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We computationally study the transient motion of an initially spherical capsule
flowing through a right-angled tube bifurcation, composed of tubes having the same
diameter. The capsule motion and deformation is simulated using a three-dimensional
immersed-boundary lattice Boltzmann method. The capsule is modelled as a liquid
droplet enclosed by a hyperelastic membrane following the Skalak’s law (Skalak
et al., Biophys. J., vol. 13(3), 1973, pp. 245–264). The fluids inside and outside
the capsule are assumed to have identical viscosity and density. We mainly focus
on path selection of the capsule at the bifurcation as a function of the parameters
of the problem: the flow split ratio, the background flow Reynolds number Re, the
capsule-to-tube size ratio a/R and the capillary number Ca, which compares the
viscous fluid force acting on the capsule to the membrane elastic force. For fixed
physical properties of the capsule and of the tube flow, the ratio Ca/Re is constant.
Two size ratios are considered: a/R = 0.2 and 0.4. At low Re, the capsule favours
the branch which receives most flow. Inertia significantly affects the background flow
in the branched tube. As a consequence, at equal flow split, a capsule tends to flow
straight into the main branch as Re is increased. Under significant inertial effects,
the capsule can flow into the downstream main tube even when it receives much
less flow than the side branch. Increasing Ca promotes cross-stream migration of
the capsule towards the side branch. The results are summarized in a phase diagram,
showing the critical flow split ratio for which the capsule flows into the side branch
as a function of size ratio, Re and Ca/Re. We also provide a simplified model of the
path selection of a slightly deformed capsule and explore its limits of validity. We
finally discuss the experimental feasibility of the flow system and its applicability to
capsule sorting.

Key words: biological fluid dynamics, capsule/cell dynamics

1. Introduction
A capsule is a liquid droplet enclosed by a thin membrane which can resist shear

deformation. Capsules are widely found in nature in the forms of red blood cells
(RBCs), eggs, etc. Artificial capsules have a vast range of applications in food,
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cosmetic, biomedical and pharmaceutical industries (Bhujbal, de Vos & Niclou 2014).
In many situations, capsules are suspended in a fluid and flow through a complicated
network of tubes or channels: this is the case for RBCs in the human circulation
or for artificial capsules flowing through microfluidic devices. Central to these flows
is the dynamic motion of capsules at bifurcations, in particular the question of
path selection. A good understanding of this problem is needed to elucidate some
intriguing phenomena in human circulation. It will also benefit the design and
optimization of microfluidic devices using branched channels, for instance to sort
capsules or biological cells depending on their properties.

Extensive in vivo and in vitro experiments have been conducted on blood flows in
branched capillaries or microchannels (see for instance Pries, Secomb & Gaehtgens
(1996) or Popel & Johnson (2005)). It has been well established that the daughter
branch with a higher flow rate receives a larger number of RBCs than the other
branch; furthermore, one daughter branch can receive no RBC, when its flow rate
is very low: this is classically referred to as the Zweifach–Fung effect (Svanes
& Zweifach 1968; Fung 1973). Similar phenomena have also been observed in
experiments, where the RBCs are modelled as flexible disks and the white blood
cells as solid spheres (Chien et al. 1985), and in dilute suspensions of solid spheres
(Roberts & Olbricht 2006; Doyeux et al. 2011). Fenton, Carr & Cokelet (1985)
considered blood flow in a microfabricated branched tube with a diameter of 100 µm
for both branches and investigated the effect of cell deformability on the partitioning
of RBCs at the bifurcation. Their results, mainly the fractional RBC flux through
a side branch as a function of the fractional volumetric flow rate, do not show
significant differences between normal and hardened red cells. Two mechanisms have
been found to play important roles in the cell enrichment in the high flow rate branch.
The first one is the plasma skimming effect due to the particle-free layer near the
wall of the vessel (Rong & Carr 1990; Yan, Acrivos & Weinbaum 1991; Enden &
Popel 1994; Carr & Kotha 1995). The second mechanism is the particle screening
effect, in which the trajectories of particles deviate from fluid streamlines of the
background flow as a result of the hydrodynamic interaction between particles and
the vessel geometry at the bifurcation (Wu, Weinbaum & Acrivos 1992; Doyeux et al.
2011). In the dilute limit, the problem has not been thoroughly studied experimentally,
possibly due to the difficulty of manipulating individual cells.

Analysing the motion of one capsule flowing through a branched tube theoretically
or numerically is also very challenging due to the strong nonlinear interactions
between the elastic capsule, the viscous fluid and the branched geometry of the
tube. The problem has mostly been studied in recent years using two-dimensional
numerical models. Secomb, Styp-Rekowska & Pries (2007) pioneered the simulation
of flows with capsules through a bifurcation with a finite element model. Using
a two-dimensional formulation, they predicted the trajectories of RBCs in branched
microvessels of the rat mesentery, which are in qualitative agreement with experimental
observations. Later, the same group found that the cell enrichment in the higher flow
rate branch is increased by the cell deformability (Barber et al. 2008). Recently they
studied the effect of cell interaction and found that it leads to a more uniform
cell partitioning compared with dilute suspensions, in which cell interaction is
negligible (Barber, Restrepo & Secomb 2011). Woolfenden & Blyth (2011) developed
a two-dimensional boundary integral method and studied the motion and deformation
of a capsule in a channel with a side branch. The capsule was released along the
centreline of the parent channel. Their results showed that, at equal flow rate between
the two downstream channels, the capsule tends to flow into the side branch in
particular when the capsule is highly deformable.
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To the best of our knowledge, there is so far no systematic and in-depth
three-dimensional numerical study of a deformable capsule in a branched tube.
To what extent the results obtained from previous two-dimensional simulations can
be applied to three-dimensional flows remains unclear. Almost all the previous studies
have considered two-dimensional situations under low Reynolds number conditions.
The negligible inertia condition is a good assumption in many biological systems;
however, capsules are not necessarily small in size, and the flow speed can be fast
in some applications, such as in the case of inertial flow focusing of spherical and
anisotropic particles (Di Carlo et al. 2007; Masaeli et al. 2012). The effect of inertia
on path selection of a capsule at a bifurcation remains unknown. In other systems,
for example non-spherical particles in shear flows, it has been shown that inertial
effect could fundamentally change the dynamics of particles even at low Reynolds
number (Rosén, Lundell & Aidun 2014; Dabade, Marath & Subramanian 2016).
Furthermore, when a capsule approaches the bifurcation, it can sustain high shear
stresses, which may damage the capsule membrane. It is therefore meaningful to
investigate the membrane tension of the capsule at the bifurcation. In the present
study, we address these open questions by means of computational simulations based
on an immersed-boundary lattice Boltzmann method.

The paper is organized as follows: the problem, governing equations and main
parameters are detailed in § 2; the numerical method and validations are then
presented in § 3. We first present simulation results of flows in a branched tube
without a capsule in § 4. The results for flows with a capsule are presented in § 5,
where we focus on the effects of flow split ratio, flow strength and capsule properties
(i.e. membrane shear elasticity, capsule size) on the capsule path selection. In § 6, we
discuss the main results and compare them to the predictions of a simplified model
of the capsule path selection. We also assess the experimental feasibility of the device
and discuss its potential for capsules sorting.

2. Problem statement
2.1. Problem description

We consider the flow of an initially spherical capsule in a cylindrical tube with a
right-angled cylindrical side branch, which has the same diameter 2R (figure 1a). The
length of the parent tube is 12R, and the length of the two daughter tubes is 10R.
A three-dimensional Cartesian coordinate system is defined with the x-axis along the
straight tube axis, the z-axis along the side branch axis and x = y = z = 0 at the
bifurcation centre. The capsule is initially spherical with diameter 2a. It is enclosed
by a hyperelastic membrane with finite surface shear elasticity and bending stiffness.
The fluids inside and outside the capsule have identical viscosity µ and density ρ.
Numerical simulations of capsules in a straight tube (Helmy & Barthès-Biesel 1982;
Pozrikidis 2005a,b) have shown that the capsule migrates to the centreline of the tube
and eventually reaches a steady shape. In the present study, the capsule centre is thus
initially positioned on the centreline of the parent tube within the cross-section Sc,
located at a distance 2R from the tube entrance S0 (figure 1a).

The fluid motion in the branched tube is governed by the Navier–Stokes equations,
which are solved by means of a lattice Boltzmann method (LBM) as detailed in § 3.1.
At the tube wall a no-slip boundary condition is imposed. At the upstream inlet S0 and
the two downstream outlets S1 and S2, the velocity profiles are set to be the parabolic
Poiseuille profiles corresponding to flow rates Q0, Q1 and Q2, respectively, with Q0=
Q1 + Q2. The present set-up is relevant to microfluidic applications where the flow
rate is controlled by multiple syringe pumps.
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FIGURE 1. (a) Geometry of the branched tube. (b) Geometry of the
computational domain.

The thickness of the capsule wall is assumed to be infinitely small. A very
thin hyperelastic membrane can be modelled as a zero-thickness elastic surface,
with different possible constitutive laws (Barthès-Biesel 2016). Among those, the
Skalak’s (SK) law (Skalak et al. 1973), which was originally proposed to describe
the membrane of a RBC, assumes a strain energy function of the form

WSK = 1
4 Gs(I2

1 + 2I1 − 2I2)+ 1
4 CGsI2

2, (2.1)

where W is the strain energy density per unit undeformed surface area, Gs is the
surface shear elasticity modulus, I1 and I2 are the first and second strain invariants of
the surface deformation with I1 = λ1

2 + λ2
2 − 2 and I2 = (λ1λ2)

2 − 1= (dA/dA0)
2 − 1.

Here dA0 and dA are the initial and final infinitesimal areas of a membrane element.
The terms λ1 and λ2 are the principal extension ratios in the plane of the membrane
(square root of the eigenvalues of the Cauchy–Green surface deformation tensor).
Postulated in such a way, the SK law captures the special feature of biological
membranes, which can deform easily under shear while keeping an almost constant
surface area. The factor C on the right-hand side of (2.1) must be large to ensure
negligible area dilation. The principal membrane tensions τ1 and τ2 in the membrane
plane are given by

τ1 = Gsλ1

λ2
(λ2

1 − 1+Cλ2
2I2), τ2 = Gsλ2

λ1
(λ2

2 − 1+Cλ2
1I2). (2.2a,b)

Another constitutive law is the two-dimensional neo–Hookean (NH) law (Green &
Adkins 1960), which assumes that the membrane is an infinitely thin sheet of a three-
dimensional isotropic volume-incompressible material. The membrane area dilation is
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compensated by membrane thinning, since the principal extension ratio in the direction
perpendicular to the membrane is equal to λ3= 1/λ1λ2. The strain energy function of
the NH law is given by

WNH = 1
2

Gs

(
I1 − 1+ 1

I2 + 1

)
, (2.3)

so that the principal elastic tensions read

τ1 = Gs

λ1λ2

(
λ2

1 −
1
λ2

1λ
2
2

)
, τ2 = Gs

λ1λ2

(
λ2

2 −
1
λ2

1λ
2
2

)
. (2.4a,b)

The SK law leads to the same small deformation behaviour as the NH law when C=1
(Barthès-Biesel, Diaz & Dhenin 2002). For biological membranes, the factor C is
usually much larger than unity, because of their quasi area incompressibility. In the
case of artificial capsules, the SK law has been found to fit experimental data when
values of order 1 are used for the factor C (Carin et al. 2003; Risso & Carin 2004;
Rachik et al. 2006). In the present study, the simulations are conducted for capsules
enclosed by an SK membrane with C= 1, unless otherwise stated.

The bending resistance of the membrane is modelled using Helfrich’s formulation
(Zhong-Can & Helfrich 1989; Cordasco & Bagchi 2013)

Eb = kc

2

∫
A
(2H − c0)

2 dA. (2.5)

In this equation Eb is the bending energy of the capsule membrane, A the surface
area, kc the bending rigidity, H the mean curvature and c0 the spontaneous curvature
corresponding to the natural state of the unstressed membrane. For the present
spherical capsules c0 = 0 has been used.

The interaction between the fluid and capsule membrane is solved by an immersed-
boundary method (IBM), which is described in § 3.1.

2.2. Main parameters
The problem depends on a number of dimensionless parameters, which pertain to the
flow configuration and to the capsule properties.

(i) The branch flow ratio q is the flow rate in the side branch normalized by the
flow rate in the parent tube:

q= Q2

Q1 +Q2
, (2.6)

where Q1 and Q2 are the flow rates in the downstream main tube and in the side
branch, respectively, as indicated in figure 1(a).

(ii) The flow Reynolds number Re is evaluated in the parent tube:

Re= 2ρVR
µ

, (2.7)

where V is the mean velocity of the Poiseuille flow imposed at the inlet of the
parent tube.
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(iii) The size ratio a/R compares the size of the capsule to that of the tube.
(iv) The capillary number or dimensionless shear rate Ca measures the ratio between

the viscous and elastic forces in the parent tube:

Ca= µV
Gs
. (2.8)

(v) The dimensionless bending stiffness B measures the relative importance of the
membrane bending to shear elastic effects:

B= kc

GsR2
. (2.9)

Unless otherwise specified, a small value of B has been used (B= 0.0008) mainly
to prevent the formation of membrane wrinkles (Dupont et al. 2015).

Equations (2.7) and (2.8) clearly show that the capillary number and the Reynolds
number both increase with V and are related by

Ca/Re=µ2/2ρGsR. (2.10)

Their ratio depends only on the physical properties of the tube flow and of the capsule.

3. Numerical method and validation
3.1. Numerical method

The present simulations are based on a lattice Boltzmann method (LBM) to compute
the flow coupled with the immersed-boundary method (IBM) of Peskin (1977) for
the fluid–capsule interaction. A finite element method is used to obtain the membrane
forces. This hybrid method has been validated extensively against results of boundary
element simulations and of a small deformation theory for three-dimensional capsules
in shear flow (Sui et al. 2008a,b). The method is only briefly presented here, but more
details can be found in the cited references.

The LBM is a kinetic-based approach for simulating fluid flows. Instead of solving
the conservation equation of macroscopic properties such as mass or momentum, it
consists in modelling the fluid as fictive particles that propagate and collide on a
discrete lattice mesh. Solving for the streaming and collision steps lead to solving the
following equation (Guo, Zheng & Shi 2002a):

fi(x+ ei1t, t+1t)− fi(x, t)=−1
τ
[ fi(x, t)− f eq

i (x, t)] +1tFi, (3.1)

where fi(x, t) is the distribution function for particles with velocity ei at position x and
time t, 1t is the lattice time interval, f eq

i (x, t) is the equilibrium distribution function,
τ is the non-dimensional relaxation time related to the fluid viscosity and Fi is the
forcing term. The macroscopic quantities (e.g. velocity, pressure) can be obtained from
the particle distribution function. Equation (3.1) is solved on a uniform Cartesian grid
in a domain 24R × 2R × 12R (figure 1b). Using Chapman–Enskog expansion, the
lattice Boltzmann equation can recover the incompressible Navier–Stokes equations,
and therefore the LBM can be considered as an alternative approach for solving the
Navier–Stokes equations.
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To handle the curved solid wall of the branched tube, we have used the second-order
bounce-back scheme developed by Bouzidi, Firdaouss & Lallemand (2001), which
is an accurate and simple treatment. The bounce-back scheme mimics the particle–
boundary interaction for no-slip boundary condition by reversing the momentum of the
particle colliding with an impenetrable and rigid wall. In the approach of Bouzidi et al.
(2001), the tube wall can be off the grid points of the regular computational domain
(shown in figure 1b for the present case), which is covered by regular Cartesian mesh.
Due to the presence of the wall, the particle distribution functions at the fluid nodes
nearest to the wall are unknown in some directions after the streaming step in the
LBM: they are reconstructed by a second-order interpolation. The approach has been
widely used in treating no-slip walls with complicated geometries. More details can be
found in the paper by Bouzidi et al. (2001) and are not repeated here. At the inlet and
outlets of the tube, velocity boundary conditions assuming fully developed Poiseuille
flows with the appropriate flow rates have been implemented using a second-order
non-equilibrium extrapolation method (Guo, Zheng & Shi 2002b).

In the IBM, a force density is distributed on the Cartesian mesh in the vicinity
of the moving boundary in order to account for the presence of the solid boundary.
Two different coordinate systems are used: the fluid region is represented by Eulerian
coordinates and the membrane of the moving capsule immersed in the fluid by
Lagrangian ones. Across the capsule membrane the fluid velocity is continuous and
the no-slip boundary condition is satisfied by letting the flexible membrane move at
the same velocity as the fluid around it. This motion causes the capsule to deform.
There is a jump in fluid stress across the capsule membrane, which is balanced by
the membrane stress, calculated from the constitutive laws of the elastic membrane
(2.1), (2.3) or (2.5). The membrane force at a Lagrangian mesh point is distributed
on the Eulerian fluid grid points near it by a three-dimensional Dirac delta function.
It is commonly accepted that the procedure is efficient if the mesh size ratio between
the Lagrangian and Eulerian grids is less than unity. More details can be found in
Sui et al. (2008a).

In the present study, the three-dimensional capsule membrane is discretized into flat
triangular elements, following the approach of Ramanujan & Pozrikidis (1998). To
discretize the unstressed spherical capsule wall, each triangular face of a regular
octahedron is subdivided into 4n triangular elements. These elements are then
projected radially onto the sphere. Note that for a given number of elements, the
membrane mesh size depends on the capsule radius. In order to obtain the membrane
force due to deformation, a finite element model developed by Charrier, Shrivastava
& Wu (1989) and Shrivastava & Tang (1993) has been employed.

3.2. Validation
We first validate the model for tube flows by considering a large spherical capsule
(a/R= 0.9) flowing in a long straight tube (length 20R). A grid size of 1x=1y=
1z = 0.04R has been used for the fluid domain. The three-dimensional capsule
membrane is discretized into 32 768 flat triangular elements connecting 16 386 nodes,
leading to a maximum element edge length 1Lc∼ 0.034R and a ratio 1Lc/1x< 0.86.
We obtain the capsule profiles at equilibrium and compare them with those obtained
by Hu, Salsac & Barthès-Biesel (2012) who used a boundary element method. Very
good agreement was achieved in all the cases that were tested. As an illustration,
figure 2 shows the superposition of the deformed profiles obtained with both methods
for a capsule with a NH membrane and a size ratio of a/R = 0.9 under different
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FIGURE 2. (Colour online) Steady profiles of an initially spherical capsule with a NH
membrane in a uniform tube flow (a/R= 0.9, Re= 0.125, B= 0) for Ca= 0.02, 0.05, 0.1
(from left to right). Black solid lines correspond to the present model with a membrane
mesh of 32 768 flat triangular elements connecting 16 386 nodes. The results are compared
to the ones obtained by Hu et al. (2012) using a boundary element method (square
symbols).

capillary numbers. We also conducted simulations with a coarser membrane mesh
(8192 flat triangular elements connecting 4098 nodes) and found that for Ca = 0.1
the deformed profiles were superimposed within graphical precision.

We now turn to the flow of a capsule in the bifurcation and investigate first the
influence of the mesh size of the uniform Cartesian grid that is used in the flow
domain (figure 1b). We consider a small capsule (a/R= 0.4) with a membrane mesh
of 8192 flat triangular elements connecting 4098 nodes, leading to 1Lc ∼ 0.031R.
Figure 3 shows an example of the influence of the flow grid resolution on the
trajectories the capsule in the branched tube for Re = 0.25, Ca = 0.5 and q = 0.5.
We find that the trajectories are almost superimposed for all three tested flow grids
(1x= 0.05R, 0.04R and 0.031R). Further refining the membrane mesh to 32 768 flat
triangular elements connecting 16 386 nodes (1Lc/1x < 0.38 for 1x = 0.04R) does
not lead to any visible change in the capsule trajectory. The fluid mesh was chosen,
so that the fluid film between the capsule wall and the tube was resolved by at least
three grid spaces. Figure 3 illustrates one instance, where the capsule gets very close
to the tube wall, as it enters the side branch. We have found that the grid size of
1x= 0.04R guarantees, even in this case, that the fluid film contains more than three
grid spaces. All the results presented hereafter have thus been obtained for a capsule
mesh made of 8192 flat triangular elements connecting 4098 nodes and for a fluid
grid 1x= 0.04R.

The effect of the length of the tubes has also been studied. After being released, the
capsule deforms into a steady shape, once its centre of mass has travelled a distance
of approximately 5R from its initial position in Sc. The 12R length of the parent tube
is, therefore, long enough for the capsule to reach an equilibrium profile before the
bifurcation. We have also examined the effect of the lengths of both downstream tubes
by extending them to 14R, and found almost identical trajectories of the capsule at the
bifurcation. Thus the downstream tubes are long enough to exclude the effect of the
downstream boundaries on the capsule motion at the bifurcation. However, it should
be noted that the capsule does not reach a steady shape in any downstream branch
after passing the bifurcation. Although distance of about 5R after the bifurcation is
sufficient for the background flow in each branch (i.e. without a capsule) to relax into
the fully developed Poiseuille flow at Re6 40, much longer distances are required for
the capsule to regain its steady-state shape downstream of the bifurcation. It indeed
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FIGURE 3. (Colour online) Trajectories of a capsule (a/R= 0.4) flowing in the branched
tube at Re= 0.25,Ca= 0.5, q= 0.5. Different grid resolutions are used: 1x= 0.05R (dash-
dot line), 1x= 0.04R (solid line), 1x= 0.031R (dash line).

relies on the capsule migration back towards the tube centreline, which is a very long
process (Helmy & Barthès-Biesel 1982; Pozrikidis 2005b; Doddi & Bagchi 2008). As
pointed out by Woolfenden & Blyth (2011) and Ye, Huang & Lu (2015), a much
longer downstream tube (typically tens of the diameter of the tube) is needed for the
capsule to relax into a steady state, which is beyond the scope of the present study.

3.3. Limitations of the numerical model
The present simulation has employed the IBM, in which the membrane force is
distributed over a band of surrounding Eulerian fluid grids (approximately 21x on
each side of the membrane, according to the Dirac delta function used (Sui et al.
2008a)). The second-order approach used to implement the no-slip wall boundary
condition in the LBM needs the values of the probability density function at fluid
grid points within 21x from the wall. As a result, when the capsule membrane gets
close to the wall (i.e. when the thickness of the fluid film between the membrane
and the wall is comparable to 21x), the present method will not be able to resolve
the film flow in the gap. This is likely to happen when a capsule is relatively large
(a/R > 0.6) and is close to the bifurcation. However, the film is often thin over a
very small area of the capsule membrane only, and therefore the thinness limitation
may have a negligible effect on the overall path selection of the whole capsule. This
question is left for future investigation and in the present study we only consider
small capsules (a/R6 0.4), for which this problem does not occur. It should be noted
that in our validation tests presented in figure 2, the liquid film between the capsule
and the tube wall has always been resolved by more than three fluid grids.

4. Flow in the branched tube without a capsule

We consider the flow in the branched tube in absence of any capsule and study the
influence of the flow split ratio and Reynolds number. The results will help us analyse
some features of capsule dynamics. Furthermore, the results for the background flows
will be compared with previous experimental (Rong & Carr 1990; Carr & Kotha 1995)
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(a) (b)

FIGURE 4. (Colour online) Fluid separation lines calculated in cross-section Sc at different
Reynolds numbers and branch flow ratios. The cross-section is 2R from the entrance,
where the flow remains the Poiseuille profile imposed at the inlet. In the cross-section,
the fluid elements above the separation line enter the side branch and those below remain
in the main tube. (a) Separation lines for flows at low Reynolds numbers. The lines
correspond to the present simulation results, theA symbols to the experimental results of
Rong & Carr (1990), the × symbols to the simulation results of Enden & Popel (1992).
(b) Separation lines for flows at Re= 27.5. The full lines correspond to the present results,
theA symbols to the experiments of Carr & Kotha (1995).

and numerical (Enden & Popel 1992) studies to further validate the present numerical
model.

Within each cross-section of the parent tube perpendicular to the tube centreline,
one can define a separation line that divides the fluid elements that flow into the side
branch from those flowing down the straight tube. We determine the fluid separation
line in the cross-section Sc and study how it evolves as a function of the flow split
ratio and Reynolds number. When a fully developed Poiseuille flow is imposed at
the entrance S0, the flow remains fully developed in cross-section Sc. In order to
generate a fluid separation line, 40 000 massless and diffusiveless tracer particles are
initially distributed evenly in Sc and released. Their trajectories are calculated using an
integration method that is detailed in Sui, Teo & Lee (2012). At the position where
a particle is released, a passive scalar φ is defined, which takes the value of one
when the particle enters the side branch and zero otherwise. The separation line is
approximated by the isocontour φ= 0.5. Less than 0.1 % of the particles are found to
get trapped near the apex of the bifurcation, the effect of which can thus be neglected
considering the large number of particles released.

The separation lines are shown in figure 4(a) for low Reynolds number (Re < 1)
flows for different branch flow ratios q. They are compared with the experimental
results of Rong & Carr (1990) and with the numerical simulations of Enden & Popel
(1992), who considered Stokes flow and used a finite element method. Satisfactory
agreements are found in all the cases considered. We can conclude that the flow
separation line only depends on the branch flow ratio when Re< 1. We also compare
the flow separation lines calculated at a higher Reynolds number (Re = 27.5) with
the experiments of Carr & Kotha (1995) under different flow splits in figure 4(b).
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(a) (b)

FIGURE 5. (Colour online) Fluid separation lines in branched tube flows. The
cross-section is the same as that in figure 4. (a) Separation lines for flows at Re= 0.25
with different branch flow ratios; (b) separation lines for flows at different Reynolds
numbers with a fixed branch flow ratio q= 0.5.

Reasonably good agreement is again achieved. Note that Re in Carr & Kotha (1995)
was defined using the maximum flow velocity.

We can also build the lines for flows at a fixed Reynolds number but different
branch flow ratios. The results are presented in figure 5(a) for Re=0.25. At equal flow
split (q= 0.5), the separation line is almost flat and equally divides the cross-sectional
area. However, when the branch flow ratio increases (respectively decreases) from 0.5,
the separation line moves and bends downwards (respectively upwards).

Figure 5(b) presents the separation lines for a fixed flow split ratio q = 0.5 but
different flow Reynolds numbers. When the Reynolds number is increased, the fluid
separation line bends towards the side branch. We will later discuss the effect of the
geometry of the separation line on the path that the capsule selects.

5. Flow of a capsule in a branched tube
We first present in § 5.1 the three-dimensional flow results for a capsule at small

Reynolds number flow, for which inertial effects are negligible.
The objective is to set-up a reference for the study of the effect of inertia. The effect

of Re is then considered in § 5.2, by increasing the flow strength. We show how the
tendency of the capsule to flow into the side branch changes with the flow strength,
capsule size and membrane elasticity and provide a phase diagram of the capsule path
selection in § 5.3.

5.1. Effect of flow split ratio (Re< 1)
We start from a capsule with a size ratio a/R= 0.4 and Ca= 0.5 at different branch
flow ratios. The Reynolds number based on the parent tube is 0.25. Figure 6 presents
the trajectories of the capsule centre of mass for different branch flow ratios. We
recover the fact that the capsule favours the branch with the higher flow rate (Barber
et al. 2008; Woolfenden & Blyth 2011): as the capsule approaches the bifurcation, it
slows down, is first attracted by the side branch and flows into it if q is large enough
(q>0.5 in this case). Otherwise, it migrates back towards the centreline of the straight
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FIGURE 6. (Colour online) Effect of branch flow ratio q on the capsule trajectories
(R = 0.4, Re = 0.25, Ca = 0.5). The triangle denotes the position where the bifurcation
starts to affect the capsule motion. The squares label the centre of mass positions where
the capsule maximum principal tension are the largest (see figure 9).

(a) (b)

FIGURE 7. Effect of flow split ratio on the path selection of a capsule (a/R = 0.4,
Re= 0.25, Ca= 0.5). The profiles are plotted in the xz-plane. The black dots are attached
to two material points of the capsule membrane. The profiles are shown at Vt/R= 4.16,
4.8, 5.44, 6.08, 6.72, 8, 9.28, 10.56, 11.84. (a) q= 0.6, (b) q= 0.4.

tube after passing the bifurcation region. In both cases, the capsule does not reach its
equilibrium shape when approaching the exit as discussed in § 3.2.

We now investigate the motion and deformation of the capsule near the bifurcation
region at different flow splits. Before entering the bifurcation region, the capsule
has a parachute shape in the parent tube (figure 7a,b). The capsule shape starts to
deviate from the steady profile when it is about one diameter from the junction
(position marked by a triangle in figure 6). The successive profiles of the capsule
in the bifurcation vicinity are shown in figure 7 for two different flow split ratios
(q = 0.4 and 0.6). Two membrane material points initially located at the upper and
lower sides of the capsule are marked with black dots to facilitate the visualization
of the membrane motion. In both cases the capsule first moves upwards towards the
side branch, loses its symmetric shape and becomes elongated along the branch flow
direction. The capsule enters the side branch for q= 0.6 (figure 7a), while it remains
in the straight tube for q= 0.4 (figure 7b). In both cases, once the capsule has entered
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FIGURE 8. (Colour online) Capsule in the branched tube at different branch flow ratios
(a/R= 0.4, Re= 0.25, Ca= 0.5). Time evolution of (a) the velocity magnitude Vc/V , and
of (b) the maximum principal tension. The squares indicate the dimensionless times when
τmax reaches its peak value. The corresponding positions of the capsule centre of mass are
shown in figure 6. The triangle denotes the position where the bifurcation starts to affect
the capsule motion.

either one of the tubes, it is off-centred from the channel axis. It therefore undergoes
a clockwise (respectively counterclockwise) tank-treading motion during its migration
towards the centreline of the side branch (respectively straight tube), as can be seen
from the trajectory of the tracker dots attached to the capsule membrane.

In the parent tube before the bifurcation region, the capsule flows at a steady speed,
which is higher than the average speed of the flow (a signature of the Fåhraeus
effect (Fåhraeus 1929)). The steady speed of the capsule with a/R = 0.4 decreases
slightly with the capillary number (not shown), which is consistent with the results
of Lefebvre et al. (2008) obtained for a capsule in a straight cylindrical channel
at confinement ratios a/R > 0.8. When the capsule approaches the bifurcation, it
encounters a relatively high pressure: it is thus flattened (as evidenced by the profiles
at Vt/R = 5.44 and 6.08). Its speed Vc correspondingly decreases to a minimum
and then increases back towards a steady value determined by the flow rate in the
corresponding downstream tube (figure 8a).

The maximum principal elastic tension in the membrane τmax =max[τ1, τ2], where
τ1 and τ2 are calculated from (2.2), is a relevant quantity to evaluate the likelihood
of membrane rupture.

Figure 8(b) shows that τmax increases significantly when the capsule approaches the
bifurcation. Note that the velocity decrease is almost equal for conditions q= 0.6 and
0.4, and for q= 0.7 and 0.3. However, for equal flow split (q= 0.5), there is a strong
decrease in velocity and a large increase in capsule deformation and elastic tension
in the membrane. The deformed profiles of the capsules corresponding to the peak of
τmax are shown in figure 9: the initially spherical capsule is significantly deformed. A
black dot shows where the peak is reached: the maximum tension occurs where the
viscous shear stress exerted by the suspending fluid changes sign.

5.2. Effect of flow strength and size ratio
We now turn to the effect of flow strength on the path selection of a capsule for flow
regimes where inertia is not negligible. The fluid properties (ρ and µ), the capsule size
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(a) (b) (c)

(d ) (e)

FIGURE 9. (Colour online) Capsule profiles in the xz-plane when the maximum principal
tension reaches its peak (a/R= 0.4, Re= 0.25, Ca= 0.5). The black dots show where the
principal tension is maximum.

(a) (b)

FIGURE 10. (Colour online) Effect of flow strength on the capsule trajectory in the
symmetric xz-plane (a/R= 0.4, q= 0.52). (a) Re= 1, Ca= 0.005; (b) Re= 40, Ca= 0.2.
The thick solid line represents the trajectory of the capsule centre. The dark line
with arrows (shown in red online) represents the centre streamline of the undisturbed
background flow, while the grey line with arrows (shown in green online) represents the
separating streamline that divides the fluid elements entering the side branch from ones
entering the downstream main tube.

(a/R=0.4) and the membrane properties (Gs) are fixed. Thus increasing the mean flow
speed simultaneously increases the flow Reynolds number and the capillary number.
The combined effect of these two parameters is unknown. We first consider the case
Ca= 0.005Re, for which Ca evolves from a very small value up to 0.2 for the highest
flow strength corresponding to Re= 40.

The trajectories of the capsule centre of mass and some instantaneous profiles are
shown in figure 10 for two different Reynolds numbers and q = 0.52. It is useful
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(a) (b)

FIGURE 11. (Colour online) Effect of capsule size on its trajectory for Re= 20, q= 0.56,
Ca= 0.1: (a) a/R= 0.4, (b) a/R= 0.2. The streamline legend is the same as in figure 10.

to compare the relative positions in the symmetric xz-plane of the capsule centre
trajectory, the unperturbed centre streamline (emanating from the centre of Sc in
absence of a capsule) and the unperturbed separating streamline (dividing the fluid
elements that enter the side branch from those that enter the straight tube). At low
mean flow speed (Re = 1), the capsule essentially keeps its spherical shape because
Ca = 0.005 is very small. Its trajectory follows the unperturbed centre streamline
until it is close to the bifurcation, but deviates from it due to wall exclusion effects
inside the side branch. At high flow speed (Re = 40), the capillary number is fairly
large (Ca= 0.2) and the capsule is significantly deformed. Its trajectory first deviates
a little from the background streamline moving slightly towards the side branch, but
eventually remains in the main tube (like the centre streamline). Therefore increasing
the flow speed and thus inertial effect, tends to keep the capsule flowing straight
in the main tube. The relative position between the separating streamline and the
centre streamline seems to play an important role. Indeed, for Re= 1, the separation
streamline is initially slightly below the centreline of the parent tube: the centre
streamline (and the capsule) thus goes into the side branch. Conversely, for Re= 40,
the separating streamline is initially above the centreline of the parent tube: the centre
streamline (and the capsule) thus goes into the straight tube.

For given values of Re, Ca and q, the capsule trajectory depends on the size ratio
a/R. If a capsule has a negligible size and is non-diffusive (i.e. negligible Brownian
motion), we expect that it will follow the centre streamline. However, the path
selection of a finite size capsule remains an open question. As shown in figure 11,
for q= 0.56, a small capsule (a/R= 0.2) flows into the straight tube, whereas a large
one (a/R= 0.4) flows into the side branch. This phenomenon may be partly attributed
to the capsule deformation, which can be quantified by means of the stored elastic
energy E(t), given by

E(t)=
∫

A0

WSK(λ1, λ2, t) dA0, (5.1)

where WSK is given by (2.1) and A0 is the initial surface area of the capsule.
When the capsule is in the bifurcation region, the maximum of the stored elastic

energy, normalized by a2Gs, drops from 0.91 to 0.2 when the size of the capsule
decreases from 0.4R to 0.2R. This means that the smaller capsule is less deformed
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10010–1 101
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Main tube

FIGURE 12. (Colour online) Phase diagram: critical branch flow ratio as a function of
the tube Reynolds number for capsules with different sizes and membrane shear elasticity.
For q> qc, the capsule flows into the side branch.

than the larger one. This is due to the fact that the shear rate varies across the tube
and that the effective capillary number to which the capsule is subjected is then
Ca × a/R, rather than just Ca. As the smaller capsule is less deformed, its centre
does not deviate much from the centre streamline: the capsule follows it into the
straight tube in this case (q = 0.56). The larger capsule, however, deviates from the
centre streamline and is attracted into the side branch. We find that the background
flow also plays an important role in path selection of capsules with different sizes,
as it will be discussed in § 6.1.

5.3. Path selection phase diagram
A simple way to characterize path selection of a capsule is to define the critical branch
flow ratio qc, above which the capsule enters the side branch: the capsule thus flows in
the straight tube if q<qc, and in the side branch otherwise. For given values of Re and
Ca, we progressively increase q from 0.1 by large steps 1q= 0.05 until we find the
transition, where the capsule flows into the side branch rather than the straight tube.
We then refine the step to 1q= 0.02 around the transition region. The value of qc is
taken as the average of the two successive branch flow ratios q wherein the capsule
enters the side branch for the largest or remains in the main tube for the smallest.
Therefore qc is determined within ±0.01. Near the transition, we have conducted tests
using finer grid resolutions (1x=1y=1z= 0.031R) and found that the trajectories
of the capsule remain unchanged.

The critical branch flow ratio is shown in figure 12 as a function of the flow
Reynolds number for capsules with different sizes and membrane shear elasticity. In
the extreme case of an infinitely small capsule (i.e. a/R= 0), the capsule follows the
unperturbed streamline. For low inertia (Re = 0.25), qc = 0.48 ∼ 0.49, which means
that the capsule tends to favour the side branch when the flow split is even. This
is what we observe for Ca/Re = 0.005 or 0.02, where the capsule is only slightly
deformed and behaves as a solid sphere (Ca = 0.0013 or 0.005). Interestingly, this
still occurs in the case Ca/Re = 2 (Ca = 0.5 – pink diamond in figure 12), even
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though the capsule is quite deformed under these conditions as can be surmised from
figure 7. This is consistent with the two-dimensional simulation by Woolfenden &
Blyth (2011) in Stokes flow. For Re> 1, qc increases significantly when Re increases
and the capsule size ratio decreases. Up to Re 6 4, the main effect on qc is only
due to size ratio and thus to confinement of the capsule by the tube. The influence
of capsule deformability becomes significant at larger flow rates corresponding to
Re > 10.

6. Discussion and conclusion
We have studied the three-dimensional flow of an initially spherical capsule through

a straight tube with a right-angled side branch, using an immersed-boundary lattice
Boltzmann method. This flow configuration is interesting as it leads to non-symmetric
flow conditions between the two branches, contrary to the classical T-junction that is
equivalent in terms of geometry and has received great attention. The study allows to
elucidate the effects of flow split ratio, flow strength and capsule size ratio (a/R6 0.4)
on the capsule path selection at the bifurcation. It also provides us with information
on the capsule deformation and corresponding stress level in the membrane.

The path selection results are well summarized by means of the critical branch flow
ratio qc, which is the lower bound of the flow split ratio q, for which the capsule
enters the side branch.

For low Reynolds numbers, the critical branch flow ratio is very slightly below
0.5, which means that the capsule favours the side branch at equal flow split, but
otherwise takes a path which is essentially determined by the value of q. This result is
qualitatively consistent with the earlier numerical study of Woolfenden & Blyth (2011).
However the authors used a two-dimensional model and a simple generalized Hooke’s
law for the membrane, which renders impossible any quantitative comparison.

We also consider flows with significant inertial effects, which had not been studied
before. Such flows are encountered in fast flowing microfluidic devices (Di Carlo et al.
2007) or when millimetric capsules flow in fairly large capillary tubes. We find that
the critical branch flow ratio is then larger than 0.5 and increases significantly with
the Reynolds number, when Re> 10. However, qc tends to decrease when the capsule
size and/or deformation increase. This indicates that at equal flow split, the capsule
tends to flow straight in the main tube when inertial effects are significant. This is
a consequence of the effects of inertia on the background flow in the branched tube,
which alters the shape of the fluid separation line in the upstream cross-section Sc, as
discussed in details in the following § 6.1.

6.1. Background flow momentum split: a simple model of path selection
All the above results have been obtained with the full fluid–structure interaction model,
which is quite intricate and necessitates long computations. It is of interest to consider
a much simpler model, based on the interaction of the background flow with the
undeformed capsule, and investigate the validity limits of this model by comparing
the predictions to the ones provided by the full model.

In this simple model, we assume that the presence of the capsule does not
change the background flow significantly, and evaluate the interaction between the
undeformed capsule and the unperturbed flow in section Sc. The model is based on
the ascertainment that the cross-sectional area of the capsule (the shadowed area
in figure 13a) in the plane Sc is divided by the fluid separation line (§ 4) into two
distinct regions, Sb and Sm, having fluid elements that, respectively, enter the side
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FIGURE 13. (a) Illustration for the definition of the momentum ratio. The dash line is
a fluid separation line (for q = 0.5, Re = 20), which divides the cross-sectional area of
the capsule (shaded circle) into two regions (Sb and Sm) covered by fluid elements that
finally enter the side branch and downstream main tube, respectively. Momentum ratios
of capsules with a/R= 0.2 and 0.4 as a function of (b) q at Re= 0.25, (c) Re at q= 0.5.

branch and the downstream main tube eventually (figure 13a). We then define the
ratio M between the momentum of the fluid elements in Sb and the total momentum
of fluid elements in the cross-sectional area of the capsule Sb + Sm:

M =

∫
Sb

ρu(y, z) dSb∫
Sb

ρu(y, z) dSb +
∫

Sm

ρu(y, z) dSm

, (6.1)

where u(y, z) is the fluid velocity along the x-direction in Sc. We then assume that
for M> 0.5, the capsule enters the side branch. The evolution of M with flow split q
at low Re is shown in figure 13(b), while the effect of Re on M at equal flow split
q= 0.5 is shown in figure 13(c).

At equal flow split q= 0.5 and for low Reynolds number (Re= 0.25), M is slightly
larger than 0.5 for both capsules (see insert of figure 13b), suggesting that the slight
momentum unbalance of the background flow helps send the capsule into the side
branch. This is consistent with the predictions of the phase diagram, wherein qc
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Branch
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Re

FIGURE 14. (Colour online) Phase diagram: critical branch flow ratio as a function of the
tube Reynolds number for capsules with a/R= 0.2 and 0.4, Ca/Re= 0.005. Solid lines:
full fluid–structure simulations with a capsule (see figure 12); dash lines: qcm from the
background flow only.

is below 0.5 for both capsules. Similarly, for q > 0.5 (respectively q < 0.5), the
momentum is M > 0.5 (respectively M < 0.5) and the capsule flows into the side
(respectively main) branch. This corresponds to the full model results shown in
figure 6. For q = 0.5, an increase of Re leads to a decrease of M: this means that
the background flow tends to push the capsule into the main branch (figure 13c), as
predicted by the phase diagram. A qualitatively similar effect is also found with the
full model, as shown in figure 10. Note that the evolution of M with either q or Re
is qualitatively the same for the two size ratios. In figure 13(c), it is seen that when
Re > 1, the momentum ratio for a larger capsule is higher than that of a smaller
capsule. This is one of the phenomena that predominantly accounts for the fact that,
at the same flow split, a larger capsule enters the side branch, while a smaller one
chooses the downstream main tube, as seen in figure 11.

In order to quantify precisely the predictive power of the background flow
momentum ratio on the path selection of a capsule, we define a critical branch
flow ratio qcm, that corresponds to M = 0.5. The value of qcm is then computed as
the average of the two successive branch flow ratios between which the value of
M crosses 0.5. It is determined within ±0.01. The values of qcm for capsules with
a/R= 0.2 and 0.4, Ca/Re= 0.005 or 0.02 are shown in figure 14 and are compared
with the values of qc obtained from the full fluid–structure interaction simulations
with the capsule. For small capsules (a/R 6 0.2) or low inertia (Re 6 4), the values
of qc and qcm are almost equal within the determination error. This indicates that
the simple model, based on the momentum ratio of the undeformed capsule, is then
sufficient to determine the path selection of the capsule. While this is to be expected
for small capsules, it is interesting that this is also true for relatively large ones
with a/R = 0.4. However, in this case, the values of qc and qcm begin to diverge
significantly for Re > 10. One reason for the divergence is that the deviation of the
capsule trajectory from the background flow (migration across streamlines) is mainly
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(a) (b)

FIGURE 15. (Colour online) Effect of membrane shear elasticity on the capsule trajectory
for Re= 20, q= 0.53, a/R= 0.4: (a) Ca= 0.4, (b) Ca= 0.1. The streamline legend is the
same as in figure 10.

a result of the capsule deformability. In figure 14, the more deformable capsule
(inverted triangles with solid line) deviates more than the stiffer capsule (circles with
solid line) from the background flow results (circles with dash line). This can be seen
from figure 15, where the capsule membrane shear elasticity leads to different flow
trajectories under the same background flow condition. This means that the simple
model can no longer be used to accurately compute the capsule path when the capsule
deformation is significant. For example, the case shown in figure 11(a), corresponds
to q= 0.56 and Re= 20. According to the value qcm = 0.57, the capsule should flow
straight in the main tube, whereas it goes into the branch: this means that the simple
model fails and cannot predict properly the path selection of deformed capsules. The
present results therefore suggest that, when the capsule deformation is not significant
(Ca 6 0.05), the momentum ratio obtained from the background flow can be used
to predict the path selection of a capsule with a reasonable accuracy. However, for
large capsules undergoing significant deformation, the full fluid–structure model is
compulsory to predict the capsule path.

6.2. Limits on the parameter values
The question which arises at this point is the range of parameters that can be
achieved with typical artificial capsules. The smallest value of Gs, which has been
found for stable artificial capsules with a thin albumin polymerized membrane
ranges between 0.05 and 0.1 N m−1 for a ∼ 50 µm (Lefebvre et al. 2008; Chu
et al. 2011; de Loubens et al. 2014; Gubspun et al. 2016). The membrane rigidity
increases with the radius and becomes of the order of Gs = 0.5 ∼ 1 N m−1 for
capsules (a ∼ 100–200 µm) with a polymerized albumin or nylon membrane
(Koleva & Rehage 2012; de Loubens et al. 2014; Gubspun et al. 2016). Millimetric
capsules (a ∼ 1–2 mm) with a membrane made of alginate have an elastic modulus
Gs∼1–3 N m−1 (Carin et al. 2003; Zhang & Salsac 2012). Note that the above values
of Gs correspond to minimum values, and that it is usually possible to decrease the
capsule deformability (increase Gs) by increasing either the degree of polymerization,
thickness of the membrane or size of the capsule. For example, to our knowledge,
there are no stable millimetric capsules with Gs less than ∼1 N m−1. In order to get
a significant deformation of the capsule, Ca must be large enough (typically Ca> 0.1
for some deformation to occur). The capsule otherwise behaves like a solid sphere.
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An important experimental constraint is that the pressure drop in the system must
be manageable. A rough estimate (ignoring the complex bifurcation geometry) of the
pressure drop gradient 1P/L in the branched tube is given by Poiseuille law

1P
L
= 8µV

R2
= 8CaGs

R2
. (6.2)

The typical length scale L of a microfluidic device is L ∼ 2 cm. It is reasonable to
limit the pressure drop to a maximum value 1Pmax (typically 1Pmax∼ 2× 105 Pa). It
follows that the lower limit on the tube radius is given by

Rmin =
√

8CaGsL
1Pmax

. (6.3)

For given values of Ca and Gs, the constraint (6.3) allows us to determine a minimum
value of the tube radius R (and thus of the capsule radius a, since a= 0.2R or 0.4R
in the present simulations) and check whether it is consistent with the range of size
corresponding to the value of Gs (see above paragraph). The next step consists in
taking a tube of radius R>Rmin, a given ratio Ca/Re and compute the corresponding
fluid viscosity µ and mean flow velocity V for different values of Re. It follows that
within the constraint of 1Pmax∼ 2× 105 Pa, it is very difficult to achieve high values
of Re within a microtube (i.e. R ∼ 100 µm). For example, with Ca/Re = 0.005, if
we take R = 100 µm, L = 2 cm and a/R = 0.4, a reasonable value of Gs is around
0.1 N m−1. The pressure constraint 1Pmax = 2 × 105 Pa leads to a maximum value
Ca = 0.125, which corresponds to Re = 25 for this Ca/Re ratio. From (2.10), one
notices that such experimental conditions can be achieved for a fluid with a density
ρ=1000 kg m−3 and a viscosity µ=0.01 Pa s. At Re=25, the average fluid velocity
in the tube will be 1.25 m s−1. The high velocity introduces a significant challenge
for capsule imaging when it is flowing in the tube. However, it also means that the
device can have a high throughput. Note that the case Re= 40 is difficult to obtain
experimentally. We have, nevertheless, used it in this paper for illustration purposes,
as it shows clearly the combined effects of significant flow inertia and large capsule
deformation.

6.3. Capsule sorting
The present results suggest that the trajectory of a capsule in a branched tube can
be controlled by adjusting a range of parameters, among which are the capsule size,
tube flow rate and branch flow ratio. One potential application of the results is to
guide the development of microfluidic devices with a bifurcation, to separate capsules
from a suspension or to sort capsules according to size and/or membrane elasticity.
The present T-branch geometry with non-symmetric flow condition can be used to
sort capsules according to size (the small ones in the side branch) by flowing the
suspension at a high enough rate where inertia becomes important (see figure 11).
Sorting equal size capsules according to membrane elasticity can also be achieved at
high flow rates, but is trickier to achieve, since the difference in qc values is small (see
the difference between the curves corresponding to Ca= 0.02Re and Ca= 0.005Re in
figure 12). Another aspect to keep in mind is that it may be difficult to operate such
devices under steady flow rates with a precise flow split. Furthermore, special attention
should be paid to the stress level in the membrane, when the capsule is close to the
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bifurcation, in order to avoid damage. It is worth pointing out that the present results
are obtained for tube flows generated by flow rate control systems. Pressure control
systems such as present in the microcirculation may work in a different way. Finally,
a limitation of the present work is that we have only considered a single capsule,
corresponding to the infinite–dilute limit. In future studies we shall investigate capsule
suspensions to establish the effect of capsule interaction.
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