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Galois groups of chromatic polynomials

Kerri Morgan

Abstract

The chromatic polynomial P (G, λ) gives the number of ways a graph G can be properly coloured
in at most λ colours. This polynomial has been extensively studied in both combinatorics and
statistical physics, but there has been little work on its algebraic properties. This paper reports
a systematic study of the Galois groups of chromatic polynomials. We give a summary of the
Galois groups of all chromatic polynomials of strongly non-clique-separable graphs of order at
most 10 and all chromatic polynomials of non-clique-separable θ-graphs of order at most 19. Most
of these chromatic polynomials have symmetric Galois groups. We give five infinite families of
graphs: one of these families has chromatic polynomials with a dihedral Galois group and two
of these families have chromatic polynomials with cyclic Galois groups. This includes the first
known infinite family of graphs that have chromatic polynomials with the cyclic Galois group of
order 3.

1. Introduction

The chromatic polynomial P (G, λ) gives the number of proper colourings of a graph G in at
most λ colours. It was first introduced by Birkhoff [7] in an attempt to prove algebraically
the four-colour theorem, that is, that every planar graph is four colourable. Although this
attempt was unsuccessful, the chromatic polynomial has been extensively studied both in
graph theory [17, 45] and in statistical mechanics where the Potts model partition function
generalises this polynomial. An overview of the relationship between the chromatic polynomial
in graph theory and the partition function in statistical mechanics is given in [1]. The limit
points of the roots of the partition function give the locations of possible physical phase
transitions [31, 39–41]. Thus, there has been a large amount of research about complex roots
of chromatic polynomials of families of graphs, in particular identifying zero-free regions and
zero-dense regions in the complex plane for these families [3–6, 11, 15, 18, 19, 29, 31–38].

Although there has been considerable research in the study of chromatic roots, that is, the
roots of chromatic polynomials, until recently there had been very little research in the algebraic
study of these roots. The main exception is the proofs that the non-integer Beraha numbers
Bi = 2 + 2 cos(2π/i), i> 5, [2, 43] (excluding possibly B10) are not chromatic roots [31, 42].
Sokal [41, Footnote 13] commented that the algebraic theory of chromatic roots was ‘as yet
rather undeveloped’. But a polynomial is by nature an algebraic object and the chromatic
polynomial’s roots (excuse the pun) are algebraic, so it is natural to study the algebraic
properties of chromatic roots. Recently there has been an increasing interest in the algebraic
study of chromatic roots instigated by our own work in [23–26] and by a work group initiated
by the Combinatorics and Statistical Mechanics programme at the Isaac Newton Institute in
2008 [10].

A fundamental algebraic property of any polynomial is its factorisation. Thus, as a start of
an algebraic study of the chromatic polynomial we introduced the concept of the chromatic
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factorisation of a graph G, that is, where the chromatic polynomial of G can be expressed as

P (G, λ) =
P (H1, λ)P (H2, λ)

P (Kr, λ)
,

where r > 0 and the graphs H1 and H2 each have chromatic number at least r (see [24–26]).
The graphs H1 and H2 are called the chromatic factors of G. We say a graph is clique-
separable if it can be obtained by identifying an r-clique in H1 with an r-clique in H2, for
some H1 and H2. Any clique-separable graph has a chromatic factorisation. Graphs are said to
be chromatically equivalent if they have the same chromatic polynomial. A graph is said to be a
strongly non-clique-separable graph if it is not chromatically equivalent to any clique-separable
graph. In [24, 25] we identified strongly non-clique-separable graphs that have chromatic
factorisations.

In this paper we look at the Galois groups of chromatic polynomials. The Galois group of a
polynomial provides information about symmetries of the roots. The first explicit connection
with Galois groups was our own work in [22] and joint work in [10]. As the Galois group is
arguably the most central object in any algebraic study of polynomials, it is surprising that
the connections between Galois groups of chromatic polynomials and graphs have not been
previously explored.

We say the graphs G and H are Galois equivalent if P (G, λ) and P (H, λ) have the same
Galois group. We are particularly interested in identifying families of Galois equivalent graphs
that have common structural properties.

There are two main contributions in this paper. The first contribution is to give a summary of
our computations of Galois groups of the irreducible non-linear factors of chromatic polynomials
of all strongly non-clique-separable graphs of order at most 10 and of θ-graphs of order at most
19. The Galois groups of irreducible factors of chromatic polynomials of any clique-separable
graph of order at most 10 can easily be obtained from this data.

In most (over 90%) cases the Galois groups are symmetric Galois groups. Recently, it was
shown that the Galois group of the multivariate Tutte–Whitney polynomial is always a direct
product of symmetric groups [8]. The chromatic polynomial is an evaluation of this polynomial.
As most chromatic polynomials of strongly non-clique-separable graphs of order at most 10
have symmetric Galois groups, it is interesting to consider cases where the Galois group is not
the symmetric Galois group, which leads to our second contribution.

The second contribution of this paper is to give some new infinite families of Galois equivalent
graphs. Three of these families have graphs with chromatic polynomials that have non-
symmetric Galois groups, namely, the cyclic groups, C(3)∼=A3 and C(4), of orders 3 and 4
respectively, and the dihedral group D(4). (Table A.1 gives the notation used for Galois groups
in this article. We use the notation given in [12, Appendix A].) It is easy to show that the
Galois group of the chromatic polynomial of a cycle of order n is isomorphic to (Z/(n− 1)Z)∗,
the multiplicative group of units of Z/(n− 1)Z (see [10, 22]). If n= p+ 1, where p is prime,
then the Galois group is the cyclic group C(p− 1) of order p− 1 (see [10, 22]). Thus, there
are examples of chromatic polynomials with cyclic Galois groups of order p− 1. However, we
found no chromatic polynomial of degree at most 10 that has a cyclic group of odd order
(excluding the trivial group) as the Galois group. This led to the question of whether there are
chromatic polynomials with the Galois group C(n), n odd. In this paper, we give an affirmative
answer for the case where n= 3 by providing an infinite family of graphs that have chromatic
polynomials with Galois group C(3)∼=A3. The smallest (in terms of order) of these graphs has
order 11.

This article is organised as follows. Section 2 gives some basic properties of chromatic
polynomials and a brief overview of Galois theory. We give a summary of the Galois groups of
non-linear factors of chromatic polynomials of graphs of order at most 10 in Section 3 and of
the Galois groups of non-linear factors of chromatic polynomials of θ-graphs of order at most 19
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in Section 4. The θ-graphs have some nice divisibility relations which we describe briefly. We
then give a description of five infinite families of graphs in Section 5. Each family is shown to
have Galois group S1, S2, C(3)∼=A3, C(4) and D(4) respectively.

2. Background

First we give some relations and properties of the chromatic polynomial that will be used in this
article. Let G= (V, E) be the graph with vertex set V and edge set E. The deletion-contraction
relation states that for any edge e ∈ E

P (G, λ) = P (G\e, λ)− P (G/e, λ)

where G\e is the graph obtained by deleting the edge e in G and G/e is the graph obtained
by identifying the endpoints of e and discarding any multiple edges and loops introduced by
the identification.

The addition-identification relation states for any uv 6∈ E

P (G, λ) = P (G+ uv, λ) + P (G/uv, λ)

where G+ uv is the graph obtained by adding the edge uv to G and G/uv is the graph
obtained by identifying the vertices u and v and discarding any multiple edges introduced by
the identification.

The chromatic polynomial of the complete graph on n vertices is

P (Kn, λ) = λ(λ− 1) . . . (λ− n+ 1)

and the chromatic polynomial of the cycle on n vertices is

P (Cn, λ) = (λ− 1)n + (−1)n(λ− 1).

A θ-graph is a graph that can be obtained from three disjoint paths u0, u1, . . . , ua,
v0, v1, . . . , vb and w0, w1, . . . , wc, a, b, c> 1, by identifying vertices u0, v0 and w0 and
identifying vertices ua, vb and wc. We call this graph θa,b,c.

The chromatic polynomial is a monic polynomial with integer coefficients [28, 30, 42] and so
P (G, λ) ∈Q[λ]. The splitting field, L, of a polynomial p(λ) ∈Q[λ] is the smallest extension field
of Q containing all the roots of p(λ). The Galois group of p(λ) is the group of automorphisms
of L that point-wise fix the elements of Q. The Galois group is isomorphic (under the Galois
correspondence) to a subgroup of the symmetric group acting on the roots, so in this form it
is a permutation group.

If p(λ) has only linear factors, then all the roots lie in Q so the splitting field of p(λ) is Q and
the Galois group of p(λ) is the trivial group S1. Thus chromatic polynomials that have only
integer roots have the trivial Galois group. For example, chromatic polynomials of complete
graphs have the trivial Galois group.

If p(λ) has non-linear factors, then the splitting field is a non-trivial extension field of Q. If
p(λ) has a single non-linear factor p′(λ), then the Galois group of p(λ) is the Galois group of
p′(λ). For example, the Galois group of P (C4, λ) = λ(λ− 1)(λ2 − 3λ+ 3) is the Galois group
of the non-linear factor λ2 − 3λ+ 3. Here the splitting field is Q(

√
−3). The automorphisms

of Q(
√
−3) that fix Q are the identity map and the bijection

√
−3↔−

√
−3 and so the Galois

group is isomorphic to the symmetric group S2.
If p(λ) has more than one non-linear factor, then the roots of these factors may interact in

a non-trivial way. For example, the chromatic polynomial of the cycle on 7 vertices is

P (C7, λ) = λ(λ− 1)(λ− 2)(λ2 − 3λ+ 3)(λ2 − λ+ 1)

which has non-integer roots {(3±
√
−3)/2, (1±

√
−3)/2}. Each of the quadratic factors has

Galois group S2. However, the extension field Q(
√
−3) contains all these roots and is the

splitting field for this polynomial. So again the Galois group is S2.
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Figure 1. Graph with chromatic polynomial λ(λ− 1)(λ− 2)(λ2 − 3λ+ 3)(λ2 − 3λ+ 4).

The chromatic polynomial of the graph in Figure 1 also has two non-linear factors,
λ2 − 3λ+ 3 and λ2 − 3λ+ 4. However the roots of the second factor do not lie in Q(

√
−3). In

this case the roots are {(3±
√
−3)/2, (3±

√
−7)/2}. Here the splitting field is Q(

√
−3,
√
−7).

The automorphisms of Q(
√
−3,
√
−7) that fix Q are the identity map, σ1 =

√
−3↔−

√
−3,

σ2 =
√
−7↔−

√
−7 and σ3 = σ1 ◦ σ2 and so the Galois group is isomorphic to the Klein group

which has order 4.

3. Galois group computation

Tables A.2–A.11 in Appendix A give a list of all Galois groups of non-linear factors of chromatic
polynomials of strongly non-clique-separable graphs of order at most 10 and the number of
times they occur. We give a list of all chromatic polynomials of strongly non-clique-separable
graphs of order at most 8 with the Galois groups of their irreducible non-linear factors in [21].
This list includes a list of graph numbers corresponding to the numbering in McKay’s collection
of simple connected graphs [20].

We use the group notation given in [12, Appendix A]. A summary of this notation for
the groups we encounter is given in Table A.1. Tables A.2–A.4 give the number of strongly
non-clique-separable graphs (up to isomorphism) of order n= 4, 5, 6 and the number of
corresponding chromatic polynomials with given Galois groups. All chromatic polynomials
of strongly non-clique-separable graphs of order at most 6 have at most one non-linear factor
and so the Galois group of this factor is the Galois group of the chromatic polynomial.

Some chromatic polynomials of strongly non-clique-separable graphs of order >6 have
more than one non-linear factor. In Tables A.5–A.11 we give a list of the Galois groups of
all non-linear factors. For each entry, we give the number of strongly non-clique-separable
graphs (up to isomorphism) and the number of corresponding chromatic polynomials with
these Galois groups. In the case where there is more than one non-linear factor, we give the
order and the generators of the Galois group of the chromatic polynomial. For example, in
Table A.5 we have three graphs of order 7 that have two non-linear factors. There are two
graphs with chromatic polynomials that have two quadratic factors. Each of these factors has
Galois group S2. The first of these graphs is the cycle C7 which has chromatic polynomial
λ(λ− 1)(λ− 2)(λ2 − 3λ+ 3)(λ2 − λ+ 1) which has the Galois group of order 2 generated
by (1, 2)(3, 4). The second graph is the graph in Figure 1 which has chromatic polynomial
λ(λ− 1)(λ− 2)(λ2 − 3λ+ 3)(λ2 − 3λ+ 4) which has a Galois group of order 4 with generators
(1, 2) and (3, 4). The chromatic polynomial of the third graph has a quadratic and a cubic
factor that have Galois groups S2 and S3 respectively. This graph has chromatic polynomial
λ(λ− 1)(λ2 − 4λ+ 5)(λ3 − 4λ2 + 7λ− 5) which has a Galois group of order 12 with generators
(1, 2), (3, 4, 5) and (3, 4). When the chromatic polynomial has only one irreducible non-linear
factor there is no entry given in the Generators column of the tables.

PARI/GP 2.3.0 [27] was used to compute the Galois groups of all the irreducible non-linear
factors of the chromatic polynomials. In the case where the chromatic polynomial has a single
irreducible non-linear factor, the Galois group of this factor is the Galois group of the entire
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polynomial. When the chromatic polynomial has more than one irreducible non-linear factor,
we use Magma V2.14-11 [44] to compute its Galois group, as Pari is not able to compute Galois
groups of reducible polynomials. In this case we give the order and the generators of the groups
found by Magma.

There are only three strongly non-clique-separable graphs of order at most 3: the complete
graphs K1, K2 and K3. The chromatic polynomials of these graphs all have the trivial Galois
group.

Any chromatic polynomial that factorises into linear factors in Z[λ] has the trivial Galois
group. The class of chordal graphs is a class of graphs that have only integer roots [30]. The
quasi-chordal graphs are the graphs that are chromatically equivalent to the chordal graphs.
D’Atonna, Mereghetti and Zamparini [14] showed that there are 224 non-chordal graphs
of at most 9 vertices that have no complex chromatic roots: 206 of these are quasi-chordal
graphs. In Section 5.1 we give an infinite family of quasi-chordal graphs that are not chordal
graphs.

Chromatic polynomials of degree at most 10 with Galois groups corresponding to each of
the transitive permutation groups of even degree 66 and to each of the transitive permutation
groups of odd degree 65, excluding A3 and C(5), were found. However, chromatic polynomials
exist with Galois group C(3)∼=A3. An example of such a chromatic polynomial was found by
Peter Cameron using the ring of cliques structure. We have also found a non-trivial infinite
family of graphs that have chromatic polynomials with Galois group C(3)∼=A3. Each graph in
this family has a chromatic polynomial with a different irreducible cubic factor that has Galois
group C(3)∼=A3.

As any strongly non-clique-separable graph is connected and contains no cut-vertex, its
chromatic polynomial is divisible by λ(λ− 1). As the degree of the chromatic polynomial is
the order of the graph, only strongly non-clique-separable graphs of order >9 may have an
irreducible septic factor. It is therefore not surprising that some transitive permutation groups
of degree >7 do not correspond to any Galois group of a chromatic polynomial of degree at
most 10.

The majority of chromatic polynomials of degree at most 10 have the symmetric group Sl,
l ∈ [1, n− 2], as their Galois group. In Table A.6 about 91% of chromatic polynomials of order
8 with a single non-linear irreducible factor have Galois group Sl, 1 6 l 6 6, and in the case of
chromatic polynomials with more than one irreducible factor, the Galois groups of all but one of
these factors are the symmetric groups. In Tables A.7–A.8 over 94% of chromatic polynomials
of order 9 with a single non-linear irreducible factor have Galois group Sl, 1 6 l 6 7, and in
over 90% of the cases where the chromatic polynomial has more than one non-linear factor,
all its non-linear factors have symmetric Galois groups. In Tables A.9–A.11 almost 99% of
chromatic polynomials of order 10 with a single non-linear irreducible factor have Galois group
Sl, 1 6 l 6 8, and in about 90% of the cases where the chromatic polynomial has more than
one non-linear factor, all its non-linear factors have symmetric Galois groups. Excluding the
symmetric groups, the dihedral groups and cyclic groups appear to occur most frequently in
these tables.

4. Galois groups of chromatic polynomials of θ-graphs

In Section 1 we commented that the Galois group of the chromatic polynomial of the cycle graph
of order n is isomorphic to (Z/(n− 1)Z)∗. As the Galois groups of the chromatic polynomials
of cycle graphs are well understood, it seemed natural to look at the Galois groups of the
chromatic polynomials of θ-graphs. A θ-graph can be obtained from a cycle graph by adding a
path that connects two vertices in the cycle. Interestingly, when certain conditions are satisfied
the chromatic polynomial of a θ-graph is divisible by the chromatic polynomial of a cycle
graph.

https://doi.org/10.1112/S1461157012001052 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001052


286 K. MORGAN

In this section we look at the Galois groups of chromatic polynomials of θ-graphs of order at
most 19. The chromatic polynomials of all but two of these graphs have an irreducible factor
with a symmetric Galois group of order >3.

Tables B.1 and B.2 in Appendix B give a list of all Galois groups of the non-linear factors of
chromatic polynomials of θa,b,c-graphs of order at most 19 where a, b, c> 2. The list of θ-graphs
is given as a semi-colon-separated list where a, b, c refers to the θ-graph θa,b,c, a> b> c. The
Galois group of each irreducible non-linear factor of each chromatic polynomial was calculated
using Magma.

Table B.1 gives the number of θ-graphs with chromatic polynomials having a given Galois
group where the chromatic polynomial has a single non-linear irreducible factor. These
correspond to 75 of the 147 θa,b,c-graphs, a, b, c> 2, of order n6 19. All but two of these
chromatic polynomials have Galois group Sn−χ(θa,b,c) where χ(θa,b,c), the chromatic number of
the graph, is 2 if a, b and c have the same parity and is 3 otherwise. There are two exceptions: the
chromatic polynomials of θ2,3,3 and θ2,3,5 that have Galois group D(4) and 2S4(6) respectively.

Table B.2 gives the number of θ-graphs with chromatic polynomials having more than one
irreducible non-linear factor. These correspond to 72 of the 147 θa,b,c-graphs, a, b, c> 2, of order
n6 19. This table gives a list of the Galois groups of all the irreducible non-linear factors of
each chromatic polynomial. In each case one of the Galois groups is the symmetric Galois group
Sl for 3 6 l 6 n− χ(θa,b,c). The other non-linear irreducible factors are all factors of chromatic
polynomials of cycle graphs. This is not surprising as by applying a single addition-identification
relation to any θ-graph we can express the chromatic polynomial as

P (θa,b,c, λ) =
P (Ca+1, λ)P (Cb+1, λ)P (Cc+1, λ)

P (K2, λ)P (K2, λ)
+
P (Ca, λ)P (Cb, λ)P (Cc, λ)

P (K1, λ)P (K1, λ)
. (1)

We consider C2
∼=K2.

From (1) it is clear that if any of the following occur the chromatic polynomial of
P (θa0,a1,a2 , λ) is divisible by the chromatic polynomial of some cycle graph:

• P (Cai+1, λ) divides P (Caj , λ);
• P (Cai

, λ) divides P (Caj+1, λ);
• for some cycle C, the chromatic polynomial P (C, λ) divides P (Cai

, λ) and P (Caj+1, λ),

for some i, j ∈ {0, 1, 2}. If more than one of these cases occur, P (θa0,a1,a2 , λ) is divisible by the
chromatic polynomials of at least two cycle graphs.

In [22, pp. 97–100] we gave a number of families of θ-graphs that have chromatic polynomials
that are divisible by chromatic polynomials of cycle graphs of lower degree and showed that
these divisibility properties can be proved by applying some simple operations on the graphs.

Table B.3 in Appendix B gives the Galois groups of the chromatic polynomials of cycles of
order 4 6 n6 9 and the θ-graphs of order at most 19 (excluding θ2,7,9) that have chromatic
polynomials that can be expressed as

P (Cn, λ)P (λ) or P (Cn, λ)(λ− 2)P (λ)

where P (λ) is an irreducible factor that has the symmetric Galois group. The triplet, a, b, c, is
considered to be unordered. For example, 2, 4, 5 corresponds to the graph θa,a+1,b and 2, 3, 7
corresponds to the graph θa,2k−1a+1,b. The graph θ2,7,9 is not included in Table B.3. The
chromatic polynomial of this graph is

P (θ2,7,9, λ) =
P (C3, λ)P (C8, λ)P (C10, λ)

P (K2, λ)P (K2, λ)

+
P (C2, λ)P (C7, λ)P (C9, λ)

P (K1, λ)P (K1, λ)
.
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Figure 2. Graph Gp,0,r.

In this case P (C4, λ) divides P (θ2,7,9, λ) as P (C4, λ) divides both P (C10, λ) and P (C9, λ).
Cases where the chromatic polynomial of the θ-graph is divisible by the chromatic polynomials
of two cycles, Cn1 and Cn2 , of order >4 are not included in Table B.3.

Every chromatic polynomial in Table B.2 has only one irreducible factor that is not the
factor of some cycle graph. This factor has the symmetric Galois group, which leads to the
following question.

Problem 1. Can the chromatic polynomial P (θa,b,c, λ), excluding P (θ2,3,3, λ) and
P (θ2,3,5, λ), always be expressed

P (θa,b,c, λ) =
j∏
i=0

P (Csi
, λ)

P (Kri
, λ)

p(λ)

where j > 0, si > 2, ri > 0 and p(λ) is an irreducible polynomial with Galois group Sn−l where
χ(θa,b,c) 6 l < j?

5. Infinite families of Galois equivalent graphs

In this section we will give some families of graphs that have chromatic polynomials with Galois
groups S1, S2, C(3)∼=A3, C(4), and D(5).

Let Gp,0,r be the graph obtained by identifying a clique of order r − 1, r > 2, in p> 2
copies of Kr and connecting the vertices that are not identified in this (r − 1)-clique, which
we label v1, v2, . . . , vp, to vertex v0 (see Figure 2). The vertices in the intersecting clique we
label vp+1, vp+2, . . . , vp+r−1. The graph Gp,q,r is the graph Gp,0,r with q ∈ [0, r − 1] additional
edges, which connect vertex v0 to q distinct vertices, vp+1, vp+2, . . . , vp+q.

First we show the following theorem.

Theorem 1. The chromatic polynomial

P (Gp,0,r, λ) = P (Kr, λ)((λ− r)p + (r − 1)(λ− r + 1)p−1)

for p> 2 and r > 2.
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Proof. The proof uses induction on p.
Suppose p= 2, then we have

P (G2,0,r, λ) = P (G2,0,r + (v1, v2), λ) + P (G2,0,r/(v1, v2), λ)

=
P (Kr+1, λ)P (K3, λ)

P (K2, λ)
+
P (Kr, λ)P (K2, λ)

P (K1, λ)

= P (Kr, λ)((λ− r)(λ− 2) + (λ− 1))

= P (Kr, λ)(λ2 − (r + 1)λ+ 2r − 1)

= P (Kr, λ)(λ2 − 2rλ+ r2 + (r − 1)λ− r2 + 2r − 1)

= P (Kr, λ)((λ− r)2 + (r − 1)λ− (r − 1)2)

= P (Kr, λ)((λ− r)2 + (r − 1)(λ− r + 1)).

Suppose p > 2, then

P (Gp,0,r, λ) = P (Gp,0,r\(v0, vp), λ)− P (Gp,0,r/(v0, vp), λ)

=
P (Gp−1,0,r, λ)P (Kr, λ)

P (Kr−1, λ)
− P (Kr+1, λ)p−1

P (Kr, λ)p−2

= (λ− r + 1)P (Gp−1,0,r, λ)− (λ− r)p−2P (Kr+1, λ)
= (λ− r + 1)P (Gp−1,0,r, λ)− (λ− r)p−1P (Kr, λ)

which by induction becomes

P (Gp,0,r, λ)
= (λ− r + 1)P (Kr, λ)((λ− r)p−1 + (r − 1)(λ− r + 1)p−2)− (λ− r)p−1P (Kr, λ)
= P (Kr, λ)((λ− r + 1)(λ− r)p−1 + (λ− r + 1)(r − 1)(λ− r + 1)p−2 − (λ− r)p−1)
= P (Kr, λ)((λ− r)p + (λ− r)p−1 + (r − 1)(λ− r + 1)p−1 − (λ− r)p−1)
= P (Kr, λ)((λ− r)p + (r − 1)(λ− r + 1)p−1). 2

Theorem 2. The chromatic polynomial

P (Gp,q,r, λ) = P (Kr, λ)((λ− r)p + (r − q − 1)(λ− r + 1)p−1)

for p> 2, 0 6 q 6 r − 1 and r > 2.

Proof. The proof uses induction on q. When q = 0, the result follows from Theorem 1.
Suppose q > 0. Then

P (Gp,q,r, λ) = P (Gp,q,r\(v0, vp+q), λ)− P (Gp,q,r/(v0, vp+q), λ)

= P (Gp,q−1,r, λ)− P (Kr, λ)p

P (Kr−1, λ)p−1

= P (Gp,q−1,r, λ)− P (Kr, λ)(λ− r + 1)p−1,

which by induction becomes

P (Gp,q,r, λ) = P (Kr, λ)((λ− r)p + (r − q)(λ− r + 1)p−1)− P (Kr, λ)(λ− r + 1)p−1

= P (Kr, λ)((λ− r)p + (r − q − 1)(λ− r + 1)p−1). 2

It is clear from Theorem 2 that the Galois group of P (Gp,q,r, λ) is the Galois group of the
factor (λ− r)p + (r − q − 1)(λ− r + 1)p−1. If this polynomial is irreducible, the Galois group
is a subgroup of Sp. We consider some families of graphs Gp,q,r where p= 2, 3 and 4. In the
cases where p= 3, 4, we identify some families of Galois equivalent graphs that have chromatic
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(a) (b)

Figure 3. A pair of chromatically equivalent graphs.

polynomials with Galois groups that are not Sp. As most chromatic polynomials of strongly
non-clique-separable graphs of order at most 10 have the symmetric Galois group, infinite
families of graphs that have chromatic polynomials with other Galois groups are especially
interesting. In particular we have found a family of graphs that have Galois group C(3)∼=A3,
a group that does not occur in our tables in Appendix A.

5.1. Galois groups S1 and S2

When p= 2, the chromatic polynomial of P (G2,q,r, λ) is

P (G2,q,r, λ) = P (Kr, λ)((λ− r)2 + (r − q − 1)(λ− r + 1))
= P (Kr, λ)(λ2 − (r + q + 1)λ+ (2r + qr − q − 1)). (2)

Now the Galois group of (2) is the Galois group of its quadratic factor which is S1 if the
quadratic is reducible, that is when r = q + 1 or r = q + 5, and is S2 otherwise. The quasi-
chordal graphs are precisely the graphs that have chromatic polynomials with only integer
roots and so have the trivial Galois group.

Corollary 1. The graphs in the family {G2,r−1,r : r > 2} ∪ {G2,r−5,r : r > 5} are quasi-
chordal graphs.

It is clear that Gp,q,r, q 6= r − 1, is not chordal. So Corollary 1 gives an infinite family of non-
chordal graphs, {G2,r−5,r : r > 5}, that are chromatically equivalent to chordal graphs. The
smallest graph belonging to this family is the graph G2,0,5, the smallest (in terms of order)
non-chordal quasi-chordal graph (see Figure 3).

5.2. Galois group C(3)∼=A3

When p= 3 we have

P (G3,q,r, λ) = P (Kr, λ)((λ− r)3 + (r − q − 1)(λ− r + 1)2)
= P (Kr, λ)(λ3 − (2r + q + 1)λ2 + (r2 + (2q + 4)r − 2(q + 1))λ
− ((q + 3)r2 − (2q + 3)r + q + 1). (3)

Now the Galois group of (3) is the Galois group of its cubic factor that we will call f(λ).
We show that when r = c2 + c+ 8 + q, c ∈ N ∪ {0}, this factor has Galois group A3 and thus
P (G3,q,c2+c+8+q, λ) has Galois group A3.
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When r = c2 + c+ 8 + q, the cubic factor in (3) becomes

f(λ) = λ3 − (3q + 1 + 2(c2 + c+ 8))λ2

+ ((c2 + c+ 8)2 + 4(q + 1)(c2 + c+ 8) + 3q2 + 2(q − 1))λ
− ((q + 3)(c2 + c+ 8)2 + (2q2 + 4q − 3)(c2 + c+ 8) + (q3 + q2 − 2q + 1)). (4)

We will use the following theorem from [16, Theorem 17.3, p. 259] to show that this cubic
is irreducible for all c> 0.

Theorem 3. Let p be a prime and f(x) ∈ Z[x] with degree at least 1. Let f(x) be the
polynomial in Zp[x] obtained by reducing all the coefficients of f(x) modulo p. If f(x) is
irreducible Zp and has the same degree as f(x), then f(x) is irreducible over Q.

Lemma 1. The cubic f(λ) in (4) is irreducible for c ∈ Z.

Proof. The cubic f(λ)≡ λ3 − (q + 1)λ2 + q2λ− 1 (mod 2). There are two cases: q ≡ 0
(mod 2) and q ≡ 1 (mod 2).

Case 1: (q ≡ 0 (mod 2)). If q ≡ 0 (mod 2), then f(λ)≡ λ3 − λ2 − 1 (mod 2) which is
irreducible mod 2.

Case 2: (q ≡ 1 (mod 2)). If q ≡ 1 (mod 2), then f(λ)≡ λ3 + λ− 1 (mod 2) which is
irreducible mod 2.

By Theorem 3, as f(λ) is irreducible modulo p= 2, the cubic f(λ) is irreducible. 2

Theorem 4. The family of graphs {G3,q,c2+c+8+q : c> 0, q > 0} is a family of Galois
equivalent graphs with each P (G3,q,c2+c+8+q, λ) having Galois group C(3)∼=A3.

Proof. The chromatic polynomial of G3,q,c2+c+8+q is

P (G3,q,c2+c+8+q, λ) = P (Kc2+c+8+q, λ)f(λ)

where f(λ) is the cubic given in (4). The Galois group of P (G3,q,c2+c+8+q, λ) is determined by
the Galois group of this cubic which by Lemma 1 is irreducible.

The discriminant of f(λ) is

∆(f) = (c2 + c+ 7)2(2c+ 1)2.

As
√

∆(f) ∈Q and f(λ) is a monic irreducible polynomial in Q[λ], the Galois group of f(λ) is
A3 (see [13, Proposition 7.4.2, p. 169]). Thus P (G3,q,c2+c+8+q, λ) has Galois group C(3)∼=A3

and {G3,q,c2+c+8+q : c> 0, q > 0} is a family of Galois equivalent graphs. 2

The smallest graph in this family is G3,0,8 which has order 11. Our comprehensive list of
Galois groups of all chromatic polynomials of strongly non-clique-separable graphs of order
610 in Appendix A has no chromatic polynomial with Galois group C(3)∼=A3. Thus the
graph G3,0,8 is the smallest graph, in terms of order, that has a chromatic polynomial with
Galois group C(3)∼=A3.

The graph G3,q,r, q 6= r − 1, is not clique-separable. If G is a graph, a Galois equivalent
graph of larger order can always be obtained by gluing a quasi-chordal graph to G. In this
case the Galois-equivalent graph is a clique-separable graph. However, the non-linear factors
of the chromatic polynomial of this graph are the same as those of P (G, λ). In contrast each
P (G3,q,c2+c+8+q, λ) has a different cubic factor. The graphG3,q,c2+c+8+q is non-clique-separable
and has order n= c2 + c+ 11 + q, c> 0, q > 0. By Theorem 4 it has a chromatic polynomial
with Galois group C(3)∼=A3. We therefore have the following corollary.
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Corollary 2. For all n> 11, there exists a non-clique-separable graph G of order n whose
chromatic polynomial has Galois group C(3)∼=A3.

5.3. Galois groups C(4) and D(4)

We now consider Gp,q,r when p= 4. From Theorem 2 we have

P (G4,q,r, λ) = P (Kr, λ)((λ− r)4 + (r − q − 1)(λ− r + 1)3)
= P (Kr, λ)(λ4 − (3r + q + 1)λ3 + 3(r2 + (q + 2)r − q − 1)λ2

− (r3 + 3(q + 3)r2 − 3(2q + 3)r + 3(q + 1))λ
+ (q + 4)r3 − 3(q + 2)r2 + (3q + 4)r − (q + 1)). (5)

Now the Galois group of (5) is the Galois group of its quartic factor. We consider the case when
r = c3 + 4c2 + 1 + q, c ∈ N. When c= 1, we show that this factor has Galois group C(4) and
thus P (G4,q,6+q, λ) has Galois group C(4). When c> 2, we show that this factor has Galois
group D(4) and thus P (G4,q,c3+4c2+1+q, λ), c> 2, has Galois group D(4).

In determining the Galois groups of quartics we will use the following theorem.

Theorem 5 [13, Theorem 13.1.1]. If f(λ) = λ4 − a1λ
3 + a2λ

2 − a3λ+ a4 is an irreducible
quartic in Q[λ] with discriminant ∆(f) and Ferrari resolvent θf (y) = y3 − a2y

2 + (a1a3 −
4a4)y − a2

3 − a2
1a4 + 4a2a4, then the Galois group G can be determined as follows.

(i) If θf (y) is irreducible over Q, then

G∼=

{
S4 if

√
∆(f) 6∈Q,

A4 if
√

∆(f) ∈Q.

(ii) If θf (y) splits completely in Q, then G∼= E(4), the Klein group. Furthermore θf (y) splits
completely in Q if and only if it is reducible over Q and

√
∆(f) ∈Q.

(iii) If θf (y) has a unique root β ∈Q, then

G∼=


D(4) if 4β + a2

1 − 4a2 6= 0 and ∆(f)(4β + a2
1 − 4a2) is not a square in Q\{0},

or 4β + a2
1 − 4a2 = 0 and ∆(f)(β2 − 4a4) is not a square in Q\{0},

C(4) otherwise.

When r = c3 + 4c2 + 1 + q, c ∈ N, the quartic factor of (5) becomes

g(λ) = λ4 − (3(c3 + 4c2 + 1) + 4q + 1)λ3

+ 3((c3 + 4c2 + 1)2 + 3(c3 + 4c2 + 1)q + 2(c3 + 4c2 + 1) + 2q2 + q − 1)λ2

− ((c3 + 4c2 + 1)3 + 3(2q + 3)(c3 + 4c2 + 1)2 + 3(3q2 + 4q − 3)(c3 + 4c2 + 1)
+ (4q3 + 3q2 − 6q + 3))λ

+ (q + 4)(c3 + 4c2 + 1)3 + 3(q2 + 3q − 2)(c3 + 4c2 + 1)2

+ (3q3 + 6q2 − 9q + 4)(c3 + 4c2 + 1) + (q4 + q3 − 3q2 + 3q − 1). (6)

We will use the following lemma in our proof of the irreducibility of g(λ).

Lemma 2. There are no positive integer solutions (c, d) of the equation c2 + 4c= d2.

Proof. If d− c6 1, then c is not a positive integer. Thus, d− c> 2 and so

2(d− c)c> 4c
(d− c)2 + 2(d− c)c > 4c

d2 − c2 > 4c.

But this implies c2 + 4c < d2, and thus c2 + 4c 6= d2. 2
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Lemma 3. The quartic g(λ) in (6) is irreducible for c ∈ N and q > 0.

Proof. Suppose, in order to obtain a contradiction, g(λ) is reducible. The proof considers
two cases: g(λ) has an integer root, or g(λ) can be expressed as a product of two quadratics in
Z[λ].

Case 1: g(λ) has an integer root. Suppose g(λ) has an integer root. As g(λ) is a factor of
a chromatic polynomial, any integer root is a natural number <r. Let r − k, 1 6 k 6 r − 1, be
a root of g(λ). Now

g(λ) = (λ− r)4 + (r − q − 1)(λ− r + 1)3

where r = c3 + 4c2 + q + 1. If r − k is a root, we have

k4 − (r − q − 1)(k − 1)3 = 0. (7)

Now k 6= 1, as k = 1 does not satisfy (7). So r − 1 is not a root of g(λ).
If 2 6 k 6 r − 1, then (7) becomes

r =
k4

(k − 1)3
+ q + 1. (8)

Now, r ∈ N and q ∈ N ∪ {0}. So, if r − k is a root of g(λ), then k4/(k − 1)3 must be in N.
When k = 2, k4/(k − 1)3 = 16 ∈ N. As r = c3 + 4c2 + q + 1, (8) becomes

c3 + 4c2 = 16.

When c= 1, c3 + 4c2 = 5 6= 16 and when c> 2 we have c3 + 4c2 > 16. So r − 2 is not a root of
g(λ).

Now k4/(k − 1)3 = 81/8, 256/27, 625/64, 1296/125, 2401/216 6∈ N when k = 3, 4, 5, 6, 7,
respectively, so r − k, 3 6 k 6 7, is not a root of g(λ).

Now
k4

(k − 1)3
= k + 3 +

6k2 − 8k + 3
(k − 1)3

. (9)

When k > 8, then

0 < 6k2 − 8k + 3< (k − 1)3,

0 <
6k2 − 8k + 3

(k − 1)3
< 1,

k + 3 < k + 3 +
6k2 − 8k + 3

(k − 1)3
< k + 4,

k + 3 <
k4

(k − 1)3
< k + 4.

So k4/(k − 1)3 6∈ N, and so r − k is not a root of g(λ).

Case 2: g(λ) factors into quadratic polynomials. Suppose g(λ) factors into quadratic
polynomials in Q[λ].

The reduced quartic of g(λ) is

g(y + q + 3
4c

3 + 3c2 + 1)

= y4 − ( 3
8c

6 + 3c5 + 6c4 − 3c3 − 12c2)y2

+ ( 1
8c

9 + 3
2c

8 + 6c7 + 13
2 c

6 − 12c5 − 24c4 + 3c3 + 12c2)y

− 3
256c

12 − 3
16c

11 − 9
8c

10 − 45
16c

9 − 3
4c

8 + 9c7 + 45
4 c

6 − 6c5 − 12c4 + c3 + 4c2.

https://doi.org/10.1112/S1461157012001052 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001052


GALOIS GROUPS OF CHROMATIC POLYNOMIALS 293

The quartic factors into quadratic factors if and only if at least one of the following holds:
• D = 0 and C2 − 4E is a square in Q;
• the resolvent of g, R(z) = z3 + 2Cz2 + (C2 − 4E)z −D2, has a nonzero root that is a

square in Q,
where C and D are the the coefficients of y2 and y respectively and E is the constant term in
the reduced quartic [9, Theorem 1].

Now

D = 1
8c

9 + 3
2c

8 − 12c5 + 13
2 c

6 + 3c3 − 24c4 + 6c7 + 12c2

= 1
8c

2(c+ 4)(c2 + 2c− 2)(c4 + 6c3 + 6c2 − 12c− 12)> 0

for c > 1. (When c= 1, D =−55/8 6= 0.) So D is nonzero for all c ∈ N.
Suppose the resolvent of g has a nonzero root that is a square in Q. The resolvent of g is

R(z) = 1
64 (4z − 16c+ 28c2 + 8c3 − 16c4 − 8c5 − c6)
× (16z2 − 8zc6 − 64zc5 − 128zc4 + 64zc3 + 272zc2 + 64zc− 816c7

− 1152c6 + 288c5 + 60c8 + 240c9 + 576c3 + 1296c4 + c12 + 16c11 + 96c10).

When c= 1, the resolvent becomes

R(z) = 1
64 (64z3 + 720z2 + 1420z − 3025)

= 1
64 (4z − 5)(16z2 + 200z + 605)

which has a single rational root, 5/4, which is not a square in Q.
When c> 2, the resolvent has discriminant

−c6(c+ 4)3(3c− 4)(3c+ 8)2 < 0.

So R(z) has one real root,
c(c+ 4)(c2 + 2c− 2)2

4
.

If this root is a square in Q, then there exists d ∈ N such that

d2 = c(c+ 4).

But this contradicts Lemma 2, and thus the quartic g(λ) is irreducible. 2

Theorem 6. The family of graphs {G4,q,6+q : q > 0} is a family of Galois equivalent graphs
with each P (G4,q,6+q, λ) having Galois group C(4).

Proof. The chromatic polynomial of G4,q,6+q is

P (G4,q,6+q, λ) = P (Kr, λ)((λ− 6− q)4 + 5(λ− 5− q)3)
= P (Kr, λ)(λ4 − (4q + 19)λ3 + 3(2q2 + 19q + 47)λ2

− (4q3 + 57q2 + 282q + 489)λ+ (q4 + 19q3 + 141q2 + 489q + 671)).

The Galois group of this polynomial is determined by the Galois group of the quartic

g(λ) = λ4 − (4q + 19)λ3 + 3(2q2 + 19q + 47)λ2

− (4q3 + 57q2 + 282q + 489)λ+ (q4 + 19q3 + 141q2 + 489q + 671) (10)

which by Lemma 3 is irreducible.
The discriminant of g(λ) is

∆(g) = 15125.
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The Ferrari resolvent is

θg(y) = y3 − 3(2q2 + 19q + 47)y2 + (12q4 + 228q3 + 5358q + 1647q2 + 6607)y

− (2q2 + 19q + 52)(4q4 + 76q3 + 539q2 + 1691q + 1979)

= (y − 52− 19q − 2q2)(y2 − (4q2 + 89 + 38q)y + (4q4 + 76q3 + 539q2 + 1691q + 1979)).

Now the quadratic factor of θg(y) has discriminant 5 and thus this factor does not factor in
Q[λ]. Thus θg(y) has a unique rational root β = 2q2 + 19q + 52.

By Theorem 5 if θg(y) has a unique root in Q, then the Galois group is D(4) if:
• 4β + a2

1 − 4a2 6= 0 and ∆(g)(4β + a2
1 − 4a2) is not a non-zero square in Q; or

• 4β + a2
1 − 4a2 = 0 and ∆(g)(β2 − 4a4) is not a non-zero square in Q,

and is C(4) otherwise, where the ai are the coefficients of λ4−i in g(λ).
Now

4β + a2
1 − 4a2 = 4(2q2 + 19q + 52) + (4q + 19)2 − 12(2q2 + 19q + 47) = 5 6= 0,

and
∆(g)(4β + a2

1 − 4a2) = 15 125× 5 = 75 625 = 2752

which is a non-zero square in Q. Therefore g(λ) has Galois group C(4). 2

Theorem 7. The family of graphs {G4,q,c3+4c2+1+q : c> 2, q > 0} is a family of Galois
equivalent graphs with each P (G4,q,c3+4c2+1+q, λ) having Galois group D(4).

Proof. The chromatic polynomial of G4,q,c3+4c2+1+q is

P (G4,q,c3+4c2+1+q, λ) = P (Kr, λ)((λ− (c3 + 4c2 + 1 + q))4 + (c3 + 4c2)(λ− (c3 + 4c2 + q))3

= P (Kr, λ)g(λ)

where g(λ) is the quartic in (6). The Galois group of this polynomial is the Galois group of the
quartic g(λ) which by Lemma 3 is irreducible.

The discriminant of g(λ) is

∆(g) =−c6(c+ 4)3(3c− 4)(3c+ 8)2,

and the Ferrari resolvent is

θg(y) = (y − 2− 4c− 17c2 − 4c3 − 16c4 − 8c5 − c6 − 4q − 12c2q − 3c3q − 2q2)

× (y2 − (2c6 + 16c5 + 32c4 + (8 + 6q)c3 + (31 + 24q)c2 − 4c+ 8q + 4 + 4q2)y

+ c12 + 16c11 + 96c10 + (6q + 264)c9 + (351 + 72q)c8 + (288q + 372)c7

+ (13q2 + 484 + 416q)c6 + (92 + 253q + 104q2)c5 + (488q + 208q2 + 289)c4

+ (12q3 + 40q2 − 44− 4q)c3 + (62 + 48q3 + 158q2 + 172q)c2

− (8q2 + 16q + 8)c+ 4 + 16q3 + 24q2 + 16q + 4q4).

Now the quadratic factor of θg(y) has discriminant −c2(c+ 4)(3c− 4) which is negative for all
c> 2, and thus the quadratic factor does not factor in Q[λ]. Thus θg(y) has a unique rational
root β = c6 + 8c5 + 16c4 + 4c3 + 17c2 + 4c+ 2q2 + (3c3 + 12c2 + 4)q + 2.

Now as θg(y) has a unique root, by Theorem 5 if 4β + a2
1 − 4a2 6= 0 and ∆(g)(4β + a2

1 − 4a2)
is not a non-zero square in Q, where the ai are the coefficients of λ4−i in g(λ), then the Galois
group of g(λ) is D(4).

Now
4β + a2

1 − 4a2 = c(c+ 4)(c2 + 2c− 2)2 > 0 for c> 2
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and

∆(g)(4β + a2
1 − 4a2) =−c7(c+ 4)4(3c− 4)(3c+ 8)2(c2 + 2c− 2)2 < 0 for c> 2

and thus cannot be a square in Q.
Therefore g(λ) has Galois group D(4). 2

We calculated P (G4,0,r, λ) for 2 6 r 6 20 000 and found that it had Galois group S3 when
r = 17, Galois group C(4) when r = 6, Galois group D(4) when r = c3 + 4c2 + 1, c> 2 and
r = 4, 9, 10 and Galois group S4 for all other values of r 6 20 000. We propose the following
conjecture.

Conjecture 1. The family of graphs {G4,0,r}, where r 6= c3 + 4c2 + 1 + q and c ∈ N,
excluding the graphs G4,0,4, G4,0,9, G4,0,10 and G4,0,17, is a family of Galois equivalent graphs
with each P (G4,0,r, λ) having Galois group S4.

6. Conclusion

In this paper we presented the first results about Galois groups of chromatic polynomials.
The summaries of all Galois groups of chromatic polynomials of strongly non-clique-separable
graphs of order at most 10 and of Galois groups of chromatic polynomials of θ-graphs of order
at most 19 may be a useful resource for future work.

We gave several families of Galois equivalent graphs. These include graphs with chromatic
polynomials that have symmetric, cyclic and dihedral Galois groups. As most chromatic
polynomials of strongly non-clique-separable graphs of order at most 10 have symmetric Galois
groups, it is particularly interesting to find infinite families of graphs that have chromatic
polynomials with these ‘rarer’ groups. In particular, one of these families was an infinite family
of graphs that have chromatic polynomials with the Galois group C(3). The graph of smallest
order with a chromatic polynomial with an odd non-trivial cyclic Galois group belongs to this
family. There are no known chromatic polynomials with Galois group C(n) for odd n > 3. An
open problem is the following.

Problem 2. Does there exist a graph whose chromatic polynomial has Galois group C(n),
where n> 5 is odd?

Which leads to a more general question posed by Cameron.

Problem 3 [10, Conjecture 4]. For every Galois group G does there exist a graph whose
chromatic polynomial has Galois group G?

A natural extension of this work is to investigate the relationship between the structure
of a graph and the Galois group of its chromatic polynomial. Chordal graphs are a family of
Galois equivalent graphs that have common structure. It is easy to see the relationship between
the structure of a chordal graph and the Galois group of its chromatic polynomial. A chordal
graph can be obtained by ‘gluing’ together complete graphs, which corresponds to multiplying
the chromatic polynomials of complete graphs (minus some linear factors). As the chromatic
polynomial of a complete graph has the trivial Galois group, it follows that the product of
several chromatic polynomials of complete graphs also has the trivial Galois group. However,
even connections between the structure of the quasi-chordal graphs and the trivial Galois group
are not well understood.
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Appendix A. Galois groups of chromatic polynomials of graphs of order 610

In the following tables we use the notation for Galois groups given in [12, Appendix A].
A summary of the groups used in this article and their generators is given in Table A.1.

Table A.1. List of groups and their generators used in this article (see [12, Appendix A]).

Groups Generators

Symmetric groups

S2 (0, 1)

S3 (0, 1), (0, 2)

S4 (0, 1), (0, 2), (0, 3)

S5 (0, 1), (0, 2), (0, 3), (0, 4)

S6 (0, 1), (0, 2), (0, 3), (0, 4), (0, 5)

S7 (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6)

S8 (0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7)

Alternating groups

A3 (0, 1, 2)

A4 (0, 1, 2), (0, 2, 3)

A5 (0, 1, 2), (0, 2, 3), (0, 3, 4)

A6 (0, 1, 2), (0, 2, 3), (0, 3, 4), (0, 4, 5)

Cyclic groups

C(4) = 4 (0, 1, 2, 3)

C(6) = 6 = 3[×]2 (0, 1, 2, 3, 4, 5)

Dihedral groups

D(4) (0, 1, 2, 3), (1, 3)

D(5) = 5 : 2 (0, 1, 2, 3, 4), (1, 4)(2, 3)

D(6) = S(3)[×]2 (0, 1, 2, 3, 4, 5), (0, 5)(1, 4)(2, 3)

D(7) = 7 : 2 (0, 1, 2, 3, 4, 5, 6), (1, 6)(2, 5)(3, 4)

Klein group

E(4) = 2[×]2 (0, 1)(2, 3), (0, 3)(1, 2)

Other groups

A4(6) = [22]3 (1, 4)(2, 5), (0, 2, 4)(1, 3, 5)

2A4(6) = [23]3 = 2 o 3 (0, 3), (0, 2, 4)(1, 3, 5)

D6(6) = [3]2 (0, 2, 4)(1, 3, 5), (0, 5)(1, 4)(2, 3)

E(8) :D6 = S(4)[×]2 (0, 1)(2, 3)(4, 5)(6, 7), (0, 2)(1, 3)(4, 6)(5, 7),

(0, 4)(1, 5)(2, 6)(3, 7), (1, 2, 3)(4, 6, 5),

(2, 3)(4, 5)

F (5) = 5 : 4 (0, 1, 2, 3, 4), (1, 2, 4, 3)

F18(6) = [32]2 = 3 o 2 (0, 2, 4), (0, 3)(1, 4)(2, 5)

F18(6) : 2 = [ 1
2
S(3)2]2 (0, 2, 4), (1, 5)(2, 4), (0, 3)(1, 4)(2, 5)

F36(6) = 1
2

[S(3)2]2 (0, 2, 4), (1, 5)(2, 4), (0, 3)(1, 4, 5, 2)

F36(6) : 2 = [S(3)2]2 = S(3) o 2 (0, 2, 4), (2, 4), (0, 3)(1, 4)(2, 5)

F42(7) = 7 : 6 (0, 1, 2, 3, 4, 5, 6), (1, 3, 2, 6, 4, 5)

L(6) = PSL(2, 5) =A5(6) (0, 1, 2, 3, 4), (0, 5)(1, 4)

L(6) : 2 = PGL(2, 5) = S5(6) (0, 1, 2, 3, 4), (0, 5)(1, 2)(3, 4)

S4(6c) = 1
2

[23]S(3) (1, 4)(2, 5), (0, 2, 4)(1, 3, 5), (0, 3)(1, 5)(2, 4)

S4(6d) = [22]S(3) (1, 4)(2, 5), (0, 2, 4)(1, 3, 5), (1, 5)(2, 4)

2S4(6) = [23]S(3) = 2 o S(3) (0, 3), (0, 2, 4)(1, 3, 5), (1, 5)(2, 4)

[24]S(4) (0, 4), (0, 1)(4, 5), (0, 1, 2, 3)(4, 5, 6, 7)

[S(4)2]2 (0, 1, 2, 3), (2, 3), (0, 4)(1, 5)(2, 6)(3, 7)
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Table A.2. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 4.

Galois group # of chromatic polynomials # of graphs

Trivial group 1 1
S2 1 1

Table A.3. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 5.

Galois group # of chromatic polynomials # of graphs

Trivial group 1 1
S2 3 3
S3 1 1

Table A.4. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 6.

Galois group # of chromatic polynomials # of graphs

Trivial group 1 1
S2 6 7
S3 9 10
C(4) = 4 1 1
S4 3 3

Table A.5. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 7.

Galois group Order Generators # of chromatic polynomials # of graphs

Trivial group 1 1 1
S2 2 16 23
S3 6 30 41
C(4) = 4 4 3 6
E(4) = 2[×]2 4 3 3
D(4) 8 14 20
S4 24 31 46
S5 120 6 6

S2, S2 2 (1, 2)(3, 4) 1 1
S2, S2 4 (1, 2); (3, 4) 1 1
S2, S3 12 (1, 2); (3, 4, 5); (3, 4) 1 1
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Table A.6. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 8.

Galois group Order Generators # of chromatic # of graphs
polynomials

Trivial group 1 1 1
S2 2 33 65
S3 6 114 233
C(4) = 4 4 4 12
E(4) = 2[×]2 4 8 36
D(4) 8 58 184
A4 12 6 11
S4 24 302 755
D(5) = 5 : 2 10 3 16
F (5) = 5 : 4 20 1 1
S5 120 360 740
C(6) = 6 = 3[×]2 6 1 1
2S4(6) = [23]S(3) = 2 o S(3) 48 1 1
S6 720 25 27

S2, S2 2 (1, 2)(3, 4) 3 5
S2, S2 4 (1, 2); (3, 4) 17 34
S2, S3 6 (3, 5, 4); (1, 2)(3, 4) 1 1
S2, S3 12 (1, 2); (3, 4, 5); (3, 4) 46 97
S2, D(4) 16 (3, 4); (5, 7)(6, 8); (7, 8) 1 1
S2, S4 48 (1, 2); (3, 4, 5, 6); (3, 4) 2 2

Table A.7. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 9 (continued in Table A.8).

Galois group Order Generators # of chromatic # of graphs

polynomials

Trivial group 1 1 1

S2 2 78 296

S3 3 373 1069

C(4) = 4 4 10 49

E(4) = 2[×]2 4 38 210

D(4) 8 319 1709

A4 12 25 156

S4 24 2152 10 527

D(5) = 5 : 2 10 22 122

F5 = 5 : 4 20 7 51

A5 60 15 81

S5 120 6385 29 924

C(6) = 6 = 3[×]2 6 3 19

D6(6) = [3]2 6 2 7

D(6) = S(3)[×]2 12 14 77

F18(6) = [32]2 = 3 o 2 18 9 86

2A4(6) = [23]3 = 2 o 3 24 2 7

S4(6d) = [22]S(3) 24 2 2

S4(6c) = 1
2

[23]S(3) 24 3 6

2S4(6) = [23]S(3) = 2 o S(3) 48 114 591

L(6) = PSL(2, 5) =A5(6) 60 2 6

F36(6) : 2 = [S(3)2]2 = S(3) o 2 72 174 830

L(6) : 2 = PGL(2, 5) = S5(6) 120 1 3

S6 720 5197 15895

S7 5040 90 108
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Table A.8. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 9 (continued).

Galois group Order Generators # of chromatic # of graphs
polynomials

S2, S2 2 (1, 2) 4 10
S2, S2 2 (1, 2)(3, 4) 8 126
S2, S2 4 (1, 2); (3, 4) 71 604
S2, S3 6 (3, 5, 4); (1, 2)(3, 4) 7 44
S2, S3 12 (1, 2); (3, 4, 5); (3, 4) 347 2157
S2, C(4) = 4 8 (1, 2); (3, 4, 5, 6) 3 27
S2, E(4) = 2[×]2 4 (1, 2)(3, 4)(5, 6); (3, 5)(4, 6) 5 34
S2, E(4) = 2[×]2 8 (1, 2); (3, 4)(5, 6); (3, 5)(4, 6) 5 25
S2, D(4) 8 (1, 2)(3, 4)(5, 6); (4, 5) 12 59
S2, D(4) 8 (3, 4, 5, 6); (1, 2)(4, 5) 3 15
S2, D(4) 8 (3, 5)(4, 6) 1 4
S2, D(4) 16 (1, 2); (3, 4)(5, 6); (3, 5) 38 212
S2, A4 24 (1, 2); (3, 4)(5, 6); (3, 4, 5) 2 16
S2, S4 48 (1, 2); (3, 4, 5, 6); (3, 4) 218 951
S2, S5 240 (1, 2); (3, 4, 5, 6, 7); (3, 4) 2 2
S3, S3 6 (1, 2, 3); (1, 2) 2 2
S3, S3 36 (1, 2, 3); (1, 2); (4, 5, 6); (4, 5) 31 81
S3, C(4) = 4 24 (1, 2, 3); (1, 2); (4, 5, 6, 7) 1 1
S3, D(4) 48 (1, 2, 3); (1, 2); (4, 5)(6, 7); (5, 7) 1 1
S3, S4 144 (1, 2, 3); (1, 2); (4, 5, 6, 7); (4, 5) 3 3
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Table A.9. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 10 (continued in Table A.10).

Galois group Order Generators # of chromatic # of graphs

polynomials

Trivial group 1 1 1

S2 2 136 712

S3 6 1309 6607

C(4) = 4 4 27 372

E(4) = 2[×]2 4 113 1257

D(4) 8 1218 13 076

A4 12 75 932

S4 24 12 519 107 635

D(5) = 5 : 2 10 129 1103

F (5) = 5 : 4 20 60 771

A5 60 108 1273

S5 120 79 331 685 931

C(6) = 6 = 3[×]2 6 16 571

D6(6) = [3]2 6 17 250

D(6) = S(3)[×]2 12 143 2808

A4(6) = [22]3 12 8 121

F18(6) = [32]2 = 3 o 2 18 50 1171

2A4(6) = [23]3 = 2 o 3 24 13 141

S4(6d) = [22]S(3) 24 59 1041

S4(6c) = 1
2

[23]S(3) 24 21 621

F18(6) : 2 = [ 1
2
S(3)2]2 36 30 414

F36(6) = 1
2

[S(3)2]2 72 6 22

2S4(6) = [23]S(3) = 2 o S(3) 48 1384 26 642

L(6) = PSL(2, 5) =A5(6) 60 34 665

F36(6) : 2 = [S(3)2]2 = S(3) o 2 72 2683 40 345

L(6) : 2 = PGL(2, 5) = S5(6) 120 57 662

A6 360 26 211

S6 720 257 203 2 395 512

D(7) = 7 : 2 14 1 21

F42(7) = 7 : 6 42 1 32

S7 5040 138 773 606 609

E(8) :D6 = S(4)[×]2 48 1 1

[24]S(4) 384 3 5

[S(4)2]2 1152 4 6

S8 40 320 554 697
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Table A.10. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 10 (continued in Table A.11).

Galois group Order Generators # of chromatic # of graphs

polynomials

S2, S2 2 (1, 2) 7 41

S2, S2 2 (1, 2)(3, 4) 32 525

S2, S2 4 (1, 2); (3, 4) 368 4969

S2, S3 6 (3, 5, 4); (1, 2)(3, 4) 84 1042

S2, S3 12 (1, 2); (3, 4, 5); (3, 4) 2274 24 878

S2, C(4) = 4 8 (1, 2); (3, 4, 5, 6) 53 922

S2, E(4) = 2[×]2 4 (1, 2)(3, 5)(4, 6); 36 1048

(1, 2)(3, 4)(5, 6)

S2, E(4) = 2[×]2 8 (1, 2); (3, 4)(5, 6); 88 950

(3, 5)(4, 6)

S2, D(4) 8 (1, 2)(3, 4)(5, 6); (4, 6) 86 1698

S2, D(4) 8 (3, 4)(5, 6); (1, 2)(4, 6) 18 294

S2, D(4) 8 (3, 5, 4, 6); (1, 2)(5, 6) 34 836

S2, D(4) 16 (1, 2); (3, 4)(5, 6); (3, 6) 607 9189

S2, A4 24 (1, 2); (3, 4)(5, 6); (3, 4, 5) 49 514

S2, S4 24 (1, 2)(3, 4); (1, 2)(4, 5); 13 52

(1, 2)(5, 6)

S2, S4 48 (1, 2); (3, 4, 5, 6); (3, 4) 4681 65 110

S2, D(5) = 5 : 2 20 (1, 2); (3, 4)(5, 6); (3, 5, 6, 4, 7) 30 350

S2, F (5) = 5 : 4 40 (1, 2); (3, 5, 7, 6); (3, 7)(5, 6); 3 20

(3, 7, 6, 4, 5)

S2, A5 120 (1, 2); (5, 6, 7); (3, 4, 5) 5 22

S2, S5 240 (1, 2); (3, 4, 5, 6, 7); (3, 4) 3283 18 664

S2, C(6) = 6 = 3[×]2 6 (1, 2)(3, 5, 7, 6, 8, 4) 1 1

S2, D6(6) = [3]2 6 (1, 2)(3, 4)(5, 7)(6, 8); 1 1

(1, 2)(3, 5)(4, 8)(6, 7)

S2, F36(6) : 2 144 (1, 2); (3, 4)(5, 6)(7, 8); 1 2

= [S(3)2]2 = S(3) o 2 (3, 5, 7); (3, 5)

S2, 2S4(6) 96 (1, 2); (3, 6, 4)(5, 7, 8); 1 1

= [23]S(3) = 2 o S(3) (3, 4)(5, 7); (4, 5)

S2, S6 1440 (1, 2); (3, 4, 5, 6, 7, 8); (3, 4) 21 26

S2, S2, S2 2 (1, 2)(3, 4) 1 3

S2, S2, S2 4 (1, 2); (3, 4) 13 91

S2, S2, S2 4 (1, 2)(5, 6); (3, 4) 4 4

S2, S2, S2 8 (1, 2); (3, 4); (5, 6) 14 30

S2, S2, S3 6 (3, 5, 4); (1, 2)(3, 4) 2 2

S2, S2, S3 12 (1, 2); (3, 4, 5); (3, 4) 37 161

S2, S2, S3 12 (1, 2)(3, 4); (5, 7); (5, 6) 10 46

S2, S2, S3 12 (1, 2); (3, 4)(5, 6); (5, 7, 6) 1 3

S2, S2, S3 24 (1, 2); (3, 4); (5, 6, 7); (5, 6) 98 486
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Table A.11. Galois groups of chromatic polynomials of strongly non-clique-separable graphs of
order 10 (continued).

Galois group Order Generators # of chromatic # of graphs

polynomials

S3, S3 6 (1, 2, 3); (1, 2) 4 33

S3, S3 6 (2, 3)(5, 6); (1, 3, 2)(4, 6, 5) 12 76

S3, S3 36 (1, 2, 3); (1, 2); (4, 5, 6); (4, 5) 839 6119

S3, C(4) = 4 24 (1, 2, 3); (1, 2); (4, 5, 6, 7) 39 423

S3, E(4) = 2[×2] 12 (1, 2, 3); (2, 3)(4, 6)(5, 7); (2, 3)(4, 5)(6, 7) 3 4

S3, E(4) = 2[×]2 24 (1, 2, 3); (1, 2); (4, 5)(6, 7); (4, 6)(5, 7) 46 232

S3, D(4) 24 (2, 3)(4, 5)(6, 7); (1, 2, 3); (5, 7) 4 7

S3, D(4) 24 (4, 6, 5, 7); (1, 2)(6, 7); (2, 3)(6, 7) 2 8

S3, D(4) 48 (1, 2, 3); (1, 2); (4, 6)(5, 7); (6, 7) 295 2508

S3, A4 72 (1, 2, 3); (1, 2); (4, 5)(6, 7); (4, 5, 6) 21 248

S3, S4 144 (1, 2, 3); (1, 2); (4, 5, 6, 7); (4, 5) 1080 7267

S3, S5 720 (1, 2, 3); (1, 2); (4, 5, 6, 7, 8); (4, 5) 1 1

S4, E(4) = 2[×]2 96 (1, 2, 3, 4); (1, 2); (5, 6)(7, 8); (5, 7)(6, 8) 1 1
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Appendix B. Galois groups of chromatic polynomials of θ-graphs

Table B.1. Galois groups of chromatic polynomials of θ-graphs of order at most 19, where there is
exactly one non-linear factor.

Galois # of graphs # of graphs Total # θa,b,c

groups (χ= 2) (χ= 3) of graphs

S3 1 1 2 2, 2, 2; 2, 2, 3
S4 0 0 0
S5 1 1 2 2, 2, 4; 2, 2, 5
S6 1 0 1 3, 3, 3
S7 2 2 4 2, 2, 6; 2, 4, 4; 2, 2, 7; 2, 3, 6
S8 1 2 3 3, 3, 5; 2, 5, 5; 3, 3, 6
S9 2 3 5 2, 2, 8; 4, 4, 4; 2, 2, 9; 2, 3, 8; 2, 4, 7
S10 1 3 4 3, 5, 5; 2, 3, 9; 2, 5, 7; 3, 3, 8
S11 3 3 6 2, 2, 10; 2, 4, 8; 2, 6, 6; 2, 2, 11; 3, 6, 6; 4, 4, 7
S12 2 3 5 3, 3, 9; 5, 5, 5; 2, 3, 11; 2, 5, 9; 2, 7, 7
S13 4 6 10 2, 2, 12; 2, 4, 10; 2, 6, 8; 4, 4, 8; 2, 2, 13; 2, 3, 12;

2, 4, 11; 2, 5, 10; 2, 6, 9; 3, 6, 8
S14 3 3 6 3, 3, 11; 3, 5, 9; 5, 5, 7; 3, 3, 12; 3, 6, 9; 4, 7, 7
S15 4 6 10 2, 2, 14; 2, 8, 8; 4, 4, 10; 6, 6, 6; 2, 2, 15; 2, 3, 14;

2, 6, 11; 2, 7, 10; 3, 8, 8; 4, 4, 11
S16 2 7 9 5, 5, 9; 5, 7, 7; 2, 3, 15; 2, 5, 13; 2, 7, 11; 2, 9, 9;

3, 3, 14; 3, 6, 11; 5, 5, 10
S17 6 0 6 2, 2, 16; 2, 4, 14; 2, 6, 12; 2, 8, 10; 4, 8, 8; 6, 6, 8

D(4) 0 1 1 2, 3, 3

2S4(6)
= [23]S(3)
= 2 o S(3) 0 1 1 2, 3, 5
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Table B.2. Galois groups of chromatic polynomials of θ-graphs of order at most 19, where there is
more than one non-linear factor.

Galois # of graphs # of graphs Total # θa,b,c

groups (χ= 2) (χ= 3) of graphs

S2, S3 0 1 1 2, 3, 4
S2, S4 0 1 1 3, 3, 4
S2, S5 0 2 2 2, 4, 5; 3, 4, 4
S2, S6 0 1 1 2, 3, 7
S2, S7 1 2 3 2, 4, 6; 3, 4, 6; 4, 4, 5
S2, S8 1 2 3 3, 3, 7; 3, 4, 7 4, 5, 5
S2, S9 1 3 4 4, 4, 6; 2, 3, 10; 2, 5, 8; 3, 4, 8
S2, S10 1 3 4 3, 5, 7; 3, 3, 10; 3, 5, 8; 4, 5, 7
S2, S11 1 2 3 4, 6, 6; 3, 4, 10; 4, 5, 8
S2, S12 1 5 6 3, 7, 7; 2, 3, 13; 2, 7, 9; 3, 4, 11;

3, 5, 10; 5, 5, 8
S2, S13 2 4 6 2, 4, 12; 4, 6, 8; 2, 4, 13; 2, 5, 12;

3, 4, 12; 4, 5, 10
S2, S14 2 2 4 3, 3, 13; 3, 7, 9; 3, 5, 12; 3, 7, 10
S2, S15 1 0 1 4, 4, 12

S2, S2, S4 0 1 1 3, 4, 5
S2, S2, S7 0 2 2 2, 4, 9; 2, 6, 7
S2, S2, S8 0 2 2 3, 4, 9; 3, 6, 7
S2, S2, S9 0 2 2 4, 4, 9; 4, 6, 7
S2, S2, S10 0 1 1 4, 5, 9
S2, S2, S11 0 2 2 4, 6, 9; 6, 6, 7
S2, S2, S12 0 3 3 3, 4, 13; 4, 7, 9; 6, 7, 7

C(4), S5 0 1 1 2, 5, 6
C(4), S6 0 1 1 3, 5, 6
C(4), S8 0 1 1 5, 5, 6
C(4), S9 0 1 1 5, 6, 6
C(4), S10 0 1 1 2, 5, 11
C(4), S12 1 1 2 3, 5, 11; 5, 6, 9
C(4), S2, S9 1 3 4 2, 6, 10; 3, 6, 10; 5, 6, 8; 2, 8, 9
C(4), S2, S10 0 1 1 4, 5, 11
C(4), S2, S11 1 0 1 4, 6, 10
C(4), S2, S2, S3 0 1 1 4, 5, 6
C(4), S2, S2, S6 0 1 1 5, 6, 7
C(6), S7 0 1 1 2, 7, 8
C(6), S9 0 1 1 4, 7, 8
C(6), S2, S6 0 1 1 3, 7, 8
C(6), S2, S8 0 1 1 5, 7, 8

E(4) = 2[×]2, S2, S10 0 1 1 3, 8, 9

https://doi.org/10.1112/S1461157012001052 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157012001052


G
A

L
O

IS
G

R
O

U
P

S
O

F
C

H
R

O
M

A
T

IC
P

O
L
Y

N
O

M
IA

L
S

305

T
a
b
l
e

B
.3

.
θ
-g

ra
p
h
s

o
f
o
rd

er
a
t

m
o
st

1
9
,
w

h
ere

P
(C

n
,
λ

),
n

>
4
,
d
iv

id
es
P

(θ
a

,b
,c ,
λ

).

n P (Cn, λ) Galois θa,a+1,b θa,2k−1a+1,b θa,2k−1(a−1),b θa,3a+1,b θa,3(a−1),b

group(s)

4 λ(λ− 1) S2 2, 3, 4; 3, 3, 4; 3, 4, 4 (k = 2): (k = 2): 2, 3, 10 2, 4, 9
× (λ2 − 3λ+ 3) 3, 4, 6; 3, 4, 7; 3, 4, 8 2, 3, 7; 3, 3, 7 2, 4, 6; 4, 4, 6 3, 3, 10

3, 4, 10; 3, 4, 11 3, 5, 7; 3, 7, 7; 4, 6, 6; 4, 6, 8 2, 4, 13;
3, 7, 9; 3, 7, 10 (k = 3): 3, 5, 10
(k = 3): 2, 4, 12; 3, 4, 12
2, 3, 13; 3, 3, 13 4, 4, 12

5 λ(λ− 1)(λ− 2) S2 2, 4, 5; 4, 4, 5 (k = 2): 2, 5, 12;
× (λ2 − 2λ+ 2) 4, 5, 5: 4, 5, 7 2, 5, 8; 3, 5, 8 3, 5, 12

4, 5, 8; 4, 5, 10 5, 5, 8

6 λ(λ− 1)(λ4 − 5λ3 C(4) 2, 5, 6; 3, 5, 6; 5, 5, 6 (k = 2):
+ 10λ2 − 10λ+ 5) 5, 6, 6; 5, 6, 9 2, 5, 11; 3, 5, 11

7 λ(λ− 1)(λ− 2) S2, S2 2, 6, 7; 3, 6, 7; 4, 6, 7
× (λ2 − 3λ+ 3) 6, 6, 7; 6, 7, 7;
× (λ2 − λ+ 1)

8 λ(λ− 1)(λ6 − 7λ5 C(6) 2, 7, 8; 4, 7, 8; 5, 7, 8
+ 21λ4 − 35λ3 + 35λ2

− 21λ+ 7)

9 λ(λ− 1)(λ− 2) S2, E(4) 2, 8, 9; 3, 8, 9
× (λ2 − 2λ+ 2)
× (λ4 − 4λ3 + 6λ2

− 4λ+ 2)
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