

SYSTEMS ENGINEERING AND DESIGN 2355

INTERNATIONAL DESIGN CONFERENCE – DESIGN 2020
https://doi.org/10.1017/dsd.2020.268

REVERSE-ARCHITECTING APPROACH FOR SYSTEM ARCHITECTURE
MODELS

R. Pluhnau , S. G. Kunnen, D. Adamenko and A. Nagarajah

University of Duisburg-Essen, Germany

 robin.pluhnau@uni-due.de

Abstract

For an efficient product family development an abstraction of concrete product variants is

necessary in order to recognize and systematically describe characteristic properties of a variant.

System architecture models represent a possibility for the systematic description of the product

variety. The structure of architecture models for existing product families resembles a reverse

engineering process, in which products have to be analyzed on their structures. This paper

describes a reverse engineering approach for building up system architecture models as basis for

developing product families.

Keywords: systems engineering (SE), systematic approach, product architecture

1. Introduction

Changing market conditions, new product requirements and the increasing amount of electronic

components and software in products are today’s companies challenges. In addition, there are trends

such as the individualization of products, which customers can identify with. The classic processes

and methods of domain-distributed and document-centric product development are reaching their

limits due to the increasing organizational complexity. In order to meet the increasing complexity of

products and to be able to differentiate themselves on the market with a sufficient variety of products,

companies are confronted with the need to perform their product development more efficient. In terms

of high competitiveness, it is essential for them to be able to economically develop and produce

product families. Product development processes, which are characterized by a multitude of linked and

exchangeable information from many domains, require a high level of data consistency. However, in

product development each discipline uses its own development methods and often obtains its data

manually. Compared to processes such as logistics, where the use of mature ERP systems ensures a

high level of information consistency and data integrity, the product development is often

characterized by a large number of isolated solutions. Model-based Systems Engineering (MBSE) is

regarded as the development trend with which the increasing complexity of interdisciplinary product

development processes is to remain manageable through a continuous and holistic model orientation in

product development. Systems modeled by means of formal graphical modelling language should

ensure that all domains involved in the development are able to build up a common understanding of

the system to be developed in the future and to achieve a high degree of information consistency at the

same time. Engineering activities from different disciplines are thus supported organizationally and

system-technically throughout the entire product life cycle, from requirements recording to recycling.

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

2356 SYSTEMS ENGINEERING AND DESIGN

For this purpose, the development processes and their logic have to be modelled in this system model.

The basic structure of system models are system architectures - they are describing the structure and the

interaction of functionalities and components of a system and thus represent the early phase of

development, such as conception, and can serve as a basis for various authoring tools in which the

product design is determined and validated step by step through simulation and analysis. With regard to

product families, they offer an abstract and valuable reference for the development of generations and

variants. The paper presents an approach for building system architectures for existing product families.

The architecture models that can be generated by the help of this approach are supporting an efficient

development of product variants and generations. (Eigner et al., 2017; Weilkiens et al., 2016)

1.1. Problem statement

Unusually product development starts on a white sheet of paper - companies that develop cars today

probably will not develop coffee machines tomorrow. Albers et al. (2016) show that the majority of

the activities of development departments are part of the development of product families (Albers et

al., 2016). This refers to variants and generations of products, with variations in design and principle

or functional integration. They are characterized by a high level of reuse of functions and components,

however, the effort for creating such variants and generations increases rapidly with the number.

In context of the current research project with a plant manufacturer, the development process for

variants of mechanical expander tools for steel pipes is to be investigated. The main challenges, the

company has to face are due to the customer individuality of the variants. A customer order represents

an area of application defined by the customer, which is usually unique and has to be implemented

using different tools. It comprises different tube materials, with different tube dimensions and required

plant cycle times, for which as few different tools as possible are required. The resulting demands on

the tool range to be supplied are highly contradictory and require a circular problem-solving process to

find the right tool configuration and its unique geometric characteristics. As an example of this, a

sufficient tool strength at high material yield strength and small pipe diameters is to be mentioned, as

this is where conflicts arise, especially due to space constraints. Similar conflicting requirements are

represented by large tube diameter ranges at constantly high cycle times, which presuppose a tool

stroke that cannot be realized. For an efficient product family development, an abstraction of concrete

product variants is necessary in order to recognize and systematically describe the characteristic

properties of a variant. System architecture models represent a possibility for a systematic description

of the product variety in a useful abstraction. Within the system architecture, correlations between

functional and logical structures can be mapped in a descriptive, qualitative model. Furthermore, the

elements of an architecture, such as functions or components, can be specified by their most important

properties. Architectural models thus are a useful reference for variant and further development,

because both conceptual and physical elements can be inherited. The specific meaning of system

architectures can be seen in the INCOSE Vision 2025, in which it is titled as an essential discipline for

the successful application of systems engineering (INCOSE, 2014). In the context of MBSE, there are

several approaches to support the creation of system architectures. Mostly, new developments are the

focus of interest, which is why the development of functional architectures is particularly addressed.

With reference to the statistics for development activities, it can be deduced that building architectures

for existing products or product families should be focused. In the industrial practice, the building of

system architectures should be understood as a reverse engineering process, in which physical

products have to be analyzed on their structures. (Weilkiens et al., 2016)

1.2. Objective of the research activities

The research activities primarily aim at the creation and use of architectural models for the

development of product families. The defined goal is to develop a systematic approach to analyze

product families in order to be able to formally describe the systems architecture models. For this

purpose, different approaches to analyze products and product families are taken up and extended with

the philosophy of the Reverse-Engineering to define a Reverse-Architecting-Approach. This Reverse-

Architecting-Approach describes necessary phases and activities to get from the real product family to

a system architecture with defined abstraction levels. The architectural model must be able to describe

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

SYSTEMS ENGINEERING AND DESIGN 2357

the complete composition of the product from a functional and physical perspective. Since the current

project example represents a product family, different architectures are existing. Therefore, it is the

explicit goal to create a reference architecture. It must be able to represent the totality of all possible

variants in one architecture and allow changes for new variants at the same time. Levels of abstraction

are intended to promote a downstream variation of the product in various phases of development.

Thus, step-by-step abstraction can be used both in the design phase and in the conceptual phase of the

development. Modelling the complete reference architecture enables the specification of architectural

elements such as functions and components by means of certain properties. In this way, functional

elements such as “increase force” or “reduce friction” can be specified by properties such as forces,

transmission ratios, lubricant requirements or surface pressures. Components, on the other hand, can

be specified by concrete design descriptive properties such as dimensions. These quantifiable

properties are machine interpretable. For a model-based development of variants, the specification of

architectural elements offers a number of advantages. Within the system model, the properties can be

linked to requirements by decision routines and analytical relationships and enable a requirement-

driven variant development. On the other hand, the transferability of architecture information to

different domain models, in which the shape is determined and analyzed, is made possible. Thus,

functional and physical structure and their properties can be transferred for the initial setup of a

physical model to get a rough design of the components. Moreover, it can be used for the numerical

determination of material stress in a structural-mechanical analysis if the architecture information is

transferred to a FEM model. Similarly, it can be used for the verification of the tribological properties

in flow simulations to determine the frictional power. The properties of a variant determined step by

step in the domain models can be traced back to the architectural model and describe its specific

characteristics. For this purpose, they are inherited from the reference architecture to a variant

architecture to be available for creating the geometry in a CAD system. The starting point for

configuration is the requirements specification, which is linked to the architecture within the system

model. In this paper, an overall framework of the Reverse-Architecting-Approach is presented. The

phases and activities of the approach are described as a procedure model. It serves as a basis for

variant development and will be validated using the mechanical expander tool.

2. Literature overview

2.1. System architecture and architecture models

The origin of system architecture is due to the software industry, where it describes the structure of IT

systems, consisting of software and hardware elements, properties of these elements and their relationship

to one another (ISO/IEC, 2007). Systems Engineering, which represents system thinking and the holistic

view of complex systems, reissues the term system architecture. System architecture thus describes “the

fundamental organization of a system, embodied in its components, their relationship to each other and the

environment, and the principles governing its design and evolution” (ISO/IEC, 2007). From the point of

view of product development, this definition is not new - it is the well-known definition of the product

architecture from Ulrich: “In the informal sense, the architecture of the product is the schema according to

which the functions of the product are mapped to physical components” (Ulrich, 1995). He defines the

product architecture more precisely as the “arrangement of functional elements”, the “assignment of

functional elements to physical elements” and the “specification of interfaces between interacting physical

components” (Ulrich, 1995). The multitude of existing definitions has the same core statement in common:

The system architecture describes the functional structure and the physical structure of a system as well as

the interactions of its elements in an abstract way (Figure 1). It defines how and why a system came to its

form. In the context of MBSE, the definition of system architecture models was taken up again.

Architecture models are formally described models that consist of architectural elements such as functions,

function flows, interfaces, and logical and physical elements. They are arranged in architectural abstraction

levels that allow different views of a system and describe properties and logical relationships to other

elements that are consistent (Weilkiens et al., 2016). At this point it should be mentioned, that there is not a

single type of architectural description. Depending on the centre of interest, service-oriented architectures,

solution-oriented architectures, architectures for IT systems or for product lines are of importance. Within

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

2358 SYSTEMS ENGINEERING AND DESIGN

the scope of research activities, architectures for product lines or product families and solution-oriented

architectures are of particular interest.

Figure 1. System architecture

Architectures for product families are strongly oriented to the physical structure. They describe the

product variety in an abstracted way from the concrete design, which is why they can be applied for a

certain degree of product variation and can serve dynamic stakeholder requirements. They are

typically more concrete than solution-oriented architectures, as many elements and properties are

usually inherited. They offer an efficient way to create variants. By definition, solution-oriented

architectures correspond to the classic system architecture. Functions, principles as well as

components are used for the description of the solution of a system for a special use. By these different

abstraction levels they address both the conceptional, as well as the design phase of the development

and possess a quite generic character. In this contribution an integrated approach is to be presented,

which extends the procedure for building up solution-oriented architectures by aspects of the product

families. This type of architecture is of particular interest when concepts of product families become

increasingly obsolete and new concepts have to be considered. (Philips, 2018)

2.2. Architecture definition process

System architecture activities aim at a global system solution based on principles, concepts and

properties that are logically and consistently linked. In principle, a distinction is made between

architecture and design activities, which are based on different ways of mind. Architecture activities

are abstract and strongly conceptually oriented. They describe the superordinate concepts, emergent

properties and characterize elements of the system, e.g. functions, flows, interfaces and data of a

system to fulfill the specified requirements. The resulting architectural models are shape-independent

and very flexible. They describe the “what”. Design activities are strongly technology oriented. They

describe physical, structural properties of the system. Design activities take up the artifacts determined

in the architecture activities to find solutions in order to examine compatibility and feasibility for the

implementation. They analyze the architecture to determine possible technologies that fulfill the

requirements and describe the “how”. The architecture and design process is iterative and the physical

architecture becomes more concrete as the number of design decisions increases. Most approaches and

activities refer to the synthesis of systems and products. Since the building of system architectures

does not begin on a white sheet of paper but with an existing physical product or product family, a

suitable procedure for this reverse engineering process must be described to get from the actual shape

of a product to its globally valid system architecture. (Walden et al., 2015)

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

SYSTEMS ENGINEERING AND DESIGN 2359

2.3. Architecting and analyse approaches

The existing approaches are largely concerned with the new development of systems and describe the

classical activities for the synthesis of architectures. The basic idea of the approaches can be traced back to

standardized process models such as VDI2206 (development of mechatronic systems) or VDI2221

(development of technical systems and products). Requirements are the basis for all architectural processes.

A constant alignment with the requirements has to take place in the subsequent architecting phases. The

three common phases of an architecture are the functional design, logical design and physical design.

Activities of functional design aim at the determination of a functional structure. An abstract description of

the product is to be determined, which subdivides the product starting from its main function into

subfunctions (Daniilidis, 2017; VDI, 2004). In principle, a distinction is made between hierarchical and

flow-oriented consideration. According to Fixson, a rule-based method should answer the question: “what

are the functions of a product and how can they can be determined?” (Fixson, 2005). He argues that

functions of the same degree of abstraction must always be on the same hierarchy level and that the highest

hierarchy level describes the entirety of the functions of all components. In addition, Göpfert and Tretow

consider that three hierarchy levels are sufficient for the functional description (Feldhusen and Grote,

2013). SysML4Consens was developed as a specification language for the hierarchical modelling of

function structures, which is used in tools for building architectures (Gausemeier, 2011). The flow-based

consideration of functional structures is widely acknowledged as it strongly supports to find solutions by

integrating system flows. Stone describes three heuristics used to identify basic system flows, simultaneous

subfunctions, and the conversion and forwarding of flows (Stone, 2000). Albers et al. describe an

Approach for the identification of functions and system flows by the consideration of effective surfaces and

effective structure elements. In addition, they describe a possibility to cluster functions into functional units

that are relevant for a particular discipline. For this purpose, functional units are extended with system

flows. Like Weilkiens, they use SysML as description language for functional modelling (Albers et al.,

2016; Weilkiens et al., 2016). In the logical design, the logical elements are mapped as binding part

between functional and physical design. It is used to search for solutions and to develop concepts by

determining effect principles or solution elements that fulfill the function (Daniilidis, 2017; VDI, 2004).

Kleiner argues that technology decisions are also solution elements. In some approaches, the logical level is

merely described as the linking relationship between function and component (Kleiner, 2012; Fixson,

2005). Gausemeier and Albers consider the logical level by integrating the effect structure model. It

describes the elements required to fulfill functions and the system flows and interfaces and the merging of

functional structures and effect elements (Gausemeier, 2011; Albers et al., 2016). The physical design

describes the derivation of the product structure with its modules and components from the effect structure.

Albers describes a possibility of deriving the physical structure using a matrix in which he correlates

components and effect structure elements (Albers et al., 2016). Weilkiens furthermore describes an

approach for building architectures for product lines using variation points for variants that extend the

architecture (Weilkiens et al., 2016). The approaches do not describe an analysis procedure for existing

products, but they contain valuable steps for use in a Reverse-Architecting Approach. Aspects of product

and product family analysis must also be considered as the basis for the Reverse-Architecting-Approach.

With regard to the analysis of product families, the reference product structure approach of Feldhusen and

Grote is widely used. It aims at the determination of the structure of a theoretical product, which contains

all possible characteristics. It describes the largest possible product structure that can be used for all product

variants in product groups. The nodes of the structure are placeholders for different component variants or

solutions. A multitude of variants can be described with a single structure using this approach. An method

to systematically analyze products is given by van Wie. He refers to the steps taken by Ulrich and Eppinger

to build system architectures: The simultaneous generation of schemata for functions and components, the

clustering of elements, the creation of a geometric layout as well as the consideration of internal and

external connections (Ulrich and Eppinger, 2000). Van Wie takes up the steps in his approach and

describes 6 diagrams for the analysis of products. The Spatial Constraint Diagram is a product sketch with

subdivisions of geometric units that define the systems boundary. In addition, material, energy and signal

flows are assigned to the units. In the Functional Layout Diagram, product functions and their spatial

boundaries are identified by looking at the system flows and the structure. Therefore function-related black

boxes are created that are linked to system flows. In the Physical Solution Diagram, the actual physical

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

2360 SYSTEMS ENGINEERING AND DESIGN

components of the component are identified, which are combined into modules in the following diagrams.

(Feldhusen and Grote, 2013; van Wie, 2002)

3. Reverse Architecting Approach

3.1. Reverse Architecting Framework

The Reverse-Architecting-Framework describes a systematic procedure for building architectural

models for products and product families. It is based on the well-known phases of product

development and defines five superordinate states (Figure 2).

Figure 2. Reverse-Architecting-Framework

The starting point of the procedure is an existing physical product or an existing product family with

variants and generations of a product. At this point, it should be noted that the level of abstraction has to

be defined with caution. It has to be decided, how far a system can be abstracted, so that the abstract

component is still sufficient close to all variants. Effort and benefit of system architectures are not in a

good relation if a car and an aircraft are to be described abstractly by a system architecture of a

transportation. At first a reference product structure is determined from the existing variants and

generations of the product, which is able to describe the product family in a more abstract form. It

contains all possible characteristics of the product in a single structure, which can have different options

at defined variation points and is open to modifications. The reference product structure is the basis for

creating the (reference) system architecture model. It contains the stages three, four and five, i.e. the

classical levels of the system architecture (physical, logical and functional). The reference product is

examined more closely in the physical structure. In addition to the composition of components and their

variants at defined variation points, the relevant properties for describing the design characteristics such

as dimensions are taken into account. They will be applied as value properties to specify the components

in the physical reference structure. These architecture information, consisting of structure information

and value properties, can be used in two cases. They can be linked to requirements of a system model

using decision routines and analytic relationships to find the right configuration and can be transferred to

domain-specific models like CAD or FEM models to define and analyze the shape of a variant. The

architecture of a new variant is generated by inheriting the structure elements and their value properties

out of the reference architecture. If the configuration of components is known and the geometric

expression must be determined, this form of abstraction is sufficient for developing new variants. The

more abstract levels of the reference product are described as the logical and functional structure. The

logical structure describes the principles and technologies used to fulfill product functions within the

product family. It describes the technical solution of the functionalities and the function-design context

as a connecting element. The logical level does not have to be described necessarily - it is the result of

the transformation relations between functional and physical level. Depending on the necessity, this

transformation relationship can be examined in more detail. However, for a subsequent use of

architecture models for developing product families, it is to be considered as it is an important element to

enable a maximum variation of solutions, that should always be strived for.

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

SYSTEMS ENGINEERING AND DESIGN 2361

The most abstract form, the functional structure, describes the product functions to be realized as well

as their interaction through exchange and transformation of material, energy and signal. In context of

product innovation and variation, it is an important basic framework into which new elements are to

be integrated. Existing and missing functionalities and system flows, that are essential for

implementing new solution, can be determined using it. As well as in the physical architecture, the

specification of properties on the functional level promises great benefit for variant development. So

that requirements and boundary conditions are already specified in that early concept phase, as well as

system flows, the selection of the technical solutions can be supported by using rules or templates for

the configuration. Hereinafter, the systematic procedure model for the implementation of the Reverse-

Architecting-Approach is presented. According to Figure 3, the procedure is divided into 6 phases

with various activities that have a distinct work result.

Figure 3. Tasks and results of Reverse-Architecting-Approach

The defined results are based on the phases of the Reverse-Architecting-Framework and thus represent

the typical RFLP levels in modification. As mentioned in the previous paragraph, the logical structure is

only considered by regarding the transformation relationship between the functional and physical levels.

For an explicit attention, the method allows an extension of the physical to functional stage. The

activities within the phases, which are listed in Figure 4, are described with regard to build up system

architecture models. The structural stage is the initial phase of the method and deals with the physical

structure of the product family to be analyzed. Within its framework, the product structures of different

variants and generations are determined and compared. The comparison of the structures reveals points

of variation, at which different characteristics of the product are generated by changing the principle or

the shape. In this comparison, standard components as well as options of different types of components

are identified. The mapping of the basic structure of standard components with different options at

variation points leads to a reference product structure which is able to completely describe the variation

of the product family. For the subsequent analysis of the shape-describing parameters, standard

components only have to be considered once, which reduces the effort of the analysis. Options, on the

other hand, must be examined with regard to different shapes and parameter characteristics in many

product variants. The design parameters determined such as dimensions specify their components within

the reference product architecture using value properties. The reference product architecture and their

properties represent the work result of the first stage. It describes the physical structure and the important

geometric information of the system. In the subsequent Black Box Stage the system environment, the

input and output of the system as well as the basic interfaces with the system environment are analyzed

and described. Black Box means, that no internal system elements and flows are considered. The first

step is to identify the system boundary and the operating states of the system.

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

2362 SYSTEMS ENGINEERING AND DESIGN

Figure 4. Reverse-Architecting Stages and activities

They describe whether fundamental changes of the overall system occur which influence the system

environment and possible inputs and outputs. The consideration of the operating states provides

system flows of materialistic, energetic or signalling nature that affect the system from his

environment and that affect the environment from the system. It aims to identify interfaces of the

system with its environment, which are located on the system boundary. They exchange system flows

and properties that are inherited to their binding element of the system architecture and can be used for

detecting technical solutions based on configuration rules (Figure 5, left). Since it is very difficult to

represent architectures in their entirety, Figure 5 presents a layout for an architecture model, consisting

of essential architectural elements and properties.

Interfaces in connection with system flows are already to be assigned for functions such as energy

supply, force absorption or signal reception. At this point it should be noted that the actual

definition of a black box is no longer correct, because the interfaces belong to the system. However,

they should be considered separately. The result of the Black Box Stage is the environment- and

interface-architecture. The use case stage is applied to examine the internal structure of the black

box. It is dedicated to detect the purpose of the system and the associated main and auxiliary

functions as well as the internal system flows. For this purpose, the transformations of the system

flows taking place in the operating state of the system are considered across the system boundaries

as well as inside the system and the main functions are derived from them. If a substance in a certain

state is led into the system via the interface and led out of the system in another state via an

interface, the function for that transformation is to be defined (Figure 5, middle). Auxiliary

functions, whose necessity results from the operation, are to be supplemented to the architecture.

The functions of the system are to be coupled with the system flows to be transferred from the

interfaces. Additional internal system flows, which do not derive from the environment of the

system, are to be considered and their connections to the system have to be defined. The result of

the Use Case Stage is the main function architecture.

Figure 5. Layout Black Box Stage, Use Case Stage and Concretization Stage

In the following Functional Room Stage, the physical structure is examined with regard to how functions

are realized. A combination of analysis of the form and the function is used to identify basic functional

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

SYSTEMS ENGINEERING AND DESIGN 2363

spaces, i.e. areas of the product within which certain functions are fulfilled. At that point the user can feel

free to define these spaces roughly or finely. Since the concretisation of these function spaces is to be

done in the following phase, the first level function space should be chosen roughly. Function spaces

are imaginary construction spaces in which main functions tend to be realised in the first level. This is

why they have to be linked with the main functions or the corresponding functions. These main

functions consist of a set of subfunctions. If interface-functions, e.g. force absorption, are realized

within a functional space, they are inherited from the Black Box to the functional space. The result of

this stage is a kind of modular functional architecture. At this point the properties of functional rooms

regarding to system flows as well as to functions themselves have to be specified. As an example, this

could be the kind of flow, like electrical energy, as well as value properties of the flow like the amount

of voltage. They will be inherited to the physical component that fulfils the function and can be used

for electrical or physical models in the following. The functional spaces are concretized in the

Concretization Stage. A closer look at the first level functional spaces reveals a series of sub-functions

that are necessary to fulfil the main function. They are to be defined within the functional space

(Figure 5, right). The existing system flows from the Use Case Stage are to be linked with the

functional spaces, or more precisely with the subfunctions contained therein. In addition, interfaces

between the function spaces themselves must be defined. Subfunctions of a function space are able to

define second level function spaces, if this level of detailing is necessary. They can consist of several

subfunctions, which are fulfilled by a smaller function space. This stage results in detailed system flow

architecture. The last level of detail to be reached for the function spaces is a single component of the

physical structure. However, in many cases the assignment to modules is sufficient. They are reached

in the final Physical to Functional Stage, where they are linked to the physical structure. As a result,

they deliver a complete flow-describing system architecture that has a continuous link from functional

to physical.

3.2. Validation

Within the project the approach is used for modelling the reference system architecture of a

mechanical expander tools to generate new variants on the basis of specified requirements. Therefore,

the architecture of all variants has been analyzed in order to identify and model a reference system

architecture including all variations. To define and analyze the shape of variants in physical, fem and

cad models, the relevant properties have been specified for their components. These properties have

been coupled with requirements by parameter diagrams for analytic relationships and decision routines

(Figure 6). The dependency on requirements and shape of the product variant described by

relationships is used to automatically generate requirement-controlled variants, by triggering

calculations based on properties. Current work in the project examines the validation of the procedure

for the construction of the complete system architecture.

Figure 6. Physical (reference) architecture as a basis for creating product variation

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

2364 SYSTEMS ENGINEERING AND DESIGN

4. Summary and conclusion

A systematic Reverse-Architecting-Approach for building up system architecture models that includes

selected aspects of product analysis and architecture modelling has been fully described and

successfully validated. The further activities are dealing with detailing the approach by investigation

of different products from most diverse industries. The activities aim at establishing a standard for the

development of system architectures for existing products. In the future, architectures created on the

basis of this procedure should represent a useful basis for creating product innovation through

integration of new functions into existing structures.

Acknowledgement

This work was supported by the German Federal Ministry for Economic Affairs and Energy within the Central

Innovation Programme for SMEs.

References

Albers, A. et al. (2016), “iPeM – Integrated Product Engineering Model in Context of Product Generation

Engineering”, Procedia CIRP, Vol. 50, pp. 100-105.

Daniilidis, C. (2017), “Planungsleitfaden für die systematische Analyse- und Verbesserung von Produk-

tarchitekturen, Planning guide for the systematic analysis and improvement of product architectures”.

Eigner, M., Koch, W. and Muggeo, C. (2017), “Modellbasierter Entwicklungsprozess cybertronischer Systeme.

Model-based development process of cybertronic systems”, Springer Berlin Heidelberg, Berlin, Heidelberg.

Feldhusen, J. and Grote, K.-H. (2013), Pahl/Beitz Konstruktionslehre, Design Theory, Springer Berlin

Heidelberg, Berlin, Heidelberg.

Fixson, S.K. (2005), “Product architecture assessment: a tool to link product, process, and supply chain design

decisions”, Journal of Operations Management, Vol. 23 No. 3-4, pp. 345-369.

Gausemeier, J.E.A. (2011), “Modellbasierte Konzipierung eines hybriden Energiespeichersystems für ein

autonomes Schienenfahrzeug, Model-based design of a hybrid energy storage system for an autonomous rail

vehicle”, Tag des Systems Engineering.

INCOSE (2014), “A World in Motion - Systems Engineering Vision 2025”.

ISO/IEC (2007), 42010:2007 Systems and software engineering - Recommended practice for architectural

description of software-intense systems.

Kleiner, S. (2012), “Entwerfen und Entwickeln mit Systems Engineering auf Basis des RFLP-Ansatzes in V6,

Design and development with Systems Engineering based on the RFLP approach in V6”, Entwerfen,

Entwickeln, Erleben.

Phillips, C. (2018), “The Big Happy Family of System Architecture Approaches”.

Stone, R.B. (2000), “A heuristic method for identifying modules for product architectures”, Design Studies, Vol.

21 No. 1, pp. 5-31.

Ulrich, K. (1995), “The role of product architecture in the manufacturing firm”, Research Policy, Vol. 24 No. 3,

pp. 419-440.

Ulrich, K.T. and Eppinger, S.D. (2000), Product design and development, 5th ed., McGraw-Hill Irwin, New York,

NY.

van Wie, M.J. (2002), “Designing Product Architecture: A Systematic Method”.

Verein Deutscher Ingenieure (VDI) (2004), Entwicklungsmethodik für mechatronische Systeme (VDI 2206):

Design methodology for mechatronic systems, VDI.

Walden, D.D. et al. (2015), “INCOSE Systems Engineering Handbook: A Guide for System Life Cycle

Processes and Activities”.

Weilkiens, T. et al. (2016), Model-based system architecture, Wiley series in systems engineering and

management, Wiley, Hoboken, New Jersey.

https://doi.org/10.1017/dsd.2020.268 Published online by Cambridge University Press

https://doi.org/10.1017/dsd.2020.268

