It has more than one
component, the arguments vary over all original commutators of weight less than i
and the sum of these weights (in each case) is i. A set of elements of 'F which is
linearly independent modulo B(i) is called a set of original commutators (in F)
of weight /.

There is a similar concept for a free group 3F—original commutators (in SF~)
of weight j ( < c).

We consider the free group & to be naturally embedded in the Magnus algebra
M over the field Q of rational numbers. If a set of original commutators in !F
is given, then the non-constant least degree monomial terms of these original
commutators are called original Lie monomials. Their weights are defined to be
the weights of the corresponding original commutators.

There are obvious ways of going from original commutators in 3F to original
commutators in ^7 C + *•& and back again.

LEMMA I. A set of original Lie monomials freely generate a free Lie ring in the
Magnus algebra J(.
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PROOF. Take the generators of M and form the free Lie algebra JS? over Q
generated by them in J(. The subspace of ££ which consists of all homogeneous
Lie elements of degree i will be denoted by j£?(j). Let 5 denote the subalgebra of J§?
generated by all the chosen original Lie monomials. Clearly Sn£C(1) is spanned
by the original Lie monomials of weight 1. They are linearly independent. For
otherwise, an ordered nontrivial powei product of the original commutators (in
^) of weight 1 belongs to 2&, which contradicts the definition of original com-
mutators of weight 1.

Form all the Lie monomials on "the original Lie monomials of weight less
than /". We choose those Lie monomials which belong to $£(iy They will span a
vector subspace S(i) in :£f(j). Then Snl£(i) has a basis consisting of the original
Lie monomials of weight i modulo S(i), since

Q ® C^/i+1^)/(B(i)/i+ l3F) s &(t)/S(i).

Hence, by Moran (1973), Theorem 2.1, we have that S is a free Lie algebra with
the original Lie monomials as a set of free generators. However, every original
Lie monomial belongs to the free Lie L ring generated in Jl by the generators of
the Magnus algebra M'. Hence the original Lie monomials freely generate a free
Lie subring of L.

We now give a definition of weighted basic commutators and weighted basic
Lie monomials.

DEFINITION 2. A weighted basic commutator in F is a basic commutator on some
set of original commutators in F. Its absolute weight, which we denote by w(),
is the sum of the weights of the component original commutators. We will only
consider weighted basic commutators of absolute weight not exceeding c. Weighted
basic commutators are of course ordered according to their usual weight, that is,
the number of components.

We also have a similar concept in a free group. Weighted basic Lie monomials
and their absolute weights are defined analogously.

We are now in a position to establish the following fundamental

LEMMA 2. Let {bv,veN} be the set of weighted basic commutators corresponding
to a given finite set of original commutators in a free nilpotent group F of class c.
Then

(i) every set H} of all ordered products]

t The ordering in an ordered product is by weight.
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[5] Completions of certain nilpotent groups 465

where all mv are integers and mx = 0 ify/(bT)<j, is a subgroup of

(ii) H1=H;
(iii) Hj=Hr\JFforallj;
(iv) {Hj} is a hazard N-series in H;
(v) every element of H has a unique representation in the form given by (i) above;
(vi) every Hj/HJ+1 is a free abelian group.

PROOF. Properties (i) and (ii) follow from the usual commutator collecting
process (see, for instance, Hall (1959), Chapter 11).

(iii) Clearly 77, zHnJF for all j . Suppose that b belongs to HnJF with b
belonging to Ht but not belonging to Hi+1 for some i <y. Suppose that contrary
to the assertion of the lemma we have that i ^ j . Let !F denote the free group such
that Pp*1 !F =F. Let B denote an inverse image of b under the natural homo-
morphism &-*F. Then

since *& = l+JKk (see Lazard (1954), Theoreme (4.2)), where Jlk is the ideal of
the Magnus algebra consisting of all those elements whose homogeneous com-
ponents of degree <k are zero. Now 6=]^[o™v with mv = 0 when w(6v)</.
Hence

where {b~x, reN(i)} denotes the set of all weighted basic Lie monomials of
absolute weight i and not all integers mz are equal to zero. This contradicts
Lemma 1.

(iv) This follows at once from (iii).
(v) Suppose that contrary to the assertion of the lemma we have that

and not all mv equal zero. Let bT be a weighted basic commutator of lowest
absolute weight such that mt # 0. Suppose that w(6t) = i. Now one can proceed
as in the proof of (iii) to arrive at a contradiction to Lemma 1.

(vi) Suppose that b belongs to H} but does not belong to Hj+l. Further suppose
that

(b.HJ+ly = HJ+1

for some integer n. Then

= Y\b\Hr modulo HJ+1,
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where w(ftt) = / f o r all x and some integer mx ^ 0. So

where every w(Z>v) > y + l . Hence using the commutator collecting process in
order to get the weighted basic commutators occurring in the above product in
the right order, one gets that

e = . . . % " " • • •

for all bz with w(bT) —j. So the above proved property (v) shows that n = 0,
since some mT # 0.

We now form the (iij)-completion of the above given group H and of its sub-
groups Hj in the way described in Theorem 2 and the explanation above it. The
following result holds because it can be reduced, using Theorem 1, to certain
polynomial identities, which are true by assumption for all integers.

LEMMA 3. The subgroups (H/Qt))jzi form a hazard N-series in the group
H(€lt). Every Hj(Qi) is an Clj-powered group.

Completions of nilpotent groups which may have torsion

CONSTRUCTION. Let G be a finitely generated nilpotent group of class c with a
Lazard iV-series {Gj)j^i. For every j choose an ordered basis for Gj modulo
GJ+1. Take every element of the basis of Gj modulo Gj+l to be less than every
element of the basis for GJ+1 modulo Gj+2- We will call the union of the ordered
bases a canonical basis vuv2, •••,^n °f G- Hence every element of G has a unique
representation of the form

where for all / we have that 0 < aj<e; and e; denotes the order of vt modulo
Gll(i)+1. Here vt is a member of the chosen basis of G^(i) modulo <?„(»)+1.

LEMMA 4. Let G be a finitely generated nilpotent group of class c andv1,v2, •••,"»
be a canonical basis of G. For each vt of the canonical basis we choose an original
commutator of weight fi(i) in a free nilpotent group F of class c and sufficiently
large finite rank. Let H denote the subgroup of F generated by all these chosen
original commutators. Then the above given association extends naturally to a
homomorphism (p of H onto G. Using the notation of Lemma 2, one also has that

= Gj for all j .
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PROOF. Let c1,c2,...,cn denote the chosen set of original commutators in F,
where <p(cj) = vt for all i. We define a mapping (p of H onto G by

where w(ct) denotes a word in the generators cuc2, ...,cn. Firstly we need to
show that (p is single-valued. Suppose that w(c,) = e. Then using the commutator
collecting process on w(c,) one gets that

where {6v(c/),veAr} is the set of weighted basic commutators on the original
commutators cl,c2,...,cn. By Lemma 2, this representation is unique and so
every mv = 0. Now apply the same commutator collecting process to w(v,). Then
one gets

which is equal to the unit element since every mv = 0. So q> is single-valued. The
fact that q> is a homomorphism is now an immediate consequence. For every j
we have that all the chosen original commutators of weight j belong to Hj and
hence Gj £ (p(.Hj). Let bv(c,) be a weighted basic commutator of absolute weight/
Then, since (GJ)J^i is a Lazard JV-series, one has that (p(6v(c,)) belongs to Gj.
Hence Gj 3 <p(Hj).

NOTATION. We will denote the kernel of the homomorphism q> by K. So
G s H/K.

ASSUMPTION 0. Suppose that the group H has a canonical basis uuii2,...,um

relative to the Lazard iV-series (Hj)J3: t so that

forms a canonical basis for A" relative to the Lazard iV-series (KnHj)^^ The
numbers ef are given in Construction. We use the convention that if the number
Ef is infinite, then uf is deleted from the above canonical basis.

The above assumption is equivalent to the following

ASSUMPTION 0'. There exists a canonical basis v1>v2,...,vn of G so that, for
every i, if ef is finite then v\l = e.

Suppose that a finitely generated nilpotent group G has a canonical basis which
does not satisfy Assumption 0'. Then it is easy to give some sort of maximal
homomorphic image of G which does have a canonical basis satisfying Assump-
tion 0'.
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EXAMPLE. Let G be a finitely generated nilpotent group with Lazard TV-series
(GJjzi. Suppose that G has the following property:

if gGJ+! is an element of order m in Gj/Gj+,, then g has order m.

Then Assumption 0' holds. One might call such a Lazard A -̂series an unlinked
iV-series. Every Lazard iV-series of a finite />-group of exponent p is unlinked.

DEFINITION 3. Let R be an integral domain which contains Z and suppose that
e (>0) belongs to Z. Then Z is said to be e-isolated in R if and only if er belongs
to Z, for some r in R, implies that r belongs to Z.

Clearly Z is e-isolated in R if and only if no prime divisor of e is invertible in R.

LEMMA 5. Suppose that Assumption 0 holds and that Z is erisolated in QMi)

for all those ifor which £,• is finite. Then, for the (Sl^-completions of H and K given
by Theorem 2, one has that

(a) K(Qj) is a normal subgroup of
(b)

PROOF. Statement (a) is equivalent to certain polynomial identities, which are
true for all integer values of the arguments. This is so since K is normal in H.
Hence (a) holds. Obviously Ks HnK(Cli). Now suppose that

M = FT u\'" belongs to H,
i

where for all i we have that a,- belongs to ftM(j). Then ^a,- belongs to Z and so
a, belongs to Z for all i, which gives that u belongs to K.

We are now in a position to state the following main result of this paper.

THEOREM 3. Let G be a finitely generated nilpotent group of class c. Suppose that
(i) Assumption 0' holds for some canonical basis vuv2, -..,vn of G;
(ii) fit £ fl2 £ ... ^ Clc is a chain of integral domains such that Qt S Qtfor all i;

(iii) Z is srisolated in fl^.-j for all those ifor which e,- is finite.
Then G is naturally embedded as a subgroup of

Since Hj.K/KS: Gp we denote

The series of subgroups (Gj(Qi))j^ t is a Lazard Af-series of G(Qf). Every (j,(fi;) is
an fi,-powered group. Every element of C?y(Q,) has a unique representation of the
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[9] Completions of certain nilpotent groups 469

form Pl i^ '* where af belongs to a fixed set of coset representatives of £jfi,,(0

in ClMi) and a, = 0 if n(t)<j. Here we take Cjfi^i) = 0 if £j is infinite. Also

and

for ally. Finally, G(Q,) is a Lie algebra over fit, where one uses the Campbell-

Hausdorff formula in the way given in Lazard (1954), Chapter II, §4.

EXAMPLE. Let G be a finite p-group of exponent p and class c<p. Suppose that

is a chain of integral domains so that for all i we have that

and p is not invertible in every £2j. Then for every Lazard iV-series (GJ)J^ t of G,

there exists the completion G(flj) of G with the above given properties.

It is possible to give a more general version of Theorem 3 for torsion-free

finitely generated nilpotent groups. For example, it is not necessary to take a

Lazard JV-series in the group—a central series will suffice. It is also possible to

obtain more general versions of Theorems 2 and 3, by taking an ascending chain

of integral domains

such that

QMi)<=nt for ali i

G(Qf) = I f ] "?'. a.-eQ, for all i

with

in the torsion-free case and

f »
G(£2() = *( n "?', every <xf is a representative of Q, mod

for Theorem 3.
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