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Abstract

We study the asymptotic behaviour of the powers of a composition operator on various Banach spaces of
holomorphic functions on the disc, namely, standard weighted Bergman spaces (finite and infinite order),
Bloch space, little Bloch space, Bloch-type space and Dirichlet space. Moreover, we give a complete
characterization of those composition operators that are similar to an isometry on these various Banach
spaces. We conclude by studying the asymptotic behaviour of semigroups of composition operators on
these various Banach spaces.
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1. Introduction

This paper can be considered as a sequel of [3], where we initiated the study of
asymptotic behaviour of Cn

ϕ as n→∞, where Cϕ is a bounded composition operator
on a Banach space X which embeds continuously in Hol(D), the Fréchet space of
holomorphic functions on the open unit disc D. We write X ↪→ Hol(D) for short. An
equivalent formulation is that δz ∈ X′ for all z ∈ D, where δz is the evaluation at z (cf.
[3, Proposition 2.1]).

Let ϕ : D→ D be holomorphic and X ↪→ Hol(D) such that f ◦ ϕ ∈ X for all f ∈ X.
Then, by the closed graph theorem, Cϕ f = f ◦ ϕ defines an operator Cϕ ∈ L(X) (the
algebra of all bounded operators on X). The modes of convergence we study are the
following, enumerated by decreasing generality.

(U) Uniform convergence: limn→∞Cn
ϕ exists in L(X).

(S) Strong convergence: limn→∞Cn
ϕx exists in X for all x ∈ X.
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(W) Weak convergence: Cn
ϕx converges weakly in X for all x ∈ X.

(E) Mean ergodicity: limn→∞ (1/n)
∑n−1

k=0 Ck
ϕx exists in X for all x ∈ X.

Recall that by [26, Theorem 1.3, page 26] and [33, Ch. VIII, Section 3]), if X is
reflexive and Cn

ϕ is uniformly bounded, then (E) holds automatically.
Actually, the strongest mode of convergence (uniform convergence) can be

characterized in the following way.

Theorem 1.1 [3, Theorem 3.4]. Let X be a Banach space of holomorphic functions and
ϕ : D→ D holomorphic such that Cϕ ∈ L(X). The following assertions are equivalent:

(i) (Cn
ϕ)n converges in norm;

(ii) re(Cϕ) < 1,

where re denotes the essential spectral radius.

In [3], we studied the convergence of the iterates Cn
ϕ on various Banach spaces such

as the Hardy spaces Hp(D), 1 ≤ p ≤ ∞, the Wiener algebra and the disc algebra.
Using [10], we also deduced the uniform convergence of the iterates on weighted

Hardy spaces H2(γ) ↪→ Hol(D) defined as follows:

H2(γ) =

{
f : D→ C holomorphic and ‖ f ‖2H2(γ) :=

∑
n≥0

|an|
2γ2

n <∞
}
,

where (an)n≥0 is the sequence of Taylor coefficients of f and where (γn)n≥0 is a
nonincreasing sequence of positive reals.

The Banach space H2(γ) contains H2(D) and, for every holomorphic ϕ : D→ D, the
composition operator Cϕ is bounded on H2(γ). We deduced from our result on H2(D)
that (Cn

ϕ)n converges uniformly on H2(γ) for every ϕ with a fixed point in D which is
not an inner function (see [3, Theorem 4.15]).

It happens that this result is far from being optimal in the particular case of the
so-called standard Bergman spaces A2

β (with β > −1), which are equal to H2(γ) with

γ2
n =

Γ(n + 1)Γ(β + 1)
Γ(n + β + 2)

.

Indeed, in this case, we can prove that the uniform convergence is true for every ϕ with
a fixed point in D which is not an automorphism, even if ϕ is inner.

If ϕ is an elliptic automorphism, then ϕ is conjugate to a rotation and then the
asymptotic behaviour of Cn

ϕ ∈ L(X) is simple to describe. Indeed, if ϕ is the identity
map, then Cn

ϕ converges, and otherwise (Cn
ϕ)n does not converge weakly as soon as e1

is in X (where e1 is the identity map on D).
Thus, in the following, we assume throughout that ϕ is a holomorphic self map

of D which is not the identity map and not an elliptic automorphism, so that we can
consider the Denjoy–Wolff point b of ϕ. This is the unique point b ∈ D such that the
iterates ϕn(z) := ϕ ◦ · · · ◦ ϕ(z) (n times) converge to b as n→∞ uniformly for z in
compact subsets of D. Since Cn

ϕ = Cϕn , the asymptotic behaviour of Cn
ϕ as n→∞ is

completely different in the cases |b| = 1 and b ∈ D.
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In the paper we prove the following results on the asymptotic behaviour of Cn
ϕ. Note

that Cϕ(X) ⊂ X for X = Hp, Ap
β ,B,H

∞
νq
,Bα with 1 ≤ p < ∞, q > 0, β > −1 and α > 1

without any restriction on ϕ. For X = B0, Cϕ(X) ⊂ X if and only if ϕ ∈ B0 for X = Bα

with 0 < α < 1, ϕ(X) ⊂ X if and only if τ∞ϕ,α <∞ (defined in Section 4) and, for X =D,
a sufficient condition to get Cϕ(X) ⊂ X is the injectivity of ϕ (a necessary and sufficient
condition can be expressed in terms of Carleson measures and the Nevanlinna counting
function).

Theorem 1.2. Assume that |b| = 1. Then Cϕ is not mean ergodic on X =

Hp, Ap
β ,B,H

∞
νq
,Bα with 1 ≤ p <∞, q > 0, β > −1 and α > 1.

Assuming that Cϕ(X) ⊂ X for X = B0 and X = D, Cϕ is not mean ergodic on these
spaces either.

Next we consider the case when b ∈ D. Define Pb : Hol(D)→ Hol(D) by Pb( f ) =

f (b)1D.

Theorem 1.3. Assume that b ∈ D. If X = Hp,Ap
β ,H

∞
νq
,Bα with 1 ≤ p <∞, q > 0, β > −1

and α > 1, then (Cn
ϕ)n converges to Pb in the operator norm. If X = B0 and ϕ ∈ B0,

then (Cn
ϕ)n converges to Pb in the operator norm.

On the spaces B, Bα with 0 < α < 1 and D, the situation is different. First we
consider the case when X is the Bloch space.

Theorem 1.4. Assume that b ∈ D. If X = B, then (Cn
ϕ)n converges to Pb in the operator

norm if and only if τ∞ϕ < 1.

The case when X = Bα, 0 < α < 1, is very different.

Theorem 1.5. Assume that b ∈ D. If X = Bα with 0 < α < 1 and ϕ such that τ∞ϕ < ∞,
then Cϕ(X) ⊂ X and the following assertions are equivalent:

(i) (Cn
ϕ)n converges to Pb in the operator norm;

(ii) Cϕ is mean ergodic;
(iii) there exists n0 ∈ N such that ϕn0 (D) ⊂ D.

On the Dirichlet space D, there is an example of a univalent ϕ such that b ∈ D
and (Cn

ϕ)n is weakly convergent but not strongly convergent. However, the following
theorem states that strong convergence implies uniform convergence.

Theorem 1.6. Assume that ϕ is univalent with a Nevanlinna counting function
essentially radial. Assume also that b ∈ D. If X = D, the following assertions are
equivalent:

(i) (Cn
ϕ)n converges to Pb in the operator norm;

(ii) (Cn
ϕ)n converges strongly to Pb;

(iii) ϕ is not a full map.

In Table 1 we summarize our results which are a complete characterization of
uniform convergence (U), strong convergence (S), weak convergence (W) of the
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Table 1. Modes of convergence.

Spaces U S W E
Hp, 1 ≤ p <∞ ϕ not inner, |b| < 1 ϕ not inner, |b| < 1 |b| < 1 |b| < 1
Ap
β , β > −1, 1 ≤ p <∞ |b| < 1 |b| < 1 |b| < 1 |b| < 1
B0, ϕ ∈ B0 |b| < 1 |b| < 1 |b| < 1 |b| < 1
Bα, α > 1 |b| < 1 |b| < 1 |b| < 1 |b| < 1
H∞νp

, 0 < p <∞ |b| < 1 |b| < 1 |b| < 1 |b| < 1

Table 2. Isometry and similar to an isometry.

Spaces Cϕ isometric Cϕ similar to an isometry
Hp, 1 ≤ p <∞ ϕ inner and ϕ(0) = 0 ϕ inner and there exists b ∈ D with ϕ(b) = b
Ap
β , β > −1, 1 ≤ p <∞ ϕ rotation ϕ elliptic automorphism
B ϕ(0) = 0 and τ∞ϕ = 1 there exists b ∈ D with ϕ(b) = b and τ∞ϕ = 1
B0 or Bα, α , 1 ϕ rotation ϕ elliptic automorphism
H∞νp

, 0 < p <∞ ϕ rotation ϕ elliptic automorphism

powers of Cϕ or mean ergodicity (E) of Cϕ in terms of ϕ. For example, line 3, column
1 says:

(Cn
ϕ)n∈N converges in L(X), X = B0 if and only if |b| < 1.

In this table, we assume that ϕ is not an elliptic automorphism and we denote by b the
Denjoy–Wolff point of ϕ.

For X = D, our main result is Theorem 1.6 and, for X = Bα with 0 < α < 1, our
main contribution is presented in Theorem 1.5. The case when |b| = 1 is not fully
understood.

For X = B, uniform and strong convergence are fully understood; moreover, mean
ergodicity requires that |b| < 1.

As a consequence of our study of the powers of Cϕ, we also get interesting results
related to isometries or similarity to isometries on various Banach spaces which are not
necessarily hilbertian (on a Hilbert space, Nagy’s criterion for similarity to isometries
can be used as in [4]). In Table 2 we summarize our results which give a complete
characterization of Cϕ to be isometric or similar to an isometry in terms of ϕ. For this
problem, ϕ is a holomorphic self map of D that may be an elliptic automorphism. In
the case of the Dirichlet space, we characterize when Cϕ is similar to an isometry only
in a special case (see Corollary 6.8).

The results in the first line of both tables refer to the previous paper [3] and the
definition of τ∞ϕ is in Section 3.

In Section 7, we produce an example of a Banach space which is the quotient
space of D modulo the constant functions. In this case, we obtain an example of a
composition operator on which the strong convergence of the iterates is satisfied but
the uniform convergence is false (see Theorem 7.1). Nevertheless, we have slightly
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changed our framework since this Banach space does not embed continuously in
Hol(D).

We conclude this paper with the study of the asymptotic behaviour as t→∞ of
semigroups of composition operators on the Banach spaces we had considered in the
previous seven sections.

The results of this paper rely on previous works of many authors. For example, we
are in the comfortable position that much is known on the essential spectral radius of
Cϕ on some of these spaces we consider. So, in some parts we just have to put together
known results or, sometimes, proofs can be imitated. This is the case, for example, for
the comparison of re,Ap and re,A2 for Bergman spaces due to MacCluer and Saxe [17].
We extend their result to weighted Bergman spaces.

Frequently more original proofs are needed. For example, our characterization of
those Cϕ on the little Bloch space B0 which are similar to an isometry is new. Another
example is the characterization of re(Cϕ) < 1 on Bα, α > 1. It uses the computation
of the essential norm [25] due to Montes-Rodrı́guez but some additional substantial
arguments are needed. We prove that mean ergodicity on most of our spaces (for
X = Bα, 0 < α < 1, the question remains open) forces the Denjoy–Wolff point to be in
D, assuming that ϕ is not an elliptic automorphism. For this latter case, we refer to [5]
by Beltrán-Meneu et al., where a systematic study of ergodicity on different spaces is
given. Many other detailed references to known results are given throughout the paper.

2. Standard weighted Bergman spaces

We write dA for the normalized Lebesgue area measure on D, that is, dA(reiθ) =

(1/π)r dr dθ. The standard weighted Bergman space, Ap
β(D) (Ap

β , in short), β ≥ −1,
p ≥ 1, is the space of all holomorphic functions f : D→ C such that∫

D

| f (z)|p(1 − |z|2)β dA(z) <∞.

Every Ap
β is a Banach space when 1 ≤ p < ∞ with norm the pth root of the above

integral, denoted by ‖ f ‖Ap
β
.

The unweighted Bergman space, Ap, is obtained when β = 0.
The standard Hardy space Hp(D) is obtained when β = −1.
Given a holomorphic self map ϕ of D, the composition operator Cϕ is always

bounded on Ap
β space.

Theorem 2.1 [36, Theorem 11.6]. Suppose that ϕ : D→ D is holomorphic and p ≥ 1,
β ≥ −1. Then

1
(1 − |ϕ(0)|2)(β+2)/p ≤ ‖Cϕ‖L(Ap

β ) ≤

(1 + |ϕ(0)|
1 − |ϕ(0)|

)(β+2)/p
.

Remark 2.2. Suppose that ϕ : D→ D is holomorphic and p ≥ 1, β > −1. Then Cϕ is
power bounded on Ap

β if and only if ϕ has a fixed point in D and, hence, Cϕ is not even
weakly convergent if ϕ has a fixed point in ∂D.
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We are going to show now that on Ap
β , if the Denjoy–Wolff point is of modulus one,

then Cϕ is not even mean ergodic. To that aim we establish the following criterion.

Lemma 2.3. Let X ↪→ Hol(D) be a Banach space such that 1D ∈ X and let ϕ be a
holomorphic self map of D such that Cϕ(X) ⊂ X. Suppose also that ϕ is not an
elliptic automorphism and that 1 is the Denjoy–Wolff point of ϕ. Assume that there
exist r0 ∈ (0, 1) and f ∈ X such that fr(z) := f (rz) defines functions fr ∈ X, r0 ≤ r < 1,
satisfying:

(a) limr↑1 | fr(1)| =∞;
(b) lim supr↑1 ‖ fr‖X <∞.

Then the operator Cϕ is not mean ergodic on X.

Proof. Assume that limn→∞ (1/n)
∑n−1

k=0 Ck
ϕ strongly converges to P in L(X). For

r0 ≤ r < 1,

lim
n→∞

(Cn
ϕ fr)(z) = lim

n→∞
fr(ϕn(z)) = fr(1)

for all z ∈ D. Thus, P fr = fr(1)1D for all r0 ≤ r < 1. It follows that

| fr(1)|‖1D‖X = ‖P fr‖X ≤ ‖P‖‖ fr‖X ,

which contradicts (a) and (b). �

In Lemma 2.3, it does not suffice to have (a) alone. We show this by an example.

Example 2.4. There exists a Banach space X ↪→ Hol(D) such that limr↑1 | fr(1)| =∞ for
all f ∈ X\{0} and there exists ϕ : D→ D holomorphic with limz→1 ϕ(z) = 1 such that
Cϕ(X) ⊂ X. But Cϕ is mean ergodic on X.

Proof. Denote by P the upper half plane and define ψ : P→ P by ψ(w) = w + i. Denote
by C : P → D the Cayley transform, that is, C(w) = (w − i)/(w + i) and C−1(z) =

i(1 + z)/(1 − z). Let ϕ = C ◦ ψ ◦C−1. Then

lim
z→1,z∈D

ϕ(z) = lim
w→∞,w∈P

C ◦ ψ(w) = C(∞) = 1.

Note that eψ(w) = eiew, w ∈ P. Let g := eC−1
∈ Hol(D) and X := Cg. Since g ◦ ϕ = eig, it

follows that Cϕ f = ei f for all f ∈ X and then Cϕ(X) ⊂ X and X ↪→ Hol(D). Moreover,
since Cn

ϕ f = ein f for all n ∈ N and f ∈ X,

1
n

n−1∑
k=0

Ck
ϕ f → 0 as n→∞

for all f ∈ X. However, Condition (a) is satisfied since

lim
z→1,z∈D

|g(z)| = lim
w→∞,w∈P

|ew| =∞. �

Proposition 2.5. Let ϕ be a holomorphic self map of D whose Denjoy–Wolff point b is
of modulus one. Then Cϕ is not mean ergodic on Ap

β for 1 ≤ p <∞ and β > −1.
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Proof. Since Ap
β is invariant by rotation, we may assume that b = 1. Let γ > 0

and F(z) := (log 2/(1 − z))γ, where log is the principal branch of the logarithm.
By [37, Ch. V, Theorem 2.31], the Taylor coefficients an of F are equivalent
to 1/n(log n)γ−1. It follows that F ∈ D ⊂ H2(D) if and only if γ < 1/2. Since
‖F‖pHp(D) = ‖F p/2‖2H2(D), the function G := F p/2 is in Hp(D) ⊂ Ap

β (for β ≥ −1) as soon as
γp/2 < 1/2. Since ‖Gr‖Ap

β
≤ ‖G‖Ap

β
and since limr↑1 |Gr(1)| =∞, the conclusion follows

from Lemma 2.3. �

In [3], we have already used the fact that the only isometric composition operators
on any Hardy space Hp(D) = Ap

−1, 1 ≤ p < ∞, are induced by inner functions ϕ such
that ϕ(0) = 0 [12, Theorem 3.8].

The analogous result is really different for β > −1. It is shown in [21] that the only
isometric composition operators on any weighted Bergman space are the trivial ones,
that is, those whose symbol is a rotation.

Theorem 2.6 [21, Theorem 1.3(b)]. Let 1 ≤ p < ∞, −1 < β < ∞. A composition
operator Cϕ is an isometry of Ap

β if and only if ϕ is a rotation.

In [7], Bourdon and Shapiro proved that

(re,Hp (Cϕ))p ≤ (re,H2 (Cϕ))2

for 1 ≤ p <∞, where re,Hp (Cϕ) denotes the essential spectral radius of Cϕ on Hp. They
also proved that the above inequality is an equality when p > 1. In [17], MacCluer and
Saxe proved the analogous result on Bergman space, that is,

(re,Ap (Cϕ))p ≤ (re,A2 (Cϕ))2

for 1 ≤ p <∞, with equality for p > 1.
This result is relevant for our purpose since it tells us that the essential spectral

radius of Cϕ will be strictly less than 1 on Ap or Hp as soon as it is the case on H2 or
A2.

We establish the above formula for Ap
β , β > −1, 1 ≤ p < ∞ and then by means of

Theorem 1.1 we get the uniform convergence of the iterates of Cϕ.
By Theorem 2.6, we already know that the possible ϕ for which we may hope the

uniform convergence of the iterates of Cϕ on Ap
β (β > −1) are all holomorphic self maps

on the unit disc except rotations. Surprisingly, rotations are indeed the only symbols
to avoid, thanks to the following result.

Theorem 2.7 [8, Proposition 2.1]. Let ϕ be a holomorphic self map of D which is 0 at
0. If ϕ is not a rotation, then the essential norm of Cϕ on A2

β, with β > −1, is strictly
less than 1.

Theorem 2.8. Suppose that ϕ is a holomorphic self map of D. Then, for each
1 ≤ p <∞ and β ≥ −1,

(re,Ap
β
(Cϕ))p ≤ (re,A2

β
(Cϕ))2.

Moreover, if p > 1, the above inequality is an equality.
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Proof. For β = −1, the result is due to Bourdon and Shapiro [7] and for β = 0 the
result is proved in [17]. The proof for β > −1 can be done using technical variations of
arguments given in [17]. We will just indicate the relevant changes and provide useful
references for the material involved.

The elements of the proof in [17] that require a modification rely on:

• estimates of the norm and essential norm in the Bergman spaces involving the
generalized Nevanlinna counting function;

• estimates of the norm of the linear functionals of evaluation at w ∈ D, or evaluation
of the first derivative at w ∈ D on the Banach space Ap(:= Ap

0 ) and on the invariant
subspace

zmAp := {g ∈ Ap : g has a zero of at least order m at 0}.

We will now give the estimates in the standard weighted Bergman spaces in order
to reconstruct the proof following exactly the strategy initiated by Bourdon and
Shapiro and adapted by Saxe and MacCluer.

Formula (1.2) in [17] should be replaced by

‖ f ◦ ϕ‖p
Ap
β

' | f (ϕ(0))|p +

∫
D

| f (z)|p−2| f ′(z)|2Nϕ,β+2(z) dA(z),

which is [29, Proposition 2.4]. The symbol ‘'’ means that the left-hand side is
bounded below and above by positive constant multiples of the right-hand side and
the constants do not depend on f . Recall that the generalized Nevanlinna counting
function N is defined as

Nϕ,γ(w) =
∑

z∈ϕ−1{w}

(
log

1
|z|

)γ
, γ > 0,w ∈ D\{ϕ(0)}.

The sum is taken over the preimages of w, counting multiplicities, and, when w < ϕ(D),
Nϕ,γ(w) is defined to be 0.

Formula (1.5) in [17] should be replaced by the following estimate proved in [28,
Theorem 6.8]:

c(β)σβ+2(ϕ) ≤ ‖Cϕ‖
2
e,L(A2

β) ≤ σβ+2(ϕ),

where σγ(ϕ) = lim sup|w|→1− (Nϕ,γ(w)/(−log |w|)γ) and where c(β) is a positive constant
which depends only on β.

The assertions (a) and (b) of [17, Proposition 1] should be replaced by (1 ≤ p <∞):

(a) for w ∈ D,

‖δw‖(Ap
β )′ =

1
(1 − |w|2)(β+2)/p ;

(b) there exists a constant cβ,p, depending on β and p, so that, for any w ∈ D and
f ∈ Ap

β ,
| f ′(w)| ≤ cβ,p(1 − |w|)−((p+β+2)/p)‖ f ‖Ap

β
.

The assertion (a) is proved in [30, page 755] and (b) follows from (a) using the
Cauchy formula.
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Proposition 2 in [17], when 1 ≤ p <∞ and m ≥ 1, should be replaced by the following.
There is a constant, cβ,p, depending only on β and p, so that if f ∈ zmAp

β and w ∈ D,
then

| f (w)| ≤ cβ,p
mβ+1

(1 − |w|2)(β+2)/p |w|
m‖ f ‖Ap

β
.

This inequality follows along the same lines as the proof of [17, Proposition 2], thanks
to the explicit expression of the reproducing kernel in A2

β denoted by kβw (see, for
example, [36, Corollary 4.20]), which is equal to

kβw(z) =

∞∑
n=0

Γ(n + β + 2)
n!Γ(β + 2)

znwn
=

1
(1 − zw)β+2 .

Finally, the last modification is the assertion of Proposition 4 in [17], which should be
replaced by: for 1 ≤ p <∞, f ∈ zmA2

β and w ∈ D,

| f ′(w)| ≤ |w|m−12(β+1)/2m(β+3)/2
√

Γ(β + 4)
1

(1 − |w|2)(β+4)/2 ‖ f ‖A2
m,β
. �

Assume that ϕ is not the identity map to avoid a trivial statement.

Theorem 2.9. Let ϕ : D→ D be holomorphic with a fixed point b in D. The following
assertions are equivalent on Ap

β , 1 ≤ p <∞, β > −1:

(i) ϕ is not an automorphism;
(ii) Cn

ϕ converges uniformly to Pb, Pb f = f (b)1D for all f ∈ Ap
β .

Proof. (i)⇒ (ii): We may assume that b = 0, considering Cψb ◦Cϕ ◦Cψb := Cψ, where
ψb(z) = (b − z)/(1 − bz) = ψ−1

b (z) and ψ := ψb ◦ ϕ ◦ ψb, so that ψ(0) = 0. Then, by
Theorem 2.7, in particular, the essential spectral radius of Cϕ is strictly less than 1
on A2

β and thus on Ap
β by Theorem 2.8. The conclusion follows from Theorem 1.1.

(ii)⇒ (i): If ϕ is an elliptic automorphism, then Cϕ is similar to a composition by a
rotation and therefore the sequence of iterates does not even weakly converge. �

Now we can also characterize those composition operators that are similar to an
isometry.

Corollary 2.10. Let ϕ be a holomorphic self map of D. Consider the composition
operator Cϕ on Ap

β (1 ≤ p <∞, β > −1). The following assertions are equivalent:

(i) Cϕ is similar to an isometry;
(ii) ϕ is an elliptic automorphism.

Proof. (i) ⇒ (ii): Assume that there exist an isometry U on Ap
β and an invertible

operator S such that
Cϕ = S −1US .

Since Cn
ϕ = S −1UnS , it follows that Cϕ is power bounded and, thus, by Remark 2.2,

ϕ has a fixed point b ∈ D. If ϕ is not an automorphism, by Theorem 2.9, Cn
ϕ → Pb as
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n→∞ and then Un → Q := S PbS −1 as n→∞. Since Un is an isometry, also Q is an
isometry. This is impossible since Q is a projection of rank one.

(ii)⇒ (i): If ϕ is an automorphism fixing a b ∈ D, then ϕ̃ := ψb ◦ ϕ ◦ ψb is a rotation.
Then Cϕ̃ is an isometry and Cϕ = S −1Cϕ̃S , where S = Cψb = S −1. �

3. Bloch space B and little Bloch space B0

A function f ∈ Hol(D) is said to be a Bloch function if it satisfies

sup
z∈D

(|1 − |z|2)| f ′(z)| <∞.

The set of all Bloch functions is called the Bloch space B, which becomes a Banach
space under the norm

‖ f ‖B = | f (0)| + sup
z∈D

(|1 − |z|2)| f ′(z)|.

The little Bloch space B0 is the set of holomorphic functions f on D such that

lim
|z|→1

(1 − |z|2)| f ′(z)| = 0.

Actually B0 is a closed subspace of B.
Let ϕ be a holomorphic self map of D and f ∈ B. Then, for z ∈ D,

(1 − |z|2)|( f ◦ ϕ)′(z)| =
(1 − |z|2)|ϕ′(z)|

1 − |ϕ(z)|2
(1 − |ϕ(z)|2)| f ′(ϕ(z))). (3.1)

Using the Schwarz–Pick lemma [12, Theorem 2.39],

‖ f ◦ ϕ‖B ≤ | f (ϕ(0))| + ‖ f ‖B

and, thus, for every holomorphic self map ϕ of D, the operator Cϕ is bounded on B.
In contrast, composition operators on B0 are not always bounded.

Lemma 3.1 [19, page 2680]. Let ϕ be a holomorphic self map of D. Then Cϕ is bounded
on B0 if and only if ϕ ∈ B0.

In order to present the upper and lower bounds for the norm due to Xiong [32], we
first define some quantities associated with a symbol ϕ.

Let

τϕ(z) :=
1 − |z|2

1 − |ϕ(z)|2
|ϕ′(z)| and τ∞ϕ := sup

z∈D
τϕ(z).

By the Schwarz–Pick lemma, τ∞ϕ ≤ 1.

Theorem 3.2 [32, Theorem 1, Corollary 1 and Theorem 2]. Let ϕ be a holomorphic
mapping of D into itself. Then the following holds:

max
{
1,

1
2

log
1 + |ϕ(0)|
1 − |ϕ(0)|

}
≤ ‖Cϕ‖L(B) ≤ max

{
1,

1
2

log
1 + |ϕ(0)|
1 − |ϕ(0)|

+ τ∞ϕ

}
.

In particular, if ϕ(0) = 0, then ‖Cϕ‖L(B) = 1.
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The following lemma shows that B and B0 fit in the class of Banach spaces of
holomorphic functions (that is, B ↪→ Hol(D) and B0 ↪→ Hol(D)).

Lemma 3.3 [32, Lemma 1]. If f ∈ B, then

| f (z)| ≤ | f (0)| +
‖ f ‖B − | f (0)|

2
log

1 + |z|
1 − |z|

.

The exact formula giving the essential norm of a composition operator on B and B0

was obtained in [24].

Theorem 3.4. Suppose that ϕ is a holomorphic self map of D. Then

‖Cϕ‖e,L(B) = inf
0<s<1

sup
|ϕ(z)|>s

1 − |z|2

1 − |ϕ(z)|2
|ϕ′(z)|.

Moreover, if ϕ ∈ B0, then

‖Cϕ‖e,L(B0) = inf
0<s<1

sup
|ϕ(z)|>s

1 − |z|2

1 − |ϕ(z)|2
|ϕ′(z)| = lim sup

|z|→1

1 − |z|2

1 − |ϕ(z)|2
|ϕ′(z)|.

An obvious corollary of Theorem 3.4 is the following inequality.

Corollary 3.5. Suppose that ϕ is a holomorphic self map of D. Then

‖Cϕ‖e,L(B) ≤ τ
∞
ϕ ≤ 1.

Moreover, if ϕ ∈ B0, then
‖Cϕ‖e,L(B0) ≤ τ

∞
ϕ ≤ 1.

This link between the essential norm and τ∞ϕ is of particular interest because of the
complete characterization of isometric composition operators on B in terms of τ∞ϕ .

Theorem 3.6 [1, 23]. Suppose that ϕ is a holomorphic self map of D. Then the
operator Cϕ onB is isometric if and only if ϕ(0) = 0 and one of the following equivalent
conditions holds.

(i) τ∞ϕ = 1.
(ii) ϕ either is a rotation of D or satisfies (M): for every w ∈ D, there exists (an) ⊂ D

such that |an| → 1, ϕ(an)→ w and τϕ(an)→ 1 as n→∞.
(iii) ϕ either is a rotation of D or the zeros of ϕ form an infinite sequence (zk)k in D

such that lim supk→∞(1 − |zk|
2)|ϕ′(zk)| = 1.

(iv) ϕ either is a rotation of D or ϕ = gB, where g is a nonvanishing holomorphic
function mapping D into itself and B is an infinite Blaschke product whose zero
set Z contains a sequence (zk)k such that |g(zk)| → 1 when k→∞ and

lim
k→∞

∏
ξ∈Z,ξ,zk

∣∣∣∣∣ zk − ξ

1 − ξzk

∣∣∣∣∣ = 1.
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Easily constructible examples which are not rotations are thin Blaschke products,
that is, Blaschke products whose set of zeros (zk)k satisfies

lim
k→∞

∏
n,k

∣∣∣∣∣ zk − zn

1 − znzk

∣∣∣∣∣ = 1.

We have now all the material to prove the convergence theorem for the Bloch space.

Theorem 3.7. Let ϕ : D→ D be holomorphic with a fixed point b in D. The following
assertions are equivalent on B:

(i) τ∞ϕ < 1;
(ii) Cn

ϕ converges uniformly to Pb as n→∞, where Pb f = f (b)1D;
(iii) Cn

ϕ converges strongly.

Proof. (i)⇒ (ii): Since ‖Cϕ‖e,L(B) ≤ τ
∞
ϕ , (i) implies in particular that re(Cϕ) < 1. Then

(ii) follows from Theorem 1.1.
(ii)⇒ (iii) is obvious.
(iii) ⇒ (i): Let P be the strong limit of Cn

ϕ as n→∞. Then, for f ∈ B, (P f )(z) =

limn→∞ f (ϕn(z)) = f (b) for all z ∈ D. This implies that P = Pb. Let ψ = ψb ◦ ϕ ◦ ψb,
where ψb(z) = (b − z)/(1 − bz). Note that ψ(0) = 0. Suppose that τ∞ψ = 1. Then,
by Theorem 3.6, Cψ is an isometry. Then Cn

ψ = CψbC
n
ϕCψb converges strongly to

Cψb PCψb =: Q. Thus, Q2 = Q is isometric. Hence, Q = Id, which implies that P = Id.
Therefore, we have τ∞ψ < 1. It remains to check that τ∞ϕ < 1. Since ϕ = ψb ◦ ψ ◦ ψb,

ϕ′(z) = ψ′b(z)ψ′(ψb(z))ψ′b(ψ ◦ ψb(z)).

It follows that
1 − |z|2

1 − |ϕ(z)|2
|ϕ′(z)| =

1 − |z|2

1 − |ψb ◦ ψ ◦ ψb(z)|2
|ψ′b(z)||ψ′(ψb(z))||ψ′b(ψ ◦ ψb(z))|,

which is equal to the product of three terms, say A, B and C, with

A =
1 − |z|2

1 − |ψb(z)|2
|ψ′b(z)|, B =

1 − |ψb(z)|2

1 − |ψ(ψb(z))|2
|ψ′(ψb(z))|

and

C =
1 − |ψ(ψb(z))|2

1 − |ψb(ψ(ψb(z)))|2
|ψ′b(ψ(ψb(z)))|.

The Schwarz–Pick lemma applied to ψb asserts that A ≤ 1 and C ≤ 1. It follows that
τ∞ϕ ≤ τ

∞
ψ < 1, which concludes the proof. �

Remark 3.8. When ϕ has no fixed point in D, its Denjoy–Wolff point is on the unit
circle and, therefore, by Theorem 3.2, limn→∞ ‖Cn

ϕ‖ =∞ since

‖Cn
ϕ‖L(B) ≥ max

{
1,

1
2

log
1 + |ϕn(0)|
1 − |ϕn(0)|

}
with |ϕn(0)| → 1. In this case, even the weak convergence of the iterates is impossible.
We will see below that Cϕ is not even mean ergodic (Proposition 3.12).
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Now we obtain on the Bloch space the following characterization of similarity to
an isometry.

Corollary 3.9. Let ϕ be a holomorphic self map of D. Consider the composition
operator Cϕ on B. The following assertions are equivalent:

(i) Cϕ is similar to an isometry;
(ii) ϕ has a fixed point b ∈ D and τ∞ϕ = 1.

Proof. (i)⇒ (ii): ϕ has a fixed point b ∈ D by Remark 3.8. Since Pb is not isometric,
Cn
ϕ cannot even converge strongly to Pb as n→∞. Thus, Theorem 3.7 implies that

τ∞ϕ = 1.
(ii)⇒ (i): Let ϕ̃ := ψb ◦ ϕ ◦ ψb. Then we have ϕ̃(0) = 0. If τ∞

ϕ̃
< 1, by Theorem 3.7,

Cn
ϕ̃
→ P0 as n→ ∞ and thus Cn

ϕ → Cψb ◦ P0 ◦ Cψb = Pb as n→ ∞. This is absurd
since Cϕ is similar to an isometry. Therefore, τ∞

ϕ̃
= 1 and, then, by Theorem 3.7, Cϕ̃ is

isometric. �

The convergence result of the iterates of Cϕ on the little Bloch space is different
from the case of the Bloch space since there are many fewer isometric composition
operators on B0.

Theorem 3.10. Let ϕ be a holomorphic self map of D such that ϕ ∈ B0. The following
assertions are equivalent:

(i) ϕ is a rotation;
(ii) Cϕ is isometric;
(iii) ϕ(0) = 0 and τ∞ϕ = 1.

Proof. (i)⇒ (ii) is obvious.
(ii) ⇒ (iii): First we show that ϕ(0) = 0. Let a ∈ D be such that ϕ(0) = a.

The automorphism ψa is in B0 and ‖ψa‖B = |a| + 1. Moreover, by (3.1) and since
ψa(ϕ(0)) = 0, it follows that |a| + 1 ≤ 1 and then a = 0.

Now assume that τ∞ϕ < 1. Then ‖Cϕ‖e,B0 < 1 by Corollary 3.5. Hence, Cϕ converges
to P in L(B0) by Theorem 1.1. Since ϕ(0) = 0, it follows that P = P0, which is a
contradiction since P0 is not isometric.

(iii) ⇒ (i): If ϕ is not a rotation, it follows from Theorem 3.6 that the zeros of ϕ
form an infinite sequence (zk)k such that

lim sup
k→∞

(1 − |zk|
2)|ϕ′(zk)| = 1.

This is impossible since ϕ ∈ B0. �

We can now easily prove a convergence theorem on B0.

Theorem 3.11. Let ϕ be a holomorphic self map of D such that ϕ ∈ B0 and such that
ϕ fixes a point b ∈ D. The following assertions are equivalent:

(i) ϕ is not an automorphism;
(ii) Cn

ϕ converges uniformly to Pb as n→∞, where Pb f = f (b)1D;
(iii) Cn

ϕ weakly converges to Pb as n→∞, where Pb f = f (b)1D.
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Proof. Since B0 is Möbius invariant, we may assume that b = 0.
(i)⇒ (ii) It follows from Theorem 3.10 that τ∞ϕ < 1. Now Corollary 3.5 implies that

‖Cϕ‖e,L(B0) < 1. Then (ii) follows from Theorem 1.1.
(ii)⇒ (iii) is trivial.
(iii) ⇒ (i): Since Pb is a projection different from the identity, Cϕ cannot be

isometric. Thus, ϕ is not a rotation by Theorem 3.10. Since ϕ(0) = 0, this is the
same as (i). �

If the Denjoy–Wolff point b is of modulus one, then we show that Cϕ is not mean
ergodic.

Proposition 3.12. Let ϕ be a holomorphic self map of D which is not an elliptic
automorphism and whose Denjoy–Wolff point b is of modulus one. Consider Cϕ on
B or on B0 assuming that ϕ ∈ B0. Then Cϕ is not mean ergodic.

Proof. Since B and B0 are invariant by rotation, we may assume that b = 1. Let
f (z) = log(log 2/(1 − z)). Since 2/(1 − z) ∈ P1 := {z ∈ C : Re(z) > 1} when z ∈ D, the
function f is well defined (choosing the principal branch of the logarithm). Moreover,
since f ′(z) = 1/(1 − z) log(2/(1 − z)),

(1 − |z|2)| f ′(z)| ≤ (1 + |z|)
∣∣∣∣∣ 1
log(2/(1 − z))

∣∣∣∣∣→ 0 as |z| → 1.

In other words, f ∈ B0 ⊂ B. Since ‖ fr‖B = ‖ fr‖B0 ≤ ‖ f ‖B0 = ‖ f ‖B and limr↑1 | fr(1)| =∞,
the conclusion follows from Lemma 2.3. �

Also on B0 we obtain a characterization of those composition operators which are
similar to an isometry.

Corollary 3.13. Let ϕ be a holomorphic self map of D such that ϕ ∈ B0. Consider
the composition operator Cϕ on B0. The following assertions are equivalent:

(i) Cϕ is similar to an isometry;
(ii) ϕ is an elliptic automorphism.

Proof. This equivalence follows from Remark 3.8, Theorems 3.10 and 3.11, using the
arguments given in the proof of Corollary 3.9. �

4. Bloch-type space Bα, α > 0

For α > 0, the Bloch-type space Bα is the space of all functions f in Hol(D) such
that

sup
z∈D
| f ′(z)|(1 − |z|2)α <∞.

Each Bα is a Banach space with a norm given by

‖ f ‖Bα = | f (0)| + sup
z∈D
| f ′(z)|(1 − |z|2)α.
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For α > 0 and ϕ a holomorphic self map of D, let

τϕ,α(z) :=
(1 − |z|2)α|ϕ′(z)|

(1 − |ϕ(z)|2)α
, τ∞ϕ,α := sup

z∈D
τϕ,α(z).

Then we have the following characterization of boundedness of a composition
operator.

Theorem 4.1 [18, 19, 31]. For α > 0 and ϕ a holomorphic self map of D, the
composition operator Cϕ is a bounded operator on Bα if and only if

τ∞ϕ,α <∞.

Indeed, there exist positive constants kα and Kα depending only on α such that

kατ∞ϕ,α ≤ ‖Cϕ‖L(Bα) ≤ Kατ
∞
ϕ,α.

We recall the following result from [25] on the essential norm of Cϕ on Bα, α > 0,
which is a generalization of Theorem 3.4.

Theorem 4.2. Suppose that ϕ is a holomorphic self map of D. If Cϕ defines a bounded
operator on Bα, α > 0, then

‖Cϕ‖e,Bα = lim
s→1−

sup
|ϕ(z)|>s

( 1 − |z|2

1 − |ϕ(z)|2

)α
|ϕ′(z)|.

Note that we have in particular that

‖Cϕ‖e,L(Bα) ≤ τ
∞
ϕ,α.

The following result by Zorboska describes all the isometric composition operators
on Bα, α , 1. Surprisingly, the situation here is very different from the case of the
classical Bloch space (α = 1). It can be compared to the fact that on the classical Hardy
spaces and the weighted Bergman spaces the classes of symbols defining isometric
composition operators are different.

Theorem 4.3 [34]. Let α > 0, α , 1 and let ϕ be a holomorphic self map of D. Then
the composition operator Cϕ is an isometry on Bα if and only if ϕ is a rotation.

Very often, in order to use the Schwarz lemma, one considers a self map ϕ of D
such that ϕ(0) = 0. In order to deal with the general case, the following lemma will be
very useful.

Lemma 4.4 [35, Section 3]. For a ∈ D, a , 0 and α > 0,

τ∞ψa,α
≤

(1 + |a|
1 − |a|

)|1−α|
,

where ψa is the automorphism (equal to its inverse) defined by ψa(z) = (a − z)/(1 − az).
Thus, Cψa defines an isomorphism on Bα.
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The following lemma shows that, for α > 0 and for all z ∈ D, the evaluation
functionals δz are bounded on Bα. See [16, Lemma 1.2] for a similar estimate. In
other words, Bα ↪→ Hol(D).

Lemma 4.5. Suppose that f ∈ Bα, α > 0. Then, for each z ∈ D,

| f (z)| ≤ | f (0)| +
‖ f ‖Bα

2

∫ |z|2

0

1
√

x(1 − x)α
dx.

Proof. Let f ∈ Bα, α > 0. Then, for z ∈ D,

| f (z) − f (0)| =
∣∣∣∣∣z ∫ 1

0
f ′(zt) dt

∣∣∣∣∣ ≤ |z|∫ 1

0
| f ′(zt)| dt

= |z|
∫ 1

0

1
(1 − |z|2t2)α

(1 − |z|2t2)α| f ′(zt)| dt

≤ |z|‖ f ‖Bα
∫ 1

0

1
(1 − |z|2t2)α

dt

=
‖ f ‖Bα

2

∫ |z|2

0

1
√

x(1 − x)α
dx,

using the change of variable x = |z|2t2. �

Note that the integral in the previous lemma exists for all z ∈ D, no matter what α
is, whereas it exists for all z ∈ D if and only if 0 < α < 1.

Lemma 4.6. Let α > 0, α , 1 and let ϕ be a holomorphic self map of D such that Cϕ is
bounded on Bα. Then

‖Cϕ‖L(Bα) ≥ max
{
1,

1
2α|α − 1|

( 1
(1 − |ϕ(0)|)α−1 − 1

)}
.

Proof. Let ϕ(0) = eiθ|ϕ(0)|, F(z) = 1/2α|α − 1|((1/(1 − z)(α−1)) − 1) and g(z) = F(e−iθz).
Then F(0) = 0 and ‖g‖Bα = 1. We then have

‖Cϕ‖Bα ≥ ‖g ◦ ϕ‖Bα ≥ |g(ϕ(0))|

= |F(e−iθ(ϕ(0)))| = |F(|ϕ(0)|)|

=
1

2α|α − 1|

( 1
(1 − |ϕ(0)|)(α−1) − 1

)
.

Taking f = 1D, we have ‖Cϕ( f )‖L(Bα) = 1 and so ‖Cϕ‖L(Bα) ≥ 1. This completes the
proof. �

Remark 4.7. When ϕ has no fixed point in D, its Denjoy–Wolff point is on the unit
circle and, therefore, by Lemma 4.6, when α > 1, limn→∞ ‖Cn

ϕ‖ =∞ since

‖Cn
ϕ‖L(Bα) ≥

1
2α(α − 1)

( 1
(1 − |ϕn(0)|)α−1 − 1

)
with |ϕn(0)| → 1. In this case, even the weak convergence of the iterates is impossible.
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4.1. Bloch-type space Bα, α > 1. First recall that in this case, for every
holomorphic self map ϕ of D, Cϕ is bounded [19, 31, 35]. This follows from
Lemma 4.4 combined with the following lemma, which will be useful later.

Lemma 4.8. Let ϕ be a holomorphic self map of D such that ϕ(0) = 0. Then τ∞ϕ,α ≤ 1.

Proof. The Schwarz–Pick lemma [12, Theorem 2.39] asserts that

(1 − |z|2)|ϕ′(z)|
1 − |ϕ(z)|2

≤ 1.

It follows that

τϕ,α(z) :=
(1 − |z|2)|ϕ′(z)|

1 − |ϕ(z)|2
(1 − |z|2)α−1

(1 − |ϕ(z)|2)α−1 ≤
(1 − |z|2)α−1

(1 − |ϕ(z)|2)α−1 .

Since ϕ(0) = 0, using the Schwarz lemma, |ϕ(z)| ≤ |z| and thus

τϕ,α(z) ≤ 1,

which obviously implies that τ∞ϕ,α ≤ 1. �

So, by Lemma 4.8, Cϕ is bounded onBα under the assumption that ϕ(0) = 0. To deal
with the case when ϕ(0) = a , 0, note that Cϕ = CϕaCψa , where ψa = (a − z)/(1 − az)
and where ϕa = ψa ◦ ϕ fixes 0. By Lemma 4.4, Cϕ is bounded on Bα for every self
map ϕ of D.

Lemma 4.9. Let ϕ be a holomorphic self map of D such that ϕ(0) = 0 and such that ϕ
is not a rotation. Then, for each s ∈ (0, 1), there exists r ∈ (0, 1) such that

1 − |z|2

1 − |ϕn(z)|2
≤ 2rn

for all n ≥ 1 and every z ∈ D such that |ϕn(z)| > s.

Proof. Note that

1 − |z|2

1 − |ϕn(z)|2
=

1 − |z|
1 − |ϕn(z)|

1 + |z|
1 + |ϕn(z)|

≤ 2
1 − |z|

1 − |ϕn(z)|
. (4.1)

By [12, Lemma 7.33], since ϕ(0) = 0 and ϕ is not a rotation, for each 0 < s < 1, there
exists r ∈ (0, 1) such that

1 − |u|
1 − |ϕ(u)|

< r

for all u with |u| > s. Then we use the identity

1 − |z|
1 − |ϕn(z)|

=
1 − |z|

1 − |ϕ(z)|
1 − |ϕ(z)|
1 − |ϕ2(z)|

· · ·
1 − |ϕn−1(z)|
1 − |ϕn(z)|

.

By the Schwarz lemma, since ϕ(0) = 0,

|z| ≥ |ϕ(z)| ≥ · · · ≥ |ϕn(z)|
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and thus |ϕn(z)| > s implies that |z| > s, . . . , |ϕn−1(z)| > s. Finally,

1 − |z|
1 − |ϕn(z)|

≤ rn

for all z such that |ϕn(z)| > s. The lemma follows from (4.1). �

We are now able to obtain the key result for the essential spectral radius.

Theorem 4.10. Let ϕ be a holomorphic self map of D such that ϕ(0) = 0 and such that
ϕ is not a rotation. Then re(Cϕ) < 1, where re(Cϕ) is the essential spectral radius of Cϕ

on Bα.

Proof. Fix sa ∈ (0, 1). By Theorem 4.2,

‖Cϕn‖e,L(Bα) ≤ sup
|ϕn(z)|>sa

( 1 − |z|2

1 − |ϕn(z)|2

)α
|ϕ′n(z)|.

For α > 1, ( 1 − |z|2

1 − |ϕn(z)|2

)α
|ϕ′n(z)| =

( 1 − |z|2

1 − |ϕn(z)|2

)α−1 1 − |z|2

1 − |ϕn(z)|2
|ϕ′n(z)|

with 1 − |z|2/1 − |ϕn(z)|2|ϕ′n(z)| ≤ 1 once more using the Schwarz–Pick lemma.
By Lemma 4.9, there exists r ∈ (0, 1) such that

A(s) := sup
|ϕn(z)|>s

( 1 − |z|2

1 − |ϕn(z)|2

)α
|ϕ′n(z)| ≤ 2α−1rn(α−1).

It follows that
‖Cϕn‖e,L(Bα) ≤ 2α−1rn(α−1)

for all n ∈ N. The conclusion follows from the equality re(Cϕ) = limn→∞ ‖Cϕn‖
1/n
e,L(Bα),

which implies that re(Cϕ) ≤ rα−1 < 1. �

We have now all the material to prove the convergence theorem of Bα for α > 1.

Theorem 4.11. Let ϕ : D→ D be holomorphic and with a fixed point b in D. The
following assertions are equivalent on Bα:

(i) ϕ is not an automorphism;
(ii) Cn

ϕ converges uniformly to Pb, where Pb f = f (b)1D;
(iii) Cn

ϕ converges strongly to Pb, where Pb f = f (b)1D.

Proof. (i)⇒ (ii): By the usual trick involving the isomorphism Cψb , we may assume
that b = 0 and that ϕ is not a rotation. It follows from Theorem 4.10 that re(Cϕ) < 1.
Then (ii) follows from Theorem 1.1.

(ii)⇒ (iii) is obvious.
(iii)⇒ (i): If ϕ is an elliptic automorphism, Cϕ is similar to an isometry and cannot

converge strongly to a rank-one projection. �
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When ϕ has no fixed point in D, its Denjoy–Wolff point is on the unit circle and,
therefore, by Lemma 4.6, limn→∞ ‖Cn

ϕ‖ =∞ since

‖Cn
ϕ‖L(Bα) ≥

1
2α(α − 1)

( 1
(1 − |ϕn(0)|)α−1 − 1

)
with |ϕn(0)| → 1. In this case, even the weak convergence of the iterates is impossible.
We can say even more. Since B ⊂ Bα, as a corollary of Proposition 3.12, we can prove
that the weakest convergence of the iterates is not true when ϕ has no fixed point in D.

Proposition 4.12. Let ϕ be a holomorphic self map of D whose Denjoy–Wolff point b
is of modulus one. Then Cϕ is not mean ergodic on Bα, α > 1.

With the help of Theorem 4.3 and Remark 4.7, as in the the sections on Ap
α andB, we

obtain the following characterization of composition operators similar to isometries.

Corollary 4.13. Let ϕ be a holomorphic self map of D and consider the composition
operator Cϕ on Bα with α > 1. The following assertions are equivalent:

(i) Cϕ is similar to an isometry;
(ii) ϕ is an elliptic automorphism.

4.2. Bloch-type space Bα, 0 < α < 1. When 0 < α < 1, Bα = Lip1−α, the
holomorphic Lipschitz space consisting of all holomorphic functions f on D, satisfies

| f (z) − f (w)| ≤ C|z − w|1−α

for some constant C > 0 and all z,w ∈ D. Thus, for 0 < α < 1,

Bα ⊂ A(D) ⊂ H∞(D),

where A(D) is the disc algebra. By Lemma 4.4, Cϕ is bounded for all automorphic
self map ϕ of D, but it is not the case for an arbitrary self map ϕ of D. Indeed, since
e1 : z 7→ z is in Bα, a necessary condition is that ϕ ∈ Bα.

We will show that in Bα, mean ergodicity implies uniform convergence, provided
the Denjoy–Wolff point lies in the interior.

Theorem 4.14. Let 0 < α < 1 and ϕ : D→ D be holomorphic such that τ∞ϕ,α < ∞.
Suppose that there exists b ∈ D such that ϕ(b) = b. The following assertions are
equivalent:

(i) Cn
ϕ converges strongly to Pb, where Pb f = f (b)1D;

(ii) there exists n0 ∈ N such that ϕn0 (D) ⊂ D;
(iii) Cn

ϕ converges uniformly to Pb, where Pb f = f (b)1D;
(iv) Cϕ is mean ergodic.
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Proof. Once more, using Lemma 4.4, we may assume that ϕ(0) = 0. (i) ⇒ (ii): For
e1(z) = z, ‖Cn

ϕe1 − P0e1‖Bα = ‖ϕn‖Bα → 0 as n→∞. Using the fact that Bα = Lip1−α

with equivalent norm and since ϕn(0) = 0, it follows that, for all z ∈ D,

|ϕn(z)| ≤ c‖ϕn‖Bα |z|1−α ≤ c‖ϕn‖Bα .

Consequently, ϕn converges to 0 uniformly on D and then (ii) follows.
(ii) ⇒ (iii): By [31], (ii) implies that Cϕn0

= Cn0
ϕ is compact. It follows that

re(Cn0
ϕ ) = 0 and thus, by the spectral mapping theorem, re(Cϕ) = 0. Then (iii) follows

from Theorem 1.1.
(iii)⇒ (iv) is obvious.
(iv) ⇒ (ii): Let Cn := (1/n)

∑n−1
k=0 Ck

ϕ be the nth Cesaro sum. By assumption,
limn→∞Cn f = P0 f = f (0)1D in Bα for all f ∈ Bα. Since Bα ↪→ A(D), it follows that
limn→∞ Cn f = f (0)1D in A(D) for all f ∈ Bα. Note that Bα is dense in A(D) and
‖Cn‖L(A(D)) ≤ 1 for all n ∈ N. Therefore, we obtain limn→∞Cn f = f (0)1D in A(D) for
all f ∈ A(D). Since ϕ(0) = 0, it follows from [5, Theorem 3.4 (i)⇒ (iii)] that ϕn(z)→ 0
for all z ∈ D. Dini’s theorem implies uniform convergence on D.

(iii)⇒ (i) is obvious and the proof is complete. �

We can now give a complete characterization of composition operators which are
similar to isometries on Bα, α ∈ (0, 1).

Theorem 4.15. Let ϕ ∈ Bα, 0 < α < 1. The following assertions are equivalent:

(i) ϕ is an elliptic automorphism;
(ii) Cϕ is similar to an isometry.

Proof. (i) ⇒ (ii): Let b ∈ D be such that ϕ(b) = b. Then CψbCϕCψb = Cϕ̃, where
ϕ̃ := ψb ◦ ϕ ◦ ψb is a rotation. Note that Cψb = C−1

ψb
. By Theorem 4.3, (ii) follows.

(ii)⇒ (i): Let S be invertible and U isometric such that Cϕ = S −1US . Since Bα and
Lip1−α have equivalent norms, there exists C1 > 0 such that for all z,w ∈ D,

|ϕn(z) − ϕn(w)| ≤ C1‖ϕn‖Bα |z − w|1−α. (4.2)

Since ‖ϕn‖Bα = ‖Cn
ϕe1‖Bα = ‖S −1UnS e1‖Bα , where Un is isometric and S −1 bounded

below,
‖ϕn‖Bα ' ‖S e1‖Bα . (4.3)

So, by (4.2), |ϕn(z) − ϕn(w)| ≤ C2|z − w|1−α for some positive constant C2. It follows
that (ϕn)n is an equicontinuous family in the set of continuous functions on D.
Using the Arzela–Ascoli theorem, there exists a subsequence (ϕnk )k which converges
uniformly on D. If ϕ is not an elliptic automorphism, denote by b its Denjoy–Wollf
point. If |b| < 1, for k large enough, ϕnk (D) ⊂ D. By Theorem 4.14,

Cn
ϕ → Pb ∈ L(Bα) as n→∞,

which is a contradiction if Cϕ is similar to an isometry.

https://doi.org/10.1017/S1446788719000235 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000235


[21] Asymptotic behaviour of composition operators 309

Suppose now that |b| = 1. Since ‖Cn
ϕ‖ = ‖S −1UnS ‖ ≤ ‖S ‖‖S −1‖ and since ‖Cn

ϕ‖ ' τ
∞
ϕn,α

,
there exists C3 > 0 such that, for all n ∈ N and z ∈ D,

(1 − |z|2)α|ϕ′n(z)|
(1 − |ϕn(z)|2)α

≤ C3. (4.4)

By (4.3), there exists C4 > 0 such that

C4 ≤ sup
z∈D

(1 − |z|2)α|ϕ′n(z)|. (4.5)

Now, combining (4.4) and (4.5),

C4 ≤ C3 sup
z∈D

(1 − |ϕn(z)|2)α. (4.6)

Since ‖ϕn − b‖∞ → 0 with |b| = 1, (4.6) is impossible and therefore ϕ is necessarily an
elliptic automorphism. �

5. Standard weighted Bergman space of infinite order, H∞νp
(D)

For p > 0, the standard weighted Bergman space of infinite order, H∞νp
(D) (or H∞νp

),
is the Banach space of all holomorphic functions f : D→ C such that

‖ f ‖H∞νp
:= sup

z∈D
νp(z)| f (z)| <∞

with the norm as defined above, where νp(z) = (1 − |z|2)p.
For w ∈ D, it follows from the definition of the norm that

| f (w)| ≤
1

(1 − |w|2)p ‖ f ‖H∞νp
for all f ∈ H∞νp

and the norm of evaluation at w is 1/(1 − |w|2)p and is attained for the function
fw(z) = (1 − wz)−p. In other words, H∞νp

↪→ Hol(D) for all p > 0.
Suppose that ϕ : D→ D is a self map of D. By [6, Theorem 2.3], Cϕ is always

bounded on H∞νp
and, by [11, Proposition 3.1],

‖Cϕ‖L(H∞νp ) = sup
z∈D

( 1 − |z|2

1 − |ϕ(z)|2

)p
.

It follows that
if ϕ(0) = 0 then ‖Cϕ‖L(H∞νp ) = 1. (5.1)

Moreover, Montes-Rodrı́guez [25] proved that the essential norm is

‖Cϕ‖e,L(H∞νp ) = inf
0<s<1

sup
|ϕ(z)|>s

( 1 − |z|2

1 − |ϕ(z)|2

)p
.

This formula for the essential norm provides a bound for the essential spectral
radius.
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Theorem 5.1. Let ϕ be a self map of D such that ϕ(0) = 0. If ϕ is not a rotation, then
re(Cϕ) < 1, where re(Cϕ) denotes the essential spectral radius of Cϕ on H∞νp

, p > 0.

Proof. Fix sa ∈ (0, 1). By Lemma 4.9, there exists r ∈ (0, 1) such that, for all n ≥ 1,

sup
|ϕn(z)|>sa

( 1 − |z|2

1 − |ϕn(z)|2

)p
≤ 2prnp.

It follows that for all n ≥ 1,
‖Cϕn‖e,H∞νp

≤ 2prnp.

The conclusion follows from the equality

re(Cϕ) = lim
n→∞
‖Cϕn‖

1/n
e,L(H∞νp ),

which implies that re(Cϕ) ≤ rp < 1. �

We next prove the convergence result for the standard weighted Bergman space of
infinite order, H∞νp

, p > 0.

Theorem 5.2. Let ϕ : D→ D be holomorphic with a fixed point b ∈ D. The following
assertions are equivalent on H∞νp

, p > 0:

(i) Cn
ϕ converges strongly to Pb, Pb f = f (b)1D for all f ∈ H∞νp

;
(ii) ϕ is not an automorphism;
(iii) Cn

ϕ converges uniformly to Pb, Pb f = f (b)1D for all f ∈ H∞νp
.

Proof. The proof goes along the same lines of the proof of Theorem 4.11, using
Theorem 5.1. �

As in the previous sections on weighted Bergman spaces and Bloch and Bloch-type
spaces, one can deduce a complete characterization of composition operators which
are similar to isometries, using Remark 5.4 and Theorem 5.2.

Corollary 5.3. Let ϕ be a holomorphic self map of D. Consider Cϕ to be a
composition operator on H∞νp

(p > 0). The following assertions are equivalent:

(i) Cϕ is similar to an isometry;
(ii) ϕ is an elliptic automorphism.

Remark 5.4. When ϕ has no fixed point in D, its Denjoy–Wolff point is on the unit
circle and, therefore, by [6, Theorem 2.3], limn→∞ ‖Cn

ϕ‖ =∞ since

‖Cn
ϕ‖L(H∞νp ) ≥

( 1
1 − |ϕn(0)|

)p

with |ϕn(0)| → 1. In this case, even the weak convergence of the iterates is impossible.

In fact, we can even prove that mean ergodicity is impossible when ϕ has no fixed
point in D.
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Proposition 5.5. Let ϕ be a holomorphic self map of D whose Denjoy–Wolff point b is
of modulus one. Then Cϕ is not mean ergodic on H∞νp

.

Proof. Since H∞νp
is invariant by rotation, we may assume that b = 1. Let f (z) =

(2/(1 − z))p. Then f ∈ H∞νp
, ‖ fr‖H∞νp

≤ ‖ f ‖H∞νp
and limr↑1 | fr(1)| = ∞. The conclusion

follows from Lemma 2.3. �

6. The classical Dirichlet spaceD

The classical Dirichlet Space, denoted by D, is the Hilbert space of holomorphic
functions f on D with norm given by

‖ f ‖D :=
(
| f (0)|2 +

∫
D

| f ′(z)|2 dA(z)
)1/2

,

where dA(z) = (1/π) dx dy = (1/π)r dr dθ (z = x + iy = reiθ) denotes the normalized
Lebesgue area measure of the unit disc D. It is a well-known fact thatD ⊂ H2(D).

If ϕ is a holomorphic self map of D, then the composition operator Cϕ is not
necessarily bounded on D. Indeed, since e1 is in D, where e1(z) = z for all z ∈ D,
Cϕ bounded onD implies that ϕ ∈ D.

Since the Dirichlet norm measures the area of the image counting multiplicity, it is
easy to construct ϕ : D→ D and ϕ not inD (for example, infinite Blaschke products).
However, if ϕ is univalent, then Cϕ is bounded, using a change of variables in the
definition using the integral on D.

A necessary and sufficient condition for ϕ to induce a bounded composition operator
onD is given in terms of counting functions and Carleson measures (see [15]):∫

S (ζ,h)
nϕ dA ≤ C

∫
S (ζ,h)

dA = Kh2

for all ζ ∈ ∂D and all h ∈ (0, 1). Here S (ζ, h) = {z ∈ D : |z − ζ | < h} is a typical Carleson
set and the counting function, nϕ(w), w ∈ D, associated with ϕ is defined as the
cardinality of the set {z ∈ D : ϕ(z) = w} when the latter is finite and as +∞ otherwise.

Under the restriction that ϕ is univalent, we have the following estimation of the
norm in terms of |ϕ(0)|.

Theorem 6.1 [20, Theorem 2]. Let ϕ be a univalent self map of D. Then

‖Cϕ‖L(D) ≤

√
L + 2 +

√
L(4 + L)

2
,

where L = − log(1 − |ϕ(0)|2). In particular, ‖Cϕ‖L(D) = 1 if ϕ(0) = 0.

A lower bound of the norm follows from the following observation.
It is well known that for each w ∈ D, the function

kw(z) = 1 + log
1

1 − wz

https://doi.org/10.1017/S1446788719000235 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788719000235


312 W. Arendt et al. [24]

is the reproducing kernel at w in the Dirichlet space, whose norm is

‖kw‖D =

√
1 + log

1
1 − |w|2

.

The existence of the reproducing kernels implies thatD ↪→ Hol(D).
Since C∗ϕ(kw) = kϕ(w),

‖Cϕ‖ = ‖C∗ϕ‖ ≥
‖kϕ(0)‖D

‖k0‖D
=

√
1 + log

1
1 − |ϕ(0)|2

. (6.1)

This lower bound of the norm of a composition operator implies that if ϕ has its
Denjoy–Wolff point on the unit circle, then |ϕn(0)| → 1 as n→∞, which implies that
‖Cn

ϕ‖ → ∞ as n→∞. Thus, as in the previous cases, the weak convergence of Cϕn is
impossible when ϕ has no fixed point in D. In fact, Cϕ is not even mean ergodic.

Theorem 6.2. Let ϕ be a holomorphic self map of D such that Cϕ is bounded onD. If
the Denjoy–Wolff point b of ϕ is of modulus one, then Cϕ is not mean ergodic.

Proof. Let β > 0 and F(z) := (log 2/(1 − z))β, where log is the principal branch of the
logarithm. By [37, Ch. V, Theorem 2.31], the Taylor coefficients an of F are equivalent
to 1/n(log n)β−1. It follows that F ∈ D if and only if β < 1/2. Since ‖Fr‖D ≤ ‖F‖D and
since limr↑1 |Fr(1)| =∞, the conclusion follows from Lemma 2.3. �

Recall that a self map of D is a univalent full map if it is one-to-one and
A[D\ϕ(D)] = 0. The following result characterizes the isometric composition
operators onD.

Theorem 6.3 [22]. A composition operator Cϕ onD is an isometry if and only if ϕ is a
univalent full map of D that fixes the origin.

In our previous results, provided ϕ(0) = 0, we proved that the uniform and strong
convergence of the iterates is equivalent to the fact that Cϕ is not an isometry.

The space D is of particular interest since the bounded nonisometric composition
operators whose symbol fixes zero is different from the set of composition operators
for which we can guarantee the uniform and strong convergence of the iterates. This
follows from the next proposition.

Proposition 6.4. Let ϕ be a fractional linear self map of D defined with two fixed
points, namely 0 and β ∈ T (for example, ϕ(z) = βz/(2β − z)). Then Cϕ is a contraction
which is not isometric, but Cn

ϕ does not strongly converge as n→∞.

Proof. By Theorem 6.1, the norm of Cϕ is 1. By Theorem 6.3, since ϕ is a linear
fractional map fixing 0, Cϕ is isometric if and only if ϕ(D) = D, that is, if and only
if ϕ is a nontrivial rotation. Since ϕ(β) = β, the function ϕ cannot be a rotation and
therefore Cϕ is not an isometry.
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Since 0 is the Denjoy–Wolff point of ϕ, if it exists, the strong limit of Cϕ is P0
defined by (P0 f )(z) = f (0).

Moreover, since for all n ≥ 1, ϕn(0) = 0 and ϕn(β) = β, ϕn(D) contains the smallest
disc D0 containing 0 and β.

Hence,
‖Cn

ϕe1 − Pe1‖
2
D = ‖ϕn‖

2
D = A(ϕn(D) ≥ A(D0) > 0,

where A denotes the normalized Lebesgue area measure. Therefore, (Cn
ϕ)n does not

strongly converge as n→∞. �

Remark 6.5. When ϕ satisfies the hypothesis of Proposition 6.4, since D is reflexive
and since (‖Cn

ϕ‖)n is bounded by 1, for all f ∈ D, (Cn
ϕ f )n is weakly convergent to

f (0)1D (by [3, Theorem 4.4]).

Nevertheless, we can get a positive result concerning the uniform convergence of
(Cn

ϕ), with an extra hypothesis on ϕ, which implies that the essential spectral radius of
Cϕ is strictly less than 1.

Definition 6.6. A function h : D→ [0,∞) is essentially radial if for almost all r ∈
[0, 1), h(reiθ) = h(r) for almost all θ ∈ [0, 2π).

Theorem 6.7. Let ϕ be a univalent and holomorphic self map of D with a fixed point
b in D and such that nϕ is essentially radial. The following assertions are equivalent:

(i) Cn
ϕ converges strongly to Pb, Pb f = f (b)1D for all f ∈ D;

(ii) ϕ is not a full map of D;
(iii) Cn

ϕ converges uniformly to Pb, Pb f = f (b)1D for all f ∈ D.

Proof. Since, for all b ∈ D, Cψb is invertible on D and since ψ := ψb ◦ ϕ ◦ ψb which
fixes 0 is a full map if and only ϕ is a full map, we may assume that b = 0.

(i)⇒ (ii) follows from the characterization of the isometric composition operators
on D in Theorem 6.3 and the fact that e1 ∈ D and Cn

ϕe1 = ϕn cannot converge to 0
in norm. Indeed, since Cn

ϕ = Cϕn is isometric, ϕn is a univalent full map and then
‖ϕn‖D = A(ϕn(D)) = 1.

(ii) ⇒ (iii): since ϕ(0) = 0 and ϕ is not a full map of D, by Theorem 3.1 in [9],
‖Cϕ‖L(D0) < 1, where D0 is the subspace of D of those functions that vanish at 0. It
follows that

re,D(Cϕ) = re,D0 (Cϕ) ≤ ‖Cϕ‖L(D0) < 1.

The uniform convergence of (Cn
ϕ)n follows from Theorem 1.1.

(iii)⇒ (i) is obvious. �

We conclude this section with an obvious corollary of Theorem 6.7 concerning the
similarity of a composition operator to an isometry.

Corollary 6.8. Let ϕ be a univalent and holomorphic self map of D. Suppose that nϕ
is essentially radial. The following assertions are equivalent:

(i) ϕ is a full map with a fixed point b ∈ D;
(ii) Cϕ is similar to an isometry.
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Proof. (i)⇒ (ii): Since ϕ̃ := ψb ◦ ϕ ◦ ψb fixes 0 and is a full map if ϕ is a full map, (ii)
follows from Theorem 6.3 and the identity

Cϕ = CψbCϕ̃Cψb .

(ii)⇒ (i): If ϕ has no fixed point in D, its Denjoy–Wolff point b is of modulus one
and, therefore, by (6.1), Cn

ϕ is not power bounded. It follows that Cϕ cannot be similar
to an isometry and thus (ii) implies that ϕ has a fixed point in D. If ϕ is not a full map,
by Theorem 6.7, Cn

ϕ → Pb in L(D) as n→∞. As detailed previously, this property is
clearly in contradiction with the fact that Cϕ is similar to an isometry. Thus, ϕ must be
a full map. �

7. The quotient space ofD

In this section we slightly change the framework. Let D̃ :=D/C1D be the space of
D modulo the constant functions. It is a Banach space for the norm

‖[ f ]‖2
D̃

=

∫
D

| f ′(z)|2 dA(z),

where [ ] :D→D/C1D denotes the quotient map.
Let ϕ ∈ D be a univalent map. If f , g ∈ D and f − g = c is a constant, then

f ◦ ϕ − g ◦ ϕ = c. It follows that [ f ◦ ϕ] = [g ◦ ϕ] and thus

C̃ϕ([ f ]) = [ f ◦ ϕ]

defines a linear operator on D̃.
This operator may also be obtained in a different way. LetD0 := { f ∈ D : f (0) = 0}.

ThenD0 is a closed subspace ofD. The mapping

S :D0 → D̃, S f = [ f ]

is an isometric isomorphism. Then Ĉϕ := S −1C̃ϕS is given by

(Ĉϕ f )(z) = f (ϕ(z)) − f (ϕ(0)).

Now let ϕ(z) = (az + b)/(cz + d) be a linear fractional map with ad − bc , 0. Then ϕ
has two fixed points in C ∪ {∞}. One calls ϕ parabolic if they coincide. If in addition
ϕ(D) ⊂ D, the unique fixed point lies on the unit circle.

The spectrum of C̃ϕ on D0 has been investigated in [13] and [14]. Using these
results, we obtain the following theorem.

Theorem 7.1. Let ϕ be a parabolic linear fractional self map of D which is not an
automorphism of D. Then, for all f ∈ D,

lim
n→∞

C̃n
ϕ([ f ]) = 0,

but (C̃n
ϕ)n does not converge uniformly.
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Proof. By [13, Theorem 4.3], C̃ϕ is unitarily equivalent to the multiplication operator
T on L2((0,∞), t dt) given by

T f (t) = eiat f (t),

where a ∈ C and Im(a) > 0. It follows from the dominated convergence theorem that

‖T n f ‖2L2 =

∫ ∞

0
|einat f (t)|2t dt =

∫ ∞

0
e−2Im(a)nt | f (t)|2t dt→ 0

as n→∞. On the other hand, ‖T n‖ = supt>0 |e
inat | = 1. �

However, as already noticed in Section 6, the operator Cϕ defined on the whole
spaceD is not even power bounded since its Denjoy–Wolff point is on the unit circle.

The space D̃ does not exactly meet our general assumptions since the point
evaluations are not defined on this space. Thus, so far, for composition operators
on Banach spaces X such that X ↪→ Hol(D), we merely know situations where strong
convergence of the powers implies uniform convergence.

8. Semigroups of composition operators

The aim of this section is to study the asymptotic behaviour of semigroups of
composition operators on the Banach spaces of holomorphic functions considered in
the previous sections.

Let X be a Banach space. By a semigroup we understand a family S = (St)t>0 in
L(X) satisfying St+s = StSs for all s, t > 0 without any further topological condition. A
semigroup S is called a C0-semigroup if in addition

lim
t↓ 0

St x = x

for all x ∈ X. We say that S is locally bounded if sup0<t≤1 ‖St‖ < ∞ and bounded if
supt>0 ‖St‖ < ∞. Each C0-semigroup is locally bounded by the uniform boundedness
principle. If S is locally bounded, its growth bound

w(S ) := inf{w ∈ R : ∃M > 0, ‖St‖ ≤ Mewt for all t > 0}

is finite. By the proof of [2, Proposition 5.1.1],

w(S ) = lim
t→∞

log ‖St‖ = inf
t>0

log ‖St‖. (8.1)

In particular, if ‖St0‖ < 1 for some t0 > 0, then S is exponentially stable, that is,

‖St‖ ≤ Me−εt

for some ε > 0 and M ≥ 0.
Assume that S is a locally bounded semigroup. Here we are interested in uniform

convergence of St as t→∞.
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Lemma 8.1. Assume that limt→∞ St =: P exists in L(X). Then

StP = PSt = P = P2. (8.2)

Moreover, there exist ε > 0 and M ≥ 0 such that

‖St − P‖ ≤ Me−εt for all t > 0.

Proof. It is obvious that P is a projection and (8.2) holds and, for that, strong
convergence would be sufficient. Let Y = (I − P)X. Then Y is invariant by S and
Ut := St |Y defines a locally bounded semigroup U such that limt→∞ ‖Ut‖ = 0. It follows
from (8.1) that w(U) < 0. This implies that ‖Ut‖ ≤ Me−εt for some ε > 0 and M ≥ 0.
Therefore,

‖St − P‖ = ‖StP − P + St(I − P)‖ = ‖St(I − P)‖ ≤ Me−εt. �

Let S be a locally bounded semigroup. If limt→∞ St = P, then limn→∞ S n
t0 = P for all

t0 > 0. Now assume conversely that there exists t0 > 0 such that limn→∞ S n
t0 = P exists.

Then P is clearly a projection and St0 P = PSt0 = P. However, in general, (8.2) may fail
for t , t0. In particular, St might not converge as t→∞. Periodic C0-semigroups give
a counterexample of this sort. However, if we assume (8.2) to hold, then the converse
implication holds.

Lemma 8.2. Let S be a locally bounded semigroup and let t0 > 0. Assume that:

(i) limn→∞ S n
t0 = P exists in L(X); and

(ii) StP = PSt = P for all t > 0.

Then limn→∞ St = P in L(X).

Proof. Let ε > 0. There exists n0 ∈ N such that ‖S n
t0 − P‖ ≤ ε for all n ≥ n0. Let t ≥ n0.

There exist n ∈ N, s ∈ [0, t0) such that t = nt0 + s. Hence,

‖St − P‖ = ‖SsS n
t0 − P‖ = ‖SsS n

t0 − SsP‖ ≤
(

sup
s∈(0,t0]

‖Ss‖

)
ε. �

Now we consider semigroups which are associated with holomorphic semiflows
(ϕt)t≥0 defined as follows.

Definition 8.3. A family (ϕt)t≥0 is called a holomorphic semiflow on D if:

(1) ϕt : D→ D is holomorphic for all t ≥ 0;
(2) ϕ0(z) = z for all z ∈ D;
(3) ϕt+s(z) = ϕt ◦ ϕs(z) for all t, s ≥ 0, z ∈ D;
(4) limt→0 ϕt(z) = z for all z ∈ D.

The following properties of holomorphic semiflows are well known.

(1) For all t ≥ 0, ϕt is injective.
(2) limt→0 ϕt = id uniformly on every compact subset of D.
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(3) If there exists t0 > 0 such that ϕt0 is an automorphism (respectively elliptic
automorphism), then ϕt is an automorphism (respectively elliptic automorphism)
for all t > 0.

(4) For all semiflows which are not elliptic automorphisms, there exists a unique
α ∈ D such that limt→∞ ϕt(z) = α uniformly on every compact subset of D. This
α is called the Denjoy–Wolff point of the semiflow.

We will consider the spaces X = Ap
β ,B,B0,B

α(α > 1), Bα(0 < α < 1),H∞νp
andD as

above.
If b ∈ D, Pb f = f (b)1D defines a projection Pb ∈ L(X) for all these spaces.
Let ϕ = (ϕt)t≥0 be a holomorphic semiflow of the open unit disc with Denjoy–Wolff

point b ∈ D. Thus, ϕt(b) = b for all t > 0.

Proposition 8.4. Let X = Ap
β ,B,B0,B

α with 0 < α < 1, H∞νp
orD. Then

Ct f := f ◦ ϕt

defines a bounded semigroup on X.

Proof. The spaces we consider are all invariant by automorphisms (see Lemma 4.4
for Bα). This allows us to assume that b = 0. Indeed, otherwise, replace the
semiflow ϕ by ψ, where ψt = ψb ◦ ϕt ◦ ψb, where ψb(z) = (b − z)/(1 − bz). Now, for
X = Ap

α, Theorem 2.1 shows that Ct f = f ◦ ϕt defines a bounded operator on X and
supt>0 ‖Ct‖ <∞. For X = B and B0, the assertion follows from Theorem 3.2. For Bα

with α > 1, it follows from Lemma 4.8 that the semigroup is bounded. If X = H∞νp
, then

the estimate (5.1) shows that ‖Ct‖ = 1 for all t > 0. Finally, since ϕt is univalent for all
t > 0, when X =D, Theorem 6.1 shows that ‖Ct‖ = 1 for all t > 0. �

Next we consider the asymptotic behaviour.

Theorem 8.5. Let X = Ap
α, B0, Bα for α > 1 or H∞νp

. The following assertions are
equivalent:

(i) limt→∞Ct = Pb in L(X);
(ii) ϕt0 is not an automorphism for some t0 > 0;
(iii) ϕt is not an automorphism for any t > 0.

Proof. Since Pb f = f (b)1D and ϕt(b) = b for all t > 0, it follows that CtPb = PbCt = Pb

for all t > 0. Thus, by Lemma 8.2, Ct converges to Pb as t→∞ in L(X) as soon as
Cn

t0 → Pb in L(X) as n→∞ for some t0.
For X = Ap

α, it is Theorem 2.9 which implies that Ct → Pb as t→∞ if and only if
ϕt is not an automorphism for some (equivalently all) t > 0.

The same assertion follows for B0 from Theorem 3.11 and for Bα with α > 1 from
Theorem 4.11. For X = H∞νp

, it follows from Theorem 5.2. �

Note that the equivalence of (ii) and (iii) is well known, but also follows directly
from our description of the asymptotic behaviour.

The spaces B,D and Bα (0 < α < 1) play a special role.
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Figure 1. An example of holomorphic semiflow.

Theorem 8.6. Let X = B . The following assertions are equivalent:

(i) limt→∞Ct = Pb in L(X);
(ii) there exists t0 > 0 such that τ∞ϕt0

< 1;
(iii) for all t > 0, one has τ∞ϕt

< 1.

Proof. This follows from Theorem 3.7 and Lemma 8.2. �

For the Dirichlet space, the following result is a consequence of Theorem 6.7.

Theorem 8.7. Let X =D. Assume that ϕt0 is not a full map. Then

lim
t→∞

Ct = Pb in L(X).

Finally, we consider the space Bα for 0 < α < 1. The asymptotic behaviour follows
from Theorem 4.14.

Theorem 8.8. Let X = Bα, where 0 < α < 1. Assume that there exists t0 > 0 such that
ϕt0 (D) ⊂ {z ∈ C : |z| ≤ r} for some r < 1. Then Ct f = f ◦ ϕt defines a bounded operator
on Bα for all t ≥ t0 and limt→∞Ct = Pb in L(X).

The following example of a semiflow illustrates our last theorem.
Let h be the Riemann map from D onto the starlike region

Ω := D ∪ {z ∈ C : 0 < Re(z) < 2 and 0 < Im(z) < 1}

with h(0) = 0. Since ∂Ω is a Jordan curve, the Carathéodory theorem [27, Theorem 2.6,
page 24] implies that h extends continuously to ∂D.

Let φt(z) = h−1(e−th(z)). Note that for 0 < t < log 2, φt(T) intersects T on a set of
positive measure. Moreover, for t > log 2, ‖φt‖∞ < 1 and therefore φt(D) is included in
a compact subset of D for all t > ln 2. Figure 1 represents the image of ϕt for different
values of t.
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