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Non-additive geometry

M. J. Shai Haran

Abstract

We develop a language that makes the analogy between geometry and arithmetic more
transparent. In this language there exists a base field F, ‘the field with one element’; there
is a fully faithful functor from commutative rings to F-rings; there is the notion of the
F-ring of integers of a real or complex prime of a number field K analogous to the p-adic
integers, and there is a compactification of SpecOK ; there is a notion of tensor product
of F-rings giving the product of F-schemes; in particular there is the arithmetical surface
SpecOK × SpecOK , the product taken over F.
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Introduction

The ancient idea of making arithmetic into geometry engaged the minds of great mathematicians
such as Kummer, Kronecker, Dedekind, Hensel, Hasse, Minkowski, and especially Artin and Weil.
It is a beautiful quest inspired by the similarity between the ring of integers Z, and the ring of
polynomials Z = k[x] over a field k; for closer similarity the ‘function field’ case is relevant where
k = Fq is a finite field. There is induced similarity of the fraction fields, the field of rational
numbers Q and the field of rational functions Q = k(x). For a prime p of Z, we have the p-adic
integers

Zp = lim←−Z/pn,

and its field of fractions

Qp = Zp

[
1
p

]
,

with dense embeddings Z ⊆ Zp and Q ⊆ Qp. The geometric analogues are the power series ring

Zf = lim←−Z/f
n = kf [[f ]],

and the field of Laurent series

Qf = Zf

[
1
f

]
= kf ((f)),

for f a prime of Z, where kf = k[x]/(f), and the embeddings Z ⊆ Zf (respectively Q = k(x) ⊆
Qf ) correspond to expanding a polynomial (respectively a rational function) into a power series
(respectively a Laurent series) in f . Finite extensions of Q = k(x) correspond one-to-one with
the smooth projective curves Y defined over finite extensions of k, and finite extensions of Q are the
number fields. There are two main difficulties with this analogy that we are going to describe,
the problem of the real prime of Q, and the problem of the arithmetical surface, that is defining for
Spec(Z) the analogue of the geometric surface Y ×k Y .

From geometry we know that, in order to have theorems, we must pass from affine to projective
geometry, in particular we need to add the point at infinity ∞ to the affine line, P1

k = A1
k ∪ {∞}.

This corresponds to the ring

Z∞ = lim←− k
[
1
x

]/(
1
x

)n

= k
[[

1
x

]]
,

and its fraction field

Q∞ = Z∞[x] = k
((

1
x

))
;

the embedding Q ⊆ Q∞ is the expansion of a rational function as a Laurent series in 1/x.
The analogue of ∞ for Q is the real prime, which we denote by η. The associated field is Qη = R,
the real numbers. But there is no analogue Zη of Z∞. For finite primes p,

Zp = {x ∈ Qp, |x|p � 1}.
We have to carry remainder when we add elements of Zp – unlike the simple addition of power series
in Zf or Z∞. We carry the remainder from the larger scale pj to the smaller scale pj+1, hence

|x+ y|p � max{|x|p, |y|p},
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and Zp is closed under addition. In contrast, when we add real numbers, we carry the remainder
from the smaller to the larger scale, we have only the weaker triangle inequality

|x+ y|η � |x|η + |y|η ,
and {x ∈ Qη, |x|η � 1} = [−1, 1] is not closed under addition.

The second problem is that in geometry we have products, in particular the affine plane A2 =
A1×A1, with the ring of polynomial functions k[x]⊗kk[x] = k[x1, x2], the tensor product (≡ sum in
the category of k-algebras) of Z with itself. When we try to find the analogous arithmetical surface,
we find Z ⊗ Z = Z. The integers Z are the initial object in the category of rings, so its tensor
product (≡ sum in the category of rings) with itself is just Z. For any geometry that is based on
rings, Spec Z will be the final object, and SpecZ× Spec Z = SpecZ, which means the arithmetical
surface reduces to the diagonal!

Motivated by the Weil conjectures, Grothendieck developed the modern language of algebraic
geometry, the language of schemes [EGA], based on commutative rings. Grothendieck came from
a background of functional analysis, where the paradigm of ‘geometry = commutative rings’ was
first set. It is the famous Gelfand–Naimark theorem on the equivalence of the category of (com-
pact, Hausdorff) topological spaces and the category of commutative (unital) C∗-algebras. This
equivalence is given by associating with the topological space X the algebra

C(X) = {f : X → C, f continuous},
using addition and multiplication (and conjugation, and norm) of C to define the similar structure
on C(X), giving rise to the structure of ring (and C∗-algebra structure) on C(X). The axioms of
a commutative C∗-algebra are generalizations of the axioms of C: when X = {∗} reduces to a
point, C(∗) = C. It is clear that there is no connection between addition and multiplication of C
and the geometry of X. The language of rings (and commutative C∗-algebras) is just one convenient
way in which to encode geometry.

With the goal of finding the arithmetical surface, the idea of abandoning addition has recently
appeared in the literature. Soulé [Sou04] talks of the ‘field with one element’ F, and tries to define
F-varieties as a subcollection of Z-varieties. Kurokawa, Ochiai and Wakayama [KOW03] were the
first to suggest abandoning addition, and working instead with the multiplicative monoids. This idea
was further described in Deitmar [Dei05], but note that the spectra of monoids always looks like
the spectra of a local ring: the non-invertible elements are the unique maximal ideal. For Kurokawa
there is also a ‘zeta world’ of analytic functions that encode geometry, where the field F is encoded
by the identity function of C; see Manin [Man95].

Here we take our clues from the problem of the real prime to understand F, and then develop
the language of geometry based on the concept of F-ring. Denote by |x|η the euclidian norm of
x = (x1, . . . , xn) ∈ Rn, i.e.

|x|η =
√∑

i

|xi|2η.

We have the fundamental Cauchy–Schwartz inequality

|x ◦ y|η = |x1y1 + · · ·+ xnyn|η � |x|η · |y|η.
Hence [−1, 1] will contain x1y1 + · · ·+xnyn = x◦y, whenever |x|η , |y|η � 1, although it is not closed
under addition. Moreover, unlike addition, matrix multiplication behaves well in the real prime:
|a ◦ b|η � |a|η · |b|η for real or complex matrices a, b where | · |η is the operator norm. Within matrix
multiplication there is encoded addition, but we have to take matrix multiplication as the more
fundamental operation. We add also the operations of direct sum and of tensor product of matrices.
Our analogue of Zp (respectively of the localization Z(p)) for the real prime η is the category OR,η
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(respectively OQ,η) with objects the finite sets and morphisms from X to Y given by the Y × X
matrices with real (respectively rational) coefficients and with operator norm � 1; these matrices are
closed under the operations of direct sums and tensor products (but are not closed under addition).

Remembering that the quantum area in physics started with Heisenberg’s discovery of matrix
multiplication as the fundamental operation describing the energy levels of microscopic systems,
perhaps in the future also physics will benefit from the language of non-additive geometry.

The contribution to arithmetic is evident: the real integers Zη become a real object, and the
arithmetical surface exists and does not reduce to the diagonal. Some well-known conjectures of
arithmetic (Riemann hypothesis, ABC, . . . ) are easy theorems in the geometric analogue of a curve
C over a finite field. This is because we can form the surface C × C. The knowledge of the first
infinitesimal neighborhood of the diagonal C within C × C, i.e. of differentials, is often sufficient
to prove theorems in geometry whose arithmetic analogues are deep conjectures. Therefore, the
further study of the arithmetical surface F(Z)⊗F F(Z), its compactification using F(Z)⊗F Zη, and
the arithmetic first infinitesimal neighborhood of the diagonal are important challenges. Here we
give only the foundations of the language of non-additive geometry.

In § 1 we decipher what is the ‘field with one element’ F. The idea is that, while F degenerates into
one (or two) elements, there is a whole category of ‘F-valued matrices’. There are various degrees
of structures one can impose on F. In § 2 we give the basic notion of an F-ring. As important
examples of F-rings we have: F(A), the F-ring attached to a commutative ring A; Oη , the F-ring of
‘integers’ at a real or complex prime η of a number field; and its residue field Fη, the F-ring of partial
isometries. In § 3 we give the elementary theory of modules over F-rings, and discuss (fibred) sums
and products, kernels and cokernels, free modules, tensor products, and base change. A novelty of
the non-additive setting is the connection between submodules and equivalence modules of a given
module.

In § 4 we give the elementary theory of ideals and primes. We associate with any F-ring A its
spectrum SpecA, a compact sober space with respect to the ‘Zariski topology’. (A topological space
is sober if every closed irreducible subset has a unique generic point.) In § 5 we give the theory of
localization. It gives rise to a sheaf of F-rings over SpecA. By gluing such spectra we get Zariski
F-schemes. In § 6 we give the theory of F-schemes which are the pro-objects of Zariski F-schemes.
As important examples we give the compactification of Spec Z and of SpecOK , K a number field.
This is our solution to the problem of the real prime.

In § 7 we give the tensor product, the (fibred) sum in the category of F-rings, and we obtain the
(fibred) product in the categories of Zariski F-schemes and of F-schemes. As an important example
we define and describe the fibred product F(Z)⊗F F(Z), its compactification, and its generalization
for number fields. This is our solution to the problem of the arithmetical surface. In § 8 we work
over a fixed F-ring F, and repeat the above constructions in the category of monoid objects in
F-modules. Everything goes through, the tensor product of F-monoids is just their tensor product
as modules, so we avoid the complicated product of § 7, but the functor from commutative rings to
F-monoids is not fully faithful.

1. F, the field with one element

We define a category F with objects the finite sets endowed with two symmetric monoidal structures
⊕ and ⊗. The unit element [0] for ⊕ is the initial and final object of the category, and⊗ is distributive
over ⊕.
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1.1 The category F
We consider F-vector spaces as finite sets X with a distinguished ‘zero’ element 0X ∈ X, and set
X+ = X \ {0X}. For a commutative ring A, we let

A ·X =
⊕

x∈X+

A · x

denote the free A-module with basis X+, and think about A · X as A ⊗F X obtained by base
extension from F to A. We let

F[A]Y,X = HomA(A ·X,A · Y ),

the Y +×X+ matrices with values in A. The base extension of X from F to Zη and to Qη = R gives
Zη ·X and Qη ·X: Qη ·X is the real vector space with basis X+, and Zη ·X is the subset of Qη ·X
of vectors with norm � 1 in the inner product given by decreeing X+ to be an orthonormal basis.
We have

F[Qη]Y,X = HomQη(Qη ·X,Qη · Y ),

the Y + ×X+ real-valued matrices, and

(Zη)Y,X = {f ∈ F[Qη]Y,X , f(Zη ·X) ⊆ Zη · Y } = {f, |f |η � 1},
where |f |η denotes the operator norm on F[Qη]Y,X .

A map of finite sets ϕ : X → Y , preserving the zero elements ϕ(0X) = 0Y , induces an A-linear
map

ϕA : A ·X → A · Y, ϕA ∈ F[A]Y,X .

For ϕQη : Qη · X → Qη · Y to map Zη · X into Zη · Y it is necessary and sufficient that ϕ is an
injection of X \ ϕ−1(0Y ) into Y . Thus we set

FY,X = {ϕ : X → Y,ϕ(0X ) = 0Y , ϕ|X\ϕ−1(0Y ) injective}, (1.1)

and we view F as the category with objects finite sets with a distinguished zero element, and with
arrows FY,X = HomF(X,Y ). In practice, we shall ignore the distinguished elements, and view F as
the category with objects finite sets (without a distinguished zero element), and with arrows the
partial bijections

F′
Y,X = {ϕ : V ∼−→W bijection, V ⊆ X,W ⊆ Y }. (1.1)′

It is clear that

X �→ X+ := X \ {0X}
and

ϕ �→ {ϕ : X \ ϕ−1(0Y ) ∼−→ ϕ(X \ ϕ−1(0Y ))}
is an isomorphism of categories

FY,X
∼−→ F′

Y +,X+ .

We shall identify F with F′. Thus from now on the objects of F are finite sets without a distinguished
zero element. Alternatively, FY,X are the Y ×X matrices with entries 0, 1 and with at most one 1
in every row and column.

We have a functor

⊕ : F× F→ F (1.2)

given by the disjoint union of sets. More formally, for sets X,Y we let

X ⊕ Y = {(z, i) | i ∈ {0, 1}; i = 0⇒ z ∈ X, i = 1⇒ z ∈ Y } (1.3)
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and for f0 ∈ FX′,X , f1 ∈ FY ′,Y , we have f0 ⊕ f1 ∈ FX′⊕Y ′,X⊕Y given by

f0 ⊕ f1(z, i) = (fi(z), i). (1.4)

(Note that in the version of F where the objects have a distinguished zero element, X⊕Y is obtained
from the disjoint union X

∐
Y by identifying 0X with 0Y .)

We have for f ′0 ∈ FX′′,X′ , f ′1 ∈ FY ′′,Y ′ ,

(f ′0 ⊕ f ′1) ◦ (f0 ⊕ f1) = (f ′0 ◦ f0)⊕ (f ′1 ◦ f1) (1.5)

and

idX ⊕ idY = idX⊕Y . (1.6)

The operation ⊕ makes F into a symmetric-monoidal category. The identity element is the empty
set [0] (or the set with only the distinguished zero element), which is the initial and final object of
the category F. There are canonical isomorphisms in F:

X ⊕ [0]
lX∼←− X

rX∼−→ [0]⊕X. (1.7)

The commutativity isomorphism cX,Y ∈ FY ⊕X,X⊕Y is given by

cX,Y (z, i) = (z, 1− i). (1.8)

The associativity isomorphism aX,Y,Z ∈ FX⊕(Y ⊕Z),(X⊕Y )⊕Z is given by

a((w, 0), 0) = (w, 0),
a((w, 1), 0) = ((w, 0), 1),
a(w, 1) = ((w, 1), 1).

(1.9)

We shall usually abuse notation and view lX , rX , cX,Y , aX,Y,Z as identifications; thus e.g. for fi ∈
FX′

i,Xi
we write f0 ⊕ f1 = f1 ⊕ f0 instead of

cX′
0,X′

1
◦ (f0 ⊕ f1) = (f1 ⊕ f0) ◦ cX0,X1. (1.10)

We have a functor

⊗ : F× F→ F (1.11)

given by the product of sets X ⊗ Y = {(x, y) | x ∈ X, y ∈ Y }, and for f0 ∈ FX′,X , f1 ∈ FY ′,Y , we
have f0 ⊗ f1 ∈ FX′⊗Y ′,X⊗Y given by

f0 ⊗ f1(x, y) = (f0(x), f1(y)). (1.12)

(Note that working with the version of F where the objects have a distinguished zero element,
X ⊗ Y is obtained from the product X × Y by identifying (x, 0Y ) and (0X , y) with (0X , 0Y ) for all
x ∈ X, y ∈ Y .)

We have for f ′0 ∈ FX′′,X′ , f ′1 ∈ FY ′′,Y ′ ,

(f ′0 ⊗ f ′1) ◦ (f0 ⊗ f1) = (f ′0 ◦ f0)⊗ (f ′1 ◦ f1) (1.13)

and

idX ⊗ idY = idX⊗Y . (1.14)

The operation ⊗ also makes F into a symmetric monoidal category. The identity element is the
set with one element [1] (or the set with a distinguished zero element 0, and another element
[1] = {0, 1}). We have again isomorphisms in F:

X ⊗ [1]
l∗X∼←− X

r∗X∼−→ X ⊗ [1], (1.15)
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and

c∗X,Y ∈ FY ⊗X,X⊗Y , c∗X,Y (x, y) = (y, x), (1.16)

a∗X,Y,Z ∈ FX⊗(Y ⊗Z),(X⊗Y )⊗Z , a∗X,Y,Z((x, y), z) = (x, (y, z)). (1.17)

We have as well the distributivity isomorphism dX0,X1;Y ∈ F(X0⊗Y )⊕(X1⊗Y ),(X0⊕X1)⊗Y

dX0,X1;Y ((x, i), y) = ((x, y), i), i ∈ {0, 1}. (1.18)

We abuse notation and view l∗X , r
∗
X , c

∗
X,Y , a

∗
X,Y,Z , dX0,X1;Y as identifications; thus e.g. for fi ∈

FX′
i,Xi

, g ∈ FY ′,Y we write
(f0 ⊕ f1)⊗ g = (f0 ⊗ g)⊕ (f1 ⊗ g) (1.19)

which should be read as

dX′
0,X′

1;Y
′ ◦ [(f0 ⊕ f1)⊗ g] = [(f0 ⊗ g)⊕ (f1 ⊗ g)] ◦ dX0,X1;Y . (1.19)′

We note that there is a natural involution

FY,X
∼−→ FX,Y , f �→ f t. (1.20)

When viewing FY,X as the partial bijections f : V ∼−→ W , V ⊆ X and W ⊆ Y, f t is the inverse
bijection, f t = f−1 : W ∼−→ V . When we view FY,X as 0, 1 matrices, f t is the transpose matrix.

We have

(g ◦ f)t = f t ◦ gt, (1.21.1)
(idX)t = idX , (1.21.2)

(f t)t = f, (1.21.3)
(f0 ⊕ f1)t = f t

0 ⊕ f t
1, (1.21.4)

(f0 ⊗ f1)t = f t
0 ⊗ f t

1. (1.21.5)

Remark. Whenever we use the notation for composition f ◦ g it will always be implicitly assumed
that the domain of f is the range of g; thus e.g. if we have (f0 ⊕ f1) ◦ g and fi ∈ FX′

i,Xi
, it is

implicitly assumed that g has range X0 ⊕X1.

1.2 Variants F±

The model F for the field with one element is the one we shall use here, but there is a variant
F± which is important, and leads to a tighter theory. The objects of the category F± are finite
sets X together with an action of the group {±1}, without fixed points (or with a unique fixed
point – the zero element). A subset X+ ⊆ X will be called a basis if X is the disjoint union of X+

and −X+ = {−x | x ∈ X+}. The maps f ∈ F±
Y,X are partial bijections

f : V ∼−→W, V ⊆ X, W ⊆ Y, V = −V, W = −W,
that commute with the action f(−x) = −f(x). Fixing basis X+ ⊆ X,Y + ⊆ Y , we can identify the
elements of F±

Y,X with the Y + ×X+ matrices of entries 0, 1,−1, with at most one non-zero term in
each row and column. The map f is identified with the matrix M(f), where for x ∈ X+, y ∈ Y +,
M(f)y,x = 0 (respectively, 1,−1) if f(x) �= ±y (respectively, y,−y).

We have functors

⊕,⊗ : F± × F± → F±, (1.22)

X ⊕ Y = disjoint union of X and Y , with its natural {±1} action, (1.22.1)
X ⊗ Y = X × Y/(x,y)∼(−x,−y),with {±1} action : −(x, y) = (−x, y) = (x,−y). (1.22.2)

624

https://doi.org/10.1112/S0010437X06002624 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002624


Non-additive geometry

Write x⊗ y for the image of (x, y) in X ⊗ Y ; we have for f0 ∈ F±
X′,X , f1 ∈ F±

Y ′,Y ,

f0 ⊗ f1(x⊗ y) = f0(x)⊗ f1(y). (1.23)

The unit for ⊕ is [0], the initial and final object of F±. The unit for ⊗ is [±1]. The analogue
of formulas (1.5) to (1.19) remain true for F±. We have an involution F± → F±, f �→ f t, where f t

is the inverse bijection (or transpose of an Y + ×X+ matrix), and formulas (1.21.1–5) remain true
for F±.

Definition. Let X be an object of F± and let X+ ⊆ X be a basis. The number of elements of
X+ : d = #X+ will be called the dimension of X, and denoted d = dimX.

For n = 1, . . . , d let

Pn(X) = {x1 ⊗ · · · ⊗ xn ∈ X ⊗ · · · ⊗X | xi �= ±xj for i �= j} (1.24)
∧n(X) = Pn(X)/∼

where ∼ is the equivalence relation

xσ(1) ⊗ · · · ⊗ xσ(n) ∼ sgn(σ) · x1 ⊗ · · · ⊗ xn, for σ ∈ Sn. (1.25)

Write x1 ∧ · · · ∧ xn for the image of x1 ⊗ · · · ⊗ xn ∈ Pn(X) in ∧n(X). A map f ∈ F±
Y,X induces a

map Pn(f) ∈ F±
Pn(Y ),Pn(X), which induces in turn a map ∧n(f) ∈ F±

∧n(Y ),∧n(X),

∧n(f)(x1 ∧ · · · ∧ xn) = f(x1) ∧ · · · ∧ f(xn). (1.26)

For n > d we have ∧n(X) = [0], and by definition we let ∧0(X) = [±1]. Thus we have a sequence
of functors

∧n : F± → F±, n = 0, 1, . . . , (1.27)

∧n(f ◦ g) = ∧n(f) ◦ ∧n(g), (1.27.1)
∧n(idX) = id∧n(X), (1.27.2)

∧n(f t) = (∧n(f))t. (1.27.3)

There are natural isomorphisms in F± which we view as identifications

∧n(X ⊕ Y ) =
⊕

0�j�n

∧j(X)⊗ ∧n−j(Y ). (1.28)

Remark 1.29. When we consider the objects |F| of the category F (respectively F±), we assume
that it contains [n], n � 0 (respectively [±n]), and that it contains X ⊕ Y,X ⊗ Y (respectively and
∧n(X)) whenever it contains X,Y . Hence we may assume |F| and |F±| are countable sets. On the
other hand, we shall not use the actual realization of F in most of what follows. All we need is a
category F with two symmetric monoidal structures ⊕ and ⊗, the unit element [0] for ⊕ is the
initial and final object of F , ⊗ is distributive over ⊕ and it respects [0]: X ⊗ [0] = [0]. This opens
up the possibility of introducing quantum deformations.

1.3 The ‘algebraic closure’ F of F
We can similarly work over the ‘algebraic closure’ F of F, which in arithmetic means adjoining all
roots of unity µ ∼= Q/Z. The objects of F are sets X with µ-action, satisfying the following two
properties:

(i) set X decomposes into a finite union of µ-orbits

X = X1 � · · · �Xd, Xi = µ · xi; (1.30)
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(ii) for x ∈ X there is a natural number N and a finite set of primes {p1, . . . , pl}, pi � N , such that
the stabilizer of x in µ is given by

{ζ ∈ µ | ζ · x = x} = µN × µp∞1 × · · · × µp∞l . (1.30.1)

Here µN = {ζ ∈ µ | ζN = 1} and µp∞ =
⋃

n µpn .
Let xj ∈ X, 1 � j � d, be such that Xj = µ·xj for each j. Then the subset X+ = {x1, . . . , xd} ⊆

X representing the µ-orbits will be called a basis for X, and d = #X+ = dimX the dimension
of X. The maps in the category F from an object X to an object Y are given by µ-covariant partial
bijections

FY,X = {f : V ∼−→W | V ⊆ X,W ⊆ Y, V = µ·V,W = µ·W,f(ζx) = ζf(x),∀x ∈ V, ζ ∈ µ}. (1.30.2)

We have functors

⊕,⊗ : F× F→ F, (1.31)

X ⊕ Y = disjoint union of X and Y , with its natural µ-action, (1.31.1)
X ⊗ Y = X × Y/(x,y)∼(ζx,ζ−1y), with µ-action ζ · (x, y) = (ζx, y) = (x, ζy). (1.31.2)

We write x⊗ y for the image of (x, y) in X ⊗ Y . For fi ∈ FYi,Xi we have

f0 ⊕ f1 ∈ FY0⊕Y1,X0⊕X1 , f0 ⊕ f1(z, i) = (fi(z), i), i = 0, 1,

and we have

f0 ⊗ f1 ∈ FY0⊗Y1,X0⊗X1 , f0 ⊗ f1(x0 ⊗ x1) = f0(x0)⊗ f1(x1).

Both ⊕ and ⊗ make F into symmetric monoidal category; the unit for ⊕ is the empty set [0] which
is the initial and final object of F; the unit for ⊗ is [1] = µ. The analogue of formulas (1.5)–(1.19)
remain true for F. We have an involution on F satisfying (1.21). We have λ-operations: for an object
X of F of dimension d = dimX and for n = 1, . . . , d we let

Pn(X) = {x1 ⊗ · · · ⊗ xn ∈ X ⊗ · · · ⊗X | xi �= ζxj for i �= j, ζ ∈ µ},
∧n(X) = Pn(X)/xσ(1)⊗···⊗xσ(n)∼sgn(σ)·x1⊗···⊗xn,σ∈Sn

.
(1.32)

We write x1 ∧ · · · ∧ xn for the image of x1 ⊗ · · · ⊗ xn in ∧n(X), xi ∈ X. A map f ∈ FY,X induces a
map ∧n(f) ∈ F∧n(Y ),∧n(X) by

∧n(f)(x1 ∧ · · · ∧ xn) = f(x1) ∧ · · · ∧ f(xn),
Domain(∧n(f)) = {(x1 ∧ · · · ∧ xn) | xi ∈ Domain(f)}. (1.33)

We let ∧0(X) = [1] = µ,∧1(X) = X, and ∧n(X) = [0] for n > dimX. Thus we have a sequence
of functors ∧n : F → F, n = 0, 1, 2, . . . , and (1.28) remains valid. A novelty of F is that we have a
sequence of functors given by Adam’s operators

ψn : F→ F, n = ±1,±2, . . . ,
ψn(X) = the set X with the new µ-action ζ ·(n) x = ζn · x (1.34)

(we can take n in {n = (np) ∈ Ẑ =
∏

p Zp, np ∈ Z∗
p for all but finitely many p}). These functors

satisfy
ψn(X ⊕ Y ) = ψn(X)⊕ ψn(Y ),
ψn(X ⊗ Y ) = ψn(X)⊗ ψn(Y ),

(1.35)

and are the analogue in our setting of the Frobenius endomorphisms in the theory of varieties
over Fq. (Indeed, the action on K-theory of the Frobenius endomorphism for such varieties is given
by ψq.)
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2. F-rings, variants, examples

We give the definition of F-rings and of Ring category. We give various variants of F-rings with
involution or with λ-ring structure. We then give our main examples.

2.1 Definition of F-rings
Definition 2.1. An F-ring is a category A with objects the finite sets |F|, and arrows AY,X =
HomA(X,Y ) containing FY,X , i.e. we have a faithful functor F→ A which is the identity on objects.
We assume [0] is the initial and final object of A. We have two functors

⊕,⊗ : A×A→ A,

which agree with the given functors on F, and which make A into a symmetric monoidal category
with the given identity (lX , rX ; l∗X , r∗X), commutativity (cX,Y ; c∗X,Y ), associativity (aX,Y,Z ; a∗X,Y,Z)
isomorphisms of F. We assume that ⊗ is distributive over ⊕ using the isomorphism dX0,X1;Y of F.

Thus in explicit terms, an F-ring is a set

A =
∐

Y,X∈|F|
AY,X , (2.2)

with operations

◦ : AZ,Y ×AY,X → AZ,X , (2.2.1)
⊕ : AY0,X0 ×AY1,X1 → AY0⊕Y1,X0⊕X1, (2.2.2)
⊗ : AY0,X0 ×AY1,X1 → AY0⊗Y1,X0⊗X1, (2.2.3)

satisfying

f ◦ (g ◦ h) = (f ◦ g) ◦ h; (2.3.1)
idY ◦ f = f = f ◦ idX , f ∈ AY,X ; (2.3.2)

(f0 ⊕ f1) ◦ (g0 ⊕ g1) = (f0 ◦ g0)⊕ (f1 ◦ g1), gi ∈ AYi,Xi , fi ∈ AZi,Yi ; (2.4.1)
idX ⊕ idY = idX⊕Y ; (2.4.2)
f0 ⊕ f1 = f1 ⊕ f0; (2.4.3)

f0 ⊕ (f1 ⊕ f2) = (f0 ⊕ f1)⊕ f2; (2.4.4)
f ⊕ id[0] = f ; (2.4.5)

(f0 ⊗ f1) ◦ (g0 ⊗ g1) = (f0 ◦ g0)⊗ (f1 ◦ g1), gi ∈ AYi,Xi , fi ∈ AZi,Yi ; (2.5.1)
idX ⊗ idY = idX⊗Y ; (2.5.2)
f0 ⊗ f1 = f1 ⊗ f0; (2.5.3)

f0 ⊗ (f1 ⊗ f2) = (f0 ⊗ f1)⊗ f2; (2.5.4)
f ⊗ id[1] = f ; (2.5.5)

f ⊗ (g0 ⊕ g1) = (f ⊗ g0)⊕ (f ⊗ g1). (2.6)

Remark. We remind the reader that we omit the writing of the canonical isomorphisms of F. Thus
e.g (2.4.3) should be written

(f0 ⊕ f1) ◦ cX1,X0 = cY1,Y0 ◦ (f1 ⊕ f0), fi ∈ AYi,Xi . (2.4.3)′

We assume that FY,X ⊆ AY,X , and that the above operations ◦,⊕,⊗ agree with the given
operations on F. In particular, we have the zero map 0Y,X ∈ AY,X , which is the unique map that
factors through [0].
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We note that on A[1],[1], the operations of composition ◦ and of tensor product ⊗ induce the
same operation, making A[1],[1] into a commutative monoid:

f · d def= f ◦ g = (f ⊗ id[1]) ◦ (id[1] ⊗ g) = f ⊗ g = g ⊗ f, f, g ∈ A[1],[1]. (2.7)

The set A[1],[1] has a unit 1 coming from the map id[1],[1] : [1]→ [1], and a zero element 0 coming
from the map 0[1],[1] : [1]→ [1], z �→ 0[1]. The set A[1],[1] acts on the sets AY,X ,

f · g def= f ⊗ g, f ∈ A[1],[1], g ∈ AY,X . (2.8)

This action satisfies

(f0 · f1) · g = f0 · (f1 · g), fi ∈ A[1],[1], g ∈ AY,X ; (2.8.1)

1 · g = g; (2.8.2)
0 · g = 0Y,X ; (2.8.3)

f · (g ◦ h) = (f · g) ◦ h = g ◦ (f · h); (2.8.4)
f · (g0 ⊕ g1) = (f · g0)⊕ (f · g1); (2.8.5)

f · (g0 ⊗ g1) = (f · g0)⊗ g1 = g0 ⊗ (f · g1). (2.8.6)

Definition 2.9. Let A,B be F-rings. A functor ϕ : A→ B is a homomorphism of F-rings if

ϕ(AY,X) ⊆ BY,X , (2.9.1)
ϕ(f) = f for f ∈ FY,X , (2.9.2)
ϕ(f ◦ g) = ϕ(f) ◦ ϕ(g), (2.9.3)

ϕ(f0 ⊕ f1) = ϕ(f0)⊕ ϕ(f1), (2.9.4)
ϕ(f0 ⊗ f1) = ϕ(f0)⊗ ϕ(f1). (2.9.5)

Thus ϕ is a functor over F that respects ⊕ and ⊗. It is clear that if ϕ : A → B,ψ : B → C are
homomorphisms of F-rings, then ψ ◦ ϕ is a homomorphism of F-rings, hence we have a category
F-Rings, with F as an initial object.

Remark. A (commutative) ring category A is a category with a symmetric monoidal structure

⊕ : A×A→ A,

with associativity (respectively commutativity, unit) isomorphisms a (respectively, c, u), with the
unit object for ⊕, denoted by [0], being the initial and final object of A, and another symmetric
monoidal structure

⊗ : A×A→ A,

with associativity (respectively commutativity, unit) isomorphisms a∗ (respectively, c∗, u∗), the unit
object for ⊗ is denoted by [1], and distributive isomorphisms

dY ;X0,X1 : Y ⊗ (X0 ⊕X1)
∼−→ (Y ⊗X0)⊕ (Y ⊗X1)

functorial in Y,X0,X1 ∈ |A|, and compatible with a, c, u, a∗, c∗, u∗. That is, we have commutative
diagrams. For Xi, Yi objects of A, we have the following.
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(a)

Y ⊗ ((X0 ⊕X1)⊕X2)
id⊗a ��

d
��

Y ⊗ (X0 ⊕ (X1 ⊕X2))

d
��

Y ⊗ (X0 ⊕X1)⊕ Y ⊗X2

d⊕id
��

Y ⊗X0 ⊕ Y ⊗ (X1 ⊕X2)

id⊕d
��

(Y ⊗X0 ⊕ Y ⊗X1)⊕ Y ⊗X2
a �� Y ⊗X0 ⊕ (Y ⊗X1 ⊕ Y ⊗X2)

(a∗)

(Y1 ⊗ Y0)⊗ (X0 ⊕X1)
a∗

��

d

��

Y1 ⊗ (Y0 ⊗ (X0 ⊕X1))
id⊗d �� Y1 ⊗ ((Y0 ⊗X0)⊕ (Y0 ⊗X1))

d

��
(Y1 ⊗ Y0)⊗X0 ⊕ (Y1 ⊗ Y0)⊗X1

a∗⊕a∗
�� Y1 ⊗ (Y0 ⊗X0)⊕ Y1 ⊗ (Y0 ⊗X1)

(c)

Y ⊗ (X0 ⊕X1)
id⊗c ��

d
��

Y ⊗ (X1 ⊕X0)

d
��

(Y ⊗X0)⊕ (Y ⊗X1)
c �� (Y ⊗X1)⊕ (Y ⊗X0)

(u∗) With [1] denoting the unit object for ⊗,

[1] ⊗ (X0 ⊕X1)

d
��

([1]⊗X0)⊕ ([1] ⊗X1) X0 ⊕X1

u∗
��������������������

u∗⊕u∗
��

(u) The canonical map gives isomorphism Y ⊗ [0] ∼−→ [0], and we have

Y ⊗ (X ⊕ [0])

d
��

Y ⊗Xid⊗u��

u

��
(Y ⊗X)⊕ (Y ⊗ [0]) (Y ⊗X)⊕ [0]∼

id⊕[0]��

A homomorphism of commutative ring categories ϕ : A→ A′ is a functor respecting ⊕, a, c, u,⊗,
a∗, c∗, u∗, d. Thus an F-ring is a homomorphism of commutative ring categories ϕ : F→ A which is
a bijection on objects. Most of what we do in the following works more generally for commutative
ring categories, but working with F-rings is easier and allows the suppression of the isomorphisms
a, c, u, a∗, c∗, u∗, d. On the other hand it will be interesting to work more generally with braided ring
categories, replacing the symmetric monoidal structure ⊗ by a braided monoidal structure; this
might lead to the quantum geometry behind [Har01] and [Har06].

2.2 Ft,F±,Fλ,F,Fλ-rings

Remark 2.10. We can define Ft-rings to be F-rings with involution

AY,X → AX,Y , f �→ f t, (2.10.1)
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agreeing with the given involution on F, and satisfying

(f ◦ g)t = gt ◦ f t, (2.10.2)
f tt = f, (2.10.3)

(f0 ⊕ f1)t = f t
0 ⊕ f t

1, (2.10.4)
(f0 ⊗ f1)t = f t

0 ⊗ f t
1. (2.10.5)

A homomorphism of Ft-rings is a homomorphism of F-rings ϕ satisfying

ϕ(f)t = ϕ(f t).

Thus we have a category of Ft-Rings.

Remark 2.11. One defines F±-rings A as a category with objects |F±|, with [0] as an initial and
final object, and with symmetric monoidal structures

⊕,⊗ : A×A→ A, (2.11.1)

with [0], [±1] as identities, with ⊗ distributive over ⊕, and with a functor F± → A which is the
identity on objects and respects the symmetric monoidal structures ⊕ and ⊗. A homomorphism
ϕ : A → B of F±-rings is a functor over F± which respects the symmetric monoidal structures ⊕
and ⊗. Thus we have the category F±-Rings. Replacing F± by F, and [±1] by µ, one obtains the
definition of the category F-Rings. We can similarly define F±,t-rings to be F±-rings with involution,
agreeing with the given involution on F±, and respecting ⊕ and ⊗. Maps of F±,t-rings are maps
of F±-rings respecting the involution, hence we have a category F±,t-Rings. Similarly we have the
category Ft-Rings.

Definition 2.12. An Fλ-ring A is an F±-ring, together with functors

∧k : A→ A, k = 0, 1, . . . (2.12.1)

such that

∧k : AY,X → A∧k(Y ),∧k(X) (2.12.2)

∧k(idX) = id∧k(X) (2.12.3)

and moreover ∧k agree with the given operation on F± cf. (1.26), and

∧0(f) = 1, (2.12.4)

∧1(f) = f, (2.12.5)

∧k(f ⊕ g) =
⊕

0�j�k

∧j(f)⊗∧k−j(g). (2.12.6)

One similarly defines an Fλ,t-ring to be an F±,t-ring and an Fλ-ring such that

∧k(f)t = ∧k(f t). (2.12.7)

Similarly replacing F± by F one defines an Fλ-ring to be an F-ring A together with functors (2.12.1)
satisfying (2.12.2)–(2.12.6). Similarly, Fλ,t-rings are Fλ-rings with involution satisfying (2.12.7).

Remark. It is possible to add further axioms (e.g. the ones corresponding to ‘special’ λ-rings). Here
we shall only note the following. For X a finite set with {±} action, an orientation on X is a choice
of an isomorphism

ε : [±1] ∼−→ ∧d(X), d = dimX, (2.12.8)
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i.e. it is a choice of one of the two (non-zero) elements ε(1) ∈ ∧d(X). For A an Fλ-ring, and for
a ∈ AX,X we have detX(a) ∈ A[±1],[±1], defined by

detX(a) = ε−1 ◦ ∧d(a) ◦ ε. (2.12.9)

It is independent of the choice of ε ∈ F∧d(X),[±1] ⊆ A∧d(X),[±1], and it satisfies

detX(a ◦ a′) = detX(a) · detX(a′), (2.12.10)
detX(idX) = 1(= id[±1]), (2.12.11)

detX1⊕X2(a1 ⊕ a2) = detX1(a1) · detX2(a2). (2.12.13)

The choice of the orientation ε on X gives also the duality isomorphism

ε̃ : X ∼−→ ∧d−1(X) (and ε̃ : ∧j(X) ∼−→ ∧d−j(X)), (2.12.14)

uniquely determined by

x ∧ ε̃(x) = ε(1), x ∈ X. (2.12.15)

For a ∈ AX,X , we have aadj ∈ AX,X , defined by

aadj = ε̃−1 ◦ ∧d−1(at) ◦ ε̃, (2.12.16)

where ε̃ ∈ F∧d−1(X),X ⊆ A∧d−1(X),X . It is independent of the choice of ε, and it satisfies

(a ◦ b)adj = badj ◦ aadj, (2.12.17)

(idX)adj = idX . (2.12.18)

It is useful to have the expansion of the determinant by rows/columns,

a ◦ aadj = aadj ◦ a = det(a) · idX . (2.12.19)

As a corollary of (2.12.19) we have that a ∈ AX,X is invertible (i.e. there exists a−1 ∈ AX,X with
a◦a−1 = a−1◦a = idX) if and only if detX(a) ∈ A[±1],[±1] is invertible. Indeed, if a is invertible det(a)
is always invertible with inverse det(a−1), and conversely, if det(a) is invertible then by (2.12.19) a
itself is invertible with inverse det(a)−1 · aadj.

Remark. For an F-ring A (or an F± or F-ring), we let GLX(A) denote the group of invertible
elements in AX,X ,

GLX(A) = {a ∈ AX,X | ∃a−1 ∈ AX,X , a ◦ a−1 = a−1 ◦ a = idX}. (2.12.20)

We have homomorphisms,

GLX1(A)×GLX2(A)→ GLX1⊕X2(A), (a1, a2) �→ a1 ⊕ a2, (2.12.21)
GLX1(A)×GLX2(A)→ GLX1⊗X2(A), (a1, a2) �→ a1 ⊗ a2. (2.12.22)

In particular, we have the homomorphisms

GL[n](A)→ GL[n+1](A), a �→ a⊕ id[1],

hence the direct limit

GL∞(A) = lim−→GL[n](A). (2.12.23)

We can then define the higher K-groups of A following Quillen [Qui73]:

Kn(A) = πn+1(BGL∞(A)+). (2.12.24)

Note that for an F-ring A associated with a commutative ring B, A = F(B) (see example 1 below),
we have GL∞(A) = lim−→GLn(B) and Kn(A) = Kn(B).
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2.3 Examples of F-rings
Example 0. F is an F-ring.

Example 1. Let A be a commutative ring (always with identity). We denote by F(A) the F-ring
with

F(A)Y,X = HomA(A ·X,A · Y ) = Y ×X −matrices with values in A, (2.13)
where ◦ is the usual composition of A-linear homomorphisms (or multiplication of A-valued matri-
ces), and where ⊕ is the usual direct sum, and ⊗ the tensor product. Note that a homomorphism
of commutative rings ϕ : A → B induces a map of F-rings F(ϕ) : F(A) → F(B), hence we have a
functor

F : Rings→ F-Rings. (2.13.1)
Moreover let ϕ : F(A)→ F(B) be a map of F-rings. For a ∈ F(A)Y,X write

ay,x = jty ◦ a ◦ jx ∈ A = F(A)[1],[1] (2.13.2)

for its matrix coefficients, where jx, jty are the morphisms of F given by

jx : [1]→ X, jx(1) = x ∈ X,
and where

jty : Y → [1] is the partial bijection {y} → {1}. (2.13.3)

Since ϕ is a functor over F, and jty, jx ∈ F, we have ϕ(a)y,x = ϕ(ay,x) and ϕ is determined by
ϕ : A = F(A)[1],[1] → B = F(B)[1],[1]. This map is multiplicative, ϕ(a1 ·a2) = ϕ(a1) ·ϕ(a2), ϕ(1) = 1,
and moreover it is additive,

ϕ(a1 + a2) = ϕ

[
(a1, a2) ◦

(
1
1

)]
= (ϕ(a1), ϕ(a2)) ◦

(
1
1

)
= ϕ(a1) + ϕ(a2). (2.13.4)

Thus the functor F is fully faithful.

Example 2. Let M be a commutative monoid with a unit 1 and a zero element 0. Thus we have
an associative and commutative operation

M ×M →M, (a, b) �→ a · b,
a · (b · c) = (a · b) · c, a · b = b · a, (2.14)

and 1 ∈M is the (unique) element such that

a · 1 = a, a ∈M, (2.14.1)

and 0 ∈M is the (unique) element such that

a · 0 = 0, a ∈M. (2.14.2)

Let F〈M〉 denote the F-ring with F〈M〉Y,X the Y × X matrices with values in M with at most
one non-zero entry in every row and column. Note that this is indeed an F-ring with the usual
‘multiplication’ of matrices ◦ (there is no addition involved – only multiplication in M), direct sum
⊕, and tensor product ⊗.

Denoting by Mon0,1 the category of commutative monoids with unit and zero elements, and
with maps respecting the operation and the elements 0, 1, the above construction yields a functor

Mon0,1 → F-Rings, M �→ F〈M〉. (2.14.3)

This is the functor left-adjoint to the functor

F-Rings→Mon0,1, A �→ A[1],[1],

632

https://doi.org/10.1112/S0010437X06002624 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002624


Non-additive geometry

namely

HomF-Rings(F〈M〉, A) = HomMon0,1(M,A[1],[1]). (2.14.4)

As a particular example, take M = Mq to be the free monoid (with zero) generated by one element q,

Mq = qN ∪ {0}.
Then

HomF-Rings(F〈Mq〉, A) = A[1],[1].

Example 3. Let S denote the F-ring of sets. The objects of S are the finite sets of |F|, and we
let SY,X be the partially defined maps of sets from X to Y ,

SY,X = {f : V → Y | V ⊆ X}. (2.15.1)

Notice that if A is an F-ring, the opposite category Aop is again an F-ring, since Fop = F and since
the axioms of an F-ring are self-dual. In particular, we have the F-ring Sop with

Sop
Y,X = {f : V → X | V ⊆ Y }. (2.15.2)

We have the F-ring of relations R that contains both S and Sop, with

RY,X = {F ⊆ Y ×X a subset}. (2.15.3)

The composition of F ∈ RY,X and G ∈ RZ,Y is given by

G ◦ F = {(z, x) ∈ Z ×X | ∃y ∈ Y with (z, y) ∈ G, (y, x) ∈ F}, (2.15.4)

and G ◦ F ∈ RZ,X .
The sum F0 ⊕ F1 ∈ RY0⊕Y1,X0⊕X1 of Fi ∈ RYi,Xi is given by the disjoint union of F0 and F1,

F0 ⊕ F1 = {((x, i), (y, i)) | (x, y) ∈ Fi}, (2.15.5)

and the product F0 ⊗ F1 ∈ RY0⊗Y1,X0⊗X1 is given by

F0 ⊗ F1 = {((x0, x1), (y0, y1)) | (x0, y0) ∈ F0, (x1, y1) ∈ F1}. (2.15.6)

Equivalently, RY,X are the Y ×X matrices with values in {0, 1}, and ⊕,⊗ are the direct sum and
the tensor product of matrices (but ◦ does not correspond to matrix multiplication).

We have the F-subring of F(Z) consisting of matrices with values in N; we denote it by F(N).
This F-ring also contains S and Sop, but composition in F(N) is matrix multiplication. We can
summarize these basic F-rings in the following diagram, where A is a commutative ring.

F(A)

F(Z)

��

R F(N)
� �

��

S
��

��

� �

���������������� Sop
� �

��

� �

�����������������

F
� �

����������
	 


		��������

(2.15.7)
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Example 4. Let k be a ring and η : k → C an embedding (e.g. η a real or complex prime of a
number field). For X ∈ |F|, let k ·X denote the free k-module with inner product having X as an
orthonormal basis. Thus for a = (ax) ∈ k ·X we have its norm

|a|η =

√(∑
x∈X

|η(ax)|2
)
, (2.16.1)

and for a k-linear map f ∈ Homk(k ·X,k · Y ) we have its operator norm

|f |η = sup
|a|η�1

|f(a)|η. (2.16.2)

We have

|f ◦ g|η � |f |η · |g|η , (2.16.3)
|f ⊕ g|η = max{|f |η , |g|η}, (2.16.4)
|f ⊗ g|η = |f |η · |g|η . (2.16.5)

Let Ok,η denote the F-ring with

(Ok,η)Y,X = {f ∈ Homk(k ·X,k · Y ), |f |η � 1} (2.16)

and with the usual operations ◦,⊕,⊗.
For X0,X1 ∈ |F|, denote by

ji : Xi → X0 ⊕X1, ji(x) = (x, i), (2.17.1)

the natural inclusion, and by

jti : X0 ⊕X1 → Xi, jti (x, i
′) =

{
x, i = i′

0, i �= i′
(2.17.2)

its transpose. For an F-ring A we get maps

AY,X0⊕X1 → AY,X0 ×AY,X1 , f �→ (f ◦ j0, f ◦ j1), (2.17.3)

and
AX0⊕X1,Y → AX0,Y ×AX1,Y , f �→ (jt0 ◦ f, jt1 ◦ f). (2.17.4)

We say that A is a matrix ring if these maps are always injections. Equivalently, A is a matrix
ring if every element is determined by its coefficients, that is we have an injection

AY,X ↪→ (A[1],[1])
Y ×X , f �→ {jty ◦ f ◦ jx}y∈Y,x∈X , (2.17)

with jx, jty as in (2.13.2) and (2.13.3).
The above examples 0, 1, 2, 3 (except for R) and 4, all constitute matrix rings. The following

gives examples of F-rings which are not matrix rings (they are the ‘residue F-field’ of the F-rings of
Example 4 (2.16)).

Example 5. Let k be a ring and let η : k → C be an embedding, and for X ∈ |F|, let k · X
denote the free k-module with basis X and with the inner product having X as an orthonormal
basis. Let Fk,η denote the F-ring of ‘partial isometries’, with

(Fk,η)Y,X = {f : V ∼−→W, with V ⊆ k ·X,W ⊆ k · Y
k-submodules and f is a k-linear isometry}. (2.18)

For f = (f : V ∼−→W ) ∈ (Fk,η)Y,X , g = (g : W ′ ∼−→ U) ∈ (Fk,η)Z,Y , we have

g ◦ f = (g ◦ f : f−1(W ∩W ′) ∼−→ g(W ∩W ′)) ∈ (Fk,η)Z,X ; (2.18.1)
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and for fi = (fi : Vi
∼−→Wi) ∈ (Fk,η)Yi,Xi , we have

f0 ⊕ f1 = (f0 ⊕ f1 : V0 ⊕ V1
∼−→ W0 ⊕W1), (2.18.2)

f0 ⊗ f1 = (f0 ⊗ f1 : V0 ⊗ V1
∼−→ W0 ⊗W1). (2.18.3)

We will see in Example 4.21 below that Fk,η is indeed the residue field of Ok,η.
Remark. All of the above examples (except S and Sop) have a natural involution making them
into Ft-rings. Moreover, all the examples have obvious analogous F±-rings. For example, for a
commutative ring A, we have the F±-ring F±(A) with

F±(A)Y,X = HomA(A ·X,A · Y ),

where A · X denotes the free A-module with basis {(x) | x ∈ X}, divided by the A-submodule
generated by {(x) + (−x) | x ∈ X}:

A ·X =
⊕
x∈X

A(x)/(−x)∼−(x);

alternatively, A ·X is the free A-module with basis X+, where X+ ⊆ X is a basis of the ±1-set X.
Then A �→ F±(A) is a fully faithful functor from Rings to F±-Rings. All the above examples of F±-
rings are F±,t-rings with respect to transposition. Moreover, exterior powers give them the structure
of Fλ-rings.

For a commutative ringA that contains all the roots of unity, together with a fixed map µ→ µ(A)
from our abstract group µ onto the group of roots of unity µ(A) ⊆ A∗ (this map could have kernel
µp∞ if A has characteristic p), we have the F-ring F(A) with

F(A)Y,X = HomA(A ·X,A · Y ),

where A · X denotes the free A-module with basis X divided by the A-submodule generated by
{ζ · (x)− (ζ ·x) | x ∈ X, ζ ∈ µ}. Then A �→ F(A) is a fully faithful functor from µ-Rings to F-Rings,
where µ-Rings is the category of such commutative rings A together with the map µ → µ(A),
and ring homomorphisms preserving these maps. The F(A) has an involution making it an Ft-ring.
Moreover, exterior powers give F(A) the structure of Fλ-rings.

Remark. The categories F-Rings (respectively F±-Rings, Ft-Rings, Fλ-Rings, F-Rings, Ft-Rings,
Fλ-Rings) have fibred products. Given homomorphisms of F-rings

ϕi : Ai → B, i = 0, 1,

we have the F-ring A0
∏

B A
1, with(

A0
∏
B

A1

)
Y,X

= {(a0, a1) ∈ A0
Y,X ×A1

Y,X | ϕ0(a0) = ϕ1(a1)}.

Similarly we can construct arbitrary products
∏

iA
i, and arbitrary inverse limits lim←−A

i, where
i �→ Ai is a functor from a small category to F-Rings (respectively Ft-Rings, etc.).

Definition 2.19. Let A be an F-ring. An equivalence ideal E is a collection of subsets

E =
∐

Y,X∈|F|
EY,X ,

with EY,X ⊆ AY,X ×AY,X , such that

EY,X is an equivalence relation on AY,X . (2.19.1)
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For (a, a′) ∈ EY,X , and for b1 ∈ AY ′,Y , b2 ∈ AX,X′′ ,

b1 ◦ (a, a′) ◦ b2 def= (b1 ◦ a ◦ b2, b1 ◦ a′ ◦ b2) ∈ EY ′,X′′ . (2.19.2)

For (ai, a
′
i) ∈ EYi,Xi , i = 0, 1,

(a0, a
′
0)⊕ (a1, a

′
1)

def= (a0 ⊕ a1, a
′
0 ⊕ a′1) ∈ EY0⊕Y1,X0⊕X1 . (2.19.3)

For (a, a′) ∈ EY,X , and for b ∈ AW,Z ,

b⊗ (a, a′) def= (b⊗ a, b⊗ a′) ∈ EW⊗Y,Z⊗X. (2.19.4)

Given an equivalence ideal E of A, let

A/E =
∐

Y,X∈|F|
AY,X/EY,X ,

and let π : A→ A/E denote the canonical map which associates with a ∈ AY,X its equivalence class
π(a) ∈ AY,X/EY,X . It follows from (2.19.2) (respectively (2.19.3), (2.19.4)) that we have well-defined
operations on A/E ,

π(f) ◦ π(g) = π(f ◦ g)
(respectively π(f)⊕ π(g) = π(f ⊕ g), π(f)⊗ π(g) = π(f ⊗ g)), (2.19.5)

making A/E into an F-ring such that π : A→ A/E is a homomorphism of F-rings.

Given a homomorphism of F-rings ϕ : A→ B denote by

KER(ϕ) =
∐

Y,X∈|F|
KERY,X(ϕ),

KERY,X(ϕ) = {(a, a′) ∈ AY,X ×AY,X | ϕ(a) = ϕ(a′)}.
(2.20)

It is clear that KER(ϕ) is an equivalence ideal of A, and that ϕ induces an injection of F-rings
ϕ : A/KER(ϕ) ↪→ B, such that ϕ = ϕ ◦ π, i.e.

A
ϕ ��

π 

 

���
���

���
� B

A/KER(ϕ)

� � ϕ

�����������
(2.21)

is a commutative diagram. Thus every map ϕ of F-rings factors as an epimorphism (π) followed by
an injection (ϕ).

Example 2.22. Let A = OZ[1/N ],η be the F-ring of Example 4, (2.16), with k = Z[1/N ]. For a prime
p not dividing N there is a surjective homomorphism

ϕp : A � F(Fp), ϕp(a) = a(mod p).

We have the equivalence ideal Ep = KER(ϕp).

Similarly, there is a surjective homomorphism ϕη : A � FZ[1/N ],η, cf. Example 4.21 below, with
FZ[1/N ],η the F-ring of Example 5, (2.18), and we have the equivalence ideal Eη = KER(ϕη).

3. Modules

We define the notion of an A-module for an F-ring A. Since we gave up addition we cannot define
directly the quotient M/N where N is a sub-A-module of M . We can divide A-modules only by
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an equivalence A-module, and we study the relationship between sub-A-modules and equivalence
A-modules. We describe the standard operations on A-modules and give many examples.

3.1 Definitions and examples
Definition 3.1. Let A be an F-ring. An A-module M is a collection of sets M = {MY,X}Y,X∈|F|,
together with maps

AY ′,Y ×MY,X ×AX,X′ →MY ′,X′ , (a,m, a′) �→ a ◦m ◦ a′, (3.1.1)
AY0,X0 ×MY1,X1 →MY0⊗Y1,X0⊗X1 , (a,m) �→ a⊗m, (3.1.2)

MY0,X0 ×MY1,X1 →MY0⊕Y1,X0⊕X1 , (m0,m1) �→ m0 ⊕m1. (3.1.3)

We assume M[0],X = {0X}, MY,[0] = {0t
Y }, and we have a distinguished zero element 0Y,X ∈MY,X ,

such that

0 ◦m = 0, m ◦ 0 = 0, a ◦ 0 ◦ a′ = 0, a⊗ 0 = 0, 0⊕ 0 = 0. (3.1.4)

The maps ◦,⊕,⊗ satisfy: for a, a′, a, a′, ai, a
′
i ∈ A, m,mi ∈M ,

a ◦ (a ◦m ◦ a′) ◦ a′ = (a ◦ a) ◦m ◦ (a′ ◦ a′), (3.1.5)
idY ◦m ◦ idX = m, (3.1.6)

(a0 ⊕ a1) ◦ (m0 ⊕m1) ◦ (a′0 ⊕ a′1) = (a0 ◦m0 ◦ a′0)⊕ (a1 ◦m1 ◦ a′1), (3.1.7)
m0 ⊕m1 = m1 ⊕m0, (3.1.8)

m0 ⊕ (m1 ⊕m2) = (m0 ⊕m1)⊕m2, (3.1.9)
m⊕ 0[0] = m, (3.1.10)

(a⊗ a) ◦ (a0 ⊗m) ◦ (a′ ⊗ a′) = (a ◦ a0 ◦ a′)⊗ (a ◦m ◦ a′), (3.1.11)
a0 ⊗ (a1 ⊗m) = (a0 ⊗ a1)⊗m, (3.1.12)

id[1] ⊗m = m, (3.1.13)

(a0 ⊕ a1)⊗m = (a0 ⊗m)⊕ (a1 ⊗m), (3.1.14)
a⊗ (m0 ⊕m1) = (a⊗m0)⊕ (a⊗m1). (3.1.15)

In particular, (3.1.2) induces an action of the monoid A[1],[1] on MY,X via (a,m) �→ a⊗m.

Example 3.2.1. Let A be a commutative ring, F(A) the associated F-ring. For an A-module M let
F(M)Y,X denote the Y ×X matrices with values in M . Then F(M) has natural operations (3.1.1),
(3.1.2), (3.1.3) making it into an F(A)-module. Note that for M = A we obtain the F-ring F(A)
viewed as an F(A)-module. We have, for A-modules M1,M2,

F(HomA(M1,M2))Y,X = HomA(M1 ⊗A A ·X,M2 ⊗A A · Y ). (3.2.1)

Example 3.2.2. For a finite set V let F(V )Y,X denote the Y × X matrices with values in V ∪ {0}
such that every row and every column contains at most one non-zero term. Then F(V ) has natural
operations (3.1.1), (3.1.2), (3.1.3) making it into a module over the F-ring F. For V = [1] we obtain
F([1]) which is just F viewed as an F-module. We have, for finite sets V1, V2,

F(HomF(V1, V2))Y,X = HomF(V1 ⊗X,V2 ⊗ Y ). (3.2.2)

For an F-module W , such that WY,X is a finite set for all X,Y ∈ |F|, we say it has dimension
dimFW over F if the following limit exists (where n,m go to infinity independently of each other):

dimFW = lim
n,m→∞

1
nm

log 
W[n],[m].

Thus if V is a finite dimensional vector space over the finite field Fq, and F(V ) the associated
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F(Fq)-module viewed as F-module, we have

dimF F(V ) = dimF F(Fq) · dimFq V

with dimF F(Fq) = log q.

For a finite set V , the associated F-module F(V ) is zero dimensional in the above sense,
dimF F(V ) = 0. We can use a different dimension function, DimFW for W an F-module (with
W[n],[m] finite for all n,m), given by

DimFW = lim
x,y→∞

1
xy

log
∑

n,m�0

(
W[n],[m])
xn

n!
ym

m!
.

For the F-module W = F(V ), V a finite set, it gives

DimFF(V ) = lim
x,y→∞

1
xy

log
∑

n,m�k

(
n

k

)(
m

k

)
k!(
V )k

xn

n!
ym

m!

= lim
x,y→∞

1
xy

log exp(x+ y + xy(
V )) = 
V.

Indeed, to give an arbitrary element of F(V )[n],[m] we have to choose k rows (respectively, k
columns), and there are

(
n
k

)
(respectively,

(
m
k

)
) choices, then we have to choose a bijection between

these rows and columns (there are k! possibilities for such a bijection), and finally we have to fill in
the k chosen entries with elements of V (and there are (
V )k such choices), hence


F(V )[n],[m] =
∑

k�n,m

(
n

k

)(
m

k

)
k!(
V )k.

Example 3.2.3. Let k be a field, η : k → C an embedding, and let V be a k-vector space with an
inner product (·, ·)V and associated norm ‖·‖V . Let F(V )Y,X denote the Y ×X matrices with values
in V, v = (vy,x), such that for a = (ax) ∈ k ·X, b = (by) ∈ k · Y , we have (cf. (2.16.1))∥∥∥∥∑

x,y

byvy,xax

∥∥∥∥
V

� |a|η · |b|η.

The set F(V ) has natural operations (3.1.1), (3.1.2), (3.1.3) making it into an Ok,η-module.
For V = k we obtain F(k) which is Ok,η viewed as an Ok,η-module.

Definition 3.3. Let A be an F-ring, and M,M ′ be A-modules. A collection of maps

ϕ = {ϕY,X : MY,X →M ′
Y,X | Y,X ∈ |F|}

is a homomorphism of A-modules if it respects the operations

ϕ(a ◦m ◦ a′) = a ◦ ϕ(m) ◦ a′, (3.3.1)
ϕ(a⊗m) = a⊗ ϕ(m), (3.3.2)

ϕ(m0 ⊕m1) = ϕ(m0)⊕ ϕ(m1). (3.3.3)

The collection of A-modules and homomorphisms form a category A-Mod. It has an initial and
final object 0 = {{0Y,X}}Y,X∈|F|. For a commutative ring A, the construction of Example 3.2.1 gives
a functor

F : A-Mod→ F(A)-Mod, M �→ F(M). (3.4.1)
As in (2.13.4) we see that this functor is fully faithful.

Similarly, the construction of Example 3.2.2 gives us a functor

F : F→ F-Mod, V �→ F(V ). (3.4.2)
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For a field embedding η : k ↪→ C, let (k, η)-Vec denote the category whose objects are k-vector
spaces with an inner product and morphisms are k-linear maps with operator norm at most 1; the
construction of Example 3.2.3 gives a functor

F : (k, η)-Vec→ Ok,η-Mod, V �→ F(V ). (3.4.3)

3.2 A-submodules and equivalence A-modules
Definition 3.5. Let A be an F-ring, M an A-module. An A-submodule M ′ of M is a collection of
subsets M ′ = {M ′

Y,X ⊆MY,X} which is closed under the operations ◦,⊕,⊗:

A ◦M ′ ◦ A ⊆M ′, A⊗M ′ ⊆M ′, M ′ ⊕M ′ ⊆M ′. (3.5.1)

We denote by subA(M) the collection of A-submodules of M . The intersection of A-submodules is
again an A-submodule. An A-submodule of A is called an ideal.

Let

ϕ : M → N (3.6)

be a homomorphism of A-modules. We have an A-submodule of M :

ϕ−1(0) = {m ∈M | ϕ(m) = 0}. (3.6.1)

It is the kernel of ϕ in the category A-Mod.
We have also an A-submodule of N :

ϕ(M) = {ϕY,X(MY,X)}Y,X∈|F|. (3.6.2)

The homomorphism ϕ induces maps

ϕ∗ : subA(M)→ subA(N), M ′ �→ ϕ∗M ′ def= ϕ(M ′), (3.6.3)

ϕ∗ : subA(N)→ subA(M), N ′ �→ ϕ∗N ′ def= ϕ−1(N ′). (3.6.4)

The category A-Mod has fibred products. Given A-Mod homomorphisms

ϕ0 : M0 →M ←M1 : ϕ1 (3.7)

we have the A-module

M0

∏
M

M1

with (
M0

∏
M

M1

)
Y,X

= {(m0,m1), mi ∈ (Mi)Y,X , ϕ0(m0) = ϕ1(m1)}, (3.7.1)

and the operations

a ◦ (m0,m1) ◦ a′ = (a ◦m0 ◦ a′, a ◦m1 ◦ a′),
a⊗ (m0,m1) = (a⊗m0, a⊗m1), (3.7.2)

(m0,m1)⊕ (m′
0,m

′
1) = (m0 ⊕m′

0,m1 ⊕m′
1).

In particular we have products M0
∏
M1. We can similarly form arbitrary products

∏
λMλ, and

arbitrary inverse limits

lim←−Mλ =
{

(mλ) ∈
∏

Mλ

∣∣∣∣ ϕλ′,λ(mλ) = mλ′

}
, (3.7.3)

where λ �→Mλ is a functor from a small category to A-Mod.
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Let ϕ : M → N be a homomorphism of A-modules. Let

KER(ϕ)Y,X =
{

(m,m′) ∈
(
M
∏

M

)
Y,X

∣∣∣∣ ϕ(m) = ϕ(m′)
}

= M
∏
N

M. (3.8)

Then KER(ϕ) is an A-submodule of M
∏
M such that, for all Y,X ∈ |F|,KER(ϕ)Y,X is an

equivalence relation on MY,X .

Definition 3.9. Let M be an A-module. An equivalence A-module of M is an A-submodule E of
M
∏
M , such that EY,X is an equivalence relation on MY,X . We denote by equivA(M) the collection

of equivalence A-modules of M .

For E ∈ equivA(M) we can form the equivalence classes (M/E)Y,X = MY,X/EY,X . There is an in-
duced A-module structure on M/E such that the canonical map π : M →M/E is a homomorphism.
We have

HomA-Mod(M/E , N) = {ϕ ∈ HomA-Mod(M,N) | KER(ϕ) ⊇ E}. (3.9.1)

We have one-to-one order-preserving correspondence

equivA(M/E) ∼= {E ′ ∈ equivA(M) | E ′ ⊇ E}, E ′/E �→ E ′, (3.9.2)

and a natural isomorphism

(M/E)/(E ′/E) ∼= M/E ′. (3.9.3)

Definition 3.9.4. For an equivalence A-module E of M , a submodule M0 ⊆M is called E-stable if
for all (m,m′) ∈ E ,

m ∈M0 ⇔ m′ ∈M0.

We have a one-to-one order-preserving correspondence

subA(M/E) ∼= {M0 ∈ subA(M) |M0 is E-stable}, M0/E �→M0. (3.9.5)

Every homomorphism of A-modules ϕ : M → N factors as (injection) ◦ (surjection), as in the
diagram.

M
ϕ ��

����

N

M/KER(ϕ) ∼ �� ϕ(M)
��

��

(3.9.6)

Definition 3.10. For an equivalence A-module E ⊆M∏M let

Z(E) = π−1(0) = {m ∈M | (m, 0) ∈ E} = E ∩
(
M
∏
{0}
)
. (3.10.1)

It is an A-submodule of M . For an A-submodule M0 ⊆M let

E(M0) ⊆M
∏

M (3.10.2)

be the equivalence A-module of M generated by {(m, 0) | m ∈ M0}, i.e. E(M0) is the intersection⋂ E of all equivalence A-modules E of M such that M0 × {0} ⊆ E . We write M/M0 for M/E(M0).
For a homomorphism of A-modules ϕ : M → N we have its cokernel,

Coker(ϕ) = N/ϕ(M) = N/E(ϕ(M)). (3.10.3)
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Lemma 3.11. We have

M0 ⊆M ′
0 A-submodules of M ⇒ E(M0) ⊆ E(M ′

0), (3.11.1)

E ⊆ E ′ ⊆M
∏

M equivalence A-modules of M ⇒ Z(E) ⊆ Z(E ′), (3.11.2)

M0 ⊆ Z(E(M0)), (3.11.3)
E(Z(E)) ⊆ E . (3.11.4)

Proof. The proof is straightforward.

Corollary 3.12. We have

E(M0) = E(Z(E(M0))), (3.12.1)
Z(E) = Z(E(Z(E))). (3.12.2)

Hence we have

{Z(E) | E ∈ equivA(M)} = {M0 ⊆M |M0 = Z(E(M0))}; (3.12.3)

we denote this set by E-subA(M).
Similarly, we have

{E(M0) |M0 ⊆MA-submodule} =
{
E ⊆M

∏
M

∣∣∣∣ E = E(Z(E))
}

; (3.12.4)

we denote this set by Z-equivA(M).
Moreover, there is an induced bijection

E-subA(M) ∼↔ Z-equivA(M),
M0 �→ E(M0),
Z(E)← � E .

Lemma 3.13. Let M0 ⊆M be an A-submodule, and let EY,X ⊆ (M
∏
M)Y,X denote the collection

of pairs (m,m′) such that there exists a ‘path’ m = m0,m1, . . . ,ml = m′, where for j = 0, . . . , l− 1,
{mj ,mj+1} has the form {a ◦ (n⊕n0)◦a′, a ◦ (n⊕ 0)◦a′} for some a, a′ ∈ A,n ∈M,n0 ∈M0. Then
E(M0) = E .
Proof. Note that for a, a′ ∈ A,n ∈M,n0 ∈M0, we have

(m0, 0) ∈ E(M0), (m,m) ∈ E(M0)

and since E(M0) ⊆M
∏
M is a submodule we get

(a ◦ (n ⊕ n0) ◦ a′, a ◦ (n⊕ 0) ◦ a′) ∈ E(M0).

Thus if there is a path m = m0, . . . ,ml = m′ as above, then (m,m′) ∈ E(M0); so E ⊆ E(M0).
For the reverse inclusion note that EY,X is an equivalence relation on MY,X . Moreover, E is an

A-submodule of M
∏
M . For (m,m′) ∈ E there exists a path m = m0, . . . ,ml = m′ as above, hence

for a, a′ ∈ A,

a ◦m0 ◦ a′, . . . , a ◦ml ◦ a′
is a path from a ◦m ◦ a′ to a ◦m′ ◦ a′, hence

(a ◦m ◦ a′, a ◦m′ ◦ a′) ∈ E .
Similarly, for a ∈ AY,X ,

a⊗m0, . . . , a⊗ml
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is a path, which shows that

(a⊗m,a⊗m′) ∈ E .
To show this use

a⊗ (a ◦ (n⊕ n0) ◦ a′) = (a⊗ a) ◦ ((idX ⊗ n)⊕ (idX ⊗ n0)) ◦ (idX ⊗ a′),
idX ⊗ n0 ∈M0, idX ⊗ 0 = 0.

If also (m,m′) ∈ E , we can assume the path m = m0, . . . ,ml = m′ has the same length l (by adding
identities n0 = 0, a = id, a′ = id), and then

m0 ⊕m0, . . . ,ml ⊕ml

is a path, which shows that

(m⊕m,m′ ⊕m′) ∈ E .
To show this use

(a ◦ (n⊕ n0) ◦ a′)⊕ (a ◦ (n ⊕ n0) ◦ a′) = (a⊕ a) ◦ ((n ⊕ n)⊕ (n0 ⊕ n0)) ◦ (a′ ⊕ a′).
Thus E is an equivalence A-submodule of M , and since {(m0, 0) | m0 ∈ M0} ⊆ E , we have
E(M0) ⊆ E .
Corollary 3.14. Let M0 ⊆M be an A-submodule. We have

Z(E(M0)) = M0

if and only if, for all m0 ∈M0, m ∈M,a, a′ ∈ A,

a ◦ (m⊕m0) ◦ a′ ∈M0 ⇔ a ◦ (m⊕ 0) ◦ a′ ∈M0, (3.14.1)

i.e. M0 ∈ E-subA(M) if and only if M0 is E(M0)-stable.

Proof. Assume (3.14.1) holds. By Lemma 3.13 if (m,m′) ∈ E(M0) there exists a path m =
m0, . . . ,ml = m′, and we have

mj ∈M0 ⇔ mj+1 ∈M0,

hence

m ∈M0 ⇔ m′ ∈M0.

Taking m′ = 0 ∈M0, we get (m, 0) ∈ E(M0) implies m ∈M0. Thus Z(E(M0)) ⊆M0, and since the
reverse inclusion always holds we get Z(E(M0)) = M0.

Conversely, assume Z(E(M0)) = M0, then

a ◦ (m⊕m0) ◦ a′ ∈M0 ⇔ (a ◦ (m⊕m0) ◦ a′, 0) ∈ E(M0), (3.14.2)
a ◦ (m⊕ 0) ◦ a′ ∈M0 ⇔ (a ◦ (m⊕ 0) ◦ a′, 0) ∈ E(M0). (3.14.3)

Using the fact that E(M0)Y,X is an equivalence relation, and that for m0 ∈M0

(a ◦ (m⊕m0) ◦ a′, a ◦ (m⊕ 0) ◦ a′) ∈ E(M0),

we see that the statements in (3.14.2) and (3.14.3) are equivalent, hence (3.14.1) holds.

For submodules M0 ∈ subA(M), M ′ ∈ E-subA(M), we have M ′ ⊇ M0 if and only if M ′ is
E(M0)-stable. We get a one-to-one order-preserving correspondence

E-subA(M/M0) = {M ′ ∈ E-subA(M) |M ′ ⊇M0}, M ′/M0 �→M ′ (3.15.1)

and a natural isomorphism

(M/M0)/(M ′/M0) ∼= M/M ′. (3.15.2)
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An A-submodule of A is called an ideal, and an equivalence A-module of A is called an equivalence
ideal. Thus we have the maps E,Z between ideals and equivalence ideals satisfying Lemma 3.11
and Corollary 3.12. Elements of E-subA(A) will be called E-ideals.

Example 3.15.3. For A = OZ[1/N ],η, with the notation of Example 2.22, we have for p � N : EZ(Ep) �
Ep ∩ Eη.

3.3 Operations on submodules

For a family {Mi} of A-submodules of M , we have the intersection
⋂

iMi ∈ subA(M). Note that if
Mi ∈ E-subA(M) then

⋂
iMi ∈ E-subA(M). We have also

∑
iMi the A-submodule generated by

the Mi, i.e. it is the intersection
⋂
N taken over all submodules N that contain all the Mi. It can

be described explicitly as(∑
i

Mi

)
Y,X

=
{
a ◦
(⊕

i

mi

)
◦ a′
∣∣∣∣ a ∈ AY,

⊕
i Yi
, a′ ∈ A⊕

i Xi,X , mi ∈ (Mi)Yi,Xi

}
. (3.16)

Indeed the right-hand side will be contained in any submodule N which contains all the Mi, it
itself contains the Mi, and is closed under the module operations

b ◦
(
a ◦
(⊕

i

mi

)
◦ a′
)
◦ b′ = (b ◦ a) ◦

(⊕
i

mi

)
◦ (a′ ◦ b′), (3.16.1)(

a ◦
(⊕

i

mi

)
◦ a′
)
⊕
(
b ◦
(⊕

i

m′
i

)
◦ b′
)

= (a⊕ b) ◦
(⊕

i

(mi ⊕m′
i)
)
◦ (a′ ⊕ b′), (3.16.2)

b⊗
(
a ◦
(⊕

i

mi

)
◦ a′
)

= (idY ⊗ a) ◦
(⊕

i

(b⊗mi)
)
◦ (idX ⊗ a′), b ∈ AY,X . (3.16.3)

More generally, given any subset {mi | i ∈ I} ⊆M , with mi ∈MZi,Wi , the A-submodule it generates∑
iA ·mi can be described explicitly as(∑

i

A ·mi

)
Y,X

=
{
a ◦
(⊕

i

idXi ⊗mi

)
◦ a′
∣∣∣∣ a ∈ AY,

⊕
i(Xi⊗Zi), a

′ ∈ A⊕
i(Xi⊗Wi),X

}
. (3.16.4)

Given an A-module M and an ideal a ⊆ A we have their product a ·M which is an A-submodule
of M ,

(a ·M)Y,X

=
{
b ◦
(⊕

i

(ai ⊗mi)
)
◦ b′
∣∣∣∣ b ∈ AY,

⊕
i(Yi⊗Zi), b

′ ∈ A⊕
i(Xi⊗Wi),X , ai ∈ aYi,Xi ,mi ∈MZi,Wi

}
.

(3.16.5)

Given A-submodules M0,M1 of M we can form their quotient

(M0 : M1) = {a ∈ A | a⊗m ∈M0 ∀m ∈M1}. (3.16.6)

It is easily checked that (M0 : M1) is an ideal of A.

3.4 Operations on modules

Sums. Given A-modules M0,M1, we first construct the sum (coproduct) M0
∐
M1 in the

category A-Mod. We form(
M0

∐
M1

)
Y,X

= {(a,m0,m1, a
′) | a ∈ AY,Y0⊕Y1 , a

′ ∈ AX0⊕X1,X ,mi ∈ (Mi)Yi,Xi}/∼ (3.17.0)
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where ∼ is the equivalence relation generated by

(a ◦ (a0 ⊕ a1),m0,m1, a
′) ∼ (a, a0 ◦m0, a1 ◦m1, a

′), (3.17.1)
(a,m0,m1, (a′0 ⊕ a′1) ◦ a′) ∼ (a,m0 ◦ a′0,m1 ◦ a′1, a′). (3.17.2)

Let (a,m0,m1, a
′)/∼ denote the equivalence class containing (a,m0,m1, a

′). Define

b ◦ (a,m0,m1, a
′)/∼ ◦ b′ = (b ◦ a,m0,m1, a

′ ◦ b′)/∼, (3.17.3)
(a,m0,m1, a

′)/∼ ⊕ (a,m0,m1, a
′)/∼ = (a⊕ a,m0 ⊕m0,m1 ⊕m1, a

′ ⊕ a′)/∼, (3.17.4)
b⊗ (a,m0,m1, a

′)/∼ = (b⊗ a, idZ ⊗m0, idZ ⊗m1, idZ ⊗ a′)/∼. (3.17.5)

Proposition 3.17. The operations (3.17.3), (3.17.4), (3.17.5) are well defined, independent of the
chosen representatives, and make M0

∐
M1 into an A-module. There are canonical homomorphisms

Mi →M0
∐
M1, taking m in (M0)Y,X (respectively, (M1)Y,X) into (idY ,m, 0, idX)/∼ (respectively,

(idY , 0,m, idX)/∼). These maps make M0
∐
M1 into the sum of M0,M1 in the category A-Mod,

HomA-Mod(M0, N)×HomA-Mod(M1, N) = HomA-Mod

(
M0

∐
M1, N

)
, (3.17.6)

(ϕ0, ϕ1) �→ ϕ0 � ϕ1((a,m0,m1, a
′)/∼) = a ◦ (ϕ0(m0)⊕ ϕ1(m1)) ◦ a′.

Proof. To show that the operations are well defined we need to show that on replacing the repre-
sentatives by equivalent ones we get the same result. Since two representatives are equivalent if and
only if there is a path between them whose consecutive members are related by (3.17.1) or (3.17.2),
it is enough to show that we get the same result for representatives related by (3.17.1), (3.17.2).
That ◦ in (3.17.3) is well defined follows from associativity of ◦. That ⊕ is well defined with respect
to (3.17.1) follows from

((a ◦ (a0 ⊕ a1))⊕ a,m0 ⊕m0,m1 ⊕m1, a
′ ⊕ a′)/∼

= ((a⊕ a) ◦ (a0 ⊕ a1 ⊕ idY 0⊕Y 1
),m0 ⊕m0,m1 ⊕m1, a

′ ⊕ a′)/∼
= (a⊕ a, (a0 ◦m0)⊕m0, (a1 ◦m1)⊕m1, a

′ ⊕ a′)/∼.

Similarly ⊗ in (3.17.5) is well defined with respect to (3.17.1):

(b⊗ (a ◦ (a0 ⊕ a1)), idZ ⊗m0, idZ ⊗m1, idZ ⊗ a′)/∼
= ((b⊗ a) ◦ (idZ ⊗ a0 ⊕ idZ ⊗ a1), idZ ⊗m0, idZ ⊗m1, idZ ⊗ a′)/∼
= (b⊗ a, idZ ⊗ (a0 ◦m0), idZ ⊗ (a1 ◦m1), idZ ⊗ a′)/∼.

It is clear that ◦ as defined in (3.17.3) is associative (3.1.5) and unitary (3.1.6). It is clear that ⊕ as
defined in (3.17.4) is functorial (3.1.7), commutative (3.1.8), associative (3.1.9), and unitary (3.1.10).
It is clear that ⊗ as defined in (3.17.5) is associative (3.1.12), unitary (3.1.13), and distributive
(3.1.14), (3.1.15). We check that ⊗ is functorial (3.1.11): on the ‘left’

(d⊗ c) ◦ (b⊗ (a,m0,m1, a
′)/∼)

= ((d⊗ c) ◦ (b⊗ a), idZ ⊗m0, idZ ⊗m1, idZ ⊗ a′)/∼
= ((d ◦ b)⊗ (c ◦ a), idZ ⊗m0, idZ ⊗m1, idZ ⊗ a′)/∼
= (d ◦ b)⊗ (c ◦ (a,m0,m1, a

′)/∼);
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and on the ‘right’ for b ∈ AW,Z , d ∈ AZ,T :

(b⊗ (a,m0,m1, a
′)/∼) ◦ (d⊗ c)

= (b⊗ a, idZ ⊗m0, idZ ⊗m1, (idZ ⊗ a′) ◦ (d⊗ c))/∼
= (b⊗ a, idZ ⊗m0, idZ ⊗m1, (d⊗ idX0⊕X1) ◦ (idT ⊗ (a′ ◦ c)))/∼
= (b⊗ a, d⊗m0, d⊗m1, idT ⊗ (a′ ◦ c))/∼
= ((b⊗ a) ◦ (d⊗ idY0⊕Y1), idT ⊗m0, idT ⊗m1, idT ⊗ (a′ ◦ c))/∼
= ((b ◦ d)⊗ a, idT ⊗m0, idT ⊗m1, idT ⊗ (a′ ◦ c))/∼
= (b ◦ d)⊗ ((a,m0,m1, a

′)/∼ ◦ c).
Thus M0

∐
M1 is an A-module, and it is easy to check that it is the sum of M0,M1 in A-Mod.

We shall write a ◦ (m0 ⊕m1) ◦ a′ for (a,m0,m1, a
′)/∼. The canonical map from the sum to the

product is given by

M0

∐
M1 →M0

∏
M1,

a ◦ (m0 ⊕m1) ◦ a′ �→ (a ◦ (m0 ⊕ 0) ◦ a′, a ◦ (0⊕m1) ◦ a′). (3.17.7)

Given an arbitrary family of A-modules {Mi}i∈I we can similarly form their sum∐
i

Mi.

Direct limits. Given homomorphisms of A-modules ψi : M → Mi, i = 0, 1, let E be the
equivalence A-module of M0

∐
M1 generated by

{(a ◦ ((m0 ⊕ ψ0(m))⊕m1) ◦ a′, a ◦ (m0 ⊕ (ψ1(m)⊕m1)) ◦ a′) | mi ∈Mi,m ∈M}. (3.17.8)

The quotient

M0

∐
M1/E def= M0

∐
M

M1,

is the push-out

HomA-Mod

(
M0

∐
M

M1, N

)
= {(ϕ0, ϕ1) | ϕi ∈ HomA-Mod(Mi, N), ϕ0 ◦ ψ0 = ϕ1 ◦ ψ1}.

Similarly, given a functor λ �→ Mλ from a small category to A-Mod, we can form the direct
limit

lim−→Mλ =
∐
λ

Mλ/E .

Here E is the equivalence A-module of
∐
Mλ generated by

(idY ◦ (m⊕ 0 . . . ) ◦ idX , idY ◦ (ϕλ′,λ(m)⊕ 0 . . . ) ◦ idX),

where ϕλ′,λ : Mλ →Mλ′ runs over the maps in the direct system, and m ∈Mλ.

Free modules. Fix sets Y0, X0 ∈ |F|. Let us form

MY,X = {(a, a′) | a ∈ AY,Z⊗Y0, a
′ ∈ AZ⊗X0,X}/∼, (3.18.0)

where ∼ is the equivalence relation generated by

(a ◦ (c⊗ idY0), a
′) ∼ (a, (c ⊗ idX0) ◦ a′), a ∈ AY,Z⊗Y0, c ∈ AZ,Z′, a′ ∈ AZ′⊗X0,X . (3.18.1)
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Let (a, a′)/∼ denote the equivalence class of (a, a′), and define

b ◦ (a, a′)/∼ ◦ b′ = (b ◦ a, a′ ◦ b′)/∼, (3.18.2)
(a, a′)/∼ ⊕ (a, a′)/∼ = (a⊕ a, a′ ⊕ a′)/∼, (3.18.3)
b⊗ (a, a′)/∼ = (b⊗ a, idZ ⊗ a′), b ∈ AW,Z . (3.18.4)

Proposition 3.18. The operations (3.18.2), (3.18.3), (3.18.4) are well defined, independent of the
representatives, and make M into an A-module. It is the ‘free’ A-module in degree Y0,X0:

HomA-Mod(M,N) = NY0,X0 for all A-modules N. (3.18.5)

Proof. The proof is similar to that for Proposition 3.17. It follows that ◦ is well defined by associa-
tivity. That ⊕ is well defined follows from

((a ◦ (c⊗ idY0))⊕ a, a′ ⊕ a′)/∼
= ((a⊕ a) ◦ ((c⊕ idZ)⊗ idY0), a

′ ⊕ a′)/∼
= (a⊕ a, ((c ⊕ idZ)⊗ idX0) ◦ (a′ ⊕ a′))/∼
= (a⊕ a, ((c ⊗ idX0) ◦ a′)⊕ a′)/∼.

Similarly ⊗ is well defined:

(b⊗ (a ◦ (c⊗ idY0)), idW ⊗ a′)/∼
= ((b⊗ a) ◦ (idW ⊗ c⊗ idY0), idW ⊗ a′)/∼
= (b⊗ a, (idW ⊗ c⊗ idX0) ◦ (idW ⊗ a′))/∼
= (b⊗ a, idW ⊗ ((c ⊗ idX0) ◦ a′))/∼.

It then follows that M satisfies the axioms for A-modules; for the functoriality of ⊗, (3.1.11),
we have ‘on the left’:

(d⊗ c) ◦ (b⊗ (a, a′)/∼)
= ((d ⊗ c) ◦ (b⊗ a), idZ ⊗ a′)/∼
= ((d ◦ b)⊗ (c ◦ a), idZ ⊗ a′)/∼
= (d ◦ b)⊗ (c ◦ (a, a′)/∼);

and ‘on the right’ for b ∈ AW,Z , d ∈ AZ,T :

(b⊗ (a, a′)/∼) ◦ (d⊗ c)
= (b⊗ a, (idZ ⊗ a′) ◦ (d⊗ c))/∼
= (b⊗ a, (d⊗ id) ◦ (idT ⊗ (a′ ◦ c)))/∼
= ((b⊗ a) ◦ (d⊗ id), idT ⊗ (a′ ◦ c))/∼
= ((b ◦ d)⊗ a, idT ⊗ (a′ ◦ c))/∼
= (b ◦ d)⊗ ((a, a′)/∼ ◦ c).

Thus M is an A-module. Given a homomorphism ϕ : M → N , we get

ϕ((idY0 , idX0)) ∈ NY0,X0.

Given n ∈ NY0,X0 we get homomorphism ϕ by

ϕ((a, a′)/∼) = a ◦ (idZ ⊗ n) ◦ a′, a ∈ AY,Z⊗Y0, a
′ ∈ AZ⊗X0,X .

These are inverse to one another and give the bijection (3.18.5).

Let f = fY0,X0 = (idY0, idX0)/∼. We have (a, a′)/∼ = a ◦ (idZ ⊗ f) ◦ a′. We write
A · fY0,X0 for the above module M constructed in (3.18.0). Similarly, given a collection of
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symbols {fi = fYi,Xi = (idYi , idXi)/∼}, we can form the sum∐
i∈I

A · fi

of the free A-modules on the fi, and

HomA-Mod

(∐
i∈I

A · fi, N

)
= {(ni)i∈I | ni ∈ NYi,Xi}

= HomSet/|F|×|F|

(
{fi}i∈I ,

∐
Y,X∈|F|

MY,X

)
, (3.18.6)

i.e. the functor taking {fi} to
∐
A · fi is the left-adjoint to the forgetful functor from A-modules to

sets over |F| × |F|, which takes an A-module M to the |F| × |F| set∐
Y,X∈|F|

MY,X .

Tensor product. Let M0,M1, N be A-modules. A collection of maps

f = {fY0,X0;Y1,X1 : (M0)Y0,X0 × (M1)Y1,X1 → NY0⊗Y1,X0⊗X1} (3.19)

is called A-bilinear if it satisfies

f(m0 ⊕m′
0,m1) = f(m0,m1)⊕ f(m′

0,m1), (3.19.1)
f(m0,m1 ⊕m′

1) = f(m0,m1)⊕ f(m0,m
′
1), (3.19.2)

f(a⊗m0,m1) = a⊗ f(m0,m1) = f(m0, a⊗m1), (3.19.3)
f(a0 ◦m0 ◦ a′0, a1 ◦m1 ◦ a′1) = (a0 ⊗ a1) ◦ f(m0,m1) ◦ (a′0 ⊗ a′1). (3.19.4)

We denote by Bilin(M0,M1;N) the set of all such f . We can similarly define Bilin(M0, . . . ,Ml;N)
as the set of all

f = {fY0,X0;... ;Yl,Xl
: (M0)Y0,X0 × · · · × (Ml)Yl,Xl

→ NY0⊗···⊗Yl,X0⊗···⊗Xl
}

which are ‘linear’ in each variable. Note that if f is bilinear with values in N , and ϕ : N → N ′ is a
homomorphism, then ϕ ◦ f is bilinear with values in N ′.

Lemma 3.20. There exists a universal bilinear map

M0 ×M1 →M0 ⊗A M1, (m0,m1) �→ m0 ⊗m1,

such that

Bilin(M0,M1;N) = HomA-Mod(M0 ⊗M1, N).

Proof. The usual construction of the tensor product goes through. We form the free A-module∐
mi∈Mi

A · f(m0,m1).

Here mi runs through the elements of Mi, i = 0, 1, and if mi ∈ (Mi)Yi,Xi we view f(m0,m1) as a
formal arrow from X0 ⊗ X1 to Y0 ⊗ Y1. We divide this free module by the equivalence A-module
generated by the relations (3.19.1)–(3.19.4).

We write m0 ⊗m1 for the image of f(m0,m1) in M0 ⊗A M1.
We can similarly construct M0 ⊗ · · · ⊗Ml so that

Bilin(M0, . . . ,Ml;N) = HomA-Mod(M0 ⊗ · · · ⊗Ml, N). (3.20.1)
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Proposition 3.21. There are canonical isomorphisms

M ⊗N ∼= N ⊗M, m⊗ n �→ n⊗m, (3.21.1)
(M ⊗N)⊗ L ∼= M ⊗ (N ⊗ L) ∼= M ⊗N ⊗ L, (3.21.2)

(m⊗ n)⊗ l �→ m⊗ (n⊗ l) �→ m⊗ n⊗ l,
M ⊗A = M. (3.21.3)

If ϕi : Mi → Ni are homomorphisms of A-modules, we get a homomorphism

ϕ0 ⊗ ϕ1 : M0 ⊗M1 → N0 ⊗N1,

ϕ0 ⊗ ϕ1(m0 ⊗m1) �→ ϕ0(m0)⊗ ϕ1(m1). (3.21.4)

These are functorial,

idM0 ⊗ idM1 = idM0⊗M1 , (3.21.5)

and for ψi : Ni → Li,

(ψ0 ⊗ ψ1) ◦ (ϕ0 ⊗ ϕ1) = (ψ0 ◦ ϕ0)⊗ (ψ1 ◦ ϕ1). (3.21.6)

Proof. The usual proof using the universal property goes through.

Base change. Let ϕ : A → B be a homomorphism of F-rings. If N is a B-module, we can
consider N as an A-module via ϕ:

a ◦ n ◦ a′ := ϕ(a) ◦ n ◦ ϕ(a′), a, a′ ∈ A, n ∈ N, (3.22.1)
a⊗ n := ϕ(a) ⊗ n, a ∈ A, n ∈ N. (3.22.2)

We denote this A-module by ϕ∗N , or by Nϕ.

Given an A-module M , form

(MB)Y,X = {(b,m, b′) | b ∈ BY,Y ′ , b′ ∈ BX′,X ,m ∈MY ′,X′}/∼, (3.23.0)

where ∼ is the equivalence relation generated by

(b ◦ ϕ(a),m, b′) ∼ (b, a ◦m, b′), (b,m,ϕ(a) ◦ b′) ∼ (b,m ◦ a, b′), (3.23.1)
(b ◦ (c⊗ idY ′ ⊕ idY ′′), (idZ ⊗m′)⊕m′′, b′) ∼ (b, (idW ⊗m′)⊕m′′, (c⊗ idX′ ⊕ idX′′) ◦ b′)

for c ∈ BW,Z , m
′ ∈MY ′,X′ , m′′ ∈MY ′′,X′′ . (3.23.2)

Let (b,m, b′)/∼ denote the equivalence class containing (b,m, b′), and define

b ◦ (b,m, b′)/∼ ◦ b′ = (b ◦ b,m, b′ ◦ b′)/∼, (3.23.3)

(b,m, b′)/∼ ⊕ (b,m, b′)/∼ = (b⊕ b,m⊕m, b′ ⊕ b′)/∼, (3.23.4)

b⊗ (b,m, b′)/∼ = (b⊗ b, idX ⊗m, idX ⊗ b′)/∼, b ∈ BY ,X . (3.23.5)

Proposition 3.23. These operations are well defined, independent of representatives. They make
MB into a B-module; and M �→ MB is a functor from A-Mod to B-Mod, for f : M → M ′

corresponds to fB : MB →M ′
B ,

fB((b,m, b′)/∼) = (b, f(m), b′)/∼.

This functor is the left-adjoint to the functor ϕ∗,

HomA-Mod(M,ϕ∗N) = HomB-Mod(MB , N),
f �→ f((b,m, b′)/∼) = b ◦ f(m) ◦ b′. (3.23.6)
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Proof. The proof is similar to those for Propositions 3.17 and 3.18. That (3.23.3) is well defined
follows from associativity. The operation ⊕ of (3.23.4) is well defined with respect to (3.23.1):

((b ◦ ϕ(a)) ⊕ b,m⊕m, b′ ⊕ b′)/∼
= ((b⊕ b) ◦ ϕ(a⊕ id),m⊕m, b′ ⊕ b′)/∼
= (b⊕ b, (a ◦m)⊕m, b′ ⊕ b′)/∼.

It is well defined with respect to (3.23.2):

((b ◦ (c⊗ idY ′ ⊕ idY ′′))⊕ b, idZ ⊗m′ ⊕m′′ ⊕m, b′ ⊕ b′)/∼
= ((b⊕ b) ◦ (c⊗ idY ′ ⊕ idY ′′ ⊕ idY ), idZ ⊗m′ ⊕m′′ ⊕m, b′ ⊕ b′)/∼
= (b⊕ b, idZ ⊗m′ ⊕m′′ ⊕m, (c ⊗ idX′ ⊕ idX′′ ⊕ idX) ◦ (b′ ⊕ b′))/∼
= (b⊕ b, idZ ⊗m′ ⊕m′′ ⊕m, ((c ⊗ idX′ ⊕ idX′′) ◦ b′)⊕ b′)/∼.

The operation ⊗ of (3.23.5) is well defined with respect to (3.23.1):

(b⊗ (b ◦ ϕ(a)), idX ⊗m, idX ⊗ b′)/∼
= ((b⊗ b) ◦ ϕ(idX ⊗ a), idX ⊗m, idX ⊗ b′)/∼
= (b⊗ b, idX ⊗ (a ◦m), idX ⊗ b′)/∼.

It is well defined with respect to (3.23.2):

(b⊗ (b ◦ (c⊗ idY ′ ⊕ idY ′′)), idX ⊗ (idZ ⊗m′ ⊕m′′), idX ⊗ b′)/∼
= ((b⊗ b) ◦ idX ⊗ (c⊗ idY ′ ⊕ idY ′′), idX ⊗ (idZ ⊗m′ ⊕m′′), idX ⊗ b′)/∼
= (b⊗ b, idX ⊗ (idW ⊗m′ ⊕m′′), (idX ⊗ (c⊗ idX′ ⊕ idX′′)) ◦ (idX ⊗ b′))/∼
= (b⊗ b, idX ⊗ (idW ⊗m′ ⊕m′′), idX ⊗ ((c⊗ idX′ ⊕ idX′′) ◦ b′))/∼.

One then checks the axioms for a B-module. In particular for the functoriality of ⊗, (3.1.11), we
have ‘on the left’:

(c⊗ c) ◦ (b⊗ (b,m, b′)/∼)

= ((c⊗ c) ◦ (b⊗ b), idX ⊗m, idX ⊗ b′)/∼
= ((c ◦ b)⊗ (c ◦ b), idX ⊗m, idX ⊗ b′)/∼
= (c ◦ b)⊗ (c ◦ (b,m, b′)/∼);

and ‘on the right’: for b ∈ BY ,X , c ∈ BX,Z ,m ∈MY ′,X′

(b⊗ (b,m, b′)/∼) ◦ (c⊗ c)
= (b⊗ b, idX ⊗m, (idX ⊗ b′) ◦ (c⊗ c))/∼
= (b⊗ b, idX ⊗m, (c⊗ idX′) ◦ (idZ ⊗ (b′ ◦ c)))/∼
= ((b⊗ b) ◦ (c⊗ idY ′), idZ ⊗m, idZ ⊗ (b′ ◦ c))/∼
= ((b ◦ c)⊗ b, idZ ⊗m, idZ ⊗ (b′ ◦ c))/∼
= (b ◦ c)⊗ ((b,m, b′)/∼ ◦ c).

That completes the proof.

The functor M �→MB commutes with sums and direct limits,(∐
i

Mi

)
B

=
∐

i

(Mi)B , (lim−→Mλ)B = lim−→(Mλ)B , (3.23.7)

649

https://doi.org/10.1112/S0010437X06002624 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002624


M. J. Shai Haran

with tensor products,
(M ⊗A N)B = MB ⊗B NB , (3.23.8)

with the formation of free module, (∐
i

A · fi

)
B

=
∐

i

B · fi, (3.23.9)

and with cokernels: for A-module homomorphism ϕ : M ′ →M ,

(M/ϕ(M ′))B = MB/ϕB(M ′
B). (3.23.10)

Remark 3.23.11. We can consider B as an A-module and form the tensor product B ⊗A M , this
map to MB ; but unlike the case of commutative rings, this map is not an isomorphism.

4. Ideals and primes

We define four notions of ‘ideals’ (ideal, E-ideal, H-ideal, H-E-ideals), hence four notions of
primes. We get four functors from F-Rings to compact sober topological spaces, taking an F-ring
A to the following commutative square of spaces.

E- SPEC(A) � 
 ��

����

SPEC(A)

����
E- Spec(A) � 
 �� Spec(A)

4.1 H -ideals and primes
Let A be an F-ring.

Definition 4.1. An ideal a ⊆ A is called homogeneous if it is generated by a[1],[1] (i.e., a is the
smallest ideal containing a[1],[1]). A subset A ⊆ A[1],[1] is called an H-ideal if for

a1, . . . , an ∈ A, b ∈ A[1],[n], b′ ∈ A[n],[1] : b ◦ (a1 ⊕ · · · ⊕ an) ◦ b′ ∈ A.

If a is a homogeneous ideal, a[1],[1] is an H-ideal. If A is an H-ideal it generates a homoge-
neous ideal a, and a[1],[1] = A. Hence there is one-to-one order-preserving correspondence between
homogeneous ideals and H-ideals. We denote by H-id(A) the set of H-ideals.

Proposition 4.1.1. Given a1, . . . , an ∈ A[1],[1] they generate the H-ideal

(a1, . . . , an) =
{
b ◦
(⊕

i

ai · idXi

)
◦ b′
∣∣∣∣ b ∈ A[1],

⊕
Xi
, b′ ∈ A⊕Xi,[1]

}
. (4.1.1)

In particular for a ∈ A[1],[1], (a) = a · A[1],[1] are just the multiples of a. We have the zero ideal
(0) = {0}, and the unit ideal (1) = A[1],[1].

Proof. Given b ∈ A[1],[m], b
′ ∈ A[m],[1], bj ◦ (

⊕
i ai · idXij ) ◦ b′j ∈ (a1, . . . , an), j = 1, . . . ,m, we have

b◦
(⊕

j

bj◦
(⊕

i

ai·idXij

)
◦b′j
)
◦ b′ =

(
b ◦
⊕

j

bj

)
◦
(⊕

i

ai·id⊕
j Xij

)
◦
(⊕

j

b′j ◦ b′
)
∈ (a1, . . . , an).

Given ai ∈ H-id(A), i ∈ I, the intersection
⋂

i ai is again anH-ideal. The sum
∑

ai is the H-ideal
generated by

⋃
ai, ∑

ai =
{
b ◦
(⊕

j

aj

)
◦ b′
∣∣∣∣ aj ∈

⋃
ai

}
. (4.1.2)
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The product a · a′ of two H-ideals is the H-ideal generated by the product of elements of these
ideals,

a · a′ =
{
b ◦
(⊕

j

aj · a′j
)
◦ b′
∣∣∣∣ aj ∈ a, a′j ∈ a′

}
. (4.1.3)

Proposition 4.1.4. For an A-module M , and for an element m ∈MY,X , we have the H-ideal

annA(m) = {a ∈ A[1],[1] | a ·m = 0}. (4.1.4)

Proof. Indeed, if ai ·m = 0, then(
b◦
(⊕

ai

)
◦b′
)
·m =

(
b◦
(⊕

i

ai

)
◦b′
)
⊗(idY ◦m◦idX) = (b⊗idY )◦

(⊕
ai ·m

)
◦(b′⊗idX) = 0.

Similarly, for m,m′ ∈MY,X we have the H-ideal

annA(m,m′) = {a ∈ A[1],[1] | a ·m = a ·m′}. (4.1.5)

If M0,M1 ⊆M are A-submodules, we have the H-ideal

(M0 : M1) = {a ∈ A[1],[1] | a ·M1 ⊆M0}. (4.1.6)

Let ϕ : A→ B be a homomorphism of F-rings. If b ∈ H-id(B) then ϕ∗(b) = ϕ−1(b) ∈ H-id(A),
and we have the map

ϕ∗ : H-id(B)→ H-id(A), b �→ ϕ−1(b). (4.2.1)

If a ∈ H-id(A), ϕ(a) generates the H-ideal ϕ∗(a),

ϕ∗ : H-id(A)→ H-id(B), a �→ ϕ∗(a) =
{
b ◦
(⊕

ϕ(ai)
)
◦ b′
}
. (4.2.2)

Proposition 4.2. We have the following:

(1) a ⊆ ϕ∗ϕ∗a, a ∈ H-id(A);

(2) b ⊇ ϕ∗ϕ∗b, b ∈ H-id(B);

(3) ϕ∗b = ϕ∗ϕ∗ϕ∗b, ϕ∗a = ϕ∗ϕ∗ϕ∗a;
(4) there is a bijection, via a �→ ϕ∗a (with inverse map b �→ ϕ∗b), from the set

{a ∈ H-id(A) | ϕ∗ϕ∗a = a} = {ϕ∗b | b ∈ H-id(B)}
to the set

{b ∈ H-id(B) | ϕ∗ϕ∗b = b} = {ϕ∗a | a ∈ H-id(A)}.
Proof. The proofs of these are straightforward.

Definition 4.3.1. For A ∈ H-id(A), we have the homogeneous ideal a generated by A, and the
equivalence ideal Ea = EA it generates (cf., Definition 2.19). We write A/A for A/EA, and let
π : A→ A/A be the canonical homomorphism.

Proposition 4.3.2. We have a one-to-one order-preserving correspondence

π∗ : H-id(A/A) ∼−→ {b ∈ H-id(A) | b is EA-stable}; (4.3)

here b is EA-stable if, for a ∈ A, Z ∈ |F|,
b ◦ (idZ ⊕ a) ◦ b′ ∈ b⇔ b ◦ (idZ ⊕ 0) ◦ b′ ∈ b.

Proof. The proof is clear.
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We often say H-ideal a meaning proper H-ideal, i.e. a �= (1). Since the union of a chain of
H-ideals is again an H-ideal, an application of Zorn’s lemma gives the following result.

Theorem 4.4. Every F-ring contains a maximal (proper) H-ideal. We denote by Max(A) the set
of maximal H-ideals.

Definition 4.5. An H-ideal p ⊆ A[1],[1] is called prime H-ideal (or in short ‘prime’) if A[1],[1] \ p is
multiplicative closed:

f, g ∈ A[1],[1] \ p⇒ f · g �∈ p.

We denote by SpecA the set of prime H-ideals. For a homomorphism of F-rings ϕ : A → B, the
pull-back ϕ∗ = ϕ−1 induces a map

ϕ∗ = Spec(ϕ) : SpecB → SpecA.

Proposition 4.6. If m is a maximal H-ideal then m is prime.

Proof. If f, g ∈ A[1],[1] \ m, the H-ideals (cf. (4.1.2)) (f) + m, (g) + m are the unit H-ideals. So we
can write (cf. (4.1.1)),

1 = b1 ◦ (idX1 · f ⊕m1) ◦ b′1, 1 = b2 ◦ (idX2 · g ⊕m2) ◦ b′2,
with mi ∈ (m) = {ideal generated by m}, mi ∈ (m)Zi,Wi , bi ∈ A[1],Xi⊕Zi

, b′i ∈ AXi⊕Wi,[1]. So we have

1 = 1 · 1 = (b1 ⊗ b2) ◦ (idX1⊗X2 · f · g ⊕m) ◦ (b′1 ⊗ b′2),
with

m = (idX1 · f ⊗m2)⊕ (m1 ⊗ idX2 · g)⊕ (m1 ⊗m2) ∈ (m),

hence f · g �∈ m.

More generally, given an H-ideal a ∈ H-id(A), and given f ∈ A[1],[1] such that fn �∈ a, n � 0, let
m be a maximal element of the set

{b ∈ H-id(A) | b ⊇ a, fn �∈ b ∀n � 0}. (4.6.1)

Claim 4.6.2. We claim that m is prime.

Proof. If gi ∈ A[1],[1] \m, i = 1, 2, we have for some ni � 0, fni = bi ◦ (idXi · gi ⊕mi) ◦ b′i, hence

fn1+n2 = (b1 ⊗ b2) ◦ (idX1⊗X2 · g1 · g2 ⊕m) ◦ (b′1 ⊗ b′2),
with m ∈ {ideal generated by m}, hence g1 · g2 �∈ m.

Definition 4.7. For a ∈ H-id(A), the radical is
√

a = {f ∈ A[1],[1] | fn ∈ a for some n � 1}.
It is easy to see that

√
a is an H-ideal. This also follows from the following proposition.

Proposition 4.7.1. We have √
a =
⋂
a⊆p

p,

the intersection of prime H-ideals containing a.

Proof. If f ∈ √a, say fn ∈ a, then for all primes p ⊇ a, f ∈ p. If f �∈ √a, let m be a maximal element
of the set (4.6.1), it exists by Zorn’s lemma, and it is prime by Claim 4.6.2, m ⊇ a and f �∈ m.
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Definition 4.8. For a set A ⊆ A[1],[1], we let

VA(A) = {p ∈ SpecA | p ⊇ A}.
If a is the H-ideal generated by A, VA(A) = VA(a); we have

VA(1) = ∅ (empty set), VA(0) = SpecA, (4.8.1)

VA

(∑
ai

)
=
⋂
i

VA(ai), ai ∈ H-id(A), (4.8.2)

VA(a · a′) = VA(a) ∪ VA(a′). (4.8.3)

Hence the sets {VA(a) | a ∈ H-id(A)} are the closed sets for a topology on SpecA, the Zariski
topology.

Definition 4.9. For f ∈ A[1],[1] we let

DA(f) = Spec(A) \ VA(f) = {p ∈ SpecA | f �∈ p}.
We have

DA(f1) ∪DA(f2) = DA(f1 · f2), (4.9.1)

SpecA \ VA(a) =
⋃
f∈a

DA(f). (4.9.2)

Hence the sets {DA(f) | f ∈ A[1],[1]} form a basis for the open sets in the Zariski topology. We have

DA(f) = ∅ ⇔ f ∈
⋂

p∈Spec A

p =
√

0 ⇔ fn = 0 for some n (4.9.3)

and we say f is nilpotent. We have

DA(f) = SpecA ⇔ (f) = (1) ⇔ ∃f−1 ∈ A[1],[1] : f · f−1 = 1 (4.9.4)

and we say f is invertible. We denote by GL[1](A) the (commutative) group of invertible elements.

Definition. For a subset X ⊆ SpecA, we have the associated H-ideal

I(X) =
⋂
p∈X

p.

Proposition 4.10. We have

IV A(a) =
√

a, (4.10.1)

VAI(X) = X, the closure of X in the Zariski topology. (4.10.2)

Proof. Equation (4.10.1) is just a restatement of Proposition 4.7.1. For (4.10.2), VAI(X) is clearly a
closed set containing X, and if C = VA(a) is a closed set containing X, then

√
a = IV A(a) ⊆ I(X),

hence C = VA(
√

a) ⊇ VAI(X).

Corollary 4.11. We have a one-to-one order-reversing correspondence between closed sets X ⊆
SpecA, and radical H-ideals a, via X �→ I(X), VA(a)← � a,

{X ⊆ SpecA | X = X} 1:1↔ {a ∈ H-id(A) | √a = a}.
Under this correspondence the closed irreducible subsets correspond to the prime ideals. For p0, p1 ∈
SpecA, p0 ∈ {p1} ⇔ p0 ⊇ p1, we say that p0 is a Zariski specialization of p1, or that p1 is a Zariski
generalization of p0. The space SpecA is sober : every closed irreducible subset C has the form
C = VA(p) = {p}, and we call the (unique) prime p the generic point of C.
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Proposition 4.12. The sets DA(f), and in particular DA(1) = SpecA, are compact (or ‘quasi-
compact’: we do not include Hausdorff in compactness).

Proof. Note that DA(f) is contained in the union
⋃

iDA(gi) if and only if VA(f) ⊇ ⋂i VA(gi) =
VA(a), where a is the H-ideal generated by {gi}, if and only if

√
f = IVA(f) ⊆ IVA(a) =

√
a, if and

only if fn ∈ a for some n, if and only if fn = b ◦ (
⊕

i gi · idXi) ◦ b′, and in any such expression only
a finite number of the gi are involved.

Let ϕ : A → B be a homomorphism of F-rings, ϕ∗ : SpecB → SpecA the associated pull-back
map.

Proposition 4.13. We have

ϕ∗−1(DA(f)) = DB(ϕ(f)), f ∈ A[1],[1], (4.13.1)

ϕ∗−1(VA(a)) = VB(ϕ∗(a)), a ∈ H-id(A), (4.13.2)

VA(ϕ−1b) = ϕ∗(VB(b)), b ∈ H-id(B). (4.13.3)

Proof. The proofs of (4.13.1) and (4.13.2) are straightforward:

q ∈ ϕ∗−1(DA(f)) ⇔ ϕ∗(q) ∈ DA(f) ⇔ f �∈ ϕ−1(q) ⇔ ϕ(f) �∈ q ⇔ q ∈ DB(ϕ(f)),

q ∈ ϕ∗−1(VA(a)) ⇔ ϕ∗(q) ∈ VA(a) ⇔ a ⊆ ϕ−1(q) ⇔ ϕ∗(a) ⊆ q ⇔ q ∈ VB(ϕ∗(a)).

For (4.13.3) we may assume b =
√

b is radical since VB(b) = VB(
√

b), ϕ−1(
√

b) =
√
ϕ−1(b). Let

a = I(ϕ∗(VB(b))), so that VA(a) = ϕ∗(VB(b)) by (4.10.2). We have

f ∈ a ⇔ f ∈ p, ∀p ∈ ϕ∗(VB(b)) ⇔ f ∈ ϕ−1(q), ∀q ⊇ b

⇔ ϕ(f) ∈
⋂
q⊇b

q =
√

b = b ⇔ f ∈ ϕ−1(b).

It follows from (4.13.1), or from (4.13.2), that ϕ∗ = Spec(ϕ) is continuous, hence A �→ SpecA is
a contravariant functor from F-rings to compact, sober, topological spaces.

Example 4.14.1. Let A be a commutative ring, F(A) the associated F-ring. An ideal a ⊆ A =
F(A)[1],[1] is an H-ideal generating the homogeneous ideal F(a) ⊆ F(A), and conversely an H-ideal
is just an ideal of A. Under this correspondence the primes of A correspond to the primes of F(A),
and we have a homeomorphism with respect to the Zariski topologies:

SpecA = Spec F(A).

Example 4.14.2. Let η : k → C be a real or complex prime of a number field, and let Ok,η denote
the F-ring of real or complex ‘integers’ of (2.16).Then

mη = {x ∈ k | |x|η < 1}
is the (unique) maximal H-ideal of Ok,η, the closed point of SpecOk,η.

4.2 S-prime ideals and H -E-ideals

Definition 4.15. A (non-homogeneous) ideal p ⊆ A is called a strong prime ideal, or S-prime, if
A \ p is closed with respect to ⊗:

f ∈ (A \ p)Y1,X1, g ∈ (A \ p)Y2,X2 ⇒ f ⊗ g ∈ (A \ p)Y1⊗Y2,X1⊗X2 . (4.15.1)

We let SPEC(A) denote the set of S-primes.
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Every F-ring contains a maximal ideal, and every maximal ideal is S-prime; cf. Proposition 4.6.
For an ideal a we have

√
a = {f ∈ A | f⊗n ∈ a for some n � 1} =

⋂
a⊆p

p, (4.15.2)

the intersection of S-primes containing a; cf. Proposition 4.7.1. On SPEC(A) we have the Zariski
topology, with closed sets

VA(a) = {p ∈ SPEC(A) | p ⊇ a}, (4.15.3)

where we can take a to be an ideal of A; cf. Definition 4.8. A basis for the open sets is given by the
sets

DA(f) = SPEC(A) \ VA(f) = {p ∈ SPEC(A) | f �∈ p}, (4.15.4)

f ∈ A; cf. Definition 4.9. We have

DA(f) = ∅ ⇔ f ∈
⋂

p∈SPEC(A)

p =
√

0 ⇔ f⊗n = 0 for some n,

and we say f is nilpotent. We have

DA(f) = SPECA ⇔ (f) = (1) ⇔ 1 = a1 ◦ (idX ⊗ f) ◦ a2

for some ai ∈ A, and we say f is a unit. For a subset X ⊆ SPEC(A), we have the associated ideal

I(X) =
⋂
p∈X

p,

and Proposition 4.10 holds. Similarly Corollary 4.11 and Propositions 4.12 and 4.13 remain true.
We have a continuous map

SPEC(A)→ Spec(A), p �→ p[1],[1]. (4.15.6)

It is always surjective. For an F-ring F(A) associated to a commutative ring A, ideals of F(A)
correspond one-to-one with ideals of A, S-primes correspond to primes of A, and the map (4.15.6)
is a homeomorphism.

Definition 4.16. A non-empty subset A ⊆ A[1],[1] will be called an H-E-ideal if, for ai ∈ A,

b ◦
(

idZ ⊕
⊕

i

ai

)
◦ b′ ∈ A ⇔ b ◦ (idZ ⊕ 0) ◦ b′ ∈ A. (4.16.1)

We have 0 ∈ A, and hence for ai ∈ A, i = 1, . . . , n, b ◦ (
⊕
ai) ◦ b′ ∈ A, i.e. it is an H-ideal (take

Z = [0] in (4.16.1)). Thus an H-E-ideal A ⊆ A[1],[1] is just an H-ideal which is EA-stable. We
denote by H-E-id(A) the collection of H-E-ideals of A.

Given A ∈ H-id(A), it generates the homogeneous ideal a = {b ◦ (
⊕
ai) ◦ b′ | ai ∈ A}, which in

turn generates the E-ideal ZEa ∈ E-subA(A), which can be described as (cf., Lemma 3.13):

ZEa =
{
a ∈ A | ∃ path a = c1, . . . , cl = 0, with {cj , cj+1} of the form{
b ◦
(

idZ ⊕
⊕

i

ai

)
◦ b′, b ◦ (idZ ⊕ 0) ◦ b′

}
, with ai ∈ A

}
. (4.16.2)

The E-ideal ZEa = ZEA is generated as E-ideal by (ZEA)[1],[1] ⊆ A[1],[1] (by the explicit
description (4.16.2) and the fact that (ZEA)[1],[1] ⊇ A); we call the H-E-ideal (ZEA)[1],[1] the
E-closure of A. We have A = (ZEA)[1],[1] if and only if A is an H-E-ideal.
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Corollary 4.16.3. There is a one-to-one order-preserving correspondence between the set of
equivalence ideal EA, generated by a subset A ⊆ A[1],[1]

{E ∈ equivA(A) | E = E((ZE)[1],[1])} = {EA | A ∈ H-id(A)},
and the set of H-E-id(A)

H-E-id(A) = {A ∈ H-E-id(A) | A = (ZEA)[1],[1]}.
It is given by:

E �→ (ZE)[1],[1], EA← � A.

For A ∈ H-E-id(A), let π : A → A/A = A/EA denote the canonical projection, then A =
π−1(0[1],[1]). We have the following proposition.

Proposition 4.17. There is a one-to-one order-preserving correspondence

{B ∈ H-E-id(A) | B ⊇ A} 1:1↔ H-E-id(A/A),

π−1(B)←− � B.

We can repeat most of our discussion of H-ideals using H-E-ideals. By Zorn’s lemma, we get
the next result.

Proposition 4.18. There exist maximal (proper) H-E-ideals.

Definition 4.19. We define E- Spec(A) = Spec(A) ∩ H-E-id(A); its elements will be called
E-primes. We have the following proposition.

Proposition 4.19.1. If m is a maximal H-E-ideal then m is E-prime.

More generally, given a ∈ H-E-id(A), f ∈ A[1],[1], such that fn �∈ a for all n. By Zorn’s lemma
there exists a maximal element m in the set

{b ∈ H-E-id(A) | b ⊇ a, fn �∈ b ∀n}.
Claim 4.19.2. We claim that m is E-prime.

Proof. For x ∈ A[1],[1]\m, the H-E-ideal generated by m and x contains some power fn. Hence there
is a path fn = c1, . . . , cl = 0, with {cj , cj+1} of the form {b◦(idZ⊕(x · idW )⊕m)◦b′, b◦(idZ⊕0)◦b′},
with m in the ideal generated by m. Let y ∈ A[1],[1] with y · x ∈ m. Multiplying the path {cj}
throughout by y we see that y ·fn ∈ m. If y ∈ A[1],[1]\m, we get similarly a path fm = d1, . . . , dl = 0,
with {dj , dj+1} of the form {b ◦ (idZ ⊕ y · idW ⊕m) ◦ b′, b ◦ (idZ ⊕ 0) ◦ b′}, and multiplying this path
by fn we see that fn · fm ∈ m, a contradiction.

Corollary 4.19.3. For A ∈ H-E-id(A),
√

A =
⋂
A⊆p

p,

the intersection of all E-primes containing A.

Example 4.20. For a commutative ring A, every H-ideal of F(A) is an H-E-ideal,

H-E-id(F(A)) = H-id(F(A)) = ideals of A. (4.20.1)

Hence every prime is an E-prime,

E- Spec(F(A)) = Spec(F(A)) = Spec(A). (4.20.2)
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Example 4.21. The maximal H-ideal mη of the F-ring of real or complex integers Ok,η, cf. Exam-
ple 4.14.2, is an E-prime. Indeed, for |ai|η < 1, we have∣∣∣∣ b ◦ (idZ ⊕

⊕
i

ai

)
◦ b′
∣∣∣∣
η

< 1 ⇔ |b ◦ (idZ ⊕ 0) ◦ b′|η < 1. (4.21.1)

Here we may assume that {ai} consists of one element a,Z = [1], and that b = (b′)
t
= (b0, b1) is a

vector of norm 1, so (4.21.1) reads : for |a|η < 1, |b0|2η + |b1|2η = 1,

||b0|2η + a · |b1|2η|η < 1 ⇔ |b20|η < 1.

Verifying this (obvious) statement shows that mη is indeed an E-prime.

For a ∈ (Ok,η)Y,X we have the non-negative self-adjoint operators at ◦ a ∈ (Ok,η)X,X , and
a ◦ at ∈ (Ok,η)Y,Y . We get orthogonal decompositions

k ·X =
⊕

λ

V (λ),

k · Y =
⊕

λ

W (λ),
(4.21.2)

where at ◦ a (respectively a ◦ at) acts on V (λ) (respectively W (λ)) as scalar multiplication by
λ2, 0 � λ � 1. For λ > 0, a induces a linear isomorphism

aλ : V (λ) ∼−→W (λ), (4.21.3)

and for λ = 1, a1 is an isometry. This gives the singular eigenvalue decomposition of a,

a = b ◦
(⊕

λ · idZλ

)
◦ b′, (4.21.4)

where Zλ is an orthonormal basis for V (λ), b′ is the change-of-basis matrix from X to {Zλ}, and
b is the change-of-basis matrix from {(1/λ) · a(Zλ)} to Y ; thus b, b′ are isomorphisms in Ok,η
(i.e. orthogonal or unitary matrices). In particular, we see that modulo Emη, a is equivalent to

a1 = b ◦
(

idZ1 ⊕
⊕
λ<1

0Zλ

)
◦ b′. (4.21.5)

It follows that the map π(a) = (a1 : V (1)→W (1)) is an isomorphism of Ok,η/mη onto Fk,η, the
field of partial isometries of (2.18).

The last two examples give ‘strong-E-primes’ according to the following definition.

Definition 4.22. We define E- SPEC(A) = SPEC(A) ∩ E-subA(A); its elements will be called
strong-E-primes, or S-E-primes. Every F-ring contains a maximal (proper) E-ideal, and such an
ideal is S-E-prime. More generally, given a ∈ E-subA(A), f ∈ AY,X such that f⊗n �∈ a for all n,
there exists by Zorn’s lemma a maximal element m in the set

{b ∈ E-subA(A) | b ⊇ a, f⊗n �∈ b ∀n}, (4.22.1)

and such an m is S-E-prime; cf. Claim 4.19.2. It follows that for an E-ideal a ∈ E-subA(A)
√

a = {f ∈ A | f⊗n ∈ a for some n � 1} =
⋂
a⊆p

p, (4.22.2)

the intersection of all S-E-primes p containing a.
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Thus we have four functors from F-rings to compact sober topological spaces, taking an F-ring A
to the following diagram.

E- SPEC(A) � 
 ��

����

SPEC(A)

����
E- Spec(A) � 
 �� Spec(A)

There are corresponding various notations of ‘fields’ for F-rings.

Definition 4.23. An F-ring A is called a field, or an H-field, if it satisfies the equivalent conditions:

(i) Spec(A) = {(0)};
(ii) there are no non-zero proper H-ideals a ⊆ A[1],[1]; (4.23.1)
(iii) GL[1](A) = A[1],[1] \ {0}: every non-zero element of A[1],[1] is invertible.

An F-ring A is called an E-field, if it satisfies the equivalent conditions:

(i) E- Spec(A) = {(0)};
(ii) there are no non-zero proper H-E-ideals a ⊆ A[1],[1]; (4.23.2)
(iii) every homomorphism ϕ : A → B with B �= 0 and such that KER(ϕ) = E(ϕ−1(0)[1],[1]) is

injective, i.e., KER(ϕ) is trivial (= diagonal of A
∏
A; cf., (2.20) for KER(ϕ)).

An F-ring A is called a strong field or an S-field, if it satisfies the equivalent conditions:

(i) SPEC(A) = {(0)};
(ii) there are no non-zero proper ideals a ⊆ A; (4.23.3)
(iii) for all X,Y ∈ |F|, every non-zero element of AY,X is a unit.

An F-ring A is called a strong-E-field or an S-E-field, if it satisfies the equivalent conditions:

(i) E- SPEC(A) = {(0)};
(ii) there are no non-zero proper E-ideals a; (4.23.4)
(iii) every homomorphism ϕ : A→ B with B �= 0 and such that KER(ϕ) = E(ϕ−1(0)) is injective.

We have the following implications:

H-field =⇒ E-field!"" !""
S-field =⇒ S-E-field

(4.23.5)

In particular, if m is a maximal H-ideal of an F-ring O, we have the residue field Fm = O/Em; it
is an H-field by (4.3): if n is an H-ideal of O, and n is Em-stable, (4.3), then n contains m, and by
maximality n = m.

5. Localization and structural sheaf OA
We review the theory of localization of an F-ring A (or an A-module M) with respect to a mul-
tiplicative set S ⊆ A[1],[1]; we obtain a sheaf of F-rings OA (respectively, an OA-module M̃) over
SpecA.

5.1 Localization
The theory of localization of an F-ring A, with respect to a multiplicative subset S ⊆ A[1],[1], goes
exactly as in localization of commutative rings – since it is a multiplicative theory. We recall this
theory next.
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We assume that S ⊆ A[1],[1] satisfies

1 ∈ S, (5.1.1)
s1, s2 ∈ S ⇒ s1 · s2 ∈ S. (5.1.2)

On the set

A× S =
∐
Y,X

AY,X × S

we define for ai ∈ AY,X , si ∈ S,

(a1, s1) ∼ (a2, s2) ⇔ s · s2 · a1 = s · s1 · a2 for some s ∈ S. (5.2)

It follows that ∼ is an equivalence relation, and we denote by a/s the equivalence class containing
(a, s), and by S−1A the collection of equivalence classes. On S−1A we define the operations:

a1/s1 ◦ a2/s2 = (a1 ◦ a2)/s1s2, a1 ∈ AZ,Y , a2 ∈ AY,X , (5.3.1)
a1/s1 ⊕ a2/s2 = (s2 · a1 ⊕ s1 · a2)/s1s2, (5.3.2)

a1/s1 ⊗ a2/s2 = (a1 ⊗ a2)/s1s2. (5.3.3)

Proposition 5.3. The above operations are well defined, independent of the chosen representatives,
and they satisfy the axioms of an F-ring.

Proof. The usual proof works. For example, replacing a1/s1 in (5.3.2) by a′1/s
′
1 ∼ a1/s1, say s · s′1 ·

a1 = s · s1 · a′1, then

s · s′1s2 · (s2a1 ⊕ s1a2) = s · s1s2 · (s2a′1 ⊕ s′1a2),

hence

(s2a1 ⊕ s1a2)/s1s2 = (s2a′1 ⊕ s′1a2)/s′1s2.

The F-ring S−1A comes with a canonical homomorphism

φ = φS : A→ S−1A, φ(a) = a/1. (5.4)

Proposition 5.5. We have the universal property of φS :

HomF-Rings(S−1A,B) = {ϕ ∈ HomF-Rings(A,B) | ϕ(S) ⊆ GL[1](B)},
ϕ̃ �−→ ϕ̃ ◦ φS ,

ϕ̃(a/s) = ϕ(a) · ϕ(s)−1 ←− � ϕ.

Proof. The proof is clear.

Note that S−1A is the zero F-ring if and only if 0 ∈ S.
The main examples of localizations are as follows:

Sf = {fn}n�0, f ∈ A[1],[1], (5.6.1)

and we write Af for S−1
f A;

Sp = A[1],[1] \ p, p ∈ Spec(A), (5.6.2)

and we write Ap for S−1
p A.

Similarly, for an A-module M , we have the equivalence relation ∼ on M × S,

(m1, s1) ∼ (m2, s2) ⇔ s · s2 ·m1 = s · s1 ·m2 for some s ∈ S. (5.7)

We let m/s = (m, s)/∼ denote the equivalence class containing (m, s), and S−1M = (M × S)/∼
denote the collection of equivalence classes. On S−1M we have the structure of an S−1A-module,
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which is well defined, independent of the chosen representatives, by

a1/s1 ◦m/s ◦ a2/s2 = (a1 ◦m ◦ a2)/s1ss2, (5.7.1)
m1/s1 ⊕m2/s2 = (s2 ·m1 ⊕ s1 ·m2)/s1s2, (5.7.2)

a1/s1 ⊗m/s = (a1 ⊗m)/s1s. (5.7.3)

The localization M �→ S−1M is a functor S−1 : A-Mod → S−1A-Mod; to a map ϕ : M → M ′

corresponds S−1ϕ : S−1M → S−1M ′,

S−1ϕ(m/s) = ϕ(m)/s. (5.7.4)

We have an A-module homomorphism M → φ∗S(S−1M),m �→ m/1, which corresponds by
(3.23.6) to the homomorphism of S−1A modules

MS−1A → S−1M, (a1/s1,m, a2/s2)/∼ �→ (a1 ◦m ◦ a2)/s1s2, (5.7.5)

where MS−1A is the S−1A-module obtained from M via base change (3.23.0) along the homo-
morphism A → S−1A. This is clearly surjective. It is also injective. Note first that by (3.23.1),
(3.23.2), (a1/s1,m, a2/s2)/∼ = (id/1, a1 ◦ m ◦ a2, id/s1s2)/∼, so every element of MS−1A has the
form (id/1,m, id/s)/∼. If m1/s1 = m2/s2, say s · s2 ·m1 = s · s1 ·m2, then we have the following:

(id/1,m1, id/s1)/∼ = (id/1,m1, s · s2/1 · id/ss1s2)/∼ = (id/1, s · s2 ·m1, id/ss1s2)/∼
‖

(id/1,m2, id/s2)/∼ = (id/1,m2, s · s1/1 · id/ss1s2)/∼ = (id/1, s · s1 ·m2, id/ss1s2)/∼

Thus we may identify the localization S−1M with the base change MS−1A, and it follows from
(3.23.7), (3.23.8), (3.23.9) that we have similar properties for localization.

Corollary 5.7.6. The functor M �→ S−1M preserves sums, direct limits, tensor products, and
free modules:

S−1
∐

i

Mi =
∐

i

S−1Mi, S−1 lim−→Mλ = lim−→S−1Mλ, (5.7.7)

S−1(M ⊗A N) = S−1M ⊗S−1A S
−1N ; (5.7.8)

for a formal symbol fX,Y , any Y,X ∈ |F|, and for the free A-module A · fY,X , and the free
S−1A-module (S−1A) · fY,X , cf. (3.18.0),

S−1(A · fY,X) = (S−1A) · fY,X . (5.7.9)

If M0 ∈ subA(M) is an A-submodule, then S−1M0 ∈ subS−1A(S−1M) is an S−1A-submodule.
The map M0 �→ S−1M0 preserves sums,

S−1

(∑
i

Mi

)
=
∑

i

(S−1Mi), (5.8.1)

and finite intersections,
S−1(M1 ∩M2) = S−1M1 ∩ S−1M2. (5.8.2)

Since we can always bring a finite sequence of elements in S-localization into ‘common denominator’,
we have the following result.

Proposition 5.9. The functor M �→ S−1Malso preserves finite products, and finite inverse limits,

S−1

(
M0

∏
M

M1

)
= S−1M0

∏
S−1M

S−1M1, (m0,m1)/s �→ (m0/s,m1/s). (5.9.1)
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If E ∈ equivA(M) is an equivalence A-module of M , then

S−1E ⊆ S−1

(
M
∏

M

)
= S−1M

∏
S−1M

is an equivalence S−1A-module of S−1M , S−1E ∈ equivS−1A(S−1M). We have (with Z,E as in
Definition 3.10)

S−1(ZE) = Z(S−1E), E ∈ equivA(M) (5.10.1)

and

S−1(EM0) = E(S−1M0), M0 ∈ subA(M) (5.10.2)

(cf., Lemma 3.13: bring a path to a common denominator).
Similarly we have the next proposition.

Proposition 5.11. Let ϕ : M → N be a homomorphism of A-modules. The functor S−1 preserves
kernels,

S−1(ϕ−1(0)) = (S−1ϕ)−1(0), (5.11.1)

S−1(KER(ϕ)) = KER(S−1ϕ), (5.11.2)

and it preserves cokernels,

S−1(N/ϕ(M)) = S−1N/S−1ϕ(S−1M). (5.11.3)

Definition 5.11.4. We write Mp for S−1
p M,Sp = A[1],[1] \ p, p ∈ SpecA. We write Mf for S−1

f M,
Sf = {fn}n�0, f ∈ A[1],[1].

Proposition 5.12. For an A-module M , the following are equivalent:

M = 0, (5.12.1)
Mp = 0 ∀p ∈ SpecA, (5.12.2)

Mm = 0 for all maximal H-ideals m. (5.12.3)

Proof. Clearly (5.12.1) ⇒ (5.12.2) ⇒ (5.12.3). If M �= 0 let m ∈ MY,X be non-zero, and let m be
a maximal H-ideal containing annA(m); cf. (4.1.4). If Mm = 0 ⇒ m/1 = 0 ∈ Mm, which means
s ·m = 0 for some s ∈ A[1],[1] \m, contradicting annA(m) ⊆ m.

Proposition 5.13. Let ϕ : M → N be a homomorphism of A-modules. The following are equiva-
lent:

ϕ is surjective, (5.13.1)
ϕp : Mp → Np is surjective ∀p ∈ SpecA, (5.13.2)

ϕm : Mm → Nm is surjective for all maximal H-ideals m. (5.13.3)

Proof. To show that (5.13.1)⇒ (5.13.2)⇒ (5.13.3) is easy. If ϕ is not surjective, let n ∈ N \ϕ(M),
and let m be a maximal H-ideal containing (ϕ(M) : n); cf. (4.1.6). If ϕm is surjective, n/1 ∈
ϕm(Mm), and we have s · n ∈ ϕ(M) for some s ∈ A[1],[1] \m, contradicting (ϕ(M) : n) ⊆ m.

Proposition 5.14. Let ϕ : M → N be a homomorphism of A-modules. The following are equiva-
lent:

ϕ is injective, (5.14.1)
ϕp : Mp → Np is injective ∀p ∈ SpecA, (5.14.2)

ϕm : Mm → Nm is injective for all maximal H-ideals m. (5.14.3)
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Proof. To show that (5.14.1)⇒ (5.14.2)⇒ (5.14.3) is easy. If ϕ is not injective, let m �= m′, ϕ(m) =
ϕ(m′), and let m be a maximal H-ideal containing annA(m,m′); cf. (4.1.5). If ϕm is injective,
m/1 = m′/1 ∈Mm, and s ·m = s ·m′ for some s ∈ A[1],[1] \m, contradicting annA(m,m′) ⊆ m.

Consider the canonical homomorphism φ = φS : A→ S−1A,φ(a) = a/1. If b ∈ subS−1A(S−1A)
is an ideal of S−1A,φ−1(b) ∈ subA(A) is an ideal of A; if b = ZE(b) is an E-ideal, so is φ−1(b), cf.
(4.16.2) for ZE(b); if b is homogeneous so is φ−1(b). If b ∈ H-id(S−1A) is an H-ideal, so is ϕ−1(b).
If a ∈ subA(A) is an ideal of A, then φ(a) generates the ideal S−1a ∈ subS−1A(S−1A); if a = ZE(a)
is an E-ideal, so is S−1a; if a is homogeneous, so is S−1a. If A ∈ H-id(A) is an H-ideal of A then

S−1A
def= φ∗(A) = {a/s ∈ (S−1A)[1],[1] | a ∈ A, s ∈ S}

is an H-ideal of S−1A.

Proposition 5.15. For b an ideal (respectively H-ideal) of S−1A, S−1bc = b.

Proof. If a/s ∈ b, a ∈ bc, and a/s ∈ S−1(bc); so b ⊆ S−1(bc). The reverse inclusion is clear.

Proposition 5.16. For a an ideal (respectively H-ideal) of A,

(S−1a)c = {a ∈ A | ∃s ∈ S : s · a ∈ a}. (5.16.1)

In particular,

S−1a = (1) ⇔ a ∩ S �= ∅. (5.16.2)

Proof. We have

a ∈ (S−1a)c ⇔ a/1 = x/s, x ∈ a, s ∈ S ⇔ s · a ∈ a, some s ∈ S.
Proposition 5.17. The map φ∗S induces a bijection

φ∗S : Spec(S−1A) ∼−→ {p ∈ SpecA | p ∩ S = ∅},
which is a homeomorphism for the Zariski topology.

Proof. If q ∈ Spec(S−1A), φ∗S(q) belongs to the right-hand side. Conversely, if p belongs to the
right-hand side, S−1p is a (proper) prime of S−1A. By Propositions 5.15 and 5.16 these operations
are inverses of each other.

Corollary 5.17.1. We have a homeomorphism for f ∈ A[1],[1],

φ∗f : Spec(Af ) ∼−→ DA(f).

Corollary 5.17.2. We have a homeomorphism for p ∈ Spec(A),

φ∗p : Spec(Ap)
∼−→ {q ∈ SpecA | q ⊆ p}.

In particular, Ap contains a unique maximal H-ideal mp = S−1
p p; we say it is a local F-ring.

Remark 5.17.3. For p ∈ Spec(A) we let Fp = Ap/mp denote the residue field at p. Let π : A→ A/p

be the canonical homomorphism, and Sp = π(Sp); we have also Fp = S
−1
p (A/p). The commutative

diagram

A
φp ��

π

��

Ap

��
A/p �� Fp

(5.17.4)
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is cartesian: Fp = (A/p) �A Ap (see Theorem 7.1 for the definition of �). It is also functorial: given
a homomorphism of F-rings ϕ : A→ B, q ∈ SpecB, p = ϕ∗(q), we have the following commutative
cube:

A ��

�����������

��

Ap

��



		
		

		
	

B ��

��

Bq

��

A/p

����
��

��
��

�� Fp

















B/q �� Fq

5.2 Structural sheaf OA
Next we define a sheaf OA of F-rings over SpecA.

Definition 5.18. For an open set U ⊆ Spec(A), and for Y,X ∈ |F|, we let OA(U)Y,X denote the
set of functions

s : U →
⋃
p∈U

(Ap)Y,X ,

such that s(p) ∈ (Ap)Y,X , and s is ‘locally a fraction’:

∀p ∈ U,∃ a neighborhood Up of p;∃ a ∈ AY,X ;∃ f ∈ A[1],[1] \
⋃
q∈Up

q

such that
s(q) = a/f ∈ Aq, ∀q ∈ Up. (�)

It is clear that
OA(U) =

⋃
Y,X

OA(U)Y,X

is an F-ring. If U ′ ⊆ U , the natural restriction map s �→ s|U ′ is a homomorphism of F-rings OA(U)→
OA(U ′), thus OA is a presheaf of F-rings. From the local nature of (�) we see that OA is in fact a
sheaf.

Remark 5.18.1. Similarly for an A-module M we can define M̃(U)Y,X as the collection of sections

s : U →
⋃
p∈U

(Mp)Y,X

which are locally a fraction (replace a ∈ AY,X in (�) by m ∈ MY,X). The set M̃ is an OA-module
in the following sense.

Definition 5.18.2. An OA-module M is a sheaf of sets over SpecA such that M(U) is an OA(U)-
module, the structure compatible with restrictions – for open sets U ⊆ U ′, denoting by s �→ s|U the
restriction maps M(U ′)→M(U) and OA(U ′)→ OA(U), we have

(a ◦m ◦ a′)|U = a|U ◦m|U ◦ a′|U , (5.18.2)
(m⊕m′)|U = m|U ⊕m′|U , (5.18.3)
(a⊗m)|U = a|U ⊗m|U . (5.18.4)
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For two such sheaves of OA-modules M,M′ a map of OA-modules ϕ : M → M′ is a collection of
OA(U)-homomorphisms

ϕU : M(U)→M′(U)
for U ⊆ SpecA open, compatible with restrictions: ϕU ′(a)|U = ϕU (a|U ) for U ⊆ U ′.

Thus we have the category OA-Mod of OA-modules.

Proposition 5.19. For p ∈ Spec(A), the stalk

OA,p = lim−→
p∈U

OA(U)

of the sheaf OA is isomorphic to Ap.

Proof. The map taking a local section s in a neighborhood of p to s(p) ∈ Ap induces a homomor-
phism OA,p → Ap, which is clearly surjective. It is also injective. Let s1, s2 ∈ OA(U)Y,X have the
same value at p, s1(p) = s2(p). Shrinking U we may assume si = ai/fi on U, ai ∈ AY,X , fi ∈ A[1],[1].
Then a1/f1 = a2/f2 in Ap means h · f2 · a1 = h · f1 · a2, h ∈ A[1],[1] \ p, but then a1/f1 = a2/f2 in
Aq ∀q ∈ U ∩DA(h).

Remark 5.19.1. Similarly for an A-module M we have an isomorphism

(M̃)p
def= lim−→
p∈U

M̃ (U) ∼−→Mp.

Proposition 5.20. For f ∈ A[1],[1], the F-ring OA(DA(f)) is isomorphic to Af . In particular, the

global sections Γ(Spec(A),OA) def= OA(DA(1)) ∼= A.

Proof. Define the homomorphism ψ : Af → OA(DA(f)) by sending a/fn to the section whose value
at p is the image of a/fn in Ap.

We shall show that ψ is injective. If ψ(a1/f
n1) = ψ(a2/f

n2) then ∀p ∈ DA(f) there is hp ∈
A[1],[1] \ p with

hpf
n2a1 = hpf

n1a2.

Let a = annA(fn2a1, f
n1a2). It is anH-ideal of A, and ∀p ∈ DA(f), p /∈ VA(a), soDA(f)∩VA(a) = ∅,

hence VA(a) ⊆ VA(f), hence f ∈ IVA(a) =
√

a, hence fn ∈ a for some n � 1, showing that
a1/f

n1 = a2/f
n2 in Af .

We show next that ψ is surjective. Let s ∈ OA(DA(f))Y,X . By Proposition 4.12, DA(f) is
compact, so there exists a finite open covering

DA(f) =
⋃

1�i�N

DA(hi),

such that for all p ∈ DA(hi) : s(p) = ai/gi ∈ Ap, where ai ∈ AY,X and gi ∈ A[1],[1] is such that
DA(gi) ⊇ DA(hi) for 1 � i � N . We have VA(gi) ⊆ VA(hi), hence√

(gi) = IVA(gi) ⊇ IVA(hi) =
√

(hi),

hence hi ∈
√

(gi) so that for some ni � 1 we have hni
i = ci · gi, hence s(p) = ciai/h

ni
i . So we can

replace hi by gi. On the set
DA(gi) ∩DA(gj) = DA(gigj)

we have ai/gi = s(p) = aj/gj , hence by the injectivity of ψ we find

ai/gi = aj/gj in Agigj .

This means (gigj)n ·gjai = (gigj)n ·giaj , and we can choose n big enough to work for all i, j. We can
replace gi by gn+1

i (since DA(gi) = DA(gn+1
i )), and replace ai by gn

i · ai (since s(p) ≡ gn
i ai/g

n+1
i ),
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and then have the simpler equation gj · ai = gi · aj for all i, j. Since the sets DA(gi) cover DA(f) we
have, cf. Proposition 4.12,

fm = b ◦
(⊕

i

gi · idXi

)
◦ b′.

Set

a = (idY ⊗ b) ◦
(⊕

i

ai ⊗ idXi

)
◦ (idX ⊗ b′).

Then

gj · a = (idY ⊗ b) ◦
(⊕

i

gjai ⊗ idXi

)
◦ (idX ⊗ b′)

= (idY ⊗ b) ◦
(⊕

i

aj ⊗ gi · idXi

)
◦ (idX ⊗ b′) = fm · aj.

Hence aj/gj = s(p) = a/fm and s = ψ(a/fm).

Remark 5.20.1. Similarly for an A-module M we have an isomorphism

Mf
∼−→ M̃(DA(f))

and in particular

M
∼−→ M̃(SpecA) def= Γ(SpecA, M̃ ).

6. Schemes

We define the categories of F-(locally)-ringed spaces, and of (Zariski) F-schemes, and recall the
theory of quasi-coherent modules. As an important example we give the ‘compactification’ SpecZ
of SpecZ.

6.1 Locally F-ring spaces
Definition 6.1. An F-ringed space (X,OX ) is a topological space with a sheaf OX of F-rings.
A map of F-ringed spaces f : X → Y is a continuous map of the underlying topological spaces
together with a map of sheaves of F-rings on Y, f# : OY → f∗OX , i.e. for U ⊆ Y open we have
f#

U : OY (U)→ OX(f−1U) a map of F-rings, such that for

U ′ ⊆ U : f#
U (s)|f−1U ′ = f#

U ′(s|U ′).

The F-ringed space X is an F-locally-ringed space if for all p ∈ X the stalk OX,p is a local F-ring,
i.e. contains a unique maximal H-ideal mX,p. For a map of F-ringed spaces f : X → Y , and for
p ∈ X, we get an induced homomorphism of F-rings on the stalks

f#
p : OY,f(p) = lim−→

f(p)∈V

OY (V )→ lim−→
p∈f−1V

OX(f−1V )→ lim−→
p∈U

OX(U) = OX,p. (6.1.1)

A map f : X → Y of F-locally-ringed spaces is a map of F-ringed spaces such that f#
p is a local

homomorphism for all p ∈ X, i.e.

f#
p (mY,f(p)) ⊆ mX,p or equivalently (f#

p )−1mX,p = mY,f(p). (6.1.2)

We let F-Rings.Sp (respectively Loc-F-Rings-Sp) denote the category of F-(locally)-ringed spaces.
For a (locally) F-ringed space (X,OX ) an OX -module M is a sheaf of sets over X such that for

U ⊆ X open, M(U) is an OX(U)-module, these structures being compatible with restrictions, cf.
(5.18.2)–(5.18.4). For two OX -modules M,M′ a map of sheaves ϕ : M → M′ is a homomorphism
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of OX-modules if for U ⊆ X open the map ϕU : M(U) → M′(U) is a homomorphism of OX(U)-
modules. Thus we have the category OX -Mod of OX-modules.

For a homomorphism of F-rings ϕ : A→ B, for p ∈ Spec(B), we have a unique homomorphism
ϕp : Aϕ−1p → Bp, such that we have a commutative diagram

A
ϕ ��

��

B

��
Aϕ−1p

ϕp �� Bp

(6.2)

where ϕp(a/s) = ϕ(a)/ϕ(s), and ϕp is a local homomorphism. Thus A �→ Spec(A) is a contravariant
functor from F-Rings to Loc-F-Rings-Sp. It is the adjoint of the functor Γ of taking global sections

Γ(X,OX) = OX(X), Γ(f) = f#
Y : OY (Y )→ OX(X).

Proposition 6.3. We have

HomLoc-F-Rings-Sp(X,Spec(A)) = HomF-Rings(A,OX (X)).

Proof. For an F-locally-ringed space X, and for a point x ∈ X, the canonical homomorphism φx :
OX(X) → OX,x gives a prime P(x) = φ−1

x (mX,x) ∈ SpecOX(X). The map P : X → SpecOX(X)
is continuous:

P−1(D(f)) = {x ∈ X | φx(f) /∈ mX,x}
is open for f ∈ OX(X). We have an induced homomorphism

P#
D(f)

: OX(X)f → OX({x ∈ X | φx(f) /∈ mX,x}),
making P a map of F-ringed spaces, and taking the direct limit over f with φx(f) /∈ mX,x we get

P#
x : OX(X)P(x) → OX,x,

showing P is a map of F-locally-ringed spaces.

To a homomorphism of F-rings ϕ : A→ OX(X) we associate the map of F-locally-ringed spaces

X
P−→ SpecOX(X)

Spec(ϕ)−−−−−→ SpecA.

Conversely, to a map f : X → SpecA of F-locally-ringed spaces (as in Definition 6.1) we associate
its action on global sections

Γ(f) = f#
Spec A : A = OA(SpecA)→ OX(X).

Clearly, Γ(Spec(ϕ) ◦ P) = ϕ.

Conversely, given a map f : X → SpecA (as in Definition 6.1), for x ∈ X we have the following
commutative diagram:

A = OA(SpecA)
Γ(f) ��

φf(x)

��

OX(X)

φx

��
Af(x)

f#
x �� OX,x

Since f#
x is assumed to be local, (f#

x )−1(mX,x) = mf(x), and by the commutativity of the diagram
we get Γ(f)−1(P(x)) = f(x), i.e. f = (SpecΓ(f)) ◦ P is the continuous map associated to the
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homomorphism Γ(f). Similarly, for g ∈ A, the commutativity of the diagram

A
Γ(f) ��

��

OX(X)

��
Ag

f#
D(g)�� OX(DX(f#g))

gives f#
D(g)(a/g

n) = Γ(f)(a)/(Γ(f)(g))n, hence f = (SpecΓ(f)) ◦ P as a map of F-locally-ringed
spaces.

Corollary 6.3.1. For F-rings A,B:

HomLoc-F-Rings-Sp(SpecB,SpecA) = HomF-Rings(A,B).

6.2 Zariski F-schemes
Definition 6.4. A Zariski F-scheme is an F-locally-ringed space (X,OX ), such that there is a
covering by open sets X =

⋃
i Ui, and the canonical maps

P : (Ui,OX |Ui)→ SpecOX(Ui)

are isomorphisms of F-locally-ringed spaces. A morphism of Zariski F-schemes is a map of F-locally-
ringed spaces. We denote the category of Zariski F-schemes by Zar -F-Sch.

Zariski F-schemes can be glued.

Proposition 6.5. Given a set of indices I, and for i ∈ I given Xi ∈ Zar-F-Sch, and for i �= j, i,
j ∈ I, an isomorphism ϕij : Uij

∼−→ Uji , with Uij ⊆ Xi open (and hence Uij are Zariski F-schemes),
such that

ϕji = ϕ−1
ij , (6.5.1)

ϕij (Uij ∩ Uik ) = Uji ∩ Ujk and ϕjk ◦ ϕij = ϕik on Uij ∩ Uik . (6.5.2)

There exists X ∈ Zar-F-Sch, and maps ψi : Xi → X, such that

ψi is an isomorphism of Xi onto the open set ψi(Xi) ⊆ X, (6.5.3)

X =
⋃
i

ψi(Xi), (6.5.4)

ψi(Uij ) = ψi(Xi) ∩ ψj(Xj), (6.5.5)
ψi = ψj ◦ ϕij on Uij . (6.5.6)

Proof. The proof is clear: glue the topological spaces and glue the sheaves of F-rings. For V ⊆ X
open

OX(V ) = ker
{∏

i

OXi(ψ
−1V ) ⇒

∏
i,j

OXi(ψ
−1V ∩ Uij)

}
.

Remark 6.6. Let f : (X,OX )→ (Y,OY ) be a map of F-ringed spaces. If M is an OX-module, then
f∗M(V ) = M(f−1V ), V ⊆ Y open, gives rise to an f∗OX -module. Using the map f � : OY → f∗OX ,
we see that f∗M is naturally an OY -module.

If N is an OY -module, its inverse image f−1N is the sheaf on X associated with the presheaf

U �→ lim−→
f(U)⊆V

N(V )

and f−1N is an f−1OY -module. To give the map f � : OY → f∗OX of sheaves on Y is equivalent
to giving the map f 	 : f−1OY → OX of sheaves on X. Using the map f 	 we can extend scalars,
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cf. Proposition 3.23, to form the presheaf

U �→ (f−1N(U))OX(U).

The sheaf associated to this presheaf is denoted f∗N; it is an OX -module.
The functors of direct image f∗ and of inverse image f∗ are adjoint

HomOX -Mod(f∗N,M) = HomOY -Mod(N, f∗M). (6.6.1)

For a homomorphism of F-rings ϕ : A→ B, and the associated map f = ϕ∗ : SpecB → SpecA, and
for any B-module M with associated OB-module M̃ , cf. Remark 5.18.1, and associated A-module
ϕ∗M , cf. (3.22.1–2), we have

f∗(M̃) = (̃ϕ∗M). (6.6.2)

For an A-module N with associated B-module NB , cf. Proposition 3.23, we have

f∗(Ñ) = (̃NB). (6.6.3)

The theory of quasi-coherent modules over a Zariski F-scheme goes over as in the classical
theory, incorporating the notions of § 3. We shall not give the details here, and we give only the
basic definitions.

Theorem 6.7. Let A be an F-ring. Let U ⊆ X = SpecA be an open compact subset, and M an
OX |U -module. The following conditions are equivalent:

(1) there exists an A-module M and an isomorphism M̃ |U ∼= M;

(2) there exists an open affine cover U =
⋃

i∈I Ui, Ui = SpecAi, and for i ∈ I there are Ai-modules

Mi such that M̃i
∼= M|Ui ;

(3) for every open affine SpecB ⊆ U there exists a B-module M such that M̃ ∼= M|Spec B ;

(4) for every f ∈ A[1],[1] the restriction induces an isomorphism of Af -modules

Γ(U,M)f
∼−→ Γ(DA(f),M).

Proof. See [Gro60, 1.4].

If M satisfies the conditions of Theorem 6.7 we say it is quasi-coherent. Similarly for a Zariski
F-scheme X, replacing in (2) or in (3) U by X we get the notion of quasi-coherent OX -module.
We denote by QC-OX -Mod the category of quasi-coherent OX -modules. For an affine scheme X =
SpecA, the functors M �→ M̃,M �→ Γ(X,M), give inverse isomorphisms of categories

A-Mod
∼←→ QC-OA-Mod. (6.7.1)

6.3 F-schemes and the compactified Spec Z
The category of F-locally-ringed spaces has inverse limits. Given an inverse system {Xj ,OXj}j∈J ,
where J is a partially ordered set, and for j1 � j2 in J we are given maps πj1

j2
: Xj1 → Xj2 such that

πj
j = idXj , and πj2

j3
◦ πj1

j2
= πj1

j3
for j1 � j2 � j3, and where we always assume that J is directed (for

j1, j2 ∈ J there exists j ∈ J with j � j1, j � j2), the inverse limit lim←−J
Xj is constructed as follows.

As a topological space it is the inverse limit topological space, i.e. lim←−J
Xj is the inverse limit of

the Xj as a set, together with the topology having as a basis for open sets the sets of the form
π−1

j (U), where πj : lim←−J
Xj → Xj are the projections, and where U ⊆ Xj are arbitrary open sets

in Xj (we can take the U to vary over a basis for the topology of the Xj). Then on the topological
space X = lim←−J

Xj we have the directed system of sheaves of F-rings {π−1
j Oj} and the direct limit,

i.e. the sheaf associated with the pre-sheaf U �→ lim←−J
π−1

j Oj(U) is the sheaf OX on X = lim←−J
Xj
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satisfying the universal property of the inverse limit in the category Loc-F-Rings-Sp. For a point
x = {xj} ∈ X, the stalk OX,x is the direct limit of the stalks OXj ,xj , and hence is indeed a local
F-ring, and (π�

j)x : OXj ,xj → OX,x is a local homomorphism. For an open set U ⊆ X the sections
OX(U) can alternatively be described as the maps

s : U →
∐
x∈U

OX,x, s(x) ∈ OX,x,

such that for any x = {xj} ∈ U there exists an open set Uj ⊆ Xj for some j ∈ J , such that
xj ∈ Uj , π

−1(Uj) ⊆ U , and there is a section sj ∈ OXj (Uj), such that for all y ∈ π−1(Uj), we have
s(y) = (π�

j)y(sj|πj(y)). In the case that the Xj are all affine Zariski F-schemes, Xj = Spec(Aj),
the inverse limit X = lim←−J

Xj is again an affine Zariski F-scheme, namely X = Spec(A), where
A = lim−→J

Aj is the direct limit of the F-rings Aj . But in the case that the Xj are Zariski F-schemes,
the inverse limit X = lim←−J

Xj need not be a Zariski F-scheme, and the category Zar-F-Sch does

not have inverse limits (X = lim←−J
Xj will be a Zariski F-scheme if the maps πj1

j2
: Xj1 → Xj2 are

affine).

Definition 6.8. The category of F-schemes, F-Sch, is the category of pro-objects of the category
of Zariski F-schemes.

Thus the objects of F-Sch are inverse systemsX = {Xj}j∈J , where the Xj are Zariski F-schemes,
and where J is an arbitrary directed set, and the maps in F-Sch from such an object to another
object Y = {Yi}i∈I are given by

HomF-Sch(X,Y ) = lim←−
I

(
lim−→
J

HomZar-F-Sch(Xj , Yi)
)
, (6.8.1)

i.e. the maps ϕ : X → Y are given by a collection of maps ϕj
i : Xj → Yi defined for all i ∈ I and for

j � σ(i) sufficiently large (depending on i), and are inductive in the index j and projective in the
index i: for all i ∈ I, and for j1 � j2 sufficiently large in J ,

ϕj1
i = ϕj2

i ◦ πj1
j2

(here πj1
j2

: Xj1 → Xj2); (6.8.2)

and for all i1 � i2 in I, and for j sufficiently large in J ,

πi1
i2
◦ ϕj

i1
= ϕj

i2
(here πi1

i2
: Yi1 → Yi2). (6.8.3)

The maps {ϕj
i : X → Y } and {ϕ̃j

i : X → Y } are considered equivalent if for all i ∈ I, and for j
sufficiently large in J , ϕj

i = ϕ̃j
i . The identity map of {Xj} is represented by {πj1

j2
: Xj1 → Xj2}j1�j2 .

The composition of ϕ = {ϕj
i}j�σ(i) : {Xj}J → {Yi}I with ϕ̃ = {ϕ̃i

k}i�σ̃(k) : {Yi}I → {Zk}K is given
by

ϕ̃ ◦ ϕ = {ϕ̃i
k ◦ ϕj

i}j�σ(σ̃(k)). (6.8.4)
Note that there is always a map (with Hom in Loc-F-Rings-Sp)

lim−→
J

Hom(Xj , Yi)→ Hom
(

lim←−
J

Xj , Yi

)
, (6.8.5)

and by definition

lim←−
I

Hom
(

lim←−
J

Xj, Yi

)
∼−→ Hom

(
lim←−
J

Xj , lim←−
I

Yi

)
. (6.8.6)

Composing (6.8.5) and (6.8.6) we obtain

L : lim←−
I

(
lim−→
J

Hom(Xj , Yi)
)
→ Hom

(
lim←−
J

Xj , lim←−
I

Yi

)
, (6.8.7)
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i.e. a functor

L : F-Sch→ Loc-F-Rings-Sp, L({Xj}J) = lim←−
J

Xj . (6.8.8)

Example 6.9. The compactified SpecZ. Fix a square-free integer N � 2. Let AN = F(Z[1/N ])∩OQ,η;
it is the F-ring with

(AN )Y,X =
{
a ∈ F

(
Z
[

1
N

])
Y,X

: |a|η � 1
}
, (6.9.1)

the Y ×X matrices with values in Z[1/N ] and with (real) operator norm bounded by 1. The map
j : AN → F(Z[1/N ]) defines the basic open set

j∗ : Spec Z
[

1
N

]
∼= Spec F

(
Z
[

1
N

])
∼= DAN

(
1
N

)
↪→ SpecAN . (6.9.2)

Indeed, it is easy to check that the map (AN )1/N → F(Z[1/N ]) is an isomorphism of F-rings,
where (AN )1/N is the localization of AN with respect to 1/N ∈ (AN )[1],[1]: every matrix a ∈
F(Z[1/N ])Y,X can be written as a = (a/Nk)/(1/Nk), and for k sufficiently large a/Nk ∈ (AN )Y,X .
The space SpecAN contains also the closed point

η = i∗(mQ,η) = {a ∈ (AN )[1],[1] | |a|η < 1} = Z
[

1
N

]
∩ (−1, 1), (6.9.3)

and it is the ‘real prime’ given by i : AN ↪→ OQ,η. But note that η is ‘very close’: the only open
set containing η is the hole space, since for any non-trivial basic open set DAN

(f), say f = p/Nk,
p prime not dividing N and p < Nk, we have

(AN )f = F
(

Z
[

1
N · p

])
(indeed, every matrix a ∈ F(Z[1/N ·p])Y,X can be written as a = (p/Nk)l ·a/f l, and for l sufficiently
large (p/Nk)l · a ∈ (AN )Y,X), and so

DAN
(f) = Spec(AN )f = Spec F

(
Z
[

1
N · p

])
∼= Spec Z

[
1

N · p
]

(6.9.4)

does not contain η. Further, η contains all the primes of AN , it is the (unique) maximal H-ideal of
AN , and AN is a local F-ring (of ‘Krull’ dimension 2).

Let XN be the Zariski F-scheme obtained by gluing SpecAN with Spec F(Z) along the common
open set SpecF(Z[1/N ]) cf. Proposition 6.5 or [Hart77, p. 75, Example 2.3.5]. The open sets of
XN are the open sets of Spec Z, and sets of the form U ∪ {η} with Spec Z[1/N ] ⊆ U ⊆ Spec Z.
For an open set U = SpecZ[1/M ] ⊆ SpecZ, we have OXN

(U) = F(Z[1/M ]), and for such a set
U = SpecZ[1/M ] with M dividing N , we have OXN

(U ∪ {η}) = AM .
For N dividing M we have commutative diagrams

AN
� 
 ��

�


��

AM�


��

SpecAN SpecAM
��

F
(
Z
[

1
N

]) � 
 �� F
(
Z
[

1
M

])
Spec F

(
Z
[

1
N

])��

��

Spec F
(
Z
[

1
M

])
� ���

��

��

(6.9.5)

and we obtain a map πM
N : XM → XN . Note that πM

N is a bijection on points, and further
(πM

N )∗OXM
= OXN

, i.e. (πM
N )� is the identity, but there are more open sets in XM than there

are in XN . We need all these open sets, for all N , and so we pass to the inverse limit. The ‘com-
pactified Spec Z’ is the F-scheme given by the inverse system {XN}, we denote it by SpecZ. The
set of indices is the set of square-free integers N � 2, and the order relation is that of divisibility.
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Note that the F-locally-ringed space L(SpecZ) = lim←−N
XN has for points SpecZ ∪ {η}, with open

sets of the form U or U ∪ {η} with U an arbitrary open set of SpecZ (hence SpecZ is of ‘Krull’
dimension 1). Note that each XN is compact, cf. Proposition 4.12, and hence L(SpecZ) is com-
pact. Furthermore, the local F-ringOSpecZ,η is just OQ,η (while the local F-ring OXN ,η is only AN ).
For an open set U = Spec Z[1/N ] we have

OSpecZ(U) = F
(

Z
[

1
N

])
and

OSpecZ(U ∪ {η}) = AN .

The global sections OSpecZ(SpecZ) are the F-ring F〈{±1} ∪ {0}〉.

Example 6.10. Similarly for a number field K, with ring of integers OK , and with real primes
{ηi}, i = 1, . . . , r(= rR + rC), let AN,i = F(OK [1/N ]) ∩ OK,ηi be the F-ring with

(AN,i)Y,X =
{
a ∈ F

(
OK

[
1
N

])
: |a|ηi � 1

}
,

the Y ×X matrices with values in OK [1/N ] and with ηi-operator norm bounded by 1. Let XN be the
Zariski F-scheme obtained by gluing {SpecAN,i}i=1,...,r and {Spec F(OK)} along the common open
set SpecF(OK [1/N ]). For N dividing M we obtain a map πM

N : XM → XN , with πM
N |Spec AM,i

induced by AN,i ⊆ AM,i. The inverse system {XN} is the F-scheme SpecOK , the compactification
of SpecOK . The space L(SpecOK) = lim←−N

XN has for points SpecOK∪{ηi}i�r, and open sets are of
the form U ∪{ηi}i∈I with U open in SpecOK , and I ⊆ {1, . . . , r} a subset (and hence it is of ‘Krull’
dimension 1). The local F-ring OSpecOK ,ηi

is the ring OK,ηi . The global sections OSpecOK
(SpecOK)

are the F-ring F〈µK ∪ {0}〉, µK the group of roots of unity in O∗
K .

7. Fibred products

We show that the category of F-rings has fibred sums, and we deduce that the category of (Zariski)
F-schemes has fibred products.

7.1 Fibred sums of F-rings

Theorem 7.1. The category F-Rings has fibred sums: given homomorphism of F-rings ϕ0 : A→ B0,
ϕ1 : A→ B1, there exists an F-ring B0 �A B

1, and homomorphisms ψi : Bi → B0 �A B
1, i = 0, 1,

such that ψ0 ◦ ϕ0 = ψ1 ◦ ϕ1 and for any F-ring C one has

HomF-Ring(B0 �A B
1, C) = HomF-Ring(B0, C)

∏
HomF-Ring(A,C)

HomF-Ring(B1, C),

f �→ (f ◦ ψ0, f ◦ ψ1).

So given homomorphisms f0 : B0 → C, f1 : B1 → C, such that f0 ◦ ϕ0 = f1 ◦ ϕ1, there exists a
unique homomorphism f0 � f1 : B0 �A B

1 → C, such that (f0 � f1) ◦ ψi = f i.

Proof. For X,Y ∈ |F|, denote by BY,X the set of all sequences (bl, bl−1, . . . , bδ), where δ = 0, 1,
l � δ, b2j ∈ B0, b2j+1 ∈ B1, the range of bj is the domain of bj+1, the range of bl is Y , the
domain of bδ is X. On BY,X let ∼ denote the equivalence relation generated by the following
relations (7.1.1), (7.1.2) and (7.1.3):

(. . . , bj+1 ◦ ϕj+1(a), bj , . . . ) ∼ (. . . , bj+1, ϕ
j(a) ◦ bj, . . . ), a ∈ A, (7.1.1)
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where we write ϕj for ϕj(mod 2);

(. . . , bj+1, f, bj−1, . . . ) ∼ (. . . , bj+1 ◦ f ◦ bj−1, . . . ), f ∈ F, (7.1.2)

and these relations include also the boundary cases

(f, bl, . . . ) ∼ (f ◦ bl, . . . ), (. . . , bδ , f) ∼ (. . . , bδ ◦ f), f ∈ F;

and

(. . . , bj+1 ◦ ((b⊗ idY )⊕ id
Y
), (idX ⊗ bj)⊕ bj, bj−1, . . . )

∼ (. . . , bj+1, (idY ⊗ bj)⊕ bj, ((b ⊗ idX)⊕ id
X

) ◦ bj−1, . . . ), for b ∈ Bj+1
Y,X , bj ∈ Bj

Y ,X
, bj ∈ Bj

Y ,X
.

(7.1.3)

Write BY,X = BY,X/∼ for the collection of equivalence classes,

B =
∐

Y,X∈|F|
BY,X .

We are going to prove that B will give the required B0 �A B
1. We define composition ◦ on B

BZ,Y ×BY,X → BZ,X

by

(b′l′ , . . . , b
′
δ′)/∼ ◦ (bl, . . . , bδ)/∼

def=

{
(b′l′ , . . . , b

′
δ′ , bl, . . . , bδ)/∼, δ′ �≡ l (mod 2),

(b′l′ , . . . , b
′
δ′ ◦ bl, . . . , bδ)/∼, δ′ ≡ l (mod 2).

(7.1.4)

This is well defined, independent of the chosen representatives: we have to show that changing
representatives to equivalent ones on the left of (7.1.4) will give an equivalent result on the right
of (7.1.4). Since elements of BY,X are equivalent if and only if they are connected by a ‘path’ made
up of the ‘moves’ (7.1.1) or (7.1.2) or (7.1.3), it is enough to check that changing representatives
by one of the three moves (7.1.1) or (7.1.2) or (7.1.3) gives equivalent results. This follows by
associativity of ◦. It then follows that ◦ is associative, has identities, and B is a category. We have
functors ψi : Bi → B, ψi(bi) = (bi)/∼ for bi ∈ Bi, and ψ0 ◦ ϕ0 = ψ1 ◦ ϕ1 since by (7.1.1), (7.1.2)

(ϕ0(a)) ∼ (ϕ0(a), id) ∼ (id, ϕ1(a)) ∼ (ϕ1(a)).

Since the zero map 0Y,X is in F, and 0Y,X composed with anything gives again a zero map, we see
that [0] is the initial and final object of B.

We next define the direct sum of two elements (b′l′ , . . . , b
′
δ′)/∼, (bl, . . . , bδ)/∼ of B. First note that

by adding identities we may assume that l′ = l, δ′ = δ. We can then define:

(b′l, . . . , b
′
δ)/∼ ⊕ (bl, . . . , bδ)/∼

def= (b′l ⊕ bl, . . . , b′δ ⊕ bδ)/∼. (7.1.5)

We claim this is well defined, independent of the chosen representatives, and again it is enough
to show that if we change the representative (bl, . . . , bδ) by one of the three moves (7.1.1), (7.1.2),
(7.1.3), we get equivalent results.

For the move (7.1.1): since ϕj+1(id) = id we have

(. . . , b′j+1 ⊕ (bj+1 ◦ ϕj+1(a)), b′j ⊕ bj, . . . )
= (. . . , (b′j+1 ⊕ bj+1) ◦ ϕj+1(id ⊕ a), b′j ⊕ bj, . . . )
(7.1.1)∼ (. . . , b′j+1 ⊕ bj+1, ϕ

j(id⊕ a) ◦ (b′j ⊕ bj), . . . )
= (. . . , b′j+1 ⊕ bj+1, b

′
j ⊕ (ϕj(a) ◦ bj), . . . ).
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For the move (7.1.2):

(b′l ⊕ id, . . . , b′j ⊕ bj+2, b
′
j−1 ⊕ (bj+1 ◦ f ◦ bj−1), . . . )

= (. . . , b′j ⊕ bj+2, (id ⊕ bj+1) ◦ (id ⊕ f) ◦ (b′j−1 ⊕ bj−1), . . . )
(7.1.2)∼ (b′l ⊕ id, . . . , b′j ⊕ bj+2, id ⊕ bj+1, id ⊕ f, b′j−1 ⊕ bj−1, . . . )

= (b′l ⊕ id, . . . , (id ⊕ bj+3) ◦ (b′j+1 ⊕ id), (id ⊕ bj+2) ◦ (b′j ⊕ id), id⊕ bj+1, id⊕ f, b′j−1 ⊕ bj−1, . . . )
(7.1.3)∼ (b′l ⊕ id, . . . , (id⊕ bj+3) ◦ (b′j+1 ⊕ id), id ⊕ bj+2, id⊕ bj+1, b

′
j ⊕ f, b′j−1 ⊕ bj−1, . . . )

(7.1.3)∼ (b′l ⊕ id, . . . , id⊕ bj+3, id⊕ bj+2, b
′
j+1 ⊕ bj+1, b

′
j ⊕ f, b′j−1 ⊕ bj−1, . . . )

(7.1.3)∼
· · · (7.1.3)∼ (b′l ⊕ bl, . . . , b′j+1 ⊕ bj+1, b

′
j ⊕ f, b′j−1 ⊕ bj−1, . . . ).

For the move (7.1.3):

(. . . , b′j+1 ⊕ (bj+1 ◦ ((b⊗ id)⊕ id)), b′j ⊕ ((id ⊗ bj)⊕ bj), . . . )
= (. . . , (b′j+1 ⊕ bj+1) ◦ (id⊕ (b⊗ id)⊕ id), b′j ⊕ (id⊗ bj)⊕ bj , b′j−1 ⊕ bj−1, . . . )
(7.1.3)∼ (. . . , b′j+1 ⊕ bj+1, b

′
j ⊕ (id⊗ bj)⊕ bj , (id⊕ (b⊗ id)⊕ id) ◦ (b′j−1 ⊕ bj−1), . . . )

= (. . . , b′j+1 ⊕ bj+1, b
′
j ⊕ ((id⊗ bj)⊕ bj), b′j−1 ⊕ ((b⊗ id)⊕ id) ◦ bj−1, . . . ).

Similarly, to define the tensor product of (b′l′ , . . . , b
′
δ′)/∼ and (bl, . . . , bδ)/∼, we may assume

l = l′, δ = δ′, and we let

(b′l, . . . , b
′
δ)/∼ ⊗ (bl, . . . , bδ)/∼

def= (b′l ⊗ bl, . . . , b′δ ⊗ bδ)/∼. (7.1.6)

Again this is well defined: changing the representatives (bl, . . . , bδ) by one of the moves (7.1.1),
(7.1.2), (7.1.3) does not change the result. The proofs for (7.1.1) and (7.1.2) are exactly as for the
direct sum with ⊕ replaced everywhere by ⊗.

The proof for move (7.1.3) is similar:

(. . . , b′j+1 ⊗ (bj+1 ◦ ((b⊗ id)⊕ id)), b′j ⊗ ((id⊗ bj)⊕ bj), b′j−1 ⊗ bj−1)

= (. . . , (b′j+1 ⊗ bj+1) ◦ ((id⊗ b⊗ id)⊕ (id ⊗ id)), (b′j ⊗ id⊗ bj)⊕ (b′j ⊗ bj), b′j−1 ⊗ bj−1, . . . )
(7.1.3)∼ (. . . , b′j+1 ⊗ bj+1, (b′j ⊗ id⊗ bj)⊕ (b′j ⊗ bj), ((id ⊗ b⊗ id)⊕ (id⊗ id)) ◦ (b′j−1 ⊗ bj−1), . . . )

= (. . . , b′j+1 ⊗ bj+1, b
′
j ⊗ ((id ⊗ bj)⊕ bj), b′j−1 ⊗ (((b⊗ id)⊕ id) ◦ bj−1), . . . ).

It is now straightforward to check that B is an F-ring, ψi : Bi → B are homomorphisms of
F-rings. If f i : Bi → C are homomorphisms of F-rings such that f0 ◦ ϕ0 = f1 ◦ ϕ1, we define
f0 � f1 : B→ C by

f0 � f1((bl, . . . , bδ)/∼) = f l(bl) ◦ · · · ◦ f δ(bδ), f j = f j(mod 2). (7.1.7)

It is well defined: changing the representatives (bl, . . . , bδ) by one of the moves (7.1.1), (7.1.2), (7.1.3)
does not change the result of (7.1.7). For example, f0 � f1 applied to both sides of (7.1.3) gives the
same result

· · · ◦ f j+1(bj+1) ◦ [(f j+1(b)⊗ f j(bj))⊕ f j(bj)] ◦ f j−1(bj−1) ◦ · · · .
The map f0 � f1 is a homomorphism of F-rings, and clearly it is the unique homomorphism such
that

(f0 � f1) ◦ ψi = f i, i.e. f0 � f1((bi)/∼) = f i(bi) for bi ∈ Bi.
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We write B0 �A B
1 for B, bl � · · ·� bδ for the equivalence class (bl . . . , bδ)/∼. Thus the arithmetic

in B0 �A B
1 is governed by the three moves,

(i) · · · (bj+1 ◦ ϕj+1(a)) � bj · · · = · · · bj+1 � (ϕj(a) ◦ bj) · · · a ∈ A,
(ii) · · · bj+1 � f � bj−1 · · · = · · ·� (bj+1 ◦ f ◦ bj−1) � · · · f ∈ F, (7.1.8)

(iii) · · · bj+1◦((b⊗id)⊕id)�((id⊗bj)⊕bj)�bj−1 · · · = · · · bj+1�((id⊗bj)⊕bj)�((b⊗id)⊕id)◦bj−1 · · · .
This completes the proof of Theorem 7.1.

Remark 7.1.9. Note that we can consider Bi as an A-module via ϕi, hence we have the tensor
product B0 ⊗A B

1; cf. Lemma 3.20. We have a map

B0 ⊗A B
1 → B0 �A B

1, b0 ⊗ b1 �→ ψ0(b0)⊗ ψ1(b1) = (b0 ⊗ id) � (id ⊗ b1),
but unlike the case of commutative rings this is not an isomorphism.

Remark 7.1.10. A similar construction gives the fibred sum of F±-rings or F-rings. If the F or F±

or F-rings A,B0, B1 have compatible involutions, we get a well-defined involution on B0 �B1 by

((bl, . . . , bδ)/∼)t = (btδ, . . . , b
t
l )/∼

(note that the moves (7.1.1), (7.1.2), (7.1.3) are all symmetric with respect to (· · · )t ). Hence also
the categories F±-Rings,F±,t-Rings,F-Rings,Ft-Rings have fibred sums. Similarly if A,B0, B1 have
compatible Fλ-structure, we get such a structure on B0 �B1 via

∧d((bl, . . . , bδ)/∼) = (∧dbl, . . . ∧d bδ)/∼.

7.2 Fibred product of F-schemes, the case of Spec Z× Spec Z
As a corollary of Theorem 7.1 we get the following results.

Theorem 7.2. The category Zar-F-Sch of Zariski F-schemes has fibred products. Given maps in
Zar-F-Sch f0 : X0 → Y, f1 : X1 → Y , there exist a Zariski F-scheme

X0
∏
Y

X1

and maps

πj : X0
∏
Y

X1 → Xj , j = 0, 1,

such that f0◦π0 = f1◦π1, and for any Zariski F-scheme Z, and any maps gj : Z → Xj , j = 0, 1, such
that f0 ◦ g0 = f1 ◦ g1 there exists a unique map

g0 Π g1 : Z → X0
∏
Y

X1

with πj ◦ (g0 Π g1) = gj for j = 0, 1.

Proof. Write Y =
⋃

i Spec(Ai), (f j)−1(Spec(Ai)) =
⋃

k Spec(Bj
i,k), j = 0, 1. Then X0

∏
Y X

1 is
obtained by gluing {Spec(B0

i,k0
�Ai B

1
i,k1

)}i,k0,k1. For details, see, e.g., [Hart77, Theorem 3.3, p. 87].

As a corollary we obtain the following theorem.

Theorem 7.3. The category F-Sch of F-schemes has fibred products.

Proof. Given maps as in Definition 6.8,

ϕ = {ϕj
i}j�σ(i) : X = {Xj}J → Y = {Yi}I , ϕ′ = {ϕ′j′

i }j′�σ′(i) : X ′ = {X ′
j′}J ′ → Y,
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the fibred product in F-Sch is clearly given by the inverse system {Xj ×Yi X
′
j′}, the indexing set is

{(j, j′, i) ∈ J × J ′ × I | j � σ(i), j′ � σ′(i)}.

As an important example we have the arithmetical surface compactified

Spec Z×SpecF Spec Z,

which is represented by {XN ×Spec F XM} with indexing set {(N,M) ∈ N × N|N,M square-free},
and with

XN = Spec F(Z)
∐

Spec(F(Z[1/N ]))

Spec
(

F
(

Z
[

1
N

])
∩ OQ,η

)
,

as in Example 6.9. The F-scheme

SpecZ×Spec F SpecZ

contains the open dense subset (which is a Zariski F-scheme):

SpecF(Z)×SpecF Spec F(Z) = SpecF(Z) �F F(Z).

A basis for neighborhoods of (p, η) is given by

F
(

Z
[

1
N

])
�F AM ,

where p does not divide N , and M is arbitrary (for the definition of AM see Example 6.9).
Similarly, for any number field K we have the compactified surface

SpecOK ×SpecF SpecOK .

It contains the open dense subset

Spec F(OK) �F F(OK).

8. Monoids

Since we defined F-rings to be categories, and therefore have the operation of composition ◦, the
resulting product � (actually the sum in F-rings) is very complicated, resembling amalgams of
groups, and it is difficult to calculate for specific examples. Unlike the classical theory, it does not
reduce to the tensor product ⊗, cf. Remark 7.1.9. Similarly, the base change functor for a map
of F-rings ϕ : A → B,ϕ∗ : A-Mod → B-Mod, ϕ∗M = MB , is complicated, and again does not
reduce to the tensor product B ⊗A M , as it does in the classical theory, cf. Remark 3.23.11. In
this section we shall give a softer theory that overcomes these difficulties by replacing everywhere
F-rings by F -monoids, which have composition ◦ only with elements of a fixed base F-ring F . Since
the constructions are repetitions of the constructions of earlier sections we will be more brief. We
repeat the story up to the definition of Zariski F -monoid scheme. One can define F -monoid schemes
to be the category of pro-objects of Zariski F -monoid-schemes, as we did in the context of F-rings,
cf. Definition 6.8, but one does not do it for several reasons. For instance, the basic Example 6.9
of the compactification of SpecZ, and SpecOK , does not go through in the context of F -monoids.
As explained at the beginning of § 1, working with Spec Z = SpecZ ∪ {η} dictates taking F = F,
and since F does not have the vector (1, 1) addition is lost, cf. (2.13.4): the functor A �→ F(A),
from Rings to F-monoids, is not fully faithful (compare with Example 1 of § 2.3), and when we
view F(A) as F-monoid SpecF(A) does not reduce to SpecA. Thus for example viewing F(Z) as
F-monoid its spectrum has the cardinality of the continuum: for any set S of primes we have the
prime pS ∈ Spec F(Z), pS =

⋃
p∈S p · Z.
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On the other hand, using the localized version (Definition 8.20) of OX -monoids, one can use
OX-monoids to define the flat (and étale) Grothendieck topologies on a given (Zariski) F-scheme;
see [TV05].

8.1 F-monoids
Definition 8.1. An F -monoid is a monoid object in the category of F -modules.

Thus an F -monoid A = {AY,X}Y,X∈|F| has the operations

F -composition:FY ′,Y ×AY,X × FX,X′ → AY ′,X′ , (f, a, f ′) �→ f ◦ a ◦ f ′, (8.1.1)
F -tensor product:FY0,X0 ×AY1,X1 → AY0⊗Y1,X0⊗X1, (f, a) �→ f ⊗ a, (8.1.2)
direct sum:AY0,X0 ×AY1,X1 → AY0⊕Y1,X0⊕X1, (a0, a1) �→ a0 ⊕ a1, (8.1.3)

satisfying the F -module axioms (3.1.4)–(3.1.15), together with the additional operation of ‘tensor’
product:

AY0,X0 ×AY1,X1 → AY0⊗Y1,X0⊗X1, (a0, a1) �→ a0 ⊗ a1. (8.1.4)

This operation is bilinear over F :

(a0 ⊕ a′0)⊗ a1 = (a0 ⊗ a1)⊕ (a′0 ⊗ a1), a0 ⊗ (a1 ⊕ a′1) = (a0 ⊗ a1)⊕ (a0 ⊗ a′1), ai, a
′
i ∈ A,

(8.1.5)

(f0 ◦ a0 ◦ f ′0)⊗ (f1 ◦ a1 ◦ f ′1) = (f0 ⊗ f1) ◦ (a0 ⊗ a1) ◦ (f ′0 ⊗ f ′1), fi, f
′
i ∈ F, a ∈ A, (8.1.6)

(f ⊗ a0)⊗ a1 = f ⊗ (a0 ⊗ a1) = a0 ⊗ (f ⊗ a1), f ∈ F, ai ∈ A. (8.1.7)

It is also associative:
a0 ⊗ (a1 ⊗ a2) = (a0 ⊗ a1)⊗ a2, ai ∈ A, (8.1.8)

commutative:
a0 ⊗ a1 = a1 ⊗ a0, ai ∈ A, (8.1.9)

and unital:

there exists (a unique) 1 = 1A ∈ A[1],[1] with 1⊗ a = a, for all a ∈ A. (8.1.10)

A map of F -monoids ϕ : A→ A′ is a map of F -modules respecting ⊗ and 1, i.e. we have

ϕY,X : AY,X → A′
Y,X , Y,X ∈ |F|, (8.2)

satisfying

ϕ(f ◦ a ◦ f ′) = f ◦ ϕ(a) ◦ f ′, f, f ′ ∈ F, a ∈ A, (8.2.1)
ϕ(f ⊗ a) = f ⊗ ϕ(a), f ∈ F, a ∈ A, (8.2.2)
ϕ(a0 ⊕ a1) = ϕ(a0)⊕ ϕ(a1), ai ∈ A, (8.2.3)
ϕ(a0 ⊗ a1) = ϕ(a0)⊗ ϕ(a1), ai ∈ A, (8.2.4)

ϕ(1A) = 1A′ . (8.2.5)

Thus we have the category F -Mon of F -monoids; it is a subcategory of F -Mod. The F -module
F itself, considered as an F -monoid, is the initial object of F -Mon: for any F -monoid A we have
the map F → A, f �→ f ⊗ 1A.

All our examples of F-rings are of course F-monoids. Note that the functor from commutative
rings to F-monoids, A �→ F(A), is faithful, but is not fully faithful: there are more maps F(A)→ F(B)
in F-Mon than there are maps A → B in Ring. On the other hand, we can consider this functor
as taking values in F(Z)-Mon, or S-Mon, or Sop-Mon, cf. Example 3 (2.15.1), in which case it is
fully faithful.
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The category of F -monoids has fibred product A0
∏

B A
1, arbitrary products

∏
iA

i, and
arbitrary inverse limits lim←−i

Ai.

Definition 8.3. For an F -monoid A, an equivalence ideal E is a collection of subsets

E =
∐

Y,X∈|F|
EY,X , EY,X ⊂ AY,X ×AY,X , (8.3.1)

such that EY,X is an equivalence relation on AY,X , and E is an A-submodule of A
∏
A, i.e. it is an

F -submodule:

(a0, a1) ∈ EY,X , f ∈ FY ′,Y , f ′ ∈ FX,X′ ⇒ (f ◦ a0 ◦ f ′, f ◦ a1 ◦ f ′) ∈ EY ′,X′ , (8.3.2)
(a, a′) ∈ EY,X , f ∈ FY0,X0 ⇒ (f ⊗ a, f ⊗ a′) ∈ EY0⊗Y,X0⊗X , (8.3.3)

(a0, a
′
0) ∈ EY0,X0, (a1, a

′
1) ∈ EY1,X1 ⇒ (a0 ⊕ a1, a

′
0 ⊕ a′1) ∈ EY0⊕Y1,X0⊕X1, (8.3.4)

and moreover it is closed under A-tensor product:

(a, a′) ∈ EY,X , a0 ∈ AY0,X0 ⇒ (a0 ⊗ a, a0 ⊗ a′) ∈ EY0⊗Y,X0⊗X . (8.3.5)

(Note that (8.3.3) follows from (8.3.5) by taking a0 = f ⊗ 1A.)
Given an equivalence ideal E of A we can form the quotient

A/E =
∐

Y,X∈|F|
AY,X/EY,X ,

which has the structure of F -monoid such that the canonical projection π : A → A/E is a homo-
morphism of F -monoids. For a map ϕ : A → B in F -Mon we have the equivalence ideal of A,
KER(ϕ) =

∐
Y,X KER(ϕ)Y,X ,

KER(ϕ)Y,X = {(a, a′) ∈ AY,X ×AY,X | ϕ(a) = ϕ(a′)}, (8.4.1)

and ϕ factorizes as epimorphism π followed by an injection ϕ, as in the diagram.

A
ϕ ��

π 

 

���
���

���
� B

A/KER(ϕ)

� � ϕ

�����������
(8.4.2)

8.2 Modules over an F-monoid
Definition 8.5. For an F -monoid A, an A-module M is an F -module together with maps

AY0,X0 ×MY1,X1 →MY0⊗Y1,X0⊗X1 , (a,m) �→ a⊗m,
which are bilinear over F : for f, fi, f

′
i ∈ F, a, ai ∈ A,m,mi ∈M ,

(f1 ◦ a ◦ f ′1)⊗ (f2 ◦m ◦ f ′2) = (f1 ⊗ f2) ◦ (a⊗m) ◦ (f ′1 ⊗ f ′2), (8.5.1)
(f ⊗ a)⊗m = f ⊗ (a⊗m) = a⊗ (f ⊗m), (8.5.2)

(a0 ⊕ a1)⊗m = (a0 ⊗m)⊕ (a1 ⊗m), a⊗ (m0 ⊕m1) = (a⊗m0)⊕ (a⊗m1), (8.5.3)

associative:

a0 ⊗ (a1 ⊗m) = (a0 ⊗ a1)⊗m, (8.5.4)

and unital:

1A ⊗m = m. (8.5.5)

(Note that the first equality in (8.5.2) follows from (8.5.4) and (8.5.5) by taking a0 = f ⊗ 1A.)
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The above defines a ‘left’ A-module; we can similarly define a ‘right’ A-module, but these notions
are equivalent: any left A-module M can be made into a right A-module by putting

m⊗ a def= c∗W,Y ◦ (a⊗m) ◦ c∗X,Z for m ∈MY,X , a ∈ AW,Z(c∗ as in (1.16)). (8.5.6)

Similarly any right A-module can be made into a left A-module; hence we shall not distinguish
between left and right A-modules.

Definition 8.6. A map of A-modules ϕ : M → M ′ is a map of F -modules respecting ⊗, i.e. we
have

ϕY,X : MY,X →M ′
Y,X , Y,X ∈ |F|, (8.6.1)

ϕ(f ◦m ◦ f ′) = f ◦ ϕ(m) ◦ f ′, f, f ′ ∈ F, (8.6.2)
ϕ(f ⊗m) = f ⊗ ϕ(m), f ∈ F, (8.6.3)

ϕ(m0 ⊕m1) = ϕ(m0)⊕ ϕ(m1), mi ∈M, (8.6.4)
ϕ(a ⊗m) = a⊗ ϕ(m), a ∈ A. (8.6.5)

(Note that (8.6.3) follows from (8.6.5).)
Thus we have a category AF -Mod of A-modules; it is a subcategory of F -Mod. Note that if

A is an F-ring, we can consider AF := A as an F-monoid, and A-Mod ⊆ AF-Mod. On the other
hand we can consider AA := A as an A-monoid, and then A-Mod = AA-Mod. The category of
A-modules has the initial and final object 0 = {0Y,X}Y,X∈|F|. One defines the notion of an
A-submodule M0 ⊆M in the evident way; an A-submodule of A is called an ideal.

The category AF -Mod has fibred product(
M0
∏
M

M1

)
Y,X

= {(m0,m1) ∈M0
Y,X ×M1

Y,X | ϕ0(m0) = ϕ1(m1)} for ϕi : M i →M ; (8.7.1)

it has arbitrary products
∏

iM
i, and arbitrary inverse limits lim←−i

M i,

lim←−
i

M i =
{

(mi) ∈
∏

i

M i | ϕi′,i(mi) = mi′

}
. (8.7.2)

For an F -monoid A, and A-module M , an equivalence A-module of M is an A-submodule E of
M
∏
M , such that EY,X is an equivalence relation on MY,X . We can form the quotient

M/E =
∐

Y,X∈|F|
(M/E)Y,X , (M/E)Y,X = MY,X/EY,X , (8.8.1)

and it has the structure of an A-module such that the canonical projection π : M → M/E is a
homomorphism of A-modules. For a map ϕ : M → N in A-Mod we have the equivalence A-module
of M , KER(ϕ) = M

∏
N M , and ϕ factorizes as an epimorphism π followed by an injection ϕ, as in

the diagram.

M
ϕ ��

π 

 

��������� N

M/KER(ϕ)

� � ϕ

������������
(8.8.2)

For a map ϕ : M → N in A-Mod we have the A-submodule M ,

ϕ−1(0) = {m ∈M | ϕ(m) = 0}, (8.9.1)

which is the kernel of ϕ in A-Mod; we have also the A-submodule of N ,

ϕ(M) = {ϕ(m) | m ∈M}. (8.9.2)
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For an equivalence A-module E of M , we let Z(E) denote π−1(0), π : M →M/E the projection

Z(E) = π−1(0) = {m ∈M | (m, 0) ∈ E}. (8.9.3)

For an A-submodule M0 ⊆ M we let E(M0) be the equivalence A-module of M generated by
M0 × {0}. We write M/M0 for M/E(M0). For a map ϕ : M → N in A-Mod we have its cokernel

Coker ϕ = N/ϕ(M) = N/E(ϕ(M)). (8.9.4)

We have for A-submodules Mi of M , and equivalence A-modules Ei of M ,

M0 ⊆M1 ⇒ E(M0) ⊆ E(M1), (8.10.1)
E0 ⊆ E1 ⇒ Z(E0) ⊆ Z(E1), (8.10.2)

M0 ⊆ ZE(M0), (8.10.3)
E0 ⊇ EZ(E0), (8.10.4)

E(M0) = EZE(M0), (8.10.5)
Z(E0) = ZEZ(E0). (8.10.6)

We have a bijection between the set{
Z(E0)

∣∣∣ E0 ⊆M∏M
}
≡ {M0 ⊆M |M0 = ZE(M0)}

and the set

{E(M0) |M0 ⊆M} ≡ {E0 | E0 = EZ(E0)}
given by

M0 �−→ E(M0), Z(E0)←−� E0. (8.10.7)

Lemma 3.13 and its Corollary 3.14 remain valid: the equivalence A-module of M generated by
the A-submodule M0 ⊆M , E = E(M0), can be described explicitly:

EY,X = {(m,m′) ∈MY,X ×MY,X | ∃ path m = m0,m1, . . . ,ml = m′,
with {mj,mj+1} of the form {fj ◦ (m̃j ⊕ nj) ◦ f ′j, fj ◦ (m̃j ⊕ 0) ◦ f ′j},
fj , f

′
j ∈ F, m̃j ∈M,nj ∈M0}. (8.11.1)

We have M0 = ZE(M0) if and only if for all f, f ′ ∈ F,m ∈M,m0 ∈M0,

f ◦ (m⊕m0) ◦ f ′ ∈M0 ⇔ f ◦ (m⊕ 0) ◦ f ′ ∈M0. (8.11.2)

For A-submodules Mi of M , we have their intersection
⋂

iMi ⊆M , and their sum∑
Mi =

{
f ◦
(⊕

i

mi

)
◦ f ′
∣∣∣∣ f, f ′ ∈ F,mi ∈Mi

}
. (8.12.1)

The A-submodule generated by a subset {mi}i∈I ⊆M is described explicitly as∑
Ami

def=
{
f ◦
(⊕

i

(ai ⊗mi)
)
◦ f ′
∣∣∣∣ f, f ′ ∈ F, ai ∈ A

}
. (8.12.2)

Given an A-module M , and an ideal a ⊆ A, we have the A-submodule of M ,

a ·M =
{
f ◦
(⊕

i

(ai ⊗mi)
)
◦ f ′
∣∣∣∣ f, f ′ ∈ F, ai ∈ a

}
. (8.12.3)

Given A-submodules M0,M1 ⊆M , we have the ideal of A,

(M0 : M1) = {a ∈ A | a⊗m ∈M0 ∀m ∈M1}. (8.12.4)
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8.3 Functorial operations on modules
Sums and direct limits. Given a collection of A-modules {Mi}i∈I , we have their sum in the

category A-Mod (cf. Proposition 3.17):(∐
i∈I

Mi

)
Y,X

= {(f, {mi}i∈I0 , f
′) | f ∈ FY,

⊕
i∈I0

Yi
, f ′ ∈ F⊕

i∈I0
Xi,X ,

mi ∈ (Mi)Yi,Xi , I0 ⊆ I a finite subset}/∼. (8.13.1)

Here ∼ is the equivalence relation generated by(
f ◦
(⊕

i∈I0

fi

)
, {mi}i∈I0 ,

(⊕
i∈I0

f ′i

)
◦ f ′
)
∼ (f, {fi ◦mi ◦ f ′i}i∈I0 , f

′),

(f, {mi}i∈I0 , f
′) ∼ (f, {mi}i∈I0 ∪ {id[0]}, f ′).

(8.13.2)

The structure of A-module on
∐

i∈I Mi is defined by:
F -composition

g ◦ (f, {mi}, f ′)/∼ ◦ g′ = (g ◦ f, {mi}, f ′ ◦ g′)/∼ (8.13.3)

sum

(f0, {mi}i∈I0 , f
′
0)/∼ ⊕ (f1, {m′

i}i∈I1 , f
′
1) = (f0 ⊕ f1, {m̃i}i∈I0∪I1, f

′
0 ⊕ f ′1)/∼ (8.13.4)

with m̃i = mi (respectively m′
i,mi ⊕m′

i) for i ∈ I0 \ I1 (respectively i ∈ I1 \ I0, i ∈ I0 ∩ I1); and
A-tensor product

a⊗ (f, {mi}i∈I0, f
′)/∼ = (idW ⊗ f, {a⊗mi}i∈I0 , idZ ⊗ f ′)/∼, a ∈ AW,Z . (8.13.5)

Note that for g ∈ FW,Z :

g ⊗ (f, {mi}i∈I0 , f
′)/∼ = (g ⊗ 1A)⊗ (f, {mi}i∈I0 , f

′)/∼
= (idW ⊗ f, {g ⊗mi}i∈I0 , idZ ⊗ f ′)/∼
= (idW ⊗ f, {(g ⊗ idYi) ◦ (idZ ⊗mi)}i∈I0 , idZ ⊗ f ′)/∼,

or = (idW ⊗ f, {(idW ⊗mi) ◦ (g ⊗ idXi)}i∈I0 , idZ ⊗ f ′)/∼
=
(

(idW ⊗ f) ◦
⊕
I0

(g ⊗ idYi), {idZ ⊗mi}i∈I0 , idZ ⊗ f ′
)/

∼
,

or =
(

idW ⊗ f, {idW ⊗mi}i∈I0 ,
⊕
I0

(g ⊗ idXi) ◦ (idZ ⊗ f ′)
)/

∼

= (g ⊗ f, {idZ ⊗mi}i∈I0, idZ ⊗ f ′)/∼,
or = (idW ⊗ f, {idW ⊗mi}i∈I0 , g ⊗ f ′)/∼. (8.13.6)

We write f ◦ (
⊕

I0
mi) ◦ f ′ for (f, {mi}i∈I0, f

′)/∼.
Given a functor i �→Mi from a small category I to A-Mod, we have the direct limit

lim−→
I

Mi =
∐
I

Mi/E , (8.13.7)

where E is the equivalence A-module of
∐

I Mi generated by

{(idY ◦ (mi) ◦ idX , idY ◦ (ϕji(mi)) ◦ idX) | mi ∈Mi, ϕji : Mi →Mj}. (8.13.8)

In particular we have the push-out M0
∐

M M1 for homomorphisms ψi : M →Mi,

M0

∐
M

M1 =
(
M0

∐
M1

)/
E , (8.13.9)
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where E is the equivalence A-module of M0
∐
M1 generated by

{(f ◦ (ψ0(m)) ◦ f ′, f ◦ (ψ1(m)) ◦ f ′) | m ∈M}. (8.13.10)

Free modules. Let s be a formal symbol representing a map X0 → Y0,X0, Y0 ∈ |F|. The free
A-module on s is

(A · s)Y,X = {(f, a, f ′) | f ∈ FY,W⊕Y0, f
′ ∈ FZ⊕X0,X , a ∈ AW,Z}/∼ (8.14.1)

where ∼ is the equivalence relation generated by

(f ◦ (g ⊗ idY0), a, (g
′ ⊗ idX0) ◦ f ′) ∼ (f, g ◦ a ◦ g′, f ′), f, f ′, g, g′ ∈ F. (8.14.2)

The structure of A-module on A · s is defined by

g ◦ (f, a, f ′)/∼ ◦ g′ = (g ◦ f, a, f ′ ◦ g′)/∼, f, f ′, g, g′ ∈ F, (8.14.3)
(f0, a0, f

′
0)/∼ ⊕ (f1, a1, f

′
1)/∼ = (f0 ⊕ f ′0, a0 ⊕ a1, f

′
0 ⊕ f ′1), fi, f

′
i ∈ F, (8.14.4)

a0 ⊗ (f, a, f ′)/∼ = (idW ⊗ f, a0 ⊗ a, idZ ⊗ f ′)/∼, a0 ∈ AW,Z . (8.14.5)

We write f ◦ (a⊗ s) ◦ f ′ for (f, a, f ′)/∼. Note that for g ∈ FW,Z ,

g ⊗ (f ◦ (a⊗ s) ◦ f ′) def= (g ⊗ 1A)⊗ (f ◦ (a⊗ s) ◦ f ′)
= (idW ⊗ f) ◦ (g ⊗ a⊗ s) ◦ (idZ ⊗ f ′)
= (g ⊗ f) ◦ (idZ ⊗ a⊗ s) ◦ (idZ ⊗ f ′)
= (idW ⊗ f) ◦ (idW ⊗ a⊗ s) ◦ (g ⊗ f ′). (8.14.6)

For a set S = {si}i∈I over |F| × |F|, with si �→ (Yi,Xi), the free A-module on S is the sum

A · S =
∐
i∈I

A · si, (8.14.7)

or explicitly,

(A · S)Y,X = {(f, {ai}i∈I0 , f
′) | f ∈ FY,

⊕
I0

(Wi⊗Yi), f
′ ∈ F⊕

I0
(Zi⊗Xi),X , ai ∈ AWi,Zi , I0 ⊆ I finite}/∼

(8.14.8)

with the equivalence relation ∼ generated by(
f ◦
(⊕

I0

(gi ⊗ idYi)
)
, {ai}i∈I0 ,

(⊕
I0

(g′i ⊗ idXi)
)
◦ f ′
)
∼ (f, {gi ◦ ai ◦ g′i}i∈I0, f

′), f, f ′, gi, g
′
i ∈ F,

(f, {ai}i∈I0 , f
′) ∼ (f, {ai}i∈I0 ∪ {id[0]}, f ′).

(8.14.9)
We write f ◦ (⊕I0

(ai⊗ si))◦ f ′ for (f, {ai}i∈I0 , f
′)/∼. The functor S �→ A · S from sets over |F|× |F|

to A-Mod is left-adjoint to the forgetful functor M �→∐Y,X MY,X ,

HomA-Mod(A · S,M) = {(mi)i∈I | mi ∈MYi,Xi} = HomSets/|F|×|F|(S,M). (8.14.10)

Tensor products. For M0,M1, N ∈ A-Mod, we let BilinA
F (M0,M1;N) denote the maps ϕ :

M0 ×M1 → N satisfying ‘AF -bilinearity’:

ϕ((M0)Y0,X0 × (M1)Y1,X1) ⊆ NY0⊗Y1,X0⊗X1 , (8.15.1)
ϕ(m0 ⊕m′

0,m1) = ϕ(m0,m1)⊕ ϕ(m′
0,m1),

ϕ(m0,m1 ⊕m′
1) = ϕ(m0,m1)⊕ ϕ(m0,m

′
1), mi,m

′
i ∈Mi, (8.15.2)

ϕ(a ⊗m0,m1) = a⊗ ϕ(m0,m1) = ϕ(m0, a⊗m1), mi ∈Mi, a ∈ A, (8.15.3)
ϕ(g0 ◦m0 ◦ g′0, g1 ◦m1 ◦ g′1) = (g0 ⊗ g1) ◦ ϕ(m0,m1) ◦ (g′0 ⊗ g′1) gi, g

′
i ∈ F. (8.15.4)
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The free A-module on the set {ϕ(m0,m1)}mi∈Mi , divided by the equivalence A-module generated
by (8.15.2), (8.15.3), (8.15.4), is denoted by M0 ⊗A/F M1, and the map

M0 ×M1 →M0 ⊗A/F M1, (m0,m1) �→ m0 ⊗m1 = image of ϕ(m0.m1) (8.15.5)

is the universal bilinear map:

BilinA
F (M0,M1;N) = HomA-Mod(M0 ⊗A/F M1, N). (8.15.6)

We can describe M0 ⊗A M1 quite explicitly as

(M0 ⊗A M1)Y,X = {(f, {mi
0}i∈I , {mi

1}i∈I , g) | f ∈ FY,
⊕

I(Y i
0⊗Y i

1 ), g ∈ F⊕I(XI
0⊗Xi

1),X
,

mi
0 ∈ (M0)Y i

0 ,Xi
0
,mi

1 ∈ (M1)Y i
1 ,Xi

1
, I ∈ |F|}/∼ (8.15.7)

where the equivalence relation ∼ is generated by(
f ◦
(⊕

I

(f i
0 ⊗ f i

1)
)
, {mi

0}I , {mi
1}I ,
(⊕

I

(gi
0 ⊗ gi

1)
)
◦ g
)

∼ (f, {f i
0 ◦mi

0 ◦ gi
0}I , {f i

1 ◦mi
1 ◦ gi

1}I , g), f i
j , g

i
j ∈ F,

(f, {mi
0}I , {mi

1}I , g) ∼ (f, {mi
0}I ∪ {id[0]}, {mi

1}I ∪ {id[0]}, g), (8.15.8)

(f, {ai ⊗mi
0}I , {mi

1}I , g) ∼ (f, {mi
0}I , {ai ⊗mi

1}I , g), ai ∈ A, (8.15.9)

(f, {mi
0 ⊕mi′

0 }I , {mi
1}I , g) ∼ (f, {mj

0}I⊕I′ , {mπ(j)
1 }I⊕I′ , g),

(f, {mi
0}I , {mi

1 ⊕mi′
1 }I , g) ∼ (f, {mπ(j)

0 }I⊕I′ , {mj
1}I⊕I′ , g), (8.15.10)

with I
∼−→ I ′, i �→ i′, and π : I ⊕ I ′ → I, π(i) = i = π(i′); here mi

j : I → Mj ,m
i′
j : I ′ → Mj

are two sequences of elements of Mj . One checks that the following operations are well defined,
independent of the chosen representatives, and make M0 ⊗A M1 into an A-module satisfying the
universal property (8.15.6):

f ◦ (g, {mi
0}I , {mi

1}I , g′)/∼ ◦ f ′ def= (f ◦ g, {mi
0}I , {mi

1}I , g′ ◦ f ′)/∼, f, f ′, g, g′ ∈ F, (8.15.11)

a⊗ (f, {mi
0}I , {mi

1}I , g)/∼ def= (idW ⊗ f, {a⊗mi
0}I , {mi

1}I , idZ ⊗ g)/∼, a ∈ AW,Z , (8.15.12)

(f, {mi
0}I , {mi

1}I , f ′)/∼ ⊕ (g, {mj
0}J , {mj

1}J , g′)/∼ def= (f ⊕ g, {mk
0}k∈I⊕J , {mk

1}k∈I⊕J , f
′ ⊕ g′).
(8.15.13)

For mi ∈ (Mi)Yi,Xi we have

m0 ⊗A m1
def= (idY0⊗Y1 , {m0}, {m1}, idX0⊗X1)/∼ ∈ (M0 ⊗A M1)Y0⊗Y1,X0⊗X1 (8.15.14)

and hence

(f, {mi
0}I , {mi

1}I , g)/∼ = f ◦
(⊕

i∈I

(mi
0 ⊗A m

i
1)
)
◦ g. (8.15.15)

We can similarly define the multilinear functions BilinA
F (M0, . . . ,Ml;N) and the A-module

M0 ⊗A · · · ⊗A Ml representing them.
The construction of the tensor product M0 ⊗A M1 is functorial in the Mi and makes A-Mod

into a symmetric monoidal category with unit element A. For ϕi : Mi → Ni we have

ϕ0 ⊗ ϕ1 : M0 ⊗A M1 → N0 ⊗A N1,

ϕ0 ⊗ ϕ1

(
f ◦
(⊕

i∈I

(mi
0 ⊗A m

i
1)
)
◦ g
)

= f ◦
(⊕

i∈I

(ϕ0(mi
0)⊗ ϕ1(mi

1))
)
◦ g, (8.16)
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satisfying

idM0 ⊗ idM1 = idM0⊗M1 (8.16.1)

and for ψi : Ni → Li,

(ψ0 ⊗ ψ1) ◦ (ϕ0 ⊗ ϕ1) = (ψ0 ◦ ϕ0)⊗ (ψ1 ◦ ϕ1) (8.16.2)

and there are canonical isomorphisms

M0 ⊗M1
∼−→M1 ⊗M0, m0 ⊗m1 �→ m1 ⊗m0, (8.16.3)

(M0 ⊗M1)⊗M2
∼−→M0 ⊗ (M1 ⊗M2)

∼−→M0 ⊗M1 ⊗M2,

(m0 ⊗m1)⊗m2 �→ m0 ⊗ (m1 ⊗m2) �→ m0 ⊗m1 ⊗m2, (8.16.4)

A⊗A M
∼−→M,a⊗A m �→ a⊗m. (8.16.5)

Given a homomorphism of F -monoids ϕ : A → B, a B-module N can be considered as an A
module NA via a⊗ n := ϕ(a) ⊗ n, and the functor

B-Mod→ A-Mod, N �→ NA, (8.17.1)

has as left-adjoint the functor

A-Mod→ B-Mod, M �→ B ⊗A M,

HomA-Mod(M,NA) = HomB-Mod(B ⊗A M,N)

ϕ �→ ϕ

(
g ◦
(⊕

I

bi ⊗mi

)
◦ g′
)

= g ◦
(⊕

I

bi ⊗ ϕ(mi)
)
◦ g′,

ϕ(m) = ϕ(idY ◦ (1B ⊗m) ◦ idX)← � ϕ.

(8.17.2)

We have canonical isomorphisms

B ⊗A

(∐
i∈I

M i

)
=
∐
i∈I

(B ⊗A M
i), (8.17.3)

B ⊗A

(
lim−→

I

M i

)
= lim−→

I

(B ⊗A M
i), for a functor i �→M i, I → A-Mod, (8.17.4)

B ⊗A (A · S) = B · S, for a set S over |F| × |F|, (8.17.5)
B ⊗A (M/ϕ(M0)) = (B ⊗A M)/(idB ⊗ ϕ(B ⊗A M0)), for a map of A-modules ϕ : M0 →M.

(8.17.6)

Given homomorphisms of F -monoids ϕ0 : A → B0, ϕ1 : A → B1, we can view B0, B1 as
A-modules and form their tensor product B0 ⊗A B

1. By the universal property (8.15.6), there is a
map

(B0 ⊗A B
1)× (B0 ⊗B1)→ B0 ⊗B1,

(b0 ⊗ b1, b0 ⊗ b1) �→ (b0 ⊗ b0)⊗ (b1 ⊗ b1) (8.18.1)

making B0 ⊗A B1 into an F -monoid, and it is the sum of B0, B1 over A in F -Mon: for every
C ∈ F -Mon,

HomF -Mon(B0 ⊗A B
1, C) = HomF -Mon(B0, C) ×

HomF -Mon(A,C)
HomF -Mon(B1, C)

= {(ψ0, ψ1) | ψi : Bi → C,ψ0 ◦ ϕ0 = ψ1 ◦ ϕ1}. (8.18.2)

Here

ψ �→ (ψ ◦ j0, ψ ◦ j1) (8.18.3)
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with

ji : Bi → B0 ⊗A B
1, j0(b) = b⊗ 1B1 , j1(b) = 1B0 ⊗ b;

mC ◦ (ψ0 ⊗ ψ1)← � (ψ0, ψ1) (8.18.4)

with mC : C ⊗A C → C the multiplication map of C, c1 ⊗A c2 �→ c1 ⊗ c2.

Example 8.19. For commutative rings B0, B1, considering F(Bj) as F-monoids, we have the tensor
product F(B0) ⊗F F(B1). It is easy to see that every element f ◦ (

⊕
I(b

0
i ⊗ b1i )) ◦ g ∈ (F(B0) ⊗F

F(B1))Y,X is equivalent to an (essentially unique) such element with bji ∈ Bj \{0}, and with f : I ↪→
Y, gt : I ↪→ X embeddings. Thus F(B0)⊗FF(B1) is the F-monoid underlying the F-ring F〈B0×0B

1〉
associated with B0 ×0 B

1 = B0 × B1/(b0,0)∼(0,b1) ∈ Mon0,1. On the other hand, if the Bj are A-
algebras, with A a commutative ring (e.g., A = Z), we can consider F(A),F(Bj) as F(A)-monoids,
and we have the tensor product F(B0) ⊗F(A) F(B1). Every element c ∈ (F(B0) ⊗F(A) F(B1))Y,X is
determined by its matrix coefficients

cy,x = jty ◦ c ◦ jx ∈ (F(B0)⊗F(A) F(B1))[1],[1].

Every element

f ◦
(⊕

I

(b0i ⊗ b1i )
)
◦ g ∈ (F(B0)⊗F(A) F(B1))[1],[1]

is equivalent to such an element with bji ∈ Bj, and with f1,i = gi,1 = 1, which we may denote∑
I b

0
i ⊗ b1i . We have well-defined addition of such elements,∑

I

b0i ⊗ b1i +
∑
J

b0j ⊗ b1j =
∑
I⊕J

b0k ⊗ b1k,

and we have A-action with

a ·
∑

I

b0i ⊗ b1i =
∑

I

a · b0i ⊗ b1i =
∑

I

b0i ⊗ a · b1i ,

and moreover

b01 ⊗ b1 + b02 ⊗ b1 = (b01 + b02)⊗ b1, b0 ⊗ b11 + b0 ⊗ b12 = b0 ⊗ (b11 + b12).

Thus F(B0) ⊗F(A) F(B1) is the F(A)-monoid F(B0 ⊗A B1), and B �→ F(B) is a tensor functor:
Ring/A→ F(A)-Mon.

Varying the base F-ring F. We can change the base F-ring. Given a map ϕ : F1 → F2 of F-rings,
every F2-monoid B is an F1-monoid via ϕ, giving a functor

F2-Mon→ F1-Mon, B �→ BF1 .

Conversely, given an F1-monoid A, its base change AF2 ∈ F2-Mod is an F2-monoid (using equa-
tion (3.23.8)), and we have the functor left-adjoint to the preceding one

F1-Mon→ F2-Mon, A �→ AF2 .

Similarly we can let F vary by working over a fixed F-ringed space (X,OX ), cf. Definition 6.1.

Definition 8.20. For X ∈ F-Rings.Sp, an OX -monoid A is a sheaf of OX -modules such that for
U2 ⊆ U1 ⊆ X open, A(Ui) is an OX(Ui)-monoid, and A(U1) → A(U2) is an O(U1)-monoid map,
i.e. A is a monoid object of OX -Mod. This gives a category of OX-monoids, OX -Mon, and it has
fibred sums.
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Free monoids. Given an F -monoid A and a symbol s : X0 → Y0, X0, Y0 ∈ |F|, take the sequence
of symbols sn : X⊗n

0 → Y ⊗n
0 , n � 0 (where X⊗n

0 = X0 ⊗ · · · ⊗X0 (n times), and X⊗0
0 = [1]), and

form the free A-module on {sn}n�0:

A[s]Y,X =
(∐

n�0

A · sn

)
Y,X

=
{
f ◦
( ⊕

0�i�n

(ai ⊗ si)
)
◦ g
∣∣∣∣ ai ∈ AYi,Xi , f ∈ FY,

⊕
(Yi⊗Y ⊗i

0 ), g ∈ F⊕(Xi⊗X⊗i
0 ),X

}/
∼

(8.21.1)

with(
f ◦
⊕

(fi ⊗ idY ⊗i
0

)
)
◦
(⊕

ai ⊗ si
)
◦
(⊕

(gi ⊗ idX⊗i
0

) ◦ g
)
∼ f ◦

(⊕
(fi ◦ ai ◦ gi)⊗ si

)
◦ g.

(8.21.2)

Using the distributive isomorphism in F:[⊕
i

(Xi ⊗X⊗i
0 )
]
⊗
[⊕

j

(X ′
j ⊗X⊗j

0 )
]

=
⊕

k

[ ⊕
i+j=k

(Xi ⊗X ′
j)
]
⊗X⊗k

0 ,

and similarly with Y , we obtain a map

A[s]×A[s]→ A[s], (8.21.3)(
f ◦
(⊕

i

ai ⊗ si

)
◦ g, f ′ ◦

(⊕
j

a′j ⊗ sj

)
◦ g′
)
�→ (f ⊗ f ′) ◦

(⊕
k

( ⊕
i+j=k

ai ⊗ a′j
)
⊗ sk

)
◦ (g ⊗ g′),

which is well defined, A/F -bilinear, and gives A[s] the structure of A-monoid. It is the free A-monoid
on s: for any A-monoid C,

HomA-Mon(A[s], C) = CY0,X0. (8.21.4)

We can similarly form the free A-monoid on s1, . . . , sl, si : Xi → Yi, and we have

A[s1, . . . , sl] = A[s1]⊗A · · · ⊗A A[sl] = A⊗F F [s1, . . . , sl] =
∐

n1,...,nl�0

A · s(n1,...,nl) (8.21.5)

with s(n1,...,nl) : X
⊗

n1

1 ⊗ · · · ⊗ X
⊗

nl

l → Y
⊗

n1

1 ⊗ · · · ⊗ Y
⊗

nl

l . Taking the direct limit over finite
subsets of a set S over |F| × |F| we have the free A-monoid on S

A[S] = lim−→{s1,...,sl}⊆S
A[s1, . . . , sl] (8.21.6)

and S �→ A[S] is the left-adjoint to the forgetful functor A-Mon→ Sets/|F| × |F|.

Ideals of an F -monoid. An ideal a ⊆ A,A ∈ F -Mon, is an A-submodule of A. Ideals ai

have intersections
⋂

i ai, sums
∑

i ai, and finite products
∏n

i=1 ai, which are again ideals. The ideal
generated by si ∈ AYi,Xi is given explicitly by

(s1, . . . , sl) =
{
f ◦
(⊕

i

ai ⊗ si

)
◦ g
∣∣∣∣ f ∈ FY,

⊕
(Wi⊗Yi), g ∈ F⊕(Zi⊗Xi),X , ai ∈ AWi,Zi

}
. (8.22.1)

Homogeneous ideals a, i.e. a is generated by a[1],[1], correspond one-to-one with H-ideals,
i.e. a ⊆ A[1],[1] such that for

s1, . . . , sl ∈ a, ai ∈ AWi,Zi , f ∈ F[1],
⊕

Wi
, g ∈ F⊕Zi,[1] ⇒ f ◦

(⊕
ai ⊗ si

)
◦ g ∈ a. (8.22.2)
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An ideal p ⊆ A (respectively H-ideal p ⊆ A[1],[1]) is called S-prime (respectively prime) if A \ p

(respectively A[1],[1] \p) is closed under ⊗. We let SPEC(A) (respectively Spec(A)) denote S-primes
(respectively primes).

Primes and spectra. An ideal a ⊆ A (respectively H-ideal a ⊆ A[1],[1]) is called E-ideal (respec-
tively H-E-ideal) if a = ZE(a), respectively a = (ZE (a))[1],[1], or explicitly

f ◦
(
a0 ⊕

⊕
i

ai ⊗ si

)
◦ g ∈ a ⇔ f ◦ (a0 ⊕ 0) ◦ g ∈ a, for si ∈ a, ai ∈ A. (8.22.3)

We let E-SPEC(A) (respectively E-Spec(A)) denote the S-E-primes (respectively E-primes). We
have the sets

VA(a) = {p ∈ SPEC(A) | p ⊇ a}, a ⊆ A ideal;
DA(f) = {p ∈ SPEC(A) | p �� f}, f ∈ A;

VA(a) = {p ∈ Spec(A) | p ⊇ a}, a ⊆ A[1],[1] H-ideal;

DA(f) = {p ∈ Spec(A) | p �� f}, f ∈ A[1],[1].

(8.22.4)

The VA(a) define the closed sets, the DA(f) define a basis for the open sets of the Zariski topology
on SPEC(A) and on Spec(A).

For an ideal a (respectively E-ideal, H-ideal, H-E-ideal), and for f ∈ A (respectively f ∈ A[1],[1]

for H-ideals) with f⊗n �∈ a for all n, a maximal element of the set of ideals (respectively E-ideals,
H-ideals, H-E-ideals) containing a and not containing any f

⊗
n is S-prime (respectively S-E-prime,

prime, E-prime), and it follows that
√

a = {f ∈ A(respectively A[1],[1]) | f
⊗

n ∈ a for some n � 1} =
⋂
a⊆p

p, (8.22.5)

where the intersection is taken over all S-primes (respectively S-E-primes, primes, E-primes) con-
taining a. For a subset X ⊆ SPEC(A) (respectively E-SPEC(A), Spec(A), E-Spec(A)) we have the
ideal (respectively E-ideal, H-ideal, H-E-ideal),

I(X) =
⋂
p∈X

p, (8.22.6)

and √
a = I(VA(a)), VA(I(X)) = X. (8.22.7)

It follows that we have bijections between the closed sets in SPEC(A) (respectively E-SPEC(A),
Spec(A), E-Spec(A)), and the radical a =

√
a ideals (respectively E-ideals, H-ideals, H-E-ideals);

the irreducible closed sets correspond to S-primes (respectively S-E-primes, primes, E-primes).
There is a commutative diagram of spaces

E- SPEC(A) � 
 ��

����

SPEC(A)

����
E- Spec(A) � 
 �� Spec(A)

(8.22.8)

with the horizontal arrows embedding of subspaces (with the subspace topology), and the vertical
arrows are surjective continuous maps (to show surjectivity one needs localization, cf. below). For
a map of F -monoids ϕ : A → B, the pull-back along ϕ, ϕ∗(p) = ϕ−1(p), gives a map from the
diagram (8.22.8) associated with B to the one associated with A. Since

ϕ∗−1VA(a) = VB(ϕ(a)), ϕ∗−1DA(f) = DB(ϕ(f)), (8.22.9)

686

https://doi.org/10.1112/S0010437X06002624 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X06002624


Non-additive geometry

ϕ∗ is continuous, and we have four functors from F -Mon to the category of compact sober spaces
and continuous maps.

Localization and structure sheaf OA. The theory of localization of an F -monoid A (respec-
tively A-module M) with respect to a multiplicative subset S ⊆ A[1],[1] goes exactly as in § 5, and
produces an F -monoid S−1A (respectively S−1A-module S−1M). The functor A �→ S−1A (respec-
tively M �→ S−1M) commutes with direct limits, tensor products, finite inverse limits, free objects;
in particular it preserves kernels ϕ−1(0), KER(ϕ), cokernels, and commutes with the operations
E,Z. Propositions 5.12, 5.13, and 5.14 remain valid: surjectivity or injectivity of a map in A-Mod
can be checked locally at every prime (or maximal H-ideal). For an F -monoid A (respectively
A-module M), and for p ∈ Spec(A), or for f ∈ A[1],[1], we put

Ap = S−1
p A (respectively Mp = S−1

p M), Sp = A[1],[1] \ p;

Af = S−1
f A (respectively Mf = S−1

f M), Sf = {fn|n � 0}. (8.22.10)

Over Spec(A) we have a sheaf OA of F -monoids (respectively a sheaf of OA-modules M̃) such
that

OA(DA(f)) = Af (respectively M̃(DA(f)) = Mf ), f ∈ A[1],[1], (8.23.1)

and with stalks at p ∈ Spec(A) given by

OA,p = Ap (respectively M̃ |p = Mp). (8.23.2)

The proof of (8.23.2) goes exactly as for F-rings, cf. Proposition 5.19. The proof of (8.23.1) goes as
for F-rings, cf. Proposition 5.20, with only a minor change at the end: since the sets DA(gi) cover
DA(f) we have

fm = f1 ◦
(⊕

i

gi ⊗ bi
)
◦ f2, withfi ∈ F, bi ∈ A,

and we let a = (idY ⊗ f1) ◦ (
⊕

i ai ⊗ bi) ◦ (idX ⊗ f2), giving again gj ⊗ a = fm ⊗ aj .
Stalk OA,p is a local F -monoid, having a unique maximal H-ideal mp, and Fp = OA,p/mp is a

field in F -Mon. We remark that we have again four notions of fields (and four notions of local
F -monoids) given by the conditions in Definition 4.23.

A map of F -monoid ϕ : A→ B induces the localized map

ϕ� : OA(U)→ OB(ϕ∗−1U), U ⊆ Spec(A),

giving rise to a local homomorphism

ϕ�
q : Aϕ∗(q) → Bq, ϕ�

q(mϕ∗(q)) ⊆ mq, q ∈ Spec(B), (8.23.3)

and a commutative diagram with p = ϕ∗(q), q ∈ Spec(B) as follows:

A
ϕ ��

����
��
��
��
��
��
��
�

��













 B

����
��
��
��
��
��
��
�

���
��

��
��

�

A/p
ϕq ��

����
��
��
��
��
��
��
�

B/q

����
��
��
��
��
��
��
�

Ap
ϕ�
q ��

���
��

��
��

Bq

���
��

��
��

Fp
ϕ�
q �� Fq

(8.23.4)
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Non-additive geometry

One defines the categories of F -monoid spaces, F -Mon.Sp (respectively of local F -monoid
spaces, Loc.F -Mon.Sp) as the category with objects (X,OX ), X a topological space, OX a sheaf
of F -monoids on X (respectively with local F -monoids for stalks OX,x, x ∈ X), and with maps
(f, f �) : (X,OX ) → (Y,OY ), continuous maps f : X → Y , and maps of sheaves of F -monoids
over Y , f � : OY → f∗OX (respectively such that the induced map on stalks f �

x : OY,f(x) → OX,x is
a local homomorphism). Then A �→ (Spec(A),OA) is a contravariant functor

Spec : F -Mon→ Loc.F -Mon.Sp (8.23.5)

which is the adjoint to the global section functor

Γ : Loc.F -Mon.Sp→ F -Mon, Γ(X,OX ) = OX(X), (8.23.6)

so that we have

HomLoc.F -Mon.Sp(X,SpecA) = HomF -Mon(A,Γ(X,OX )). (8.23.7)

Definition 8.24. A Zariski F -monoid scheme is a local F -monoid space (X,OX ) such that there
exists an open covering X =

⋃
i Ui, with (Ui,OX |Ui) � SpecOX(Ui). Maps of Zariski F -monoid

schemes are maps of Loc.F -Mon.Sp, thus we have a full subcategory of Loc.F -Mon.Sp consisting
of Zariski F -monoid schemes.
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