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Non-additive geometry

M. J. Shai Haran

ABSTRACT

We develop a language that makes the analogy between geometry and arithmetic more
transparent. In this language there exists a base field F, ‘the field with one element’; there
is a fully faithful functor from commutative rings to F-rings; there is the notion of the
F-ring of integers of a real or complex prime of a number field K analogous to the p-adic
integers, and there is a compactification of Spec O ; there is a notion of tensor product
of F-rings giving the product of F-schemes; in particular there is the arithmetical surface
Spec Ok x Spec Ok, the product taken over F.
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Introduction

The ancient idea of making arithmetic into geometry engaged the minds of great mathematicians
such as Kummer, Kronecker, Dedekind, Hensel, Hasse, Minkowski, and especially Artin and Weil.
It is a beautiful quest inspired by the similarity between the ring of integers Z, and the ring of
polynomials Z = k|x] over a field k; for closer similarity the ‘function field’ case is relevant where
k = F, is a finite field. There is induced similarity of the fraction fields, the field of rational
numbers Q and the field of rational functions @ = k(x). For a prime p of Z, we have the p-adic
integers
Zp =lUmZ/p",
and its field of fractions
1

Qp = Zp |:§:|7

with dense embeddings Z C Z;, and Q C Q,,. The geometric analogues are the power series ring

Zp =lim Z/f" = k¢[[f]],
and the field of Laurent series

Q=2 |3] =0
for f a prime of Z, where ky = k[z]/(f), and the embeddings Z C Z; (respectively @ = k(z) C
Q) correspond to expanding a polynomial (respectively a rational function) into a power series
(respectively a Laurent series) in f. Finite extensions of ) = k(x) correspond one-to-one with
the smooth projective curves Y defined over finite extensions of k, and finite extensions of (Q are the
number fields. There are two main difficulties with this analogy that we are going to describe,
the problem of the real prime of @, and the problem of the arithmetical surface, that is defining for
Spec(Z) the analogue of the geometric surface Y xy Y.

From geometry we know that, in order to have theorems, we must pass from affine to projective

geometry, in particular we need to add the point at infinity co to the affine line, Pi = Aﬂi U {o0}.

This corresponds to the ring
1 1\" 1
e =imil3] /(3) [ [3]]
— |z T T

ow-risx( (1)

the embedding @ C Qo is the expansion of a rational function as a Laurent series in 1/x.
The analogue of co for Q is the real prime, which we denote by 1. The associated field is Q, = R,
the real numbers. But there is no analogue Z, of Z.,. For finite primes p,

Ly = {z e va |lz]p < 1}.

We have to carry remainder when we add elements of Z, — unlike the simple addition of power series
in Zy or Z. We carry the remainder from the larger scale 7’ to the smaller scale p/*! hence

and its fraction field

|z +ylp < max{\m|p, ‘y|p}7
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and Z, is closed under addition. In contrast, when we add real numbers, we carry the remainder
from the smaller to the larger scale, we have only the weaker triangle inequality

|z + y|n < |x‘17 + ‘y|n7

and {z € Q,, |z|, <1} = [~1,1] is not closed under addition.

The second problem is that in geometry we have products, in particular the affine plane A? =
Al x A, with the ring of polynomial functions k[z] @y k[z] = k[x1, 23], the tensor product (= sum in
the category of k-algebras) of Z with itself. When we try to find the analogous arithmetical surface,
we find Z ® Z = 7Z. The integers Z are the initial object in the category of rings, so its tensor
product (= sum in the category of rings) with itself is just Z. For any geometry that is based on
rings, SpecZ will be the final object, and SpecZ x SpecZ = Spec Z, which means the arithmetical
surface reduces to the diagonal!

Motivated by the Weil conjectures, Grothendieck developed the modern language of algebraic
geometry, the language of schemes [EGA], based on commutative rings. Grothendieck came from
a background of functional analysis, where the paradigm of ‘geometry = commutative rings’ was
first set. It is the famous Gelfand-Naimark theorem on the equivalence of the category of (com-
pact, Hausdorff) topological spaces and the category of commutative (unital) C*-algebras. This
equivalence is given by associating with the topological space X the algebra

C(X)={f: X — C, f continuous},

using addition and multiplication (and conjugation, and norm) of C to define the similar structure
on C(X), giving rise to the structure of ring (and C*-algebra structure) on C(X). The axioms of
a commutative C*-algebra are generalizations of the axioms of C: when X = {x} reduces to a
point, C(x) = C. It is clear that there is no connection between addition and multiplication of C
and the geometry of X. The language of rings (and commutative C*-algebras) is just one convenient
way in which to encode geometry.

With the goal of finding the arithmetical surface, the idea of abandoning addition has recently
appeared in the literature. Soulé [Sou04] talks of the ‘field with one element’ F, and tries to define
[F-varieties as a subcollection of Z-varieties. Kurokawa, Ochiai and Wakayama [KOWO03] were the
first to suggest abandoning addition, and working instead with the multiplicative monoids. This idea
was further described in Deitmar [Dei05], but note that the spectra of monoids always looks like
the spectra of a local ring: the non-invertible elements are the unique maximal ideal. For Kurokawa
there is also a ‘zeta world’ of analytic functions that encode geometry, where the field F is encoded
by the identity function of C; see Manin [Man95].

Here we take our clues from the problem of the real prime to understand I, and then develop
the language of geometry based on the concept of F-ring. Denote by |z, the euclidian norm of

x=(r1,...,2,) € R" ie.
[y 21/2\%‘%-
i

We have the fundamental Cauchy—Schwartz inequality

lzoyl, =Ty + -+ Taynly < |2l - yly-

Hence [—1,1] will contain z1y1 +- - - +2,y, = x oy, whenever |z|,, |y|, < 1, although it is not closed
under addition. Moreover, unlike addition, matrix multiplication behaves well in the real prime:
laobl, <lal, - |b], for real or complex matrices a,b where | - |, is the operator norm. Within matrix
multiplication there is encoded addition, but we have to take matrix multiplication as the more
fundamental operation. We add also the operations of direct sum and of tensor product of matrices.
Our analogue of Z, (respectively of the localization Z,)) for the real prime 7 is the category Og
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(respectively Og,,) with objects the finite sets and morphisms from X to Y given by the ¥ x X
matrices with real (respectively rational) coefficients and with operator norm < 1; these matrices are
closed under the operations of direct sums and tensor products (but are not closed under addition).

Remembering that the quantum area in physics started with Heisenberg’s discovery of matrix
multiplication as the fundamental operation describing the energy levels of microscopic systems,
perhaps in the future also physics will benefit from the language of non-additive geometry.

The contribution to arithmetic is evident: the real integers Z, become a real object, and the
arithmetical surface exists and does not reduce to the diagonal. Some well-known conjectures of
arithmetic (Riemann hypothesis, ABC,...) are easy theorems in the geometric analogue of a curve
C over a finite field. This is because we can form the surface C' x C. The knowledge of the first
infinitesimal neighborhood of the diagonal C' within C' x C| i.e. of differentials, is often sufficient
to prove theorems in geometry whose arithmetic analogues are deep conjectures. Therefore, the
further study of the arithmetical surface F(Z) ®@p F(Z), its compactification using F(Z) ® Z,, and
the arithmetic first infinitesimal neighborhood of the diagonal are important challenges. Here we
give only the foundations of the language of non-additive geometry.

In § 1 we decipher what is the ‘field with one element’ IF. The idea is that, while F degenerates into
one (or two) elements, there is a whole category of ‘F-valued matrices’. There are various degrees
of structures one can impose on F. In §2 we give the basic notion of an F-ring. As important
examples of F-rings we have: F(A), the F-ring attached to a commutative ring A; O,;, the F-ring of
‘integers’ at a real or complex prime 7 of a number field; and its residue field IF,, the F-ring of partial
isometries. In §3 we give the elementary theory of modules over F-rings, and discuss (fibred) sums
and products, kernels and cokernels, free modules, tensor products, and base change. A novelty of
the non-additive setting is the connection between submodules and equivalence modules of a given
module.

In §4 we give the elementary theory of ideals and primes. We associate with any F-ring A its
spectrum Spec A, a compact sober space with respect to the ‘Zariski topology’. (A topological space
is sober if every closed irreducible subset has a unique generic point.) In §5 we give the theory of
localization. It gives rise to a sheaf of F-rings over Spec A. By gluing such spectra we get Zariski
F-schemes. In §6 we give the theory of F-schemes which are the pro-objects of Zariski F-schemes.
As important examples we give the compactification of SpecZ and of Spec Ok, K a number field.
This is our solution to the problem of the real prime.

In §7 we give the tensor product, the (fibred) sum in the category of F-rings, and we obtain the
(fibred) product in the categories of Zariski F-schemes and of F-schemes. As an important example
we define and describe the fibred product F(Z) ®r F(Z), its compactification, and its generalization
for number fields. This is our solution to the problem of the arithmetical surface. In §8 we work
over a fixed F-ring F, and repeat the above constructions in the category of monoid objects in
F-modules. Everything goes through, the tensor product of F-monoids is just their tensor product
as modules, so we avoid the complicated product of §7, but the functor from commutative rings to
F-monoids is not fully faithful.

1. F, the field with one element

We define a category F with objects the finite sets endowed with two symmetric monoidal structures
@ and ®. The unit element [0] for @ is the initial and final object of the category, and ® is distributive
over .
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1.1 The category F

We consider F-vector spaces as finite sets X with a distinguished ‘zero’ element Ox € X, and set
Xt =X\ {0x}. For a commutative ring A, we let

A-X=P A=
zeXt
denote the free A-module with basis X, and think about A - X as A ®@r X obtained by base
extension from F to A. We let

F[A]Y,X = HOII]A(A . X,A . Y),

the Y x X matrices with values in A. The base extension of X from F to Z, and to Q, = R gives
Zy-X and Q, - X: Q, - X is the real vector space with basis X T, and Ly - X is the subset of Q, - X
of vectors with norm < 1 in the inner product given by decreeing X' to be an orthonormal basis.
We have

FIQ,)v.x = Homg, (Q, - X,Q, - Y),
the YT x X real-valued matrices, and

(Zn)yx ={f €FlQlyx, [(Zy- X) S Zy- Y} ={[,[fln <1},
where |f], denotes the operator norm on F[Q, ]y, x.

A map of finite sets ¢ : X — Y, preserving the zero elements ¢(0x) = Oy, induces an A-linear
map

patA-X - AY, paeF[Ayx.
For ¢q, : Q,- X — Q, -Y to map Z, - X into Z, - Y it is necessary and sufficient that ¢ is an
injection of X \ ¢~1(0y) into Y. Thus we set
Fyx ={¢: X = Y,0(0x) = 0y, ¢|[x\p1(0y) injective}, (1.1)

and we view [F as the category with objects finite sets with a distinguished zero element, and with
arrows Fy x = Homp(X,Y'). In practice, we shall ignore the distinguished elements, and view F as
the category with objects finite sets (without a distinguished zero element), and with arrows the
partial bijections

Fy x = {¢ : V — W bijection, V C X, W C Y}. (1.1y
It is clear that
X XT:=X\{0x}
and
P {e: X\ H0y) = (X \ ¢ (0y)}
is an isomorphism of categories
Fyx — Fyi x+.

We shall identify F with /. Thus from now on the objects of IF are finite sets without a distinguished
zero element. Alternatively, Fy x are the Y x X matrices with entries 0,1 and with at most one 1
in every row and column.

We have a functor

e:FxF-F (1.2)
given by the disjoint union of sets. More formally, for sets X, Y we let
XY ={(z1)]ie{0,1l}i=0=z2eX,i=1=2€Y} (1.3)
622
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and for fy € FX/J(, fi€ Fygy, we have fo @ f1 € FX’EBY’,XEBY given by
Jo® f1(z,4) = (fi(2),1). (1.4)
(Note that in the version of F where the objects have a distinguished zero element, X @Y is obtained
from the disjoint union X [[Y by identifying Ox with Oy-.)
We have for f(,) e ]FX”,X’) f{ e Fy//7y/,
(fo® f) o (fo® f1) = (foo fo) @ (fio f1) (1.5)
and
idy ®idy = idx@y. (1.6)
The operation @ makes F into a symmetric-monoidal category. The identity element is the empty

set [0] (or the set with only the distinguished zero element), which is the initial and final object of
the category F. There are canonical isomorphisms in F:

Ix rX

X< X =S [0)eX. (1.7)
The commutativity isomorphism cxy € Fygx xey is given by
exy(z,4) = (2,1 —1i). (1.8)
The associativity isomorphism ax v,z € Fxqyvez),(xey)ez is given by
a((w,0),0) = (w,0),
a((w,1),0) = ((w,0),1), (1.9)
a(w,1) = ((w,1),1).
We shall usually abuse notation and view Ix,7x,cx,y,ax,y,z as identifications; thus e.g. for f; €
Fx: x, we write fo ® f1 = f1 @ fo instead of
cxpxp 0 (fo® f1) = (f1 ® fo) 0 exo,x; - (1.10)
We have a functor
@:FxF—F (1.11)
given by the product of sets X @ Y = {(z,y) | v € X,y € Y}, and for fo € Fx/ x, f1 € Fy'y, we
have fo @ f1 € Fx/gy’ xgy given by

fo® filz,y) = (fo(), fr(y)). (1.12)

(Note that working with the version of F where the objects have a distinguished zero element,
X ®Y is obtained from the product X x Y by identifying (x,0y) and (0x,y) with (0Ox,0y) for all
reX,yeY.)

We have fOI' f(,) e FX”,X’) f{ (= ]FY”,YH
(fo® f1) o (fo® f1) = (foo fo) ® (fio fi) (1.13)
and
dy ®idy = idX®y. (1.14)
The operation ® also makes F into a symmetric monoidal category. The identity element is the

set with one element [1] (or the set with a distinguished zero element 0, and another element
[1] = {0,1}). We have again isomorphisms in F:

* *
Ix Tx

X®[]<&< XS5 X1, (1.15)
623
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and
cxy € Fyexxeov, cxy(,y)=(y ), (1.16)
axyz € Fxayer) xeviez, axyvz(T,v),2)=(z,(y,2)) (1.17)
We have as well the distributivity isomorphism dx, x,;v € Fix,ev)oxey),(Xeox1)ey
dxo,x1v ((2,9),y) = ((z,y),1),i € {0, 1}. (1.18)

We abuse notation and view I%,7%,c%xy,0%y 4, dxy,x,;y as identifications; thus e.g. for f; €
FX;,XNQ € Fy'y we write

(o fi)®g=(fo®g) ®(fr®g) (1.19)
which should be read as
dx; x1y 0 [(fo® fr) @ gl = [(fo® g) & (f1 ® g)] o dxo,x15v- (1.19)
We note that there is a natural involution
Fyx = Fxy, f— f" (1.20)

When viewing Fy x as the partial bijections f : V S W,V C X and W C Y, ft is the inverse
bijection, f* = f~1: W = V. When we view Fy x as 0,1 matrices, f* is the transpose matrix.
We have

(gof)=flog, ( )
(idx)' = idx, ( )
(fHY = f, (1.21.3)
(fo®d f1)' = fo & f1, ( )
(fo® f1)' = fo® f1. ( )

Remark. Whenever we use the notation for composition f o g it will always be implicitly assumed
that the domain of f is the range of g; thus e.g. if we have (fo ® f1) o g and f; € Fx x,, it is
implicitly assumed that g has range Xg & X;.

1.2 Variants F*

The model F for the field with one element is the one we shall use here, but there is a variant
F* which is important, and leads to a tighter theory. The objects of the category F* are finite
sets X together with an action of the group {41}, without fixed points (or with a unique fixed
point — the zero element). A subset X C X will be called a basis if X is the disjoint union of X+
and —X* ={—x | x € XT}. The maps f € IE‘?X are partial bijections

FVESW, VCX, WCY, V=-V, W=-W,

that commute with the action f(—xz) = —f(x). Fixing basis XT C X, Y C Y, we can identify the
elements of FE  with the Y+ x X* matrices of entries 0,1, —1, with at most one non-zero term in
each row and éolumn. The map f is identified with the matrix M(f), where for z € X, y € YT,
M(f)y.z =0 (respectively, 1, —1) if f(x) # £y (respectively, y, —y).

We have functors

®,® : FE x F¥ — FE, (1.22)

X @Y = disjoint union of X and Y, with its natural {£+1} action, (1.22.1)

X®Y =X XY/ (g )n(—a,—y), With {£1} action : —(z,y) = (—z,y) = (v, —y). (1.22.2)
624
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Write = ® y for the image of (x,y) in X ® Y'; we have for f € F;, v J1€ Fﬁi/, v
fo® filz®y) = folz) @ fi(y). (1.23)

The unit for @ is [0], the initial and final object of F*. The unit for ® is [+1]. The analogue
of formulas (1.5) to (1.19) remain true for F*. We have an involution F¥ — F*_ f — f* where f*

is the inverse bijection (or transpose of an Y™ x X matrix), and formulas (1.21.1-5) remain true
for F=£.

DEFINITION. Let X be an object of F and let Xt C X be a basis. The number of elements of
X' :d=#X7 will be called the dimension of X, and denoted d = dim X.

Forn=1,...,dlet
P'(X)={r1®  Qz,e X® - ®X|x; #%x; for i # j} (1.24)
AN(X)=P"(X)/~

where ~ is the equivalence relation
To(1) @+ @ Ty(n) ~sgn(0) 21 @+ @ Ty, foro €Sy, (1.25)
Write 21 A - -+ Az, for the image of 71 ® --- ® x,, € P*(X) in A™(X). A map f € IF‘?X induces a
map P™(f) € F%"(Y),P"(X)’ which induces in turn a map A"(f) € F*"(Y),/\"(X)’
A(F)an A Awa) = F(1) Ao A ). (1.26)

For n > d we have A"(X) = [0], and by definition we let A°(X) = [+1]. Thus we have a sequence
of functors

A" FEF S FE n=0,1,..., (1.27)
N (fog) =N"(f)e A" (g), (1.27.1)
A"(idx) = idan(x), (1.27.2)
A1) = (A" ()" (1.27.3)
There are natural isomorphisms in F* which we view as identifications
NMXoY)= P NX)eAI(Y). (1.28)
0<j<n

Remark 1.29. When we consider the objects |F| of the category F (respectively F%), we assume
that it contains [n],n > 0 (respectively [£n]), and that it contains X & Y, X ® Y (respectively and
A™(X)) whenever it contains X, Y. Hence we may assume |F| and |F£| are countable sets. On the
other hand, we shall not use the actual realization of F in most of what follows. All we need is a
category F with two symmetric monoidal structures & and ®, the unit element [0] for @ is the
initial and final object of F', ® is distributive over & and it respects [0]: X ® [0] = [0]. This opens
up the possibility of introducing quantum deformations.

1.3 The ‘algebraic closure’ F of F

We can similarly work over the ‘algebraic closure’ F of F, which in arithmetic means adjoining all
roots of unity u = Q/Z. The objects of F are sets X with p-action, satisfying the following two
properties:

(i) set X decomposes into a finite union of u-orbits

X:XlL]"'UXd, XZZIU,IBZ, (130)
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(ii) for x € X there is a natural number N and a finite set of primes {p1,...,p;}, p; ¥ N, such that
the stabilizer of x in p is given by

{Cenl-z=a}=pN X ppge X -+ X fipee. (1.30.1)

Here uny = {¢ € p | ¢V =1} and ppee = U, pipm-

Let xj € X, 1 < j < d, besuch that X; = p-z; for each j. Then the subset X = {z1,...,24} C
X representing the p-orbits will be called a basis for X, and d = #X* = dim X the dimension
of X. The maps in the category F from an object X to an object Y are given by p-covariant partial
bijections

Fyx = {f: VS WI|VCX,WCY,V =puV,W = W, f(¢x) = (f(w), Yo € ViC € p}. (1.30.2)

We have functors

®,®:FxF —F, (1.31)
X @Y = disjoint union of X and Y, with its natural p-action, (1.31.1)
XY =X XY/zy(cacty, With p-action (- (z,y) = ((r,y) = (z,(y). (1.31.2)

We write  ® y for the image of (z,y) in X ® Y. For f; € Fy, x, we have
fO @ fl S FY()EBYl,Xo@XlafO @ fl(zai) = (fZ(Z),Z), 1= 07 17

and we have
fo® f1 € Fypovi,xonx1s fo @ fi(zo ® 21) = fo(zo) @ fi(z1).

Both @ and ® make F into symmetric monoidal category; the unit for & is the empty set [0] which
is the initial and final object of F; the unit for ® is [1] = p. The analogue of formulas (1.5)(1.19)
remain true for F. We have an involution on F satisfying (1.21). We have A-operations: for an object

X of F of dimension d = dim X and for n =1,...,d we let
P'X)={z1® - Qz, € X®--- @ X | x; # Cxj for i # j,( € u},

n n (1.32)

A (X) =P (X)/xg(l)®"~®Ig(n)ngn(a)-xl®"'®xn,065n‘

We write 21 A -+ Az, for the image of 21 ® -+ @z, In AN (X),z; € X. Amap f € FKX induces a
map A"(f) € Fany)an(x) by
N'(f) @i A Aan) = f(z) A A fla),
Domain(A"(f)) = {(z1 A -+ Axy) | z; € Domain(f)}.
We let AY(X) = [1] :_,u,/\l(X) = X, and A"(X) = [0] for n > dim X. Thus we have a sequence
of functors A" : F — F,n = 0,1,2,..., and (1.28) remains valid. A novelty of F is that we have a
sequence of functors given by Adam’s operators
YY" F —TF, n=41,42, ...,
Y"(X) = the set X with the new p-action ¢ -,y v = ("= (1.34)

(1.33)

(we can take n in {n = (n,) € Z = [1,Zp.np € Z, for all but finitely many p}). These functors
satisfy
PHX @Y) =¢"(X) D y"(Y),
PHX @Y) =¢"(X) @ y"(Y),
and are the analogue in our setting of the Frobenius endomorphisms in the theory of varieties
over [F,. (Indeed, the action on K-theory of the Frobenius endomorphism for such varieties is given

by .

(1.35)
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2. F-rings, variants, examples

We give the definition of F-rings and of Ring category. We give various variants of F-rings with
involution or with A-ring structure. We then give our main examples.

2.1 Definition of F-rings

DEFINITION 2.1. An F-ring is a category A with objects the finite sets |F|, and arrows Ay x =
Hom 4 (X,Y") containing Fy y, i.e. we have a faithful functor F — A which is the identity on objects.
We assume [0] is the initial and final object of A. We have two functors

P,R:AxA— A,

which agree with the given functors on [, and which make A into a symmetric monoidal category
with the given identity (Ix, rx; Ik, rk), commutativity (cxy;ck y), associativity (axy,z;a%k y )
isomorphisms of F. We assume that ® is distributive over @ using the isomorphism dx, x,.y of F.

Thus in explicit terms, an F-ring is a set

A= ] Avx, (2.2)
Y,X€[F|
with operations
o: Agy x Ay.x — Az x, (2.2.1)
®: Ayy xo X Avy x; — Avpevi Xea X s (2.2.2)
® : Ayy xo X Avy x; — Aveevi XeoX: s (2.2.3)
satisfying
folgoh)=(fog)oh; (2.3.1)
idyof=f=foidx, f¢€Ayx; 2.3.2
(fo® f1)o(go®g1) = (foogo) ®(frog), 9 € Ay, x,, fi € Az, v;; (2.4.1)
idy @ idy = idxey; (2.4.2)
Jo® fi=f1© fo; (2.4.3)
fod (1@ f2) = (fo® f1) ® fa; (2.4.4)
f@idg = f; (2.4.5)
(fo® fi)o(go®g1) = (foogo) ® (fiog), 9i€ Ay, x,,[i € Az, vi; (2.5.1)
idy ® idy = idyey; (2.5.2)
Jo® f1=f1® fo; (2.5.3)
fo® (fi® f2) = (fo® f1) ® f2 (2.5.4)
Jeidy = f; (2.5.5)
f@lg@g)=(f2g9)®(f@q) (2.6)

Remark. We remind the reader that we omit the writing of the canonical isomorphisms of F. Thus
e.g (2.4.3) should be written

(fo® fi)oexi,xo = cvivo © (J1® fo),  fi € Ayv; x,- (2.4.3)

We assume that Fy x C Ay x, and that the above operations o, ®,® agree with the given
operations on FF. In particular, we have the zero map Oy,x € Ay, x, which is the unique map that
factors through [0].
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We note that on Apjqj, the operations of composition o and of tensor product ® induce the
same operation, making A ] into a commutative monoid:

fd¥fog=(foidy)o(idy®g) =fog=g&f, f.g€ A (2.7)

The set Apyj 1) has a unit 1 coming from the map idp : [1] — [1], and a zero element 0 coming
from the map Opyj 1) ¢ [1] — [1], 2+ Opy). The set Apy ) acts on the sets Ay,

def
f-9=f®g f€Ayn 9g€Ayx. (2.8)

This action satisfies

(fo-f1)-g=fo-(fi-9),fi € Apnp, 9 € Avx; 2.8.1
1-g=g; 2.8.2
0-9=0yx; 2.8.3

f- (goh) (f-g)oh=go(f h)
[ (go®g)=(f 90)®(f g1)s
f-(go@ag)=(f 9)®9 =39 90)

DEFINITION 2.9. Let A, B be F-rings. A functor ¢ : A — B is a homomorphism of F-rings if

¢©(Ay,x) € By,x, ( )
o(f) = [ for f € Fyx, (2.9.2)
o(fog)=p(f)owplg), (2.9.3)
©(fo @ f1) = (fo) ® (f1), (2.9.4)
o(fo ® f1) = »(fo) ® ¢(f1). (2.9.5)

Thus ¢ is a functor over F that respects @ and ®. It is clear that if p : A — B,y : B — C are
homomorphisms of F-rings, then 1 o ¢ is a homomorphism of F-rings, hence we have a category
F-Rings, with ' as an initial object.

Remark. A (commutative) ring category A is a category with a symmetric monoidal structure
P:AxXxA— A,

with associativity (respectively commutativity, unit) isomorphisms a (respectively, ¢, u), with the
unit object for @, denoted by [0], being the initial and final object of A, and another symmetric
monoidal structure

®:AxA— A,

with associativity (respectively commutativity, unit) isomorphisms a* (respectively, ¢*,u*), the unit
object for ® is denoted by [1], and distributive isomorphisms

dy.xo.x, 1Y @ (Xo® X1) = (Y @ Xo) @ (Y ® X1)

functorial in Y, Xy, X1 € |A|, and compatible with a, ¢, u,a*, c¢*,u*. That is, we have commutative
diagrams. For X;,Y; objects of A, we have the following.
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Y @ (Xo®X1)® Xa) —22 -~V & (Xo@ (X1 Xa))

dl ld
Y ®(Xo®X1)0Y @ X, VX oY ® (X1 o Xs)
d@idl lid@d
YXaYX)aY X, ——=Y X d (Y X 0V ® X))

a® id®d
V1®Y)®(Xo® X)) —2 =¥, ® (Yo ® (X0 X1)) e V1 ® (Yo ® Xo) @ (Yo ® X1))

dl . |

Y1 ®Yy) ® Xo® (Y1 ®Y0) ® X1 = o0 V1@ (Yo® Xo) & Y1 @ (Yo ® X1)

()

Y@ (Xo® X)) —= ~ vV @ (X1 ®Xo)

d| o
YoX)d (Y ®X) —— Y X)) X
(u*) With [1] denoting the unit object for ®,

1] ® (Xo ® X1)

u*
dl

([1] ® Xo) @ ([1] ® X;) <2

Xo X,

(u) The canonical map gives isomorphism Y ® [0] = [0], and we have

Yo (X o) —=2  ygx

| |
id[0]

YeoX)a(Yo0)— Yo X)a 0]

A homomorphism of commutative ring categories ¢ : A — A’ is a functor respecting &, a, ¢, u, @,
a*,c* u*,d. Thus an F-ring is a homomorphism of commutative ring categories ¢ : F — A which is
a bijection on objects. Most of what we do in the following works more generally for commutative
ring categories, but working with F-rings is easier and allows the suppression of the isomorphisms
a,c,u,a*, ¢, u*, d. On the other hand it will be interesting to work more generally with braided ring
categories, replacing the symmetric monoidal structure ® by a braided monoidal structure; this
might lead to the quantum geometry behind [Har01] and [Har06].

2.2 Bt F* F).F,F -rings
Remark 2.10. We can define F'-rings to be F-rings with involution
Ayx — Axy, [+~ [, (2.10.1)
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agreeing with the given involution on F, and satisfying

(fog) =g'oft,
U=
(fo® f1)' = fo & f1,
(fo® f1)' = fo ® fi.

A homomorphism of F'-rings is a homomorphism of F-rings ¢ satisfying

e(f)" = e(f").

Thus we have a category of F'-Rings.

Remark 2.11. One defines F¥-rings A as a category with objects [F*|, with [0] as an initial and
final object, and with symmetric monoidal structures

B,0: Ax A— A, (2.11.1)

with [0], [£1] as identities, with ® distributive over @, and with a functor F¥ — A which is the
identity on objects and respects the symmetric monoidal structures @ and ®. A homomorphism
¢+ A — B of F¥rings is a functor over F¥ which respects the symmetric monoidal structures @
and ®. Thus we have the category F¥-Rings. Replacing FT by F, and [£1] by p, one obtains the
definition of the category F-Rings. We can similarly define F5'-rings to be F*-rings with involution,
agreeing with the given involution on F*, and respecting @ and ®. Maps of F&'rings are maps
of F¥-rings respecting the involution, hence we have a category F¥*-Rings. Similarly we have the
category Ft—Rings.

DEFINITION 2.12. An F*-ring A is an F¥-ring, together with functors

AN AS A k=0,1,... (2.12.1)
such that
A2 Ay x = Apryy b (x) (2.12.2)
AF(idx) = id e (x) (2.12.3)
and moreover AF agree with the given operation on F* cf. (1.26), and
AN(f) =1, (2.12.4)
AY(F) = f, (2.12.5)
N(fog) = @ N e (g). (2.12.6)
0<j<k

One similarly defines an FM-ring to be an F¥*-ring and an F*-ring such that
AECEE = AR(Y. (2.12.7)

Similarly replacing F* by F one defines an Fx—ring to be an F-ring A together with functors (2.12.1)
satisfying (2.12.2)—(2.12.6). Similarly, FA’t-rings are Fx-rings with involution satisfying (2.12.7).

Remark. Tt is possible to add further axioms (e.g. the ones corresponding to ‘special’ A-rings). Here
we shall only note the following. For X a finite set with {4} action, an orientation on X is a choice
of an isomorphism

e:[+1] 5 AYX), d=dimX, (2.12.8)
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i.e. it is a choice of one of the two (non-zero) elements e(1) € A% X). For A an F*-ring, and for
a € Ax x we have detx(a) € Aj4q]+1], defined by

detx(a) =e Lo A%a)oe. (2.12.9)

It is independent of the choice of € € Fya(x) (+1] € Apd(x),[+1], and it satisfies

detx(aoa’) =detx(a) - detx(a'), (2.12.10)
detx (idx) = 1(= idj1y)), (2.12.11)
detx, o x, (a1 @ az) = detx, (a1) - detx, (az). (2.12.13)
The choice of the orientation € on X gives also the duality isomorphism
F:X S ATHX) (and E: AV(X) S ATTI(X), (2.12.14)
uniquely determined by
zNe(x)=¢€(l), xzelX. (2.12.15)
For a € Ax x, we have a?di Ax x, defined by
@V =1 o A1) o ¢, (2.12.16)

where & € Fra-1(x) x € Apa-1(x) x- It is independent of the choice of €, and it satisfies
(a0 b) = p2d o g2d], (2.12.17)
(idx)*Y = idy. (2.12.18)
It is useful to have the expansion of the determinant by rows/columns,
aoa® =a*Yoq = det(a)-idy. (2.12.19)
As a corollary of (2.12.19) we have that a € Ay x is invertible (i.e. there exists a™! € Ax x with
aca™! = aloa = idx) if and only if detx (a) € Ajyq] [+1] is invertible. Indeed, if a is invertible det(a)

is always invertible with inverse det(a~!), and conversely, if det(a) is invertible then by (2.12.19) a
itself is invertible with inverse det(a)~! - a®d.

Remark. For an F-ring A (or an F¥ or F-ring), we let GLx(A) denote the group of invertible
elements in Ay x,

GLx(A)={a€ Axx|3a ' € Axx,aca ' =atoa=idx}. (2.12.20)

We have homomorphisms,
GLXl (A) X GLXQ(A) — GLXl@XQ(A), (al,ag) — a1 D as, (2.12.21)
GLX1 (A) X GLX2 (A) — GLX1®X2 (A), (al,ag) — a1 ® as. (2.12.22)

In particular, we have the homomorphisms
GL[”} (A) - GL[n—i—l] (A), a— a®d 1d[1]7

hence the direct limit

GL(A) = @GL[H}(A). (2.12.23)
We can then define the higher K-groups of A following Quillen [Qui73]:
K, (A) = 7p01(BGLo (A)T). (2.12.24)

Note that for an F-ring A associated with a commutative ring B, A = F(B) (see example 1 below),
we have GLoo(A) = lim GL,(B) and K,(A4) = K, (B).
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2.3 Examples of F-rings
Ezample 0. T is an F-ring.

Ezample 1. Let A be a commutative ring (always with identity). We denote by F(A) the F-ring
with

F(A)y x =Homy(A-X,A-Y) =Y x X — matrices with values in A, (2.13)

where o is the usual composition of A-linear homomorphisms (or multiplication of A-valued matri-

ces), and where @ is the usual direct sum, and ® the tensor product. Note that a homomorphism
of commutative rings ¢ : A — B induces a map of F-rings F(y) : F(A) — F(B), hence we have a

functor
F: Rings — F-Rings. (2.13.1)
Moreover let ¢ : F(A) — F(B) be a map of F-rings. For a € F(A)y, x write
Qy.oz = j; caoj, € A= F(A)[l},[l] (2.13.2)

for its matrix coefficients, where j,, j; are the morphisms of F given by
j:cz[l] — X, jx(l):m€X7
and where
jy Y — [1] is the partial bijection {y} — {1}. (2.13.3)

Since ¢ is a functor over F, and jy,j, € F, we have ¢(a), . = ¢(ay,.) and ¢ is determined by
p: A=F(A)y,n — B =F(B)py,y- This map is multiplicative, p(a; -az) = ¢(a1) - p(az), ¢(1) =1,
and moreover it is additive,

olar+aa) = p(anan) o (1)] = Gla) et o (1) =vtan +ota). (2134)

Thus the functor F is fully faithful.

Example 2. Let M be a commutative monoid with a unit 1 and a zero element 0. Thus we have
an associative and commutative operation

MxM— M, (ab)—a-b,

a-(b-c)=(a-b)-¢c, a-b=b-a, (2.14)

and 1 € M is the (unique) element such that
a-1=a, aelM, (2.14.1)

and 0 € M is the (unique) element such that
a-0=0, acbM. (2.14.2)

Let F(M) denote the F-ring with F(M)y x the Y x X matrices with values in M with at most
one non-zero entry in every row and column. Note that this is indeed an F-ring with the usual
‘multiplication’ of matrices o (there is no addition involved — only multiplication in M), direct sum
@, and tensor product ®.

Denoting by Mong 1 the category of commutative monoids with unit and zero elements, and
with maps respecting the operation and the elements 0, 1, the above construction yields a functor

Mong1 — F-Rings, M — F(M). (2.14.3)
This is the functor left-adjoint to the functor
F-Rings — Mong1, A Apjn,
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namely
Homp.Rings(F(M), A) = Hompqon, , (M, App)- (2.14.4)
As a particular example, take M = M, to be the free monoid (with zero) generated by one element g,
M, = ¢" U{0}.
Then

Homp Rings(F(Mg), A) = Apy -
Ezample 3. Let S denote the F-ring of sets. The objects of S are the finite sets of |F|, and we
let Sy x be the partially defined maps of sets from X to Y,
SY7X:{f:V—>Y|V§X}. (2.15.1)

Notice that if A is an F-ring, the opposite category A°P is again an F-ring, since F°P? = I and since
the axioms of an F-ring are self-dual. In particular, we have the F-ring S°° with

Syx ={f:V—=X|VCY} (2.15.2)
We have the F-ring of relations R that contains both S and S°P, with
Ry x ={F CY x X asubset}. (2.15.3)
The composition of F' € Ry x and G € Rz y is given by
GoF ={(z,2) € Zx X |3y €Y with (z,y) € G, (y,z) € F}, (2.15.4)

and GoF € Rz x.
The sum Fy @ F1 € Ry,ev;, xoax, of i € Ry, x; is given by the disjoint union of Fy and Fi,

e F = {((ZL‘,Z),(y,Z)) | (i’,y) € Fz}v (2155)
and the product Iy ® F1 € Ryy,ev:,xo0x, 1s given by
Fo @ Fy = {((w0, 1), (Y0, 1)) | (z0,%0) € Fo, (z1,91) € F1}. (2.15.6)

Equivalently, Ry x are the Y x X matrices with values in {0, 1}, and ¢, ® are the direct sum and
the tensor product of matrices (but o does not correspond to matrix multiplication).

We have the F-subring of F(Z) consisting of matrices with values in N; we denote it by F(N).
This F-ring also contains S and S°P, but composition in F(N) is matrix multiplication. We can
summarize these basic F-rings in the following diagram, where A is a commutative ring.

IE‘(N) (2.15.7)

(—>a
C
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Ezample 4. Let k be a ring and 1 : k — C an embedding (e.g. n a real or complex prime of a
number field). For X € |F|, let k - X denote the free k-module with inner product having X as an
orthonormal basis. Thus for a = (a;) € k- X we have its norm

laly = \/ (3 Intane). (2.16.1)

zeX

and for a k-linear map f € Homg(k - X,k - Y') we have its operator norm

|fln = sup [f(a)ly. (2.16.2)
laly<1
We have
[fogly <|fly-lgln, (2.16.3)
|f ® gly = max{[fly, |gln}, (2.16.4)
[ @gly = 1fln-19ly- (2.16.5)

Let Ok, denote the F-ring with
(O)y,x ={f € Homg(k - X,k -Y), [f[, <1} (2.16)

and with the usual operations o, &, ®.
For Xy, X7 € |F|, denote by

Ji Xi = Xo® X1, Jilz) = (x,1), (2.17.1)

the natural inclusion, and by

P Xo® X1 — Xi,  jia,d) = {g Z ;Z, (2.17.2)
its transpose. For an F-ring A we get maps
Ay xomx; — Ay,xo X Ay xy, [ (fojo, fog), (2.17.3)
and
Axpox,y = Axoy X Axyy,  fr (oo f.ii 0 f). (2.17.4)

We say that A is a matriz ring if these maps are always injections. Equivalently, A is a matrix
ring if every element is determined by its coefficients, that is we have an injection

Ay x = (Ag )%, f {0 fojatyevaex, (2.17)

with j,, j, as in (2.13.2) and (2.13.3).
The above examples 0, 1,2,3 (except for R) and 4, all constitute matrix rings. The following

gives examples of F-rings which are not matrix rings (they are the ‘residue F-field” of the F-rings of
Example 4 (2.16)).

Ezample 5. Let k be a ring and let  : k — C be an embedding, and for X € |F|, let k- X
denote the free k-module with basis X and with the inner product having X as an orthonormal
basis. Let Fy , denote the F-ring of ‘partial isometries’, with

Frn)yx ={f: VW, withV Ck-X,WCk-Y
k-submodules and f is a k-linear isometry}. (2.18)
For f=(f:V=W)e Frm)yx,9g=(g: W' =U) € (Fx,n)z,y, we have
gof=(gof:frWnW) = gWnW)) e (Fxy,)zx; (2.18.1)
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and for f; = (fi : Vi = W;) € (Fiy)v;.x,, we have

foe fi=(fo® fi: VooV = Wo@ W), (2.18.2)
fo® fi=(fo® fi: Vo @ Vi = Wy @ Wh). (2.18.3)
We will see in Example 4.21 below that [Fy , is indeed the residue field of Oy,

Remark. All of the above examples (except S and S°P) have a natural involution making them
into F'-rings. Moreover, all the examples have obvious analogous F*-rings. For example, for a
commutative ring A, we have the F*-ring F*(A) with

FE(A)yx = Homu(A- X,A-Y),

where A - X denotes the free A-module with basis {(x) | x € X}, divided by the A-submodule
generated by {(z) + (—z) |z € X}:

A X =D A@)/ (oo

zeX

alternatively, A - X is the free A-module with basis X, where X C X is a basis of the £1-set X.
Then A — Fi(A) is a fully faithful functor from Rings to F¥-Rings. All the above examples of F*-
rings are F5t-rings with respect to transposition. Moreover, exterior powers give them the structure
of F -rings.

For a commutative ring A that contains all the roots of unity, together with a fixed map u — p(A)
from our abstract group p onto the group of roots of unity pu(A) C A* (this map could have kernel
ppee if A has characteristic p), we have the F-ring F(A) with

F(A)Y,X = HOIHA(A . X,A . Y),

where A - X denotes the free A-module with basis X divided by the A-submodule generated by
{¢-(x)—(¢-2) | v € X, € u}. Then A+ F(A) is a fully faithful functor from u-Rings to F-Rings,
where p-Rings is the category of such commutative rings A together with the map p — wu(A),
and ring homomorphisms preserving these maps. The F(A) has an involution making it an F -ring.

Moreover, exterior powers give F(A) the structure of F”-rings.
Remark. The categories F-Rings (respectively F*-Rings, F-Rings, F*-Rings, F-Rings, Ft—Rz’ngs,
F/\—Rz’ngs) have fibred products. Given homomorphisms of F-rings
o' A= B, i=0,1,
we have the F-ring A ]z A', with

<A0 HA1> = {(a0,a1) € AV x x Ay x | ¢"(a0) = ¢'(a1)}-
B Y, X

Similarly we can construct arbitrary products [], A’ and arbitrary inverse limits @Ai, where
i A is a functor from a small category to F-Rings (respectively F'-Rings, etc.).

DEFINITION 2.19. Let A be an F-ring. An equivalence ideal £ is a collection of subsets

£ = H Ey,x,

Y,X€|F|
with &y, x C Ay, x x Ay x, such that
Ey,x is an equivalence relation on Ay x. (2.19.1)
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For (a, a’) € gyg(, and for by € Ay@y, by € AX,X"a

bio(a,a’)oby def (b oaobg,byoa oby) € Eyr x. (2.19.2)

For (a;,a}) € &y, x,, 1 =0,1,

def
(aOv a6) S (alv all) = (aO ® ar, a6 @ all) € gYo@YhXo@Xl' (2'19-3)

For (a,d’) € €y x, and for b € Ay, z,

b® (a, CL/) def b®a,b® CL/) € 5W®Y,Z®X- (2.19.4)

Given an equivalence ideal £ of A, let
A/& = [ Avix/&vx.
Y,X€|F|
and let 7 : A — A/E denote the canonical map which associates with a € Ay, x its equivalence class
m(a) € Ay x/Ey x. It follows from (2.19.2) (respectively (2.19.3), (2.19.4)) that we have well-defined
operations on A/,
m(f)om(g) =m(fog)
(respectively (f) ® w(g) = 7(f ® ), 7(f) ® w(g) = 7(f @ g)),

making A/€ into an F-ring such that 7 : A — A/€ is a homomorphism of F-rings.

(2.19.5)

Given a homomorphism of F-rings ¢ : A — B denote by

KER(p) = ] KERvx(e),
Y, X€|F| (2.20)

KERy x(¢) = {(a,a’) € Ay x x Ay x | ¢(a) = p(a’)}.

It is clear that LER(yp) is an equivalence ideal of A, and that ¢ induces an injection of F-rings
P : A/JKER(p) — B, such that ¢ =pom, i.e.

\ / (2.21)

A/keRr(p)

is a commutative diagram. Thus every map ¢ of F-rings factors as an epimorphism (7) followed by
an injection (®).

Ezample 2.22. Let A = Oy /Ny, be the F-ring of Example 4, (2.16), with k = Z[1/N]. For a prime
p not dividing N there is a surjective homomorphism

¢p: A—>F(Fp), ¢p(a)=a(mod p).
We have the equivalence ideal &, = KER(¢p).
Similarly, there is a surjective homomorphism ¢, : A — Fz /57, cf. Example 4.21 below, with

Fz(1/n,n the F-ring of Example 5, (2.18), and we have the equivalence ideal &, = KER (py).

3. Modules

We define the notion of an A-module for an F-ring A. Since we gave up addition we cannot define
directly the quotient M /N where N is a sub-A-module of M. We can divide A-modules only by
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an equivalence A-module, and we study the relationship between sub-A-modules and equivalence
A-modules. We describe the standard operations on A-modules and give many examples.

3.1 Definitions and examples

DEFINITION 3.1. Let A be an F-ring. An A-module M is a collection of sets M = {My x }y xer,
together with maps

Ayry x My x X Ax x» — My x1,  (a,m,d’) —aomod, (3.1.1)
Ay, xo X My, x, — My,evi Xo2x,: (@,m) — a®@m, (3.1.2)
My, x, X My, x, = My,ov, xo0x,, (Mo, m1) — mo & my. (3.1.3)
We assume Mg x = {0x}, My, o) = {0} }, and we have a distinguished zero element Oy,x € My,
such that
Oom=0, mo0=0, aolod =0, a®0=0, 0®0=0. (3.1.4)
The maps o, ®, ® satisfy: for a,d’,@,@,a;,a, € A, m,m; € M,
@o(aomod)oa = (@oa)omo(a o@), (3.1.5)
idy omoidx = m, (3.1.6)
(ap ® ay) o (mo ®my) o (ag @ ay) = (ap o mg o ap) ® (ay omy oay), (3.1.7)
mo & m1 = my & my, (3.1.8)
mo & (my & ma) = (mo & my) & ma, (3.1.9)
m @ O = m, (3.1.10)
(@®a)o(ap@m)o(@®@d)=(acagod@)®@(aomod), (3.1.11)
ap @ (a1 ®@m) = (ap ® a1) @ m, (3.1.12)
id[l] XKm =m, (3.1.13)
(ap®ar) @m = (ag @m) & (a1 @ m), (3.1.14)
a® (mog®myi) = (a®@mg) ® (a®my). (3.1.15)

In particular, (3.1.2) induces an action of the monoid Ay ) on My x via (a,m) — a ® m.

Ezample 3.2.1. Let A be a commutative ring, F(A) the associated F-ring. For an A-module M let
F(M)y,x denote the Y x X matrices with values in M. Then F(M) has natural operations (3.1.1),
(3.1.2), (3.1.3) making it into an F(A)-module. Note that for M = A we obtain the F-ring F(A)
viewed as an F(A)-module. We have, for A-modules M, My,

F(HOH]A(Ml, MQ))Y’X = HOIIlA(Ml QAA- X, My®y A- Y) (3.2.1)

Example 3.2.2. For a finite set V' let F(V)y x denote the Y x X matrices with values in V' U {0}
such that every row and every column contains at most one non-zero term. Then F(V') has natural
operations (3.1.1), (3.1.2), (3.1.3) making it into a module over the F-ring F. For V' = [1] we obtain
F([1]) which is just F viewed as an F-module. We have, for finite sets V7, V3,

F(HOIHF(Vl, ‘/2))Y’X = HOHl]F(Vl ®RX, Vo ® Y) (3.2.2)

For an F-module W, such that Wy x is a finite set for all X,Y € |F|, we say it has dimension
dimp W over F if the following limit exists (where n,m go to infinity independently of each other):

1
dim]}r W= lim — log ﬁW[n],[m]

n,m—oo NM

Thus if V' is a finite dimensional vector space over the finite field F,, and F(V') the associated
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F(F,)-module viewed as F-module, we have
dimyp F(V') = dimy F(F,) - dimg, V'
with dimp F(F,) = logg.
For a finite set V, the associated F-module F(V) is zero dimensional in the above sense,

dimp F(V) = 0. We can use a different dimension function, DimpWW for W an F-module (with
Win),jm finite for all n,m), given by

nm

DimpW = lim —log Z (W, [m])

T,Yy—0 TY
' n,m=0

For the F-module W =F(V'), V a finite set, it gives

. _ S | Ry
DimgF(V) = lim = log Z <k>< k)k:(ij) e

m>k

= lim * logexp(x +y + xy(gV)) = ¢V.
z,y—00 TY
Indeed, to give an arbitrary element of F(V)[n],[m] we have to choose k rows (respectively, k
columns), and there are (Z) (respectively, (’;Z)) choices, then we have to choose a bijection between
these rows and columns (there are k! possibilities for such a bijection), and finally we have to fill in
the k chosen entries with elements of V' (and there are (V)% such choices), hence

(V) ) ) = kgn:m <Z> (Z) KI(EV)E.

Ezample 3.2.3. Let k be a field,  : k — C an embedding, and let V be a k-vector space with an
inner product (-, )y and associated norm ||-||y/. Let F(V)y x denote the Y x X matrices with values
in V,v = (vyz), such that for a = (a,) € k- X, b= (by) € k-Y, we have (cf. (2.16.1))

§ byvy,x Qg <
T,y v

The set F(V) has natural operations (3.1.1), (3.1.2), (3.1.3) making it into an Oy ,-module.
For V' = k we obtain F(k) which is Oy, viewed as an O ,-module.

laly - [bly-

DEFINITION 3.3. Let A be an F-ring, and M, M’ be A-modules. A collection of maps
¢ ={pvx : Myx = My x | Y, X € [F|}

is a homomorphism of A-modules if it respects the operations

plaomoa’)=aop(m)od, (3.3.1)
pla®@m)=a®p(m), (3.3.2)
w(mo & my) = @(mo) & e(my). (3.3.3)

The collection of A-modules and homomorphisms form a category A-Mod. It has an initial and

final object 0 = {{Oy,x } }y,xer|- For a commutative ring A, the construction of Example 3.2.1 gives
a functor

F: A-Mod — F(A)-Mod, M — F(M). (3.4.1)
As in (2.13.4) we see that this functor is fully faithful.
Similarly, the construction of Example 3.2.2 gives us a functor

F:F—F-Mod, V~—TFWV). (3.4.2)
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For a field embedding 7 : k — C, let (k,7)-Vec denote the category whose objects are k-vector
spaces with an inner product and morphisms are k-linear maps with operator norm at most 1; the
construction of Example 3.2.3 gives a functor

F: (k,n)-Vec — Ok ,-Mod, V — F(V). (3.4.3)

3.2 A-submodules and equivalence A-modules

DEFINITION 3.5. Let A be an F-ring, M an A-module. An A-submodule M' of M is a collection of
subsets M’ = {Mﬁ’/ + € My, x} which is closed under the operations o, &, ®:

AoM'oACM, AsM CM, MoeM CM. (3.5.1)

We denote by suby (M) the collection of A-submodules of M. The intersection of A-submodules is
again an A-submodule. An A-submodule of A is called an ideal.

Let
o: M — N (3.6)
be a homomorphism of A-modules. We have an A-submodule of M:
© 1(0) = {m € M | ¢(m) = 0}. (3.6.1)

It is the kernel of ¢ in the category A-Mod.
We have also an A-submodule of N:

o(M) = {oy,x(My,x)}y,xer|- (3.6.2)

The homomorphism ¢ induces maps
oy 1suba(M) — suba(N), M o, M o, (3.6.3)
o 1suba(N) — suba(M), N’ — o*N' & o 1(N). (3.6.4)

The category A-Mod has fibred products. Given A-Mod homomorphisms

o Mo — M «— M : ¢ (3.7)
we have the A-module
Moy HM1
M
with
(MOHM) — {(mo,m), mi € (Miy.x, golmo) = pr(mn)}, (3.7.1)
M Y, X

and the operations
ao(mg,my)oa =(aomgod,aomyoad),
a® (mg,m1) = (a®@my,a®@myq), (3.7.2)
(mo, m1) ® (Mg, my) = (mo & my, my & m7).

In particular we have products My [[ M;. We can similarly form arbitrary products [[, M), and
arbitrary inverse limits
@M)\ = {(Tn)\) S HM)\ g0>\/7>\(m>\) = m)\/}, (373)

where A — M, is a functor from a small category to A-Mod.
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Let ¢ : M — N be a homomorphism of A-modules. Let

KeR(ehx = {omm'y € (MTTr) | otom) = oty | = a1 v (38)

Y, X

Then KER(yp) is an A-submodule of M [[M such that, for all Y, X € |F|,KER(¢)y,x is an
equivalence relation on My x.

DEFINITION 3.9. Let M be an A-module. An equivalence A-module of M is an A-submodule £ of
M ] M, such that €y, x is an equivalence relation on My, x. We denote by equiv 4 (M) the collection
of equivalence A-modules of M.

For £ € equiv 4 (M) we can form the equivalence classes (M/€)y x = My x /€y x. There is an in-
duced A-module structure on M /€ such that the canonical map 7 : M — M /€ is a homomorphism.

We have
Hom pod(M/E,N) = {¢ € Homy pmoa(M,N) | CER(p) 2 E£}. (3.9.1)
We have one-to-one order-preserving correspondence
equiv 4 (M/E) 2 {&' € equivy(M) | E DE}, &'/ &, (3.9.2)

and a natural isomorphism

(M/€)/(E/€) = M/E. (3.9.3)

DEFINITION 3.9.4. For an equivalence A-module £ of M, a submodule My C M is called &E-stable if
for all (m,m’) € &,

m € My < m' € M.

We have a one-to-one order-preserving correspondence
suba(M/E) = {My € suba(M) | My is E-stable}, My/E — M. (3.9.5)

Every homomorphism of A-modules ¢ : M — N factors as (injection) o (surjection), as in the

diagram.
N
i j (3.9.6)

M/xer(p) —= ¢(M)

DEFINITION 3.10. For an equivalence A-module & C M [[ M let

ZE)=n10)={meM]|(m,0)c&}=EN <M H{o}). (3.10.1)
It is an A-submodule of M. For an A-submodule My C M let
E(My) S M[[M (3.10.2)

be the equivalence A-module of M generated by {(m,0) | m € My}, i.e. E(Mp) is the intersection
€ of all equivalence A-modules £ of M such that My x {0} C €. We write M /My for M/E(My).
For a homomorphism of A-modules ¢ : M — N we have its cokernel,

Coker(p) = N/p(M) = N/E(p(M)). (3.10.3)
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LEMMA 3.11. We have

My C M{; A-submodules of M = E (M) C E(M]), (3.11.1)
ECE C MHM equivalence A-modules of M = Z (&) C Z(&'), (3.11.2)
My C Z(E(My)), (3.11.3)
E(Z(€)) CE. (3.11.4)
Proof. The proof is straightforward. O
COROLLARY 3.12. We have
E(My) = E(Z(E(Mo))), (3.12.1)
Z(&)=Z(E(Z(E))). (3.12.2)
Hence we have
{Z(&) | € €equivy(M)} ={My C M | My=Z(E(My))}; (3.12.3)
we denote this set by E-sub(M).
Similarly, we have
{E(My) | My € M A-submodule} = {5 cM][Mm ' £= E(Z(E))}; (3.12.4)

we denote this set by Z-equiv 4(M).
Moreover, there is an induced bijection
E-suba (M) < Z-equiv 4 (M),
My — E(My),
Z(E) —E.
LeEMMA 3.13. Let My C M be an A-submodule, and let &y, x C (M [[ M)y, x denote the collection
of pairs (m, m') such that there exists a ‘path’ m = mg,my,...,m;y =m’, where for j =0,...,1—1,

{mj,mj41} has the form {ao (n®ng)oa’,ao(n@®0)od’} for some a,a’ € A,n € M,ng € My. Then
E(My) =E&.

Proof. Note that for a,a’ € A,n € M,ng € My, we have
(mg,0) € E(My), (m,m) € E(My)
and since E(My) C M [[ M is a submodule we get
(ao(n@®ng)od,ao(n®0)od) e E(My).

Thus if there is a path m = my,...,m; = m’ as above, then (m,m’) € E(My); so £ C E(My).

For the reverse inclusion note that £y, x is an equivalence relation on My, x. Moreover, £ is an
A-submodule of M [[ M. For (m,m’) € £ there exists a path m = my, ..., m; = m’ as above, hence
for a,a’ € A,

/ !/
aomgod,...,aomjoa

is a path from aomoa’ to aom’ od’, hence
(aomod,aom od)eé.

Similarly, for @ € Ay x,

a@mg,...,aQmy
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is a path, which shows that
(@a@m,a@m’) €.
To show this use
a®(ao(n®np)od)=(@®a)o ((idx ®n)® (idx ® ng)) o (idx ® a’),
idxy ® ng € My, idx ®0=0.

If also (m,m’) € £, we can assume the path m = Ty, ..., m; = M has the same length [ (by adding
identities ng = 0,a = id, d’ = id), and then

mo & Mg, . .., My O My
is a path, which shows that

(mem,m' eam') eé.
To show this use

(ao(n@ng)od)®(@o(m®mg)od)=(a®a)o((ndn)®(ng®Mg))o (a &a).
Thus & is an equivalence A-submodule of M, and since {(mg,0) | mo € My} C &, we have
E(My) CE. O
COROLLARY 3.14. Let My C M be an A-submodule. We have
Z(E(My)) = My
if and only if, for all mg € My, m € M,a,d’ € A,
ao(m®dmp)od € My < ao(md0)od € My, (3.14.1)

i.e. My € E-suba(M) if and only if My is E(My)-stable.

Proof. Assume (3.14.1) holds. By Lemma 3.13 if (m,m’) € E(My) there exists a path m =
mg,...,m; =m', and we have
m; € My & mjy1 € My,
hence
me My, < m e M,.

Taking m' = 0 € My, we get (m,0) € E(My) implies m € My. Thus Z(E(My)) € My, and since the
reverse inclusion always holds we get Z(E(Mp)) = M.
Conversely, assume Z(E(Mj)) = My, then

ao(m@®@mp)oad € My < (ao(mdmg)od,0)e E(My), (3.14.2)
ao(m®0)oad € My <« (ao(m®d0)od,0)e E(My). (3.14.3)
Using the fact that E(My)y,x is an equivalence relation, and that for mg € My
(ao(m&mg)od,ao(mae0)od) e E(My),
we see that the statements in (3.14.2) and (3.14.3) are equivalent, hence (3.14.1) holds. O

For submodules My € suby(M), M’ € E-suba(M), we have M’ D My if and only if M’ is
E(Mj)-stable. We get a one-to-one order-preserving correspondence

E-suba(M/My) = {M' € E-subs(M) | M" O My}, M'/My+— M’ (3.15.1)
and a natural isomorphism
(M/My)/(M'/My) = M/M'. (3.15.2)
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An A-submodule of A is called an ideal, and an equivalence A-module of A is called an equivalence
ideal. Thus we have the maps E,Z between ideals and equivalence ideals satisfying Lemma 3.11
and Corollary 3.12. Elements of E-suba(A) will be called E-ideals.

Ezample 3.15.3. For A = Oy /Ny, with the notation of Example 2.22, we have for p t N: EZ(&,) &
ENEy.

3.3 Operations on submodules

For a family {M;} of A-submodules of M, we have the intersection (), M; € subs(M). Note that if
M; € E-sub(M) then (), M; € E-suby(M). We have also ), M; the A-submodule generated by
the M;, i.e. it is the intersection (| N taken over all submodules N that contain all the M;. It can
be described explicitly as

(3200), oo (@) =

)

a€Aygy, d €Ag x,x, Mmi € (Mz')Yi,Xi}' (3.16)

Indeed the right-hand side will be contained in any submodule N which contains all the M;, it
itself contains the M;, and is closed under the module operations

bo <ao <@mz> oa’> ob = (boa)o <@mz> o(d ob), (3.16.1)

7 7

<ao <@ m> oa'> o <bo <@ m;> o b’> =(a®b)o (@(mi @m;)> o(da@b), (3.16.2)

b <a o (@ m> o a’> = (idy ®a) o (@(b ® m¢)> o(idx ®d'),b€ Ay x. (3.16.3)

% %
More generally, given any subset {m; | i € I} C M, with m; € My, w,, the A-submodule it generates
>.; A-m; can be described explicitly as

<2Aml> :{ao(@idxi@)mi)oa’
i Y, X i

Given an A-module M and an ideal a C A we have their product a- M which is an A-submodule
of M,

(a-M)yx

= {b o (@(az & mz)> ot/ ' be AY,®i(Y;;®Zi)’b/ S A®i(Xi®Wi)7X’ai € ay, x,,Mm; € MZhWi}‘

7

a < Ay’@i(xi(gzi),a, c AGBZ(X@WZ),X} (3164)

(3.16.5)
Given A-submodules Mgy, My of M we can form their quotient
(Mo : M) ={a€Ala®@m e My ¥Ym € M}. (3.16.6)
It is easily checked that (Mj : M) is an ideal of A.

3.4 Operations on modules

Sums. Given A-modules My, M, we first construct the sum (coproduct) My[]M; in the
category A-Mod. We form

<MO HM1> = {(avavmlv a/) | a € AY,YOEBY17 a e AXO@XLX’mi € (Mi)Yi,Xi}/N (3'17-0)
Y.X
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where ~ is the equivalence relation generated by
(ao (ap ® ay),mg,m1,a’) ~ (a,ag o mg,ay omy,a), (3.17.1)

(a,mg,mq, (ay & a})oad’) ~ (a,mgy o aj, my oal,a). (3.17.2)

Let (a,mg,m1,a’)/~ denote the equivalence class containing (a,mg, m1,a’). Define

bo (a,mg,my,a’)/~ob = (boa,mg,my,a’ ob')/, (3.17.3)
(a,mg,my,a")/~ ® (@, Mg, M1,a)/~ = (a ®T,mo ® Mg, m1 ©My1,a &a)/~, (3.17.4)
b® (a,mg,m1,d' )/~ = (b®a,idz @ mg,idz @ my,idz ® a’)/~. (3.17.5)

PROPOSITION 3.17. The operations (3.17.3), (3.17.4), (3.17.5) are well defined, independent of the
chosen representatives, and make My [ [ M, into an A-module. There are canonical homomorphisms
M; — My [ M, taking m in (My)y x (respectively, (Mi)y x ) into (idy,m,0,idx)/~ (respectively,
(idy,0,m,idx)/~ ). These maps make My |] M, into the sum of My, M, in the category A-Maod,

HOIIlA_MOd(Mo,N) X HOH]A_MOd(Ml,N) = HOII]A_MOd <M0HM1,N>, (3176)

(¢0, 1) = o I @1((a,mo, m1,a’)/~) = ao (po(mo) @ @1(m1)) o d’.

Proof. To show that the operations are well defined we need to show that on replacing the repre-
sentatives by equivalent ones we get the same result. Since two representatives are equivalent if and
only if there is a path between them whose consecutive members are related by (3.17.1) or (3.17.2),
it is enough to show that we get the same result for representatives related by (3.17.1), (3.17.2).
That o in (3.17.3) is well defined follows from associativity of o. That @ is well defined with respect
0 (3.17.1) follows from

((ao(ap @ a1)) ®a, my ® mo, my ®my,a @a,)/N
= ((a @ @) o (a0 ® a1 © idy, gy, ), Mo ® Mg, My © Ty, d ©T)/~

= (a®a, (ag o mo) ® Mo, (a1 0m1) ST, a' DT)/ .
Similarly ® in (3.17.5) is well defined with respect to (3.17.1):

(b® (ao(ag®ay)),idz ® mo,idz @ my,idz ® a,)/N
=((b®a)o(idz ®ay®idz ® ay),idz ® mg,idz @ mi,idz ® CL/)/N
= (b® a,idz ® (ag o myp),idz ® (ay omy),idz @ a’)/~.

It is clear that o as defined in (3.17.3) is associative (3.1.5) and unitary (3.1.6). It is clear that & as
defined in (3.17.4) is functorial (3.1.7), commutative (3.1.8), associative (3.1.9), and unitary (3.1.10).
It is clear that ® as defined in (3.17.5) is associative (3.1.12), unitary (3.1.13), and distributive
(3.1.14), (3.1.15). We check that ® is functorial (3.1.11): on the ‘left’

(d®c)o(b® (a,mo,m1,d')/~)

(d®c)o(b®a),idg @ mg,idz @ my,idz @ a’)/~
=((dob)® (coa),idg @ mg,idz @ m1,idz ® a’)/~
=(d

0b) @ (co (a,mo,m1,a’)/~);
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and on the ‘right’ for b € Aw 7, d € Az 7:

(b® (a,mg,mq,a’)/) o (d®c)

= (b®a,idz @ mg,idz ® m1, (idz ® a’) o (d®¢))/~
b® a,idz @ mg,idz @ my, (d ® idx,ex,) o (idr ® (a’ o c)))/~
b®a,d®my,d®mi,idr ® (a' oc))/
(b®a)o (d®idyyey, ), idr ® mo,idr ® my,idr @ (a’ o ¢))/~
(bod) ® a,idr ® mg,idr @ my,idr ® (a’ o))/~
= (bod) ® ((a,mg,my,a’)/~ oc).

Thus My [[ M; is an A-module, and it is easy to check that it is the sum of My, M7 in A-Mod. O

= (
= (
= (
= (

We shall write a o (mg @ mq) o for (a, mg, my,a’)/~. The canonical map from the sum to the
product is given by

My [] M — Mo [ M,
ao(mg®my)oad — (ao(my®0)oad,ao(0dmq)od). (3.17.7)

Given an arbitrary family of A-modules {M;};c; we can similarly form their sum
1.
i

Direct limits. Given homomorphisms of A-modules v; : M — M;, i = 0,1, let £ be the
equivalence A-module of My ] M; generated by

{(a o ((mo® vo(m)) ®my)od, ao(mo® (Y1(m)®mq))od)|m; € Mj;me M}. (3.17.8)

The quotient

def

My [ ] M/e = My [T M,
M

is the push-out

HomA-Mod<MOHM17N> = {(0, 1) | ¢i € Homa poa(Mi, N), o 0 tho = 1091}
M

Similarly, given a functor A\ — M, from a small category to A-Mod, we can form the direct
limit
lim My = [ ] Ma/€.
A
Here & is the equivalence A-module of [[ M) generated by
(idy o (m @ 0...)oidy,idy o (gxa(m) ®0...)oidx),

where @y \ : My — M)/ runs over the maps in the direct system, and m € M.

Free modules. Fix sets Yy, Xo € |F|. Let us form
My x ={(a,d") | a € Ay zavy, @' € Azex,.x}/~, (3.18.0)
where ~ is the equivalence relation generated by
(ao(c®idyy),a’) ~ (a,(c®idx,) od), a€ Ay zey,.c € Azz,d € Agpgx, x. (3.18.1)
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Let (a,a’)/~ denote the equivalence class of (a,a’), and define

bo(a,a')/wob = (boa,a' ob)/, (3.18.2)
(a,d')/~ ® (@,@)/~=(a®a,d @T)/~, (3.18.3)
b® (a,d)/w = (b®a,idz ®d'),b € Aw z. (3.18.4)

PROPOSITION 3.18. The operations (3.18.2), (3.18.3), (3.18.4) are well defined, independent of the
representatives, and make M into an A-module. It is the ‘free’ A-module in degree Yy, Xq:

HOIHA-Mod(M7 N) = NY07X0

for all A-modules N.

(3.18.5)

Proof. The proof is similar to that for Proposition 3.17. It follows that o is well defined by associa-

tivity. That @ is well defined follows from
(a0 (c®idy,)) ®a,d ®a’)/~
=((a®a)o ((c®idy) ®idy,),
@, ((c ®id) ®idx,) o
@, ((c®idx,)od)®a)/~.
Similarly ® is well defined:
(b® (ao(c®idy,)),idy @a')/~
=((b®a)o
=(b®a,(idy ® c®idx,) o

ded)/
(d®d))/~

(idy ® c®idy,),idw @ a’)/~
(idw ® a’))/~
= (b®a,idy ® ((c®idx,) od’))/~.

It then follows that M satisfies the axioms for A-modules; for the functoriality of ®, (3.1.11),

we have ‘on the left’:

(d®c)o(b®(a,a)/~)
=([d®c)o(b®a),idz ®d)/~
— ((doh) ® (coa),idz ® )/~
= (dob) @ (co(a,d)/~);
and ‘on the right’ for b € Aw z,d € Az 7 :
(b® (a,d’)/~)o(d®c)

=0b®a,(idz®d)o(d®
=0b®a,(d®id) o
— (b®a)o
= ((bod)®a,idr ® (a’ oc))/~
=(bod)® ((a,a’)/~ 0c).

c))/~

o~ o~ o~ o~

(idr ® (a’ o))/~
(d®id),idr ® (a’ o))/~

Thus M is an A-module. Given a homomorphism ¢ : M — N, we get

p((idyy. idx,)) € Nyy,xo-
Given n € Ny, x, we get homomorphism ¢ by
¢((a,a’)/~) =ao(idz®n)od,

These are inverse to one another and give the bijection (3.18.5).

Let f - fYo,Xo (ideidXo)/N'
A - fy, x, for the above module M constructed in (3.18.0).
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symbols {f; = fy, x, = (idy;,idx,)/~}, we can form the sum

147

el
of the free A-modules on the f;, and

Hom - rod (HA : fz',N> = {(ni)ier | ni € Ny, x, }
el
= Homget/|r|x|F| <{fi}i617 11 MY,X>, (3.18.6)
Y, X €|F|

i.e. the functor taking {f;} to [[ A - f; is the left-adjoint to the forgetful functor from A-modules to
sets over |F| x |F|, which takes an A-module M to the |F| x |F| set

Tensor product. Let My, My, N be A-modules. A collection of maps
f=A{oxom.xi + (Mo)yo,xo x (Mi)yvi,x1 — Nyvoevi xeex: } (3.19)
is called A-bilinear if it satisfies

3.19.1
3.19.2

f(mo @ mé)’ml) = f(mo,m1) ® f(mé)’ml)v

f(mo,m1 ®my) = f(mo,m1) ® f(mo, m7),
fla®@mg,mi) =a® f(mg,m1) = f(mg,a @ myq), 3.19.3
f(apomgoag,ayomyoal) = (ay®ay)o f(mg,m)o (ay® aj). 3.194

We denote by Bilin(My, Mi; N) the set of all such f. We can similarly define Bilin(My, ..., M; N
as the set of all

A~~~ I/~ I/~
~— — ~— ~—

[= {fYO7XO§~~~§Yl7Xl : (MO)YO,XO Xoeee X (Ml)Yz,Xl - NY0®~~~®Y1,X0®~~®X1}

which are ‘linear’ in each variable. Note that if f is bilinear with values in N, and ¢ : N — N’ is a
homomorphism, then ¢ o f is bilinear with values in N’.

LEMMA 3.20. There exists a universal bilinear map

Mo x My — Mo @4 My, (mo, m1) — mo @ my,
such that

Bilin(My, M1; N) = Hom g_p0q(Mo @ My, N).

Proof. The usual construction of the tensor product goes through. We form the free A-module

H A - f(mg,my).

m;EM;

Here m; runs through the elements of M;, i = 0,1, and if m; € (M;)y, x, we view f(mg,m1) as a
formal arrow from Xy ® X; to Yy ® Y;. We divide this free module by the equivalence A-module
generated by the relations (3.19.1)—(3.19.4). O

We write mg ® my for the image of f(mg,m1) in My ® 4 M.
We can similarly construct My ® --- ® M; so that

Bilin(Mo, coo, My, N) = HomA-/\/lod(MO ® - ® M, N) (3.20.1)
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PROPOSITION 3.21. There are canonical isomorphisms

M@N=NM, men—n®m, (3.21.1)
(MN)QL*M®(NQL) 2XM®N® L, (3.21.2)

men)@l—menl)»men®l,
M®A=M. (3.21.3)

If p; : M; — N; are homomorphisms of A-modules, we get a homomorphism

Yo ® @1 : My ® My — No ® Ny,

©o ® @1(mo @my) — po(mp) @ @1(my). (3.21.4)

These are functorial,
idpr, ® idpar, = idagenr, s (3.21.5)

and for vy; : N; — L,
(o ® 1) 0 (0o ® ¢1) = (Yo © o) @ (Y1 0 1) (3.21.6)
Proof. The usual proof using the universal property goes through. O

Base change. Let ¢ : A — B be a homomorphism of F-rings. If N is a B-module, we can
consider N as an A-module via ¢:

aonoad :=¢(a)onop(d), a,ad €A, neN, (3.22.1)
a®@n:=pla)®n, a€cA neN. (3.22.2)

We denote this A-module by ¢* N, or by N,,.

Given an A-module M, form
(MB)y,x = {(b,m,b") | b€ Byy,b' € Bxs x,m € My x/}/~, (3.23.0)

where ~ is the equivalence relation generated by

(bog(a),m, V) ~ (b,aom,b), (b,m,p(a)ob)~ (b,moab), (3.23.1)
(bo (c®idys @idyr), (idz ® m/) &m”, b,) ~ (b, (dw ® m') em”, (c®idy ®idxr) o b,)
for c € BW,Z, m' € My/7x/, m’ € My//7X//. (3.23.2)

Let (b,m,b")/~ denote the equivalence class containing (b, m,b’), and define

bo (b,m,b)/ob = (bobm,b ob)/~, (3.23.3)
(b, b)) @ (0,8 /= (b&b,meTmY &D))/~, (3.23.4)
b® (b,m, b))/~ = (b@b,idx @ m,idx ®V')/~, b€ By x. (3.23.5)

PROPOSITION 3.23. These operations are well defined, independent of representatives. They make
Mpg into a B-module; and M +— Mpg is a functor from A-Mod to B-Mod, for f : M — M’
corresponds to fp: Mp — Mp,

fB((ba m, b/)/N) = (b7 f(m)7 b,)/’\“
This functor is the left-adjoint to the functor *,

Hom g poa(M, 0" N) = Homp_pod(Mp, N),
Fio F((b,m b)) = bo f(m) 0. (3.23.6)
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Proof. The proof is similar to those for Propositions 3.17 and 3.18. That (3.23.3) is well defined
follows from associativity. The operation & of (3.23.4) is well defined with respect to (3.23.1):

(boy(a)) ®b,mem,b &b)/
= ((b®b)opla®id),mdm,b &)/~
= (b®b (aom)em,b &b)/~.
It is well defined with respect to (3.23.2):
((bo (c®idy @ idyn)) @ b,idz @ m' &m” &m0 &)/~
—(b®b)o(c®idy @idyr @idy),idz@m' &m” em,b &b)/~
— (bobidzem em” &m, (c®idy & idxs ®idg) o (¥ &)/~
= (b@bidzem am” em, (c®idx @ idxr)ob)&b)/~.
The operation ® of (3.23.5) is well defined with respect to (3.23.1):
(b® (bop(a)),idy @ m,idy @ V) /~
= ((b®b) o p(idy ® a),idy ® m,idg @)/~
= (b®b,idg® (aom),idg @)/~
It is well defined with respect to (3.23.2):
(b® (bo (c®idys ®idyr)),idg ® (idz @ m' @ m”),idx @)/~
= ((b®@b)oidg ® (c@idys @ idyr),idg ® (idz @ m’ &@m”),idg @ b')/~
= (b®b,idy @ (idw @ m’' @ m”), (id% @ (c @ idxs @ idxn)) o (idg ® b))/~
= (b®b,idy ® (idw @ m' &m”),idy @ ((c®idx Hidxr)ob))/~.

One then checks the axioms for a B-module. In particular for the functoriality of ®, (3.1.11), we
have ‘on the left’:

(b® (b,m,b)/)
(e@c)o(b®@b),idg ®m,idg @)/~
((€ob) ® (cob),idy ®m,idy @)/~
= (Cob)® (co(bm,b)/.);

(c®c)

o

and ‘on the right’: for b € By x,¢c € Bgz,m € My x

(b® (b,m,V)/) o (E®c)
= (b ®bidg®@m, (idy @) o (c®c))/~

That completes the proof. ]

The functor M — Mp commutes with sums and direct limits,

(H MZ-) — 1M, (tim M) 5 = lin(My) 5, (3.23.7)
i B

)
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with tensor products,
(M ®a N)p=Mp®p Np, (3.23.8)

with the formation of free module,
(HA-fZ) =1IB# (3.23.9)
i B i
and with cokernels: for A-module homomorphism ¢ : M’ — M,

(M/o(M'))p = Mp/pp(Mp). (3.23.10)

Remark 3.23.11. We can consider B as an A-module and form the tensor product B ® 4 M, this
map to Mp; but unlike the case of commutative rings, this map is not an isomorphism.

4. Ideals and primes

We define four notions of ‘ideals’ (ideal, E-ideal, H-ideal, H-FE-ideals), hence four notions of
primes. We get four functors from F-Rings to compact sober topological spaces, taking an F-ring
A to the following commutative square of spaces.

B- SPEC(A)— SPEC(A)

i i

E-Spec(A)——— Spec(A)

4.1 H-ideals and primes
Let A be an F-ring.

DEFINITION 4.1. An ideal a C A is called homogeneous if it is generated by ajy) [ (i.e., a is the
smallest ideal containing afy) 1). A subset A C Ay ) is called an H-ideal if for

A1y ..,y €2, bEA{an], b/EA[an :bo(al@“'@an)oblem.

If a is a homogeneous ideal, ajy) ;) is an H-ideal. If 2 is an H-ideal it generates a homoge-
neous ideal a, and ajy) ;) = 2. Hence there is one-to-one order-preserving correspondence between
homogeneous ideals and H-ideals. We denote by H-id(A) the set of H-ideals.

PROPOSITION 4.1.1. Given ay,...,a, € Ay they generate the H-ideal

(al,. .. ,an) = {bo <@ a; - idXi> ob ‘ be A[I]@wal S A@Xi,[l]}- (4.1.1)

In particular for a € Ay, (a) = a- Ay are just the multiples of a. We have the zero ideal
(0) = {0}, and the unit ideal (1) = Apj -

Proof. Given b € Ay ),V € A1), bj 0 (D; @i - idx,;) o b € (a1,...,an),j =1,...,m, we have

bo(@bjo<@ai.idxij>ob;> o = <bo@bj> o <@ai'id®jXU> o <@b; ob'> € (ag,...,ap).
J 7 J v J
Ol

Given a; € H-id(A), 4 € I, the intersection [, a; is again an H-ideal. The sum )  a; is the H-ideal

generated by (J a;,
Zai = {bo <@aj> od aj € Uaz} (4.1.2)

J
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The product a - a’ of two H-ideals is the H-ideal generated by the product of elements of these

ideals,
a-a = {bo (@ai -a;> ol
J

PROPOSITION 4.1.4. For an A-module M, and for an element m € My, x, we have the H-ideal
anna(m) = {a € Ap | a-m =0}, (4.1.4)

aj € a,a; € a’}. (4.1.3)

Proof. Indeed, if a; - m = 0, then
(bo <@ ai) ob')-m = <bo <@ ai> ob’)@(idyomoidx) b®ldy <@ a;-m ) ®ldx) =0. 04

Similarly, for m,m’ € My x we have the H-ideal
anna(m,m’) ={a € Ay la-m=a-m'}. (4.1.5)
If My, M7 € M are A-submodules, we have the H-ideal
(Mo : My) ={a € Ay | a- My € Mo} (4.1.6)

Let ¢ : A — B be a homomorphism of F-rings. If b € H-id(B) then ¢*(b) = ¢~ !(b) € H-id(A4),
and we have the map

©* : H-id(B) — H-id(A), b o '(b). (4.2.1)
If a € H-id(A), ¢(a) generates the H-ideal ¢, (a),
s HAd(A) — H-4d(B), o ¢.(a {b 0 (@gp (a:) ) ° b’} (4.2.2)

ProproSITION 4.2. We have the following:
(1) a C g p.a,a € H-id(A);
2) b D p.p*b,b € H-id(B);

(2)
(3) ¢"b = 9 p.p"b, pua = Pup™pua;
(4) there is a bijection, via a — @,a (with inverse map b — ¢*b), from the set

{a € H-id(A) [ ¢*psa =a} = {¢"b | b € H-id(B)}
to the set
{b € H-id(B) | p+¢p"b =0} = {p.a | a € H-id(A)}.
Proof. The proofs of these are straightforward. O

DEFINITION 4.3.1. For 2 € H-id(A), we have the homogeneous ideal a generated by 2, and the
equivalence ideal Fa = E2 it generates (cf., Definition 2.19). We write A/ for A/E%, and let
m: A— A/ be the canonical homomorphism.

PROPOSITION 4.3.2. We have a one-to-one order-preserving correspondence
7 H-4d(A/A) = {b € H-id(A) | b is EA-stable}; (4.3)
here b is E-stable if, for a € A, Z € |F|,
bo(idz ®a)ob €bsbo(idy®0)od €b.
Proof. The proof is clear. O
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We often say H-ideal a meaning proper H-ideal, i.e. a # (1). Since the union of a chain of
H-ideals is again an H-ideal, an application of Zorn’s lemma gives the following result.

THEOREM 4.4. Every F-ring contains a maximal (proper) H-ideal. We denote by Max(A) the set
of maximal H-ideals.

DEFINITION 4.5. An H-ideal p C Ay py) is called prime H-ideal (or in short ‘prime’) if Apyq)\p is
multiplicative closed:

frg€Anm\p=[-9¢p.
We denote by Spec A the set of prime H-ideals. For a homomorphism of F-rings ¢ : A — B, the
pull-back ¢* = ! induces a map

©* = Spec(y) : Spec B — Spec A.
PROPOSITION 4.6. If m is a maximal H-ideal then m is prime.

Proof. 1f f,g € Apypy\ m, the H-ideals (cf. (4.1.2)) (f) +m,(g) + m are the unit H-ideals. So we
can write (cf. (4.1.1)),

1=bjo(idy, - f®my)ob], 1=byo (idy, gdms)ob,
with m; € (m) = {ideal generated by m}, m; € (m)z, w;, bi € A x,02,, b; € Ax,ew,,n1]- SO We have
l=1-1= (b ®ba)o (idx,ex,  f-g®m)o (b @ b)),
with
m = (idx, - f®ma) ® (M ®idx, - g) ® (M1 ® mg) € (m),
hence f - g & m. O

More generally, given an H-ideal a € H-id(A), and given f € Ay 1) such that f* € a,n > 0, let
m be a maximal element of the set

{be H-id(A) |6 D a, f* ¢ b Vn > 0}. (4.6.1)
CLAIM 4.6.2. We claim that m is prime.
Proof. 1f g; € Apy ) \ m, i = 1,2, we have for some n; > 0, f" = b; o (idx, - g; © m;) o b;, hence

frine = (b1 @ ba) o (idxy@x, - 91 92 © M) o (V) ® bh),
with m € {ideal generated by m}, hence g1 - go & m. O
DEFINITION 4.7. For a € H-id(A), the radical is
Va={feAnp | /" € afor somen>1}.

It is easy to see that y/a is an H-ideal. This also follows from the following proposition.

PROPOSITION 4.7.1. We have

\/a:ﬂpv

aCp
the intersection of prime H-ideals containing a.

Proof. If f € \/a, say f™ € a, then for all primes p D a, f € p. If f € /a, let m be a maximal element
of the set (4.6.1), it exists by Zorn’s lemma, and it is prime by Claim 4.6.2, m D aand f ¢ m. O
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DEFINITION 4.8. For a set & C Ay ], we let
Va() ={p € Spec A | p D A}.
If a is the H-ideal generated by 21, V4(2() = Va(a); we have

Va(l) = @ (empty set), Va(0) = SpecA, (4.8.1)

Va (Z az-> = Va(a), a; € H-id(A), (4.8.2)

Va(a-a') = Va(a) UVa(d). (4.8.3)

Hence the sets {V4(a) | a € H-id(A)} are the closed sets for a topology on Spec A, the Zariski

topology.
DEFINITION 4.9. For f € A1) we let
Da(f) =Spec(A) \ Va(f) = {p € SpecA | f & p}.

We have
Da(fr)UDa(f2) = Dalfr- f2), (4.9.1)
Spec A\ Va(a) = (] Da(f). (4.9.2)
f€a

Hence the sets {Da(f) | f € Ajypj} form a basis for the open sets in the Zariski topology. We have

Da(f)=2 <« [f¢€ ﬂ p=+v0 < f?"=0 for some n (4.9.3)
pESpec A
and we say f is nilpotent. We have

Da(f)=SpecA < (f)=1) & 3f'edyy:f-f'=1 (4.9.4)
and we say f is invertible. We denote by G'L{;)(A) the (commutative) group of invertible elements.

DEFINITION. For a subset X C Spec A, we have the associated H-ideal

I(X)=(»
pex
ProposiTiON 4.10. We have
IV 4(a) =V, (4.10.1)
VaI(X) = X, the closure of X in the Zariski topology. (4.10.2)

Proof. Equation (4.10.1) is just a restatement of Proposition 4.7.1. For (4.10.2), V4I(X) is clearly a
closed set containing X, and if C' = Vy4(a) is a closed set containing X, then /a = IV 4(a) C I(X),
hence C = Va(v/a) D VaI(X). O

COROLLARY 4.11. We have a one-to-one order-reversing correspondence between closed sets X C
Spec A, and radical H-ideals a, via X — I(X),Va(a) < a,

{X CSpecd | X =X} £ {ae Hid(A) | va = a}.

Under this correspondence the closed irreducible subsets correspond to the prime ideals. For pg,p; €
Spec A, po € {p1} < po 2 p1, we say that pg is a Zariski specialization of py, or that py is a Zariski
generalization of pg. The space Spec A is sober : every closed irreducible subset C' has the form
C = Va(p) = {p}, and we call the (unique) prime p the generic point of C.
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PROPOSITION 4.12. The sets D4(f), and in particular D(1) = Spec A, are compact (or ‘quasi-
compact’: we do not include Hausdorff in compactness).

Proof. Note that D(f) is contained in the union |J; Da(g;) if and only if Va(f) 2 ), Va(gi) =
Va(a), where a is the H-ideal generated by {g;}, if and only if /f = IVA(f) C IVa(a) = v/a, if and
only if f* € a for some n, if and only if f* =bo (D, ¢; -idy,) o V', and in any such expression only
a finite number of the g; are involved. O

Let ¢ : A — B be a homomorphism of F-rings, ¢* : Spec B — Spec A the associated pull-back
map.

PROPOSITION 4.13. We have

¢ N Da(f)) =Dp(e(f), f€ A, (4.13.1)
©* 1 (Va(a)) = VB(ps(a)), a€ H-d(A), (4.13.2)
Vale™tb) = ¢*(Va(b)), be H-id(B). (4.13.3)

Proof. The proofs of (4.13.1) and (4.13.2) are straightforward:
g€ (Dalf) & e@eDalf) & fée @) & of)ga & aeDp(e(f)),
g (Va(m) & ¢"@eVala) & aCyp () & w(@Cqa & g€ Vplp(a).

For (4.13.3) we may assume b = /b is radical since Vg(b) = Va(vb), o~ (vVb) = /= 1(b). Let
a=1(p*(Vp(b))), so that Va(a) = ¢*(Vp(b)) by (4.10.2). We have

fea & fep, Vpee'(Vpb) & fee '(a), Vg2b

ce(la=Vvb=b < feyo '(b) O
q2b

q
q

It follows from (4.13.1), or from (4.13.2), that ¢* = Spec(y) is continuous, hence A — Spec A is
a contravariant functor from F-rings to compact, sober, topological spaces.

Ezample 4.14.1. Let A be a commutative ring, F(A) the associated F-ring. An ideal a C A =
F(A)p,n) is an H-ideal generating the homogeneous ideal F(a) C F(A), and conversely an H-ideal
is just an ideal of A. Under this correspondence the primes of A correspond to the primes of F(A),
and we have a homeomorphism with respect to the Zariski topologies:

Spec A = SpecF(A).

Ezample 4.14.2. Let n : k — C be a real or complex prime of a number field, and let O, denote
the F-ring of real or complex ‘integers’ of (2.16).Then

my ={z ek||z], <1}

is the (unique) maximal H-ideal of Oy, the closed point of Spec O .

4.2 S-prime ideals and H-E-ideals

DEFINITION 4.15. A (non-homogeneous) ideal p C A is called a strong prime ideal, or S-prime, if
A\ p is closed with respect to ®:

VS (A \ p)Y17X17g € (A \ p)Y27X2 = f®ge (A \ p)Y1®Y2,X1®X2' (4'15'1)
We let SPEC(A) denote the set of S-primes.
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Every F-ring contains a maximal ideal, and every maximal ideal is S-prime; cf. Proposition 4.6.
For an ideal a we have

\/a:{fEA\f@mEaforsomen}l}:mp, (4.15.2)
aCp

the intersection of S-primes containing a; cf. Proposition 4.7.1. On SPEC(A) we have the Zariski
topology, with closed sets

Va(a) = {p € SPEC(A) | p D a}, (4.15.3)
where we can take a to be an ideal of A; cf. Definition 4.8. A basis for the open sets is given by the
sets

Da(f) = SPEC(A) \ Va(f) = {p € SPEC(A) | f & p}, (4.15.4)

f € A; cf. Definition 4.9. We have
Dy(f)=2 < fe€ ﬂ p=+v0 <& f& =0 for some n,
pESPEC(A)
and we say f is nilpotent. We have
Da(f)=SPECA < (f)=(1) & 1l=ao(ldx® f)oa
for some a; € A, and we say f is a unit. For a subset X C SPEC(A), we have the associated ideal
I(X) =
peX

and Proposition 4.10 holds. Similarly Corollary 4.11 and Propositions 4.12 and 4.13 remain true.
We have a continuous map

SPEC(A) — Spec(A),p = Py, (4.15.6)

It is always surjective. For an F-ring F(A) associated to a commutative ring A, ideals of F(A)
correspond one-to-one with ideals of A, S-primes correspond to primes of A, and the map (4.15.6)
is a homeomorphism.

DEFINITION 4.16. A non-empty subset 2 C Apyj 1) will be called an H-FE-ideal if, for a; € 2,

b0<idz@@ai>0b'€ﬂ & bo(iddz@0)od €. (4.16.1)
We have 0 € 2, and hence for a; € A,i = 1,...,n, bo (Pa;) ot € A, ie. it is an H-ideal (take
Z = [0] in (4.16.1)). Thus an H-E-ideal & C Ay is just an H-ideal which is E%-stable. We
denote by H-E-id(A) the collection of H-FE-ideals of A.

Given 2 € H-id(A), it generates the homogeneous ideal a = {bo (P a;) o V' | a; € A}, which in
turn generates the E-ideal ZEa € E-sub(A), which can be described as (cf., Lemma 3.13):

ZEa = {a € A|3patha=cy,...,¢ =0, with {¢j,cj41} of the form
{b o (idz o @ai> ob/,bo(idy @ 0)o b’}, with a; € QL} (4.16.2)
The E-ideal ZEa = ZE% is generated as E-ideal by (ZERA);n S Apjp (by the explicit

description (4.16.2) and the fact that (ZE2)j) ) 2 2A); we call the H-E-ideal (ZE2U)jy) [y the
E-closure of 2. We have 2l = (ZE%)};) ) if and only if 2 is an H-FE-ideal.
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COROLLARY 4.16.3. There is a one-to-one order-preserving correspondence between the set of
equivalence ideal E2l, generated by a subset 2L C Ay ]
(€ € equiv4(A) | € = B(ZE)y 1)} = B2 | A € HAd(A)},
and the set of H-E-id(A)
H—E—id(A) = {Ql S H—E—id(A) ‘ A = (ZEQ[)HH”}
It is given by:
Er— (Zg)[l],[l}v EA — .

For A € H-E-id(A), let m : A — A/A = A/EQ denote the canonical projection, then 2 =
77_1(0[1]7[1}). We have the following proposition.

PROPOSITION 4.17. There is a one-to-one order-preserving correspondence
{B € H-E-id(A) | 8 D A} £ H-E-id(A/),
7 1(B) i B.
We can repeat most of our discussion of H-ideals using H-F-ideals. By Zorn’s lemma, we get
the next result.

PROPOSITION 4.18. There exist maximal (proper) H-E-ideals.

DEFINITION 4.19. We define E-Spec(A) = Spec(A) N H-E-id(A); its elements will be called
E-primes. We have the following proposition.

ProPOSITION 4.19.1. If m is a maximal H-FE-ideal then m is E-prime.

More generally, given a € H-E-id(A), f € Apj i), such that f* ¢ a for all n. By Zorn’s lemma
there exists a maximal element m in the set

{b€ H-E-id(A) | b2 a, [ £ b Vn}.
CrLAM 4.19.2. We claim that m is E-prime.

Proof. For z € Apj \m, the H-FE-ideal generated by m and 2 contains some power f". Hence there
is a path f* =c¢1,...,¢ =0, with {¢}, ¢j+1} of the form {bo (idz & (z-idw ) ®&m)ob’,bo(idzH0)ob'},
with m in the ideal generated by m. Let y € Apj ) with y -z € m. Multiplying the path {c;}
throughout by y we see that y- f* € m. If y € Apyj 1)\ m, we get similarly a path f =dy,...,d; =0,
with {d;,d; 1} of the form {bo (idz @y -idw ®&m)ob',bo (idz & 0)ob'}, and multiplying this path
by f™ we see that f™ - f™ € m, a contradiction. O
COROLLARY 4.19.3. For 2l € H-E-id(A),
V= (p.
ACp

the intersection of all E-primes containing 2l.

Ezample 4.20. For a commutative ring A, every H-ideal of F(A) is an H-E-ideal,

H-E-id(F(A)) = H-id(F(A)) = ideals of A. (4.20.1)
Hence every prime is an E-prime,
E-Spec(F(A)) = Spec(F(A)) = Spec(A). (4.20.2)
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Ezample 4.21. The maximal H-ideal m, of the F-ring of real or complex integers O, cf. Exam-
ple 4.14.2, is an E-prime. Indeed, for |a;|,, < 1, we have

'bo <idz@@ai> ot

Here we may assume that {a;} consists of one element a,Z = [1], and that b = mt = (bo,b1) is a
vector of norm 1, so (4.21.1) reads : for |al, < 1, |b0|,27 + |b1|,27 =1,

<1 & |bo(idz®0)od'], <1. (4.21.1)
n

lbolz +a- 12, <1 & |bpl, <1

Verifying this (obvious) statement shows that m, is indeed an E-prime.

For a € (Oky)y,x we have the non-negative self-adjoint operators at

aoa" € (Oky)y,y. We get orthogonal decompositions

k-X =V,
A

oa € (O]k,n)X,X> and

(4.21.2)
k-Y =W,
A

where @' o a (respectively a o @) acts on V(\) (respectively W())) as scalar multiplication by

A2,0 < A < 1. For A > 0,a induces a linear isomorphism
ay: V() = W(N), (4.21.3)

and for A = 1, aq is an isometry. This gives the singular eigenvalue decomposition of a,

a=bho (@A : idZA) ol (4.21.4)

where Z) is an orthonormal basis for V/(\), b’ is the change-of-basis matrix from X to {Z,}, and
b is the change-of-basis matrix from {(1/\) - a(Zy)} to Y; thus b,0’ are isomorphisms in Oy,
(i.e. orthogonal or unitary matrices). In particular, we see that modulo Em,, a is equivalent to

ap=bo <idzl ® @OZA> ol (4.21.5)
A<l
It follows that the map m(a) = (a1 : V(1) — W(1)) is an isomorphism of Oy ,/m, onto Fy ,, the
field of partial isometries of (2.18).

The last two examples give ‘strong-E-primes’ according to the following definition.

DEFINITION 4.22. We define E-SPEC(A) = SPEC(A) N E-suby(A); its elements will be called
strong-E-primes, or S-E-primes. Every F-ring contains a maximal (proper) E-ideal, and such an
ideal is S-E-prime. More generally, given a € E-suby(A), f € Ay x such that f®" & a for all n,
there exists by Zorn’s lemma a maximal element m in the set

{b € E-subs(A) | b Da, f" ¢ b Vn}, (4.22.1)
and such an m is S-FE-prime; cf. Claim 4.19.2. It follows that for an E-ideal a € E-suba(A)

\/a:{f6A|f®”6af0rsomen>1}:mp, (4.22.2)
aCp

the intersection of all S-FE-primes p containing a.
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Thus we have four functors from F-rings to compact sober topological spaces, taking an F-ring A
to the following diagram.

E-SPEC(A)——= SPEC(A)

i i

E-Spec(A)——— Spec(A4)
There are corresponding various notations of ‘fields’ for F-rings.

DEFINITION 4.23. An F-ring A is called a field, or an H-field, if it satisfies the equivalent conditions:

(i) Spec(4) = {(0)};

(ii) there are no non-zero proper H-ideals a C Ay 1); (4.23.1)
(i) GLpj(A) = Apypp \ {0}: every non-zero element of Ay ) is invertible.

An F-ring A is called an E-field, if it satisfies the equivalent conditions:

(i) E-Spec(4) ={(0)};

(ii) there are no non-zero proper H-E-ideals a C Apjjy; (4.23.2)
(ili) every homomorphism ¢ : A — B with B # 0 and such that KER(¢) = E(e~1(0)py,)) is

injective, i.e., KER(p) is trivial (= diagonal of A[[ A; cf., (2.20) for LER(y)).
An F-ring A is called a strong field or an S-field, if it satisfies the equivalent conditions:

(i) SPEC(A) ={(0)};

(ii) there are no non-zero proper ideals a C A; (4.23.3)
(iii) for all X,Y € |F|, every non-zero element of Ay x is a unit.

An F-ring A is called a strong-FE-field or an S-FE-field, if it satisfies the equivalent conditions:

(i) E-SPEC(A4) ={(0)};

(ii) there are no non-zero proper E-ideals a; (4.23.4)
(iii) every homomorphism ¢ : A — B with B # 0 and such that KER(p) = E(¢~1(0)) is injective.
We have the following implications:

H-field = FE-field
(4.23.5)
S-field = S-E-field
In particular, if m is a maximal H-ideal of an F-ring O, we have the residue field Fy, = O/Em; it

is an H-field by (4.3): if n is an H-ideal of O, and n is Em-stable, (4.3), then n contains m, and by
maximality n = m.

5. Localization and structural sheaf O 4

We review the theory of localization of an F-ring A (or an A-module M) with respect to a mul-

tiplicative set S C Ay 1; we obtain a sheaf of F-rings O (respectively, an O-module M) over
Spec A.

5.1 Localization

The theory of localization of an F-ring A, with respect to a multiplicative subset S C Ay 1], goes
exactly as in localization of commutative rings — since it is a multiplicative theory. We recall this
theory next.
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We assume that S C Ay (1) satisfies

1€ 8, (5.1.1)
$1,89 €8 = s1-s9€8.
On the set
AxS=]]Avx xS
Y, X
we define for a; € Ay x,s; € S,
(a1,s1) ~ (az,82) < s-sgp-a; =s-81-ag for some s € S. (5.2)

It follows that ~ is an equivalence relation, and we denote by a/s the equivalence class containing
(a,s), and by S7!A the collection of equivalence classes. On S~!A we define the operations:

a1/51 o a2/82 = (a1 o a2)/8182, al € AZ’y, as € AY,X, (5.3.1)
a1/81 D CLQ/SQ = (82 a1 D sy ag)/slsg, (5.3.2)
a1/s1 ® az/se = (a1 ® az)/s1s2. (5.3.3)

PROPOSITION 5.3. The above operations are well defined, independent of the chosen representatives,
and they satisfy the axioms of an F-ring.

Proof. The usual proof works. For example, replacing a1/s1 in (5.3.2) by a)/s| ~ a1/s1, say s- s -
a; = s- 81 -aj, then

5818+ (s0a1 @ s1a2) = s+ 8189 - (s2a) @ shaz),
hence
(soa1 @ s1a2)/s152 = (520} @ sjas)/s)ss. O
The F-ring S~!'A comes with a canonical homomorphism
p=c¢dg:A— STTA  ¢(a) = a/l. (5.4)
PROPOSITION 5.5. We have the universal property of ¢g:
Hom]F_ngs(S_lA,B) ={pe€ Hom]F—’Rings(A’B) | p(S) C GL[I}(B)}a
P — Qo ¢g,
plafs) = p(a) - o(s)™" .
Proof. The proof is clear. O

Note that S~ A is the zero F-ring if and only if 0 € S.
The main examples of localizations are as follows:

Sp={f"tnz0, [f€An (5.6.1)
and we write Ay for Sf_lA;
Sp = Apju \ b, p € Spec(4), (5.6.2)

and we write A, for Sp_lA.

Similarly, for an A-module M, we have the equivalence relation ~ on M x S,
(my,s1) ~ (ma,s2) < S-S2-mj=s5-51-mg for some s € S. (5.7)

We let m/s = (m,s)/~ denote the equivalence class containing (m,s), and S™'M = (M x S)/~
denote the collection of equivalence classes. On S™'M we have the structure of an S~ A-module,
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which is well defined, independent of the chosen representatives, by

ai/siom/soay/se = (a; omoas)/s1ss2, (5.7.1)
mi/s1 ® ma/sa = (s2-m1 @ sy -ma)/s152, (5.7.2)
a1/s1@m/s = (a1 ® m)/s1s. (5.7.3)

The localization M +— S~!M is a functor S~!' : A-Mod — S~'A-Mod; to a map ¢ : M — M’
corresponds S~y : STIM — STIM,

S7Lo(m/s) = p(m)/s. (5.7.4)

We have an A-module homomorphism M — ¢§(S‘1M ),m +— m/1, which corresponds by
(3.23.6) to the homomorphism of S~'A modules

Mgy — STIM, (a1/s1,m,as/s2)/~ + (a1 omoas)/s152, (5.7.5)

where Mg-1, is the S~!A-module obtained from M via base change (3.23.0) along the homo-
morphism A — S~'A. This is clearly surjective. It is also injective. Note first that by (3.23.1),
(3.23.2), (a1/s1,m,a2/s2)/~ = (id/1,a1 o m o az,id/s182)/~, so every element of Mg-1, has the
form (id/1,m,id/s)/~. If my1/s; = mgy/sq, say s- sy -mj = s- S - mg, then we have the following:

(id/1,mq,id/s1)/~ = (id/1,mq, s - s9/1 -id/ss182)/~ = (id/1, s - 89 - my1,id/s8152)/~

|

(id/1,mg,id/s2)/~ = (id/1,ma, s - s1/1 -id/ss182)/~ = (id/1, s - 81 - mo,id/ss152)/~
Thus we may identify the localization S~'M with the base change Mg 1,4, and it follows from
(3.23.7), (3.23.8), (3.23.9) that we have similar properties for localization.

COROLLARY 5.7.6. The functor M — S~'M preserves sums, direct limits, tensor products, and
free modules:

ST M =115 "M, S 'lim My, = lim S~ M, (5.7.7)
STH M @A N)=8S""M®g1,SIN; (5.7.8)

for a formal symbol fxy, any Y,X € |F|, and for the free A-module A - fy x, and the free
S~ A-module (S71A) - fy.x, cf. (3.18.0),

STHA - fyx) = (STTA) - fyx. (5.7.9)

If My € subu(M) is an A-submodule, then ST My € subg-1,(S~1M) is an S~!A-submodule.
The map My — S~' My preserves sums,

S (Z Mi> => (S7'My), (5.8.1)

K]
and finite intersections,
STHMy N My) = ST My N ST M. (5.8.2)

Since we can always bring a finite sequence of elements in S-localization into ‘common denominator’,
we have the following result.

PROPOSITION 5.9. The functor M +— S~'Malso preserves finite products, and finite inverse limits,

S‘1<M0HM1> =S "My [[ 7'My, (mo,ma)/s— (mo/s,m/s). (5.9.1)
M S—1Mm
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If £ € equiv4(M) is an equivalence A-module of M, then

STlec st (MHM) =S 'M][s'M
is an equivalence S~!A-module of STIM, STIE € equivg-1,4(STIM). We have (with Z, E as in
Definition 3.10)

S™HzE&)=2Z(S71E), & € equivy(M) (5.10.1)

and

S™YEMy) = E(S™'My), My € suba(M) (5.10.2)
(cf., Lemma 3.13: bring a path to a common denominator).

Similarly we have the next proposition.

PROPOSITION 5.11. Let ¢ : M — N be a homomorphism of A-modules. The functor S~! preserves

kernels,
S7He™H0)) = (STH)TH0), (5.11.1)
STHKER(p)) = KER(S ), (5.11.2)
and it preserves cokernels,
STHN/p(M)) = STIN/ST1p(S™IM). (5.11.3)

DEFINITION 5.11.4. We write M, for Sp_lM, Sp = Ay \ b, p € Spec A. We write M; for SJ?lM,
Sy ={f"}nz0,f € Ap -

PROPOSITION 5.12. For an A-module M, the following are equivalent:

M =0, (5.12.1)
M, =0 Vp € Spec A, (5.12.2)
My, = 0 for all maximal H-ideals m. (5.12.3)

Proof. Clearly (5.12.1) = (5.12.2) = (5.12.3). If M # 0 let m € My x be non-zero, and let m be
a maximal H-ideal containing anna(m); cf. (4.1.4). If My = 0 = m/1 = 0 € My, which means
s-m =0 for some s € Ay ;) \ m, contradicting anna(m) C m. O

PROPOSITION 5.13. Let ¢ : M — N be a homomorphism of A-modules. The following are equiva-

lent:
v is surjective, (5.13.1)
@Yp : My — Ny is surjective Vp € Spec A, (5.13.2)
©Om : My — Ny is surjective for all maximal H-ideals m. (5.13.3)

Proof. To show that (5.13.1) = (5.13.2) = (5.13.3) is easy. If ¢ is not surjective, let n € N \ ¢o(M),
and let m be a maximal H-ideal containing (¢(M) : n); cf. (4.1.6). If ¢y is surjective, n/1 €

¢m(Mi), and we have s -n € (M) for some s € Ay q) \ m, contradicting (p(M) : n) C m. O
ProprosITION 5.14. Let ¢ : M — N be a homomorphism of A-modules. The following are equiva-
lent:
¢ is injective, (5.14.1)
@p : My, — N, is injective Vp € Spec A, (5.14.2)
Om : My — Ny, is injective for all maximal H-ideals m. (5.14.3)
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Proof. To show that (5.14.1) = (5.14.2) = (5.14.3) is easy. If ¢ is not injective, let m # m’/, o(m) =
o(m'), and let m be a maximal H-ideal containing ann4(m,m’); cf. (4.1.5). If py, is injective,
m/1 =m'/1 € My, and s-m = s-m/ for some s € Apy) 7\ m, contradicting anna(m,m’) Cm. O

Consider the canonical homomorphism ¢ = ¢g: A — S71A ¢(a) = a/1. If b € subg-1,4(S7LA)
is an ideal of S71A, ¢~1(b) € subs(A) is an ideal of A; if b = ZE(b) is an E-ideal, so is ¢~ (b), cf.
(4.16.2) for ZE(b); if b is homogeneous so is ¢~ 1(b). If b € H-id(S™1A) is an H-ideal, so is ¢~ 1(b).
If a € suba(A) is an ideal of A, then ¢(a) generates the ideal S~1'a € subg-14(S~1A); if a = ZFE(a)
is an E-ideal, so is S~'a; if a is homogeneous, so is S~ta. If 2 € H-id(A) is an H-ideal of A then

Slg & ¢«(A) ={a/s € (S_IA)M,[I] la e, se S}
is an H-ideal of S™1A.
PROPOSITION 5.15. For b an ideal (respectively H-ideal) of S~ A, S=1b¢ = b.
Proof. If a/s € b,a € b¢, and a/s € S71(b¢); so b C S71(b®). The reverse inclusion is clear. O

PROPOSITION 5.16. For a an ideal (respectively H-ideal) of A,

(Sla)¥={acA|Is€S:5-acal. (5.16.1)
In particular,
Sla=(1) & anS#o. (5.16.2)
Proof. We have
ac(Sta) & a/l=z/s,xc€a,s€S & s-aca, somesécS. O

PROPOSITION 5.17. The map ¢ induces a bijection
¢% : Spec(STTA) = {p € SpecA|pN S =},
which is a homeomorphism for the Zariski topology.

Proof. 1f q € Spec(S™1A), ¢%(q) belongs to the right-hand side. Conversely, if p belongs to the
right-hand side, S~!p is a (proper) prime of S~'A. By Propositions 5.15 and 5.16 these operations
are inverses of each other. ]

COROLLARY 5.17.1. We have a homeomorphism for f € Apj i,
¢} : Spec(Ay) = Da(f).
COROLLARY 5.17.2. We have a homeomorphism for p € Spec(A),
¢y Spec(Ap) — {q € Spec A | g C p}.
In particular, Ay contains a unique maximal H-ideal my, = S, Yy: we say it is a local F-ring.

Remark 5.17.3. For p € Spec(A) we let Fy = A,/m, denote the residue field at p. Let m: A — A/p

be the canonical homomorphism, and S, = 7(Sy); we have also Fj, = Ep_ 1(A/ p). The commutative
diagram

®

Wl l (5.17.4)
Alp —F
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is cartesian: Fy = (A/p) @4 Ay (see Theorem 7.1 for the definition of ®). It is also functorial: given
a homomorphism of F-rings ¢ : A — B, q € Spec B,p = ¢*(q), we have the following commutative

cube:

Alp Fy

v

B/q Fq

A Ap

B

5.2 Structural sheaf O 4
Next we define a sheaf Q4 of F-rings over Spec A.

DEFINITION 5.18. For an open set U C Spec(A), and for Y, X € |F|, we let O4(U)y,x denote the
set of functions

s:U — U (Ap)ygg,
pelU

such that s(p) € (Ap)y,x, and s is ‘locally a fraction’:
Vp € U, 3 a neighborhood Uy, of p;3 a € Ay,x;3 f € A\ | d
qelp
such that
s(@) =a/f € Aq, VaeU,. (%)

It is clear that
OAU) = | 0aU)y.x
Y, X

is an F-ring. If U’ C U, the natural restriction map s — s|y is a homomorphism of F-rings O4(U) —
O4(U"), thus Oy is a presheaf of F-rings. From the local nature of () we see that O 4 is in fact a
sheaf.

Remark 5.18.1. Similarly for an A-module M we can define M (U)y,x as the collection of sections

s: U — U (Mp)y’x
pelU

which are locally a fraction (replace a € Ay x in (%) by m € My, x). The set M is an O sa-module
in the following sense.

DEFINITION 5.18.2. An O4-module 9 is a sheaf of sets over Spec A such that MM(U) is an O4(U)-
module, the structure compatible with restrictions — for open sets U C U’, denoting by s +— s|y the
restriction maps M(U’) — M(U) and O4(U’) — O4(U), we have

(aomod )|y = aly omly od|y, (5.18.2)

(mem)|v=mly®mlu, (5.18.3)

(a@m)lu = aly @ m|y. (5.18.4)
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For two such sheaves of O4-modules 91,9 a map of O -modules ¢ : MM — M’ is a collection of
O 4(U)-homomorphisms

pu : MU) — M (U)
for U C Spec A open, compatible with restrictions: ¢y (a)|y = ¢y (aly) for U C U’.
Thus we have the category O4-Mod of O -modules.
PROPOSITION 5.19. For p € Spec(A), the stalk
Oap =1lim O4(U)
pelU
of the sheaf O 4 is isomorphic to Ay.
Proof. The map taking a local section s in a neighborhood of p to s(p) € A, induces a homomor-
phism O, — Ay, which is clearly surjective. It is also injective. Let s1,s2 € O4(U)y,x have the
same value at p,s1(p) = s2(p). Shrinking U we may assume s; = a;/f; on U,a; € Ay x, fi € Apj )

Then a1/ f1 = az/f2 in Ay means h- fo- a1 = h- fi-ag,h € Apjp\ p, but then a;/f1 = az/fo in
AgVqe UnNDa(h). O

Remark 5.19.1. Similarly for an A-module M we have an isomorphism

(M) def

lim M(U) = M.
pEU

PROPOSITION 5.20. For f € Apj iy, the F-ring Oa(Da(f)) is isomorphic to Ay. In particular, the
global sections T'(Spec(A), O4) def Oa(Dy(1)) = A.
Proof. Define the homomorphism ¢ : Ay — Oa(Da(f)) by sending a/f" to the section whose value
at p is the image of a/f™ in A,.
We shall show that 1 is injective. If ¢(a1/f™) = 1(az/f"?) then Vp € D4(f) there is hy €
A[l},[l] \]J with
hpfn2a1 = hpfnlaz.
Let a = anna(f™aq, f™as). Itis an H-ideal of A, and Vp € DA(f),p ¢ Va(a),so Da(f)NV4(a) = &,
hence Va(a) C Va(f), hence f € IVa(a) = y/a, hence f™ € a for some n > 1, showing that
al/fnl = ag/f”2 n Af.
We show next that 1 is surjective. Let s € Oa(Da(f))y,x. By Proposition 4.12, Ds(f) is
compact, so there exists a finite open covering
U DA(hz

1<EKN

such that for all p € Da(h;) : s(p) = ai/gi € Ay, where a; € Ay x and g; € Ay is such that
D(gi) 2 Da(h;) for 1 < i < N. We have Va(g;) € Va(h;), hence

V(9i) = IVa(gi) 2 IVa(hi) = v/ (hs),

hence h; € \/(g;) so that for some n; > 1 we have h;" = ¢; - g;, hence s(p) = c;a;/h;". So we can
replace h; by g;. On the set

Da(gi) N Da(g;) = Dal(gig;)
we have a;/g; = s(p) = a;/g;, hence by the injectivity of ¢ we find
az/gl = a]/g] in Agig]-'
This means (g;g;)" - gjai = (9i9;)" - giaj, and we can choose n big enough to work for all 7, j. We can
replace g; by g/ (since D4(g;) = Da(g'™)), and replace a; by g7 - a; (since s(p) = gla;/g!™),
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and then have the simpler equation g; - a; = g; - a; for all 7, j. Since the sets D4(g;) cover D(f) we

have, cf. Proposition 4.12,
o <@ gi - idXi> od
i

Set
= (idy ®b) o <@az®1dx> (idx ® V).
Then
gj-a=(idy ®b) o <@g]az®1dx> o(idy ®b')
= (idy ®b) o <@a] ® gi - 1dX> o (idy @) = f™-aj.
Hence aj/g; = s(p) = a/f™ and s = ¢(a/f™). O

Remark 5.20.1. Similarly for an A-module M we have an isomorphism
My = M(Da(f))
and in particular

M = M(Spec A) (SpeCA M)

6. Schemes

We define the categories of F-(locally)-ringed spaces, and of (Zariski) F-schemes, and recall the
theory of quasi-coherent modules. As an important example we give the ‘compactification’ SpecZ
of SpecZ.

6.1 Locally F-ring spaces

DEFINITION 6.1. An F-ringed space (X,Ox) is a topological space with a sheaf Ox of F-rings.
A map of F-ringed spaces f : X — Y is a continuous map of the underlying topological spaces
together with a map of sheaves of F-rings on Y, f# : Oy — f.Ox, i.e. for U C Y open we have
f# : Oy (U) — Ox(f~*U) a map of F-rings, such that for

U CU: ()10 = [ (slo)-
The F-ringed space X is an F-locally-ringed space if for all p € X the stalk Ox, is a local F-ring,

i.e. contains a unique maximal H-ideal mx . For a map of F-ringed spaces f : X — Y, and for
p € X, we get an induced homomorphism of F-rings on the stalks

£ Oy gy = lim Oy(V)— lim Ox(f7'V)— lim Ox(U) = Ox,. (6.1.1)
fpev pef-1v pevU

A map f: X — Y of F-locally-ringed spaces is a map of F-ringed spaces such that f;éﬁ is a local
homomorphism for all p € X i.e.

f#(myﬂp)) C my , or equivalently (fg#)_lmxp =My f(p)- (6.1.2)
We let F-Rings.Sp (respectively Loc-F-Rings-Sp) denote the category of F-(locally)-ringed spaces.

For a (locally) F-ringed space (X, Ox) an Ox-module 9 is a sheaf of sets over X such that for
U C X open, M(U) is an Ox(U)-module, these structures being compatible with restrictions, cf.
(5.18.2)—(5.18.4). For two Ox-modules M, M’ a map of sheaves ¢ : M — M’ is a homomorphism
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of Ox-modules if for U C X open the map ¢y : M(U) — M'(U) is a homomorphism of Ox (U)-
modules. Thus we have the category Ox-Mod of Ox-modules.

For a homomorphism of F-rings ¢ : A — B, for p € Spec(B), we have a unique homomorphism
¢p : Ay-1p, — By, such that we have a commutative diagram

A—2 R

]

Pp
ASO_lp I Bp

where ¢p(a/s) = ¢(a)/¢(s), and ¢, is a local homomorphism. Thus A — Spec(A) is a contravariant
functor from F-Rings to Loc-F-Rings-Sp. It is the adjoint of the functor I' of taking global sections

I(X,0x) = Ox(X), T(f)=f:0y(Y)— Ox(X).
PROPOSITION 6.3. We have
Homﬁoc—F—Rings—Sp(Xy SpeC(A)) = Hom]F—’Rings(A, Ox (X))

Proof. For an F-locally-ringed space X, and for a point x € X, the canonical homomorphism ¢, :
Ox(X) — Ox gives a prime P(z) = ¢, (mx ) € Spec Ox(X). The map P : X — Spec Ox(X)

is continuous:

PHD(S)) = {z € X | ¢u(f) ¢ mx,}
is open for f € Ox(X). We have an induced homomorphism
’Pﬁ(f) : OX(X)f - OX({‘T €X | ¢z(f) ¢ mX,:c})a
making P a map of F-ringed spaces, and taking the direct limit over f with ¢, (f) ¢ mx , we get
PF . Ox(X)pz) — Oxa,
showing P is a map of F-locally-ringed spaces.
To a homomorphism of F-rings ¢ : A — Ox (X) we associate the map of F-locally-ringed spaces
x = Spec Ox (X) Specte), Spec A.

Conversely, to a map f : X — Spec A of F-locally-ringed spaces (as in Definition 6.1) we associate
its action on global sections

D(f) = f& o4t A= Oa(Spec A) — Ox(X).

Clearly, I'(Spec(p) o P) = ¢.

Conversely, given a map f : X — Spec A (as in Definition 6.1), for z € X we have the following
commutative diagram:

A=0uSpecA) 2 04 (x)

l‘bf(z) %l
#

fi
Af(w) Ox.a

Since ff is assumed to be local, ( ff ) Hmx,) =m f(z)> and by the commutativity of the diagram
we get T'(f)"1(P(z)) = f(x), i.e. f = (SpecT'(f)) o P is the continuous map associated to the
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homomorphism I'(f). Similarly, for g € A, the commutativity of the diagram

r
A ()

Ox(X)

gives fﬁ(g)(a/g”) =TI'(f)(a)/(T(f)(g))", hence f = (SpecI'(f)) o P as a map of F-locally-ringed
spaces. O

COROLLARY 6.3.1. For F-rings A, B:
Homﬁoc—F—Rings—Sp(Spec B, Spec A) = Hom]F—’Rings(A7 B)

6.2 Zariski F-schemes
DEFINITION 6.4. A Zariski F-scheme is an F-locally-ringed space (X,Ox), such that there is a
covering by open sets X =, U;, and the canonical maps
P (Ui7OX|Ui) - SpeCOX(UZ')
are isomorphisms of F-locally-ringed spaces. A morphism of Zariski F-schemes is a map of F-locally-
ringed spaces. We denote the category of Zariski F-schemes by Zar-F-Sch.
Zariski F-schemes can be glued.

PROPOSITION 6.5. Given a set of indices I, and for i € I given X; € Zar-F-Sch, and for i # j, 1,
J € 1, an isomorphism @;; : Uy = Uji, with Uy; C X; open (and hence U;; are Zariski F-schemes),

such that
Pii = Py (6.5.1)
0ij (U NUg) =U; NUpx  and g 0 i = @4 on Uy N Uy, (6.5.2)
There exists X € Zar-F-Sch, and maps v; : X; — X, such that
1; is an isomorphism of X; onto the open set ¥;(X;) C X, (6.5.3)
X =Jwi(X3), (6.5.4)
Vi(Uy) = ¥i(Xi) N 9;(X;), (6.5.5)
i = ;0 iy on Uy. (6.5.6)
Proof. The proof is clear: glue the topological spaces and glue the sheaves of F-rings. For V' C X
open
Ox (V) = ker{H Ox,(v~'V) = HOXi(¢_1VﬂU¢j)}. O
i ij

Remark 6.6. Let f: (X,0x) — (Y,Oy) be a map of F-ringed spaces. If 9 is an Ox-module, then
fIM(V) =9M(f'V),V C Y open, gives rise to an f,Ox-module. Using the map f*: Oy — f.Ox,
we see that f,.9)1 is naturally an Oy-module.
If 91 is an Oy-module, its inverse image f~!91is the sheaf on X associated with the presheaf
U lim NWV)
jn—
fcv
and f~'M is an f~!Oy-module. To give the map f*: Oy — f,Ox of sheaves on Y is equivalent
to giving the map f%: f~10y — Ox of sheaves on X. Using the map f? we can extend scalars,
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cf. Proposition 3.23, to form the presheaf
U (fTND)oyw)

The sheaf associated to this presheaf is denoted f*91; it is an Ox-module.
The functors of direct image f. and of inverse image f* are adjoint

HOHlOX_MOd(f*m, Dﬁ) = Hom@Y_Mod(‘ﬁ, f*m) (6.6.1)

For a homomorphism of F-rings ¢ : A — B, and the associated map f = ¢* : Spec B — Spec 4, and
for any B-module M with associated Opg-module M, cf. Remark 5.18.1, and associated A-module
©*M, cf. (3.22.1-2), we have

——

£.(0T) = (o M), (6.6.2)
For an A-module N with associated B-module Npg, cf. Proposition 3.23, we have
f*(N) = (Np). (6.6.3)

The theory of quasi-coherent modules over a Zariski F-scheme goes over as in the classical
theory, incorporating the notions of §3. We shall not give the details here, and we give only the
basic definitions.

THEOREM 6.7. Let A be an F-ring. Let U C X = Spec A be an open compact subset, and 9 an
Ox|y-module. The following conditions are equivalent:

(1) there exists an A-module M and an isomorphism M o =9

(2) there exists an open affine cover U = | J;c; U;, U; = Spec A;, and for i € I there are A;-modules
M; such that M; = M|y, ;

(3) for every open affine Spec B C U there exists a B-module M such that M = M|spec B

(4) for every f € Apy ) the restriction induces an isomorphism of Ay-modules
Proof. See [Gro60, 1.4]. O

If 9 satisfies the conditions of Theorem 6.7 we say it is quasi-coherent. Similarly for a Zariski
F-scheme X, replacing in (2) or in (3) U by X we get the notion of quasi-coherent Ox-module.
We denote by QC-Ox-Mod the category of quasi-coherent O x-modules. For an affine scheme X =
Spec A, the functors M — M, 9 — T'(X,9N), give inverse isomorphisms of categories

A-Mod +~ QC-O4-Maod. (6.7.1)

6.3 F-schemes and the compactified SpecZ
The category of F-locally-ringed spaces has inverse limits. Given an inverse system {X}, Ox; YieJ,

Where Jisa parti'ally Qrdered set, and for j; > js in J we are given maps ﬂ;; : Xj, — X, such that
7 =idx;, and 72 o)) = 7 for ji > j2 > js, and where we always assume that J is directed (for
Ji,j2 € J there exists j € J with j > j1,j > j2), the inverse limit m J X is constructed as follows.
As a topological space it is the inverse limit topological space, i.e. @1 ; Xj is the inverse limit of
the X; as a set, together with the topology having as a basis for open sets the sets of the form
7Tj_1(U ), where 7; : lim  X; — X; are the projections, and where U C X are arbitrary open sets
—J
in X; (we can take the U to vary over a basis for the topology of the X;). Then on the topological

space X = l&n J X, we have the directed system of sheaves of F-rings {7rj_10j} and the direct limit,
Le. the sheaf associated with the pre-sheaf U — lim 77}1(9]-((] ) is the sheaf Ox on X = lim | X
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satisfying the universal property of the inverse limit in the category Loc-F-Rings-Sp. For a point
z = {z;} € X, the stalk Ox, is the direct limit of the stalks (’)Xj,xj, and hence is indeed a local

F-ring, and (772)5,; : OXJ.J]. — Ox; is a local homomorphism. For an open set U C X the sections

Ox (U) can alternatively be described as the maps

s:U— H OX,m S(l‘) S OXJ,
zeU

such that for any x = {z;} € U there exists an open set U; C X for some j € J, such that
xj € Uj,m 1 (U;) C U, and there is a section s; € Ox;,(U;), such that for all y € 7~ (U;), we have
s(y) = (w?)y(sﬂwj(y)). In the case that the X; are all affine Zariski F-schemes, X; = Spec(4;),
the inverse limit X = @ ; X, is again an affine Zariski F-scheme, namely X = Spec(A), where
A= lim J Aj is the direct limit of the F-rings A;. But in the case that the X; are Zariski F-schemes,
the inverse limit X = 1&1 J X need not be a Zariski F-scheme, and the category Zar-F-Sch does
not have inverse limits (X = lim , X; will be a Zariski F-scheme if the maps ﬂ‘;; : X, — X, are
affine).

DEFINITION 6.8. The category of F-schemes, F-Sch, is the category of pro-objects of the category
of Zariski [F-schemes.

Thus the objects of F-Sch are inverse systems X = {X};cs, where the X are Zariski F-schemes,
and where J is an arbitrary directed set, and the maps in F-Sch from such an object to another
object Y = {Y; };cs are given by

Homp scn(X,Y) = lim (11_11} Homzyp-scn (X, YE)) ; (6.8.1)
I \J

i.e. the maps ¢ : X — Y are given by a collection of maps gog : Xj — Y defined for all < € I and for
j = o(i) sufficiently large (depending on i), and are inductive in the index j and projective in the
index i: for all ¢ € I, and for j; > jo sufficiently large in J,

@' =P omll  (here 7! 1 Xj, — Xj,); (6.8.2)
and for all i1 > 4o in I, and for j sufficiently large in .J,

wf; o gpgl = @?2 (here WZ; Y, —Y,). (6.8.3)
The maps {¢! : X — Y} and {@ : X — Y} are considered equivalent if for all i € I, and for j
sufficiently large in J, ¢! = @7. The identity map of {X;} is represented by {71';; c X — X s
The composition of ¢ = {¢!} > : {X;}s — {Yi}r with ¢ = {&} }iss - {Yitr — {Z}k is given

by
Pop={Pk ¢ }izoG k) (6.8.4)
Note that there is always a map (with Hom in Loc-F-Rings-Sp)
lim Hom (X, Y;) — Hom <l£n Xj, Yi>, (6.8.5)
J J
and by definition
lim Hom ( lim X;,Y; ) = Hom | lim X;,limY; ). (6.8.6)
T e T
Composing (6.8.5) and (6.8.6) we obtain
L :lim <lim Hom(Xj}, YZ)> — Hom <liij, lim Yi>, (6.8.7)
—\ = — —
1 J J 1
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i.e. a functor

L:F-Sch — Loc-F-Rings-Sp, L({X;},) = lim Xj;. (6.8.8)
7

Ezample 6.9. The compactified SpecZ. Fix a square-free integer N > 2. Let Ay = F(Z[1/N])NOg,y;

it is the F-ring with
1
(AN)Y,X = {a € F<Z |:—:|> : ‘CL|77 < 1}, (691)
N1)yvx

the Y x X matrices with values in Z[1/N] and with (real) operator norm bounded by 1. The map
j: Any — F(Z[1/N]) defines the basic open set

1 1 1
A SpecZ[N} = SpecF<Z [N]) = Day (N) — Spec Ap. (6.9.2)

Indeed, it is easy to check that the map (An);/xy — F(Z[1/N]) is an isomorphism of F-rings,
where (An)i/y is the localization of Ay with respect to 1/N € (An)qy,): every matrix a €
F(Z[1/N])y.x can be written as a = (a/N*¥)/(1/N*), and for k sufficiently large a/N* € (An)y x.
The space Spec Ay contains also the closed point

. 1
1=i"(ma) = (o € Ay laly < 1 = 2| 3] n -1, (693)
and it is the ‘real prime’ given by i : Ay — Og,. But note that n is ‘very close’: the only open
set containing 7 is the hole space, since for any non-trivial basic open set D4, (f), say f = p/N k.
p prime not dividing N and p < N¥, we have

)

(indeed, every matrix a € F(Z[1/N -pl)y,x can be written as a = (p/N*)"-a/ f', and for | sufficiently
large (p/N*)!-a € (An)y.x), and so

Dy (f) = Spec(An)f = SpecIE‘<Z [NLPD ~ SpecZ [NLP} (6.9.4)

does not contain 7. Further, n contains all the primes of Ay, it is the (unique) maximal H-ideal of
An, and Ay is a local F-ring (of ‘Krull’ dimension 2).

Let Xy be the Zariski F-scheme obtained by gluing Spec Ay with Spec F(Z) along the common
open set SpecF(Z[1/N]) cf. Proposition 6.5 or [Hart77, p. 75, Example 2.3.5]. The open sets of
Xn are the open sets of SpecZ, and sets of the form U U {n} with SpecZ[1/N] C U C SpecZ.
For an open set U = SpecZ[1/M] C SpecZ, we have Ox, (U) = F(Z[1/M]), and for such a set
U = SpecZ[1/M] with M dividing N, we have Ox, (U U {n}) = Ap.

For N dividing M we have commutative diagrams

ANC————= Ay Spec Ay Spec Ays
1 1 JA j (6.9.5)
F(Z[§])—F(2Z[5])  SpecF(Z[5]) <—SpecF (Z[47])

and we obtain a map ﬂ% : Xy — Xy. Note that 7T]]‘V4 is a bijection on points, and further

(M), O0x,, = Ox,y, ie. (7¥)* is the identity, but there are more open sets in X than there
are in Xy. We need all these open sets, for all NV, and so we pass to the inverse limit. The ‘com-
pactified SpecZ’ is the F-scheme given by the inverse system {Xy}, we denote it by SpecZ. The
set of indices is the set of square-free integers N > 2, and the order relation is that of divisibility.
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Note that the F-locally-ringed space L(SpecZ) = lim Xy has for points SpecZ U {n}, with open

sets of the form U or U U {n} with U an arbitrary open set of SpecZ (hence SpecZ is of ‘Krull’
dimension 1). Note that each Xy is compact, cf. Proposition 4.12, and hence £(SpecZ) is com-

pact. Furthermore, the local F—ring@m , 18 just Og,, (while the local F-ring Ox, , is only Ay).

For an open set U = SpecZ[1/N| we have
1
OSpeCZ(U) = F<Z |:N:| >

Ogspecz(U U {n}) = An.
The global sections Og—7(SpecZ) are the F-ring F({+1} U {0}).

and

Ezxample 6.10. Similarly for a number field K, with ring of integers O, and with real primes
{ni},i=1,...,r(=rr +1c), let Ay; =F(Ok[1/N]) N Ok, be the F-ring with

(Ani)y,x = {a e IE‘<(9K [%D aly, < 1},

the Y x X matrices with values in Ok [1/N] and with n;-operator norm bounded by 1. Let X be the
Zariski F-scheme obtained by gluing {Spec An;}i=1..., and {Spec F(Ok)} along the common open
set SpecF(Ok[1/N]). For N dividing M we obtain a map 775‘\,/[ : Xy — Xy, with w%\specAM’i
induced by An; € Apr;. The inverse system {Xy} is the F-scheme Spec O, the compactification
of Spec Ok . The space L(Spec Ok ) = liilN X has for points Spec O U{n; }i<,, and open sets are of
the form U U{n; }ier with U open in Spec Ok, and I C {1,...,r} a subset (and hence it is of ‘Krull’
dimension 1). The local F-ring Og;-.-, is the ring O y,. The global sections Og;-5-(Spec Ok )
are the F-ring F(ux U {0}), ux the group of roots of unity in Oj.

7. Fibred products

We show that the category of F-rings has fibred sums, and we deduce that the category of (Zariski)
F-schemes has fibred products.

7.1 Fibred sums of F-rings

THEOREM 7.1. The category F-Rings has fibred sums: given homomorphism of F-rings ¢©° : A — B,
o'+ A — B!, there exists an F-ring B° ®4 B', and homomorphisms ¢ : B — B’ @4 B', i = 0,1,
such that 10 o @0 = ! 0 p! and for any F-ring C one has

HOHl]F-ng(BO ©4 B!, C) = HomIF-Ring(BO7 C) H HomF'ng(Bl7 ),
Hom]F-’Ring(Avc)

fr=(foy? foyh).
So given homomorphisms f° : B — C, f' : B! — O, such that f%o ¢? = fl o !, there exists a
unique homomorphism f°® f': B @4 B' — C, such that (f°® f') o4’ = fi.

Proof. For X,Y € |F|, denote by By x the set of all sequences (bj,b;_1,...,bs), where § = 0,1,
Il =96, by € B, bojt1 € B!, the range of b; is the domain of bjy1, the range of b; is Y, the
domain of bs is X. On By x let ~ denote the equivalence relation generated by the following
relations (7.1.1), (7.1.2) and (7.1.3):

(...,bj+1ogoj+1(a),bj,...)N(...,bj+1,cpj(a)obj,...), CLEA, (711)
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where we write @7 for (7(mod 2).

(...,bj+1,f,bj_1,...)N(...,bj+10f0 j_l,...), feF, (712)

and these relations include also the boundary cases
(fibr,...)~(foby...)y (...;bs,f)~(...,bs50f), feL;
and
(... b1 0 (b®idy) ®ids), (idx ® b)) ® by bj_1,...)
~ (b, (dy @0;) &by, (b @idg) @idg) obj_y,...), for be B b, e B%TZ]- S B%?.
(7.1.3)

Write By x = By, x/~ for the collection of equivalence classes,

B= [ Brx.

Y,X€|F|
We are going to prove that B will give the required B? ® 4 B'. We define composition o on B
Bzy x By,x — Bz x
by

B, By by b5) )y 8 21 (mod 2),

(b, by ob b § = (7-14)
1755 Ugt IR 6)/,\,, _l(mOdQ).

(Bprs- o By /0 (b1, g) [ {

This is well defined, independent of the chosen representatives: we have to show that changing
representatives to equivalent ones on the left of (7.1.4) will give an equivalent result on the right
of (7.1.4). Since elements of By, x are equivalent if and only if they are connected by a ‘path’ made
up of the ‘moves’ (7.1.1) or (7.1.2) or (7.1.3), it is enough to check that changing representatives
by one of the three moves (7.1.1) or (7.1.2) or (7.1.3) gives equivalent results. This follows by
associativity of o. It then follows that o is associative, has identities, and B is a category. We have
functors ¢’ : BY — B, (b;) = (b;)/~ for b; € BY, and 9?0 ¢° = ! 0 ! since by (7.1.1), (7.1.2)

(#"(a)) ~ (¥"(a),id) ~ (id, 9" (a)) ~ (¢'(a)).
Since the zero map Oy, x is in [F, and Oy,x composed with anything gives again a zero map, we see
that [0] is the initial and final object of B.

We next define the direct sum of two elements (by,,...,b5)/~, (b, ..., bs)/~ of B. First note that
by adding identities we may assume that I’ =1, & = 6. We can then define:

B ) ) @ (s bs) f (W) @ by, B @ bs) /. (7.1.5)

We claim this is well defined, independent of the chosen representatives, and again it is enough
to show that if we change the representative (b, ...,bs) by one of the three moves (7.1.1), (7.1.2),
(7.1.3), we get equivalent results.

For the move (7.1.1): since ¢/T1(id) = id we have
(o Wy ® (b1 0 9 (@), B, © by, )
— ( cey (b;'—i-l ) bj+1) o QOJ—H(id @a),b;- &) bj, .. )
(7.1.1) »
(B @ by, © (P @) oby), ).
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For the move (7.1.2):
(b @id,... .05 ®bjro,b5 1 ® (bjr10fobj1),...)

= (o 0 @ by, (Id @ bjy1) 0 (Id @ f) o (Vj_y @ bj-1),...)

712 .
LD (W @id, ...V, @ bjyo,id @ bjsr,id @ f,H,_ @ bj_1,...)

= (b @id, ..., (id ® bjy3) o (b, ®id), (id © bjy2) o (b @ id),id @ bjy1,id @ f,05_; D bj_1,...)

LY (g @id,..., (1d® bjys) o (V) @id), id @ bjya,id @ bj11,0, & f,b,_ @ b;_1,...)

(7.1. (7.1.3)

N)(b;@id,...,id@bj+3,id@bj+2,b;+1@b]H, L@ b b, .)
(7.1.3)

(b;@bl,...,b]+1@b]+1,b]@f,b] 1@1)]'_1,...).
For the move (7.1.3):
(- by @ (bjp1 o (b®id) @id)), b & ((id ® bj) & b)), ...)
=(..,(tf ®bj1) o (ide (b®@id) ®id),b; & (id ® b, )@bj,b; 1D bj—1,...)
LY (W @by, b @ (ideb) @by, (de (beid) @id)o (0,_, @b 1),...)
= (. b @b, b @ ((d @b, )@b ), b1 @ ((b@id)@id) obj_y,...).

Similarly, to define the tensor product of (bj,...,b5)/~ and (b;,...,bs)/~, we may assume
I=10,5=10, and we let

B 65) /e @ (bry b)) B @ by, b @ b)) (7.1.6)

Again this is well defined: changing the representatives (by,...,bs) by one of the moves (7.1.1),
(7.1.2), (7.1.3) does not change the result. The proofs for (7.1.1) and (7.1.2) are exactly as for the
direct sum with @ replaced everywhere by ®.

The proof for move (7.1.3) is similar:
(- by ® (bjy1o ((b®@id) ®id)), b @ ((id @ bj) & b i), b1 @ bj1)
= (.., (b ®bjy1) 0o (([d@b®id) & (id @id)), (b; ®@id @ by) & (b @ bj), b @ bj_1,...)
7.1.3 -

T (W @b, (¥ @id b)) @ (), ©5;), (d @ b®id) @ (id ®id)) o (¥ _y @ bj_1),...)

= (- b @bjg, b © ((id @ by )@b ), b1 @ ((b®id) @id) o bj1),...).

It is now straightforward to check that B is an F-ring, ¥ : B* — B are homomorphisms of
F-rings. If f* : B® — C are homomorphisms of F-rings such that f% o ¢ = f! o ¢!, we define
f°@fl:B—=C by

PO@ f (s b)) = flb) om0 fO(bg),  fT = fIEmed D) (7.1.7)

It is well defined: changing the representatives (by, . .., bs) by one of the moves (7.1.1), (7.1.2), (7.1.3)
does not change the result of (7.1.7). For example, f°® f! applied to both sides of (7.1.3) gives the
same result

o [T (bj1) o [(F7FH(B) @ F7(B;)) @ F7(By)]) o f77H(bj—1) o
The map f° @ f! is a homomorphism of F-rings, and clearly it is the unique homomorphism such
that

(fPo Yoy =fi e fOo fY(b;)/~) = fi(b;) for b; € B.
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We write B® @4 B! for B, b; ® - - - ® b; for the equivalence class (b;...,bs)/~. Thus the arithmetic
in B ®4 B! is governed by the three moves,

(i) - (bjr10¢/ (@) @bj--- = b1 @ (¢ (a) o bj) -+ a€ A,

(i) - bjr1@f@bj—1--=--@(bjyr1ofobj1)@--- feF, (7.1.8)
(iii) ---bj110((b®id)®id)@((id@b;)®b;)@bj_1 - - = - - - bj11©((id@b;)Db;) @ ((bid)@id)ob,_y - - - .
This completes the proof of Theorem 7.1. U

Remark 7.1.9. Note that we can consider B® as an A-module via ¢, hence we have the tensor
product B® ® 4 B'; ¢f. Lemma 3.20. We have a map

B’®4 B' = B @4 B, by @by — °(bg) @ ' (b1) = (b ® id) ® (id & by ),
but unlike the case of commutative rings this is not an isomorphism.

Remark 7.1.10. A similar construction gives the fibred sum of F¥-rings or F-rings. If the F or F*
or F-rings A, B?, B! have compatible involutions, we get a well-defined involution on B° @ B! by

((bl’ cee >b5)/~)t = (bgv s 7b;)/~
(note that the moves (7.1.1), (7.1.2), (7.1.3) are all symmetric with respect to (---)* ). Hence also
the categories F¥-Rings, F5!-Rings, F-Rings, Ft—Rz’ngs have fibred sums. Similarly if A, B, B! have
compatible FA-structure, we get such a structure on B @ B! via

A(by, ... b5) /<) = (A%, ... AT bs) /.

7.2 Fibred product of F-schemes, the case of SpecZ x SpecZ
As a corollary of Theorem 7.1 we get the following results.

THEOREM 7.2. The category Zar-F-Sch of Zariski F-schemes has fibred products. Given maps in
Zar-F-Sch f0: X° - Y, fl: X! - Y, there exist a Zariski F-scheme

X [t
Y
and maps
7 Xol_[X1 — X7 j=0,1,
Y
such that fon® = flox!, and for any Zariski F-scheme Z, and any maps ¢’ : Z — X7, j = 0,1, such
that f00 ¢° = fl o ¢! there exists a unique map
g IIgt: Z—>XOHX1
Y
with 7/ o (¢° II g') = ¢/ for j =0, 1.

Proof. Write Y = |J, Spec(4;), (f7)~(Spec(4;)) = Uy Spec(ng),j = 0,1. Then X°[[,- X! is
obtained by gluing {Spec(B?’k0 ®4; Bil,kl)}iykmkl‘ For details, see, e.g., [Hart77, Theorem 3.3, p. 87].
]

As a corollary we obtain the following theorem.
THEOREM 7.3. The category F-Sch of F-schemes has fibred products.
Proof. Given maps as in Definition 6.8,
=10l isom X ={Xly =Y = Yib, ¢ = {7 Y mopy : X' = {X}}p — Y,
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the fibred product in F-Sch is clearly given by the inverse system {X; xy, X ]’-,}, the indexing set is
{70 e IxJ xI]jzoa(i),j =0'(i)} O

As an important example we have the arithmetical surface compactified
SpecZ XgpecF Spec Z,
which is represented by {Xxn Xspecr Xar} with indexing set {(N, M) € N x N|N, M square-free},

and with
1
Xn = SpecF(Z) H Spec <F <Z [N}) N OQ,n>,
Spec(F(Z[1/N]))

as in Example 6.9. The F-scheme
SpecZ X specF Spec Z

contains the open dense subset (which is a Zariski F-scheme):
SpecF(Z) xgpecF SpecF(Z) = SpecF(Z) @ F(Z).
A basis for neighborhoods of (p,n) is given by

F(Z[%D O A,

where p does not divide N, and M is arbitrary (for the definition of Ay; see Example 6.9).

Similarly, for any number field K we have the compactified surface
Spec Ok Xgpeck Spec Ok .
It contains the open dense subset

SpecF(Ok) @ F(Ok).

8. Monoids

Since we defined F-rings to be categories, and therefore have the operation of composition o, the
resulting product ® (actually the sum in F-rings) is very complicated, resembling amalgams of
groups, and it is difficult to calculate for specific examples. Unlike the classical theory, it does not
reduce to the tensor product ®, cf. Remark 7.1.9. Similarly, the base change functor for a map
of F-rings ¢ : A — B, ¢, : A-Mod — B-Mod, p.,M = Mp, is complicated, and again does not
reduce to the tensor product B ®4 M, as it does in the classical theory, cf. Remark 3.23.11. In
this section we shall give a softer theory that overcomes these difficulties by replacing everywhere
F-rings by F-monoids, which have composition o only with elements of a fixed base F-ring F'. Since
the constructions are repetitions of the constructions of earlier sections we will be more brief. We
repeat the story up to the definition of Zariski F-monoid scheme. One can define F-monoid schemes
to be the category of pro-objects of Zariski F-monoid-schemes, as we did in the context of F-rings,
cf. Definition 6.8, but one does not do it for several reasons. For instance, the basic Example 6.9
of the compactification of SpecZ, and Spec O, does not go through in the context of F-monoids.
As explained at the beginning of § 1, working with SpecZ = SpecZ U {n} dictates taking F = F,
and since ' does not have the vector (1,1) addition is lost, cf. (2.13.4): the functor A — F(A),
from Rings to F-monoids, is not fully faithful (compare with Example 1 of §2.3), and when we
view F(A) as F-monoid SpecF(A) does not reduce to Spec A. Thus for example viewing F(Z) as
F-monoid its spectrum has the cardinality of the continuum: for any set S of primes we have the

prime pg € SpecF(Z),ps = UpESp L.
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On the other hand, using the localized version (Definition 8.20) of Ox-monoids, one can use
Ox-monoids to define the flat (and étale) Grothendieck topologies on a given (Zariski) F-scheme;
see [TVO05].

8.1 F-monoids
DEFINITION 8.1. An F-monoid is a monoid object in the category of F-modules.

Thus an F-monoid A = {Ay x }y,x¢|r| has the operations

F-composition: Fyry x Ay x x Fx x — Ay x1, (f,a,f")— foao f', (8.1.1)
F-tensor product:Fy, x, X Ay, x, = Av,evi.xoex:: (f,a) — f®a, (8.1.2)
direct sum:AyO,XO X AYl,Xl — AYOEBYLXOGBXU (ao, al) — ag D ay, (813)

satisfying the F-module axioms (3.1.4)-(3.1.15), together with the additional operation of ‘tensor’
product:

Ay, x, X Ay, x, — Avpey Xeox1, (@o,a1) — ag @ aj. (8.1.4)

This operation is bilinear over F":

(ap @ ag) ® a1 = (a0 ® a1) & (ag @ a1),a0 @ (a1 ® a}) = (ag ® a1) ® (ap ® a}), a;,a; € A,

(8.1.5)
(focago fo) @ (ficarofi) = (fo® fi)o(ao ®ar1) o (fo® f1), fi,fi € F,a € A, (8.1.6)
(f®a)®@a1=f@(a®@a1)=ay @ (f®a1), f[€F,a; €A (8.1.7)
It is also associative:
ap ® (a1 ®ag) = (ag ®a1) @ az, a; € A, (8.1.8)
commutative:
ag®@ a1 = a1 Q@ag, a; €A, (8.1.9)
and unital:
there exists (a unique) 1 =14 € Apyy ;) with 1® a = a, for all a € A. (8.1.10)
A map of F-monoids ¢ : A — A’ is a map of F-modules respecting ® and 1, i.e. we have
vy, x Ay x — A%X, Y, X € |F|, (8.2)
satisfying
o(foaofy=fopla)of, f f €FacA, (8.2.1)
o(f®a)=f@¢la), feFacA, (8.2.2)
olap ® a1) = (ag) ® p(ar), a; € A, (8.2.3)
wlap ® a1) = ¢(ap) @ p(ar), a; € A, (8.2.4)
o(14) = Ly (8.2.5)

Thus we have the category F-Mon of F-monoids; it is a subcategory of F-Mod. The F-module
F itself, considered as an F-monoid, is the initial object of F-Mon: for any F-monoid A we have
themap FF - A, f — f®14.

All our examples of F-rings are of course F-monoids. Note that the functor from commutative
rings to F-monoids, A — F(A), is faithful, but is not fully faithful: there are more maps F(A4) — F(B)
in F-Mon than there are maps A — B in Ring. On the other hand, we can consider this functor
as taking values in F(Z)-Mon, or S-Mon, or S°°-Mon, cf. Example 3 (2.15.1), in which case it is
fully faithful.
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The category of F-monoids has fibred product A° Iz Al arbitrary products IL A’ and
arbitrary inverse limits lim A".

DEFINITION 8.3. For an F-monoid A, an equivalence ideal £ is a collection of subsets
E= H Ev.x, Eyx CAyx x Ayx, (8.3.1)
Y,X€|F|

such that €y x is an equivalence relation on Ay x, and £ is an A-submodule of AJ[ A4, i.e. it is an
F-submodule:

(ag,a1) € Ev,x, fE€Fyy, [ €Fxx = (foagof foaiof)e& x, (8.3.2)
(a,d') € &vx, fE€ Py x, = (f®a,f®d) € Evieyxex, (8.3.3)
(a07 CL6) € SY07X07 (al7a,l) € SYLXl = (aO @ ax, CL6 D a,l) € 5Y0®Y17X0@X17 (834)

and moreover it is closed under A-tensor product:

(a,a') S 5Y,X7 ap € AYo,Xo = (ao ®a,ap X a’) S 5Y0®Y,X0®X- (8.3.5)

(Note that (8.3.3) follows from (8.3.5) by taking ap = f ® 14.)
Given an equivalence ideal £ of A we can form the quotient

A/e= T Avx/&vx,
Y, X €|F|

which has the structure of F-monoid such that the canonical projection 7 : A — A/E is a homo-
morphism of F-monoids. For a map ¢ : A — B in F-Mon we have the equivalence ideal of A,

KER(¢) = [y x LER(#)v.x,
KER(p)v,x ={(a,ad’) € Ay x x Ay,x | p(a) = ¢(a’)}, (8.4.1)

and @ factorizes as epimorphism 7 followed by an injection ©, as in the diagram.

\>\ Q/é/ (8.4.2)

Alker(p)

8.2 Modules over an F-monoid
DEFINITION 8.5. For an F-monoid A, an A-module M is an F-module together with maps

AY07X0 X MYl,Xl - MY0®Y1,X0®X1’ (a¢ m) = a®m,

which are bilinear over F': for f, f;, f/ € F,a,a; € A,m,m; € M,

(froao f)® (fromo f3) = (A ® fa) o (a@m) o (@ ), (8.5.1)
(fRa@m=Ff®(@@m)=a® (f®@m), (8.5.2)
(ag®ar) @m = (ag@m) B (a1 @m),a® (mg B my) = (a®@mpy) ® (a ®@my), (8.5.3)
associative:
ap ® (a1 ®m) = (ap ® a1) ® m, (8.5.4)
and unital:
14 ®m=m. (8.5.5)

(Note that the first equality in (8.5.2) follows from (8.5.4) and (8.5.5) by taking ap = f ® 14.)
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The above defines a ‘left” A-module; we can similarly define a ‘right’ A-module, but these notions
are equivalent: any left A-module M can be made into a right A-module by putting

m@a cyy © (@®@m)ocy z form € My x,a € Aw,z(c" as in (1.16)). (8.5.6)

Similarly any right A-module can be made into a left A-module; hence we shall not distinguish
between left and right A-modules.

DEFINITION 8.6. A map of A-modules ¢ : M — M’ is a map of F-modules respecting ®, i.e. we
have

eyx 1 Myx — My x, Y,X€lF|, (8.6.1)
p(fomof)y=fop(m)of, [ f€F, (8.6.2)
e(f®@m)=f®@¢p(m), [fEeF, (8.6.3)
e(mo @ my) = @e(mo) ® e(m1), m; € M, ( )
pla®@m)=a®p(m), acA. (8.6.5)

(Note that (8.6.3) follows from (8.6.5).)

Thus we have a category Ap-Mod of A-modules; it is a subcategory of F-Mod. Note that if
A is an F-ring, we can consider Ap := A as an F-monoid, and A-Mod C Ap-Mod. On the other
hand we can consider A4 := A as an A-monoid, and then A-Mod = Ax-Mod. The category of
A-modules has the initial and final object 0 = {OY7X}Y’X€‘F|. One defines the notion of an
A-submodule My C M in the evident way; an A-submodule of A is called an ideal.

The category Ap-Mod has fibred product
<MOHM1> = {(mg,m1) € M%X X M%CX | wo(mo) = @1(mq)}  for ; : M" — M; (8.7.1)
M Y, X
it has arbitrary products [ [, M ¢ and arbitrary inverse limits ml M,
h(;nMi = {(mi) € H M| i i(my) = m} (8.7.2)

For an F-monoid A, and A-module M, an equivalence A-module of M is an A-submodule & of
M ] M, such that £y x is an equivalence relation on My, x. We can form the quotient

M/E= ] (M/€)yvx, (M/E)yx=Myx/Evx, (8.8.1)
Y, X €|F|

and it has the structure of an A-module such that the canonical projection 7 : M — M/E is a
homomorphism of A-modules. For a map ¢ : M — N in A-Mod we have the equivalence A-module
of M, KER(p) = M [[y M, and ¢ factorizes as an epimorphism 7 followed by an injection @, as in
the diagram.

M z N

8.8.2
\ / 582
M/ker(p)

For a map ¢ : M — N in A-Mod we have the A-submodule M,
7™1(0) = {m € M | p(m) =0}, (8.9.1)
which is the kernel of ¢ in A-Mod; we have also the A-submodule of IV,
o(M) ={p(m) | me M}. (8.9.2)
678

https://doi.org/10.1112/50010437X06002624 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X06002624

NON-ADDITIVE GEOMETRY

For an equivalence A-module £ of M, we let Z(&) denote 7= 1(0), 7 : M — M/E the projection
Z(E)=n"10)={me M| (m,0) € E}. (8.9.3)

For an A-submodule My C M we let E(Mj) be the equivalence A-module of M generated by
My x {0}. We write M /My for M/E(My). For a map ¢ : M — N in A-Mod we have its cokernel

Coker ¢ = N/p(M) = N/E(p(M)). (8.9.4)
We have for A-submodules M; of M, and equivalence A-modules &; of M,

My C M) = E(My) C E(M;), (8.10.1)
& C& = Z(&) CZ(&), (8.10.2)
My C ZE(My), (8.10.3)
& D EZ(&), (8.10.4)
E(My) = EZE(M,), (8.10.5)
Z(&) = ZEZ(&). (8.10.6)
We have a bijection between the set
{Z(So) ‘ & C MHM} = (My C M | My = ZE(My))}
and the set
{E(Mo) | Mo € M} ={& | & = EZ(&)}
given by
My — E(My), Z(&) «— &o. (8.10.7)

Lemma 3.13 and its Corollary 3.14 remain valid: the equivalence A-module of M generated by
the A-submodule My C M, € = E(Mj), can be described explicitly:

Ey.x = {(m,m') € My x x My x | 3 path m = mg,mq,...,m; =m/,
with {m;,m;1} of the form {f; o (m; © ny) o f}, fj o (M; ©0) o fi},
fis fj € Fymj € Mynj € Mo} (8.11.1)
We have My = ZE(My) if and only if for all f, f' € F,m € M, mg € My,
fo(m@my)of € Mge fo(md0)of € M. (8.11.2)

For A-submodules M; of M, we have their intersection (), M; C M, and their sum

S {r(@om)

(2

ff € Fom; € M} (8.12.1)

The A-submodule generated by a subset {m;};c; C M is described explicitly as

3 Am; d:ef{fo <@(ai®mi)> of

i

[ '€ Fa; € A}. (8.12.2)

Given an A-module M, and an ideal a C A, we have the A-submodule of M,

a~M={fO <@(ai®mi)> o f

i

f,f € Fa¢e a}. (8.12.3)

Given A-submodules My, M7 C M, we have the ideal of A,
(My: M) ={a€cAla®@me My Vm € M }. (8.12.4)
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8.3 Functorial operations on modules

Sums and direct limits. Given a collection of A-modules {M;};c;, we have their sum in the
category A-Mod (cf. Proposition 3.17):

<H Mi> ={(fAmitier, f') | f € FY,@Z.GIOYN]U € Fg,ep, Xix
Y,

icl X
m; € (M;)y, x,, 1o C I a finite subset} /. (8.13.1)

Here ~ is the equivalence relation generated by

<f - <€B ﬁ) Amikicr, <€B f{) o f’> ~ (F A omso flYicn ).

il icl (8.13.2)
(f:Amitiery, f') ~ (f, {mi}ier, U {idjg }, f).
The structure of A-module on [, ; M; is defined by:
F-composition
g0 (fAmik, )/~ 0 g = (g0 f.Ami}, ' o g')/ (8.13.3)
sum
(fo, {mitiero, fo)/~ @ (1, {mi}ien, f1) = (fo ® fi.AMitier,un . fo @ f1)/~ (8.13.4)

with m; = m; (respectively ml,m; & m,) for i € Iy \ I (respectively i € I} \ Ip,i € Iy N I1); and
A-tensor product

a® (f7 {mi}iefmf/)/’\‘ = (ldW®f7 {a®mi}i6107idz®f/)/N7 ac AW,Z' (8135)
Note that for g € Fyy z:

9@ (f,Amiticry, [')/~ = (g ® 14) @ (f, {mi}ticro: [')/~

idw @ f,{g ® mi}ier,,idz @ f')/~

idw @ f,{(g ®idy;) o (idz ® ms) }icry,idz @ f)/~,

idw @ f, {(idw ® m;) o (g ® idx,) }iero,idz @ f')/~
((idw © f)o Py @idy,), {idz ® mi}ier,,idz © f’)/ ;

Iy ~
or = (idW ® f,{idw ® mi}ici,, @(9 ®idy,) o (idz ® f’))/
I
= (g ® f? {le ® mi}i6107 le & f/)/N7
or = (idw @ f, {idw @ mi}icry, 9 ® f')/~- (8.13.6)
We write f o (B, mi) o f' for (f,{mi}icry, f')/~-

Given a functor ¢ — M; from a small category I to A-Mod, we have the direct limit

~~ I~/

or

~

lim M; = [ Mi/€, (8.13.7)
I I

where & is the equivalence A-module of [[; M; generated by
{(ldy o (ml) o idx,idy o (cpﬂ(ml)) o ldx) ‘ m; € MZ', Pji * Mz — M]} (8138)
In particular we have the push-out My [[,; M; for homomorphisms v¢; : M — M;,

My [ My = (MO I1 Ml)/g, (8.13.9)
M
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where € is the equivalence A-module of M [] M; generated by
{(f o (Wo(m)) o f', fo(shr(m)) o f) | m € M}. (8.13.10)

Free modules. Let s be a formal symbol representing a map Xo — Yy, Xo, Yo € |F|. The free
A-module on s is

(A-s)yx ={(f,a, f") | [ € Fywavy, f' € Fzax,x,a € Awz}/~ (8.14.1)
where ~ is the equivalence relation generated by
(fo(g®idYo)7a7(g/®idXo)of,)N(f?.goaoglaf,)7 faf,7g7g,€F' (8142)
The structure of A-module on A - s is defined by
go(fia,f)/~og =(g0f.a flog)/w. f.f.9.9 €F. (8.14.3)
(f07a07f(,))/"@(fhahf{)/’\‘:(fo@f(l)aao@ahfé@f{)? flafz,EFa (8]—44)
ao @ (f,a, f')/~ = (idw @ f,a0 ® a,idz @ f')/~, a0 € Aw,z. (8.14.5)

We write f o (a®s)o f’ for (f,a, f")/~. Note that for g € Fyy z,
98 (fola®s)of) = (g0 1)@ (fo(a®s)of)
= (idw ® f)o(g®a®s) o (idz @ f)
=(g® f)o(idz®a®s)o (idz ® f)

= (ldw @ f) o (idw ® a ®s) o (g @ f'). (8.14.6)
For a set S = {s;}ics over |F| x |F|, with s; — (Y3, X;), the free A-module on S is the sum
A-S=][A" s, (8.14.7)
i€l

or explicitly,

(A-S)yx ={(f{aiticr, ) | f € Frg, w.ev), I € Fg, (ziox,).x: 0 € Aw, z;, 1o S T finite} /.
(8.14.8)

with the equivalence relation ~ generated by

<f° (@(gi ®idn)>7{ai}ielo7 <EB(9§ ®idxz~)> Of'> ~ (fAgioaiogiticro, f'): 1. f', 9i, 9i € F.

I() IO

(fv {ai}ielm f/) ~ (f> {ai}iéfo U {ld[O]}v f,)
(8.14.9)

We write fo (@, (ai®s;))o f" for (f,{ai}icry, f')/~- The functor S — A-S from sets over |F| x |F|
to A-Mod is left-adjoint to the forgetful functor M +— ]_[Y7 x My x,

Hom g aod(A - S, M) = {(ms)icr | mi € My, x,} = Homgeysjr|xr|(S, M). (8.14.10)

Tensor products. For My, My, N € A-Mod, we let Bz’lz’n?(Mo,Ml;N) denote the maps ¢ :
My x My — N satisfying ‘ Ap-bilinearity’:

@((Mo)yo,xo X (M1)y1,x1) € Nypavi, XowX1 (8.15.1)
p(mo @ mo, m1) = @(mo, m1) @ p(mg, mi),
©(mg, m1 ®m}y) = p(mo,m1) ® p(mg,m}), mi,m, € M, (8.15.2)
wla ®mo,m1) = a® p(my,m1) = p(mo,a @my), m; € M;,a € A, (8.15.3)
(g0 ©mo © go, g1 0m1 0 g1) = (9o ® g1) © p(mo,m1) © (9o @ 91)  9i» 9; € F. (8.15.4)
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The free A-module on the set {p(mg, m1) }m,en;, divided by the equivalence A-module generated
by (8.15.2), (8.15.3), (8.15.4), is denoted by My ® 4,p My, and the map

My x My — Mo ®4/p M, (mo,m1) — mo ® my = image of ¢(mg.m1) (8.15.5)
is the universal bilinear map:
Bilingh (Mo, My; N) = Homa aoa(Mo ®a/p My, N). (8.15.6)
We can describe My ® 4 M; quite explicitly as
(Mo @4 My)y,x = {(f, {mi}ier, {mi}ier. 9) | f € Fy.g, (vievi) 9 € Fa, (xioxi).x:
mh € (Mo)ys xiomi € (Mi)ys xi I € [Fl} /- (8.15.7)
where the equivalence relation ~ is generated by

(7o (Do ). tmiha et (Bt o41) ) =)

1 I
N(f,{féomf)ogé}[,{ffomllogi}j,g), fzng€F7
7797

(fiAmb}r, {mi}r,9) ~ (f, {mi}r U {id}, {mi}r U {idig}, 9), (8.15.8)
(f,{a" @ mg}r, Amitr, 9) ~ (f, {mgy}r, {a' @ mi}r,g), a' €A, (8.15.9)
(f, {mb & mi 1. {mi}1.9) ~ (f Amdbrer. {mT Y iar, 9),
(foAmbyr Ami @ mi}1,9) ~ (fAmg Y 1or, {m} 10, 9). (8.15.10)

with I = I'ji— i, and 7 : I @& I' — I,7n(i) = i = m(i'); here m; Y Mj,mé-’ I — M;
are two sequences of elements of M;. One checks that the following operations are well defined,
independent of the chosen representatives, and make My ® 4 M into an A-module satisfying the
universal property (8.15.6):

FolgAmiyr,Amiyr,g) /o f' E (fog, {miyr, Amiti.g o f))r fi 9.4 € F,  (8.15.11)

a® (f, {mb}r, {mi}r, 9)/~ & (dw @ f,{a @ mi}r, {mi}r,idz ® g)/~ra € Awz,  (8.15.12)

(FAmdY 1, Ami 3, £/~ @ (g, {md g, Ami} g, )/ (F @ g, {mE Y reres, i hreres, £ @ ¢).

(8.15.13)
For m; € (M;)y, x, we have
def ,. .
mo ®amy = (idyyeyr, {mo}, {mi},idxeex, )/~ € (Mo ®a Mi)yvieyvi Xowx, (8.15.14)
and hence
(s b, (i} 9) ) = f o (@ma ®a mi)) og. (8.15.15)

el
We can similarly define the multilinear functions Bz’lz’n’g(Mo, ..., M;; N) and the A-module
Mo R4 - @4 M representing them.

The construction of the tensor product My ® 4 M7 is functorial in the M; and makes A-Mod
into a symmetric monoidal category with unit element A. For ¢; : M; — N; we have

0o ® w1 : My @4 My — No®a Ny,
0 ® 1 <f . (@mé oy mi>> og) _ fo (eBwo(mé) ® mmi))) g (816)

il il
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satisfying
ida, ® idy, = idaearn (8.16.1)
and for ¢; : N; — L;,
(tho @ 1h1) © (o ® ¢1) = (Yo © o) @ (1 0 1) (8.16.2)
and there are canonical isomorphisms
My ® My = M; @ My, mo® my — mj @ mo, (8.16.3)
(Mo ® M) @ My = My ® (My @ M) = My ® My @ M,
(mo ® m1) @ ma — my ® (M1 @ ma) — my ® m; @ ma, (8.16.4)
ARAM = M,a®4m— a®m. (8.16.5)

Given a homomorphism of F-monoids ¢ : A — B, a B-module N can be considered as an A
module Ny via a ® n := p(a) ® n, and the functor

B-Mod — A-Mod, N — Ny, (8.17.1)
has as left-adjoint the functor

A-Mod — B-Mod, M +— B®s M,
HOInA_MOd(M, NA) = HOInB_MOd(B ®Ra M, N)

P 90<g 0 (619 b ® mz> og’> —go <@ b @ so(mi)> od. (8.17.2)

go(m) = gD(idy o (13 & m) o idx) — Q.

We have canonical isomorphisms

B®a (H M’) =[[(B&a M), (8.17.3)
iel iel
B ®4 <h_n)1 MZ> = lim(B ®4 M?), for a functor i — M* I — A-Mod, (8.17.4)
I I
B®y(A-S8)=B-S, forasetS over |F|x |F|, (8.17.5)
B®a (M/p(My)) = (B®aM)/(idp @ (B ®4 Mp)), for a map of A-modules ¢ : My — M.
(8.17.6)

Given homomorphisms of F-monoids ¢ : A — BY o' : A — B!, we can view B?, B! as
A-modules and form their tensor product B° ® 4 B!. By the universal property (8.15.6), there is a
map

(B ®4 B') x (B"® B') - B ® B!,

e’ eb) - o) (B 0b) (8.18.1)
making B @4 B! into an F-monoid, and it is the sum of BY, B! over A in F-Mon: for every
C e F-Mon,

HomF_Mon(BO ®4 B, C) = HomF_Mon(BO, ) X HomF_Mon(Bl, )
Homp_a1on(A,C)
={@% 9N ¢ B' = Oyl o? =yl op'}. (8.18.2)
Here
Y (Yo o) (8.18.3)
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with
j*:B' = B®4 B, %) =b®151,5(b) = 150 @ b

me o (¥ @yh) — (0,91 (8.18.4)
with m¢g : C ®4 C — C the multiplication map of C,¢1 ®4 o — ¢1 ® co.
Ezample 8.19. For commutative rings B®, B!, considering F(B’) as F-monoids, we have the tensor
product F(BY) @p F(B'). It is easy to see that every element f o (;(b) @ b})) o g € (F(B°) ®p
F(B'))y x is equivalent to an (essentially unique) such element with b/ € B\ {0}, and with f : I —
Y,g' : I — X embeddings. Thus F(B°) @ F(B') is the F-monoid underlying the F-ring F(B° x B*)
associated with B? xy B! = BY x Bl/(bO,O)N(le) € Mong . On the other hand, if the B7 are A-
algebras, with A a commutative ring (e.g., A = Z), we can consider F(A),F(B7) as F(A)-monoids,
and we have the tensor product F(BY) QR(A) F(B'). Every element ¢ € (F(B°) ®F(A) F(BY))y.x is
determined by its matrix coefficients

Cya = jy 0o ju € (F(B®) @pca) F(B")) -

Every element

Fo (@wg @ bb) 0 g € (B(BY) @rn F(BY)

I

is equivalent to such an element with bg € BJ, and with f1: = gip = 1, which we may denote
>0 @ bl. We have well-defined addition of such elements,

S Wb+ Y Webh =S o,
I J

IoJ

and we have A-action with
a-Y Web =Y ableb =Y b oa-b,
T I I
and moreover
Wbt +050b = (09 +03) @b, 0° @bl 4+ 0% @ b = ° @ (b} + bl).

Thus F(B°) ®pa) F(B) is the F(A)-monoid F(B? @4 B'), and B — F(B) is a tensor functor:
Ring/A — F(A)-Mon.

Varying the base F-ring F.  We can change the base F-ring. Given a map ¢ : Fy — F5 of F-rings,
every Fy-monoid B is an Fj-monoid via ¢, giving a functor

F-Mon — Fy-Mon, B w— Bp,.

Conversely, given an Fj-monoid A, its base change Ap, € Fy-Mod is an Fr-monoid (using equa-
tion (3.23.8)), and we have the functor left-adjoint to the preceding one

Fi-Mon — Fy-Mon, Aw— Ap,.

Similarly we can let F' vary by working over a fixed F-ringed space (X, Ox), cf. Definition 6.1.

DEFINITION 8.20. For X € F-Rings.Sp, an Ox-monoid A is a sheaf of Ox-modules such that for
Us C U; C X open, A(U;) is an Ox (U;)-monoid, and A(Uy) — A(Us) is an O(U;)-monoid map,
i.e. A is a monoid object of Ox-Mod. This gives a category of Ox-monoids, Ox-Mon, and it has
fibred sums.
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Free monoids. Given an F-monoid A and a symbol s : Xo — Yy, X, Yy € |F|, take the sequence

of symbols s : X§" — Y&, n > 0 (where X" = Xo® --- ® Xo (n times), and X° = [1]), and
form the free A-module on {s"},>0:

:{fo<@ (ai®si)>og

a; € AYZ-,XZ-,f c FYv@(Yi®Yo®i)’g c FEB(Xi®X(?i),X}/

0<i<n

(8.21.1)

with

(f o@(fi ®idYO®i)) ) (@ai ® si) o (@(gz ®idX(()®i) og) ~ fo (@(fl 0a; o g;) ® 32') og.

(8.21.2)

Using the distributive isomorphism in F:

{@(X@Xg@i)} ® [@( o X&) } @[ D Xi®X]’-)} & XS,
i j k ‘itj=k
and similarly with Y, we obtain a map
Als] x Als] — Als], (8.21.3)
( <@az®s> °g, f (EBa ®sf> og> (fer) (EB( D awd > > °o(9®9),

k i+j=k

which is well defined, A/ F-bilinear, and gives A[s] the structure of A-monoid. It is the free A-monoid
on s: for any A-monoid C,

HomA_Mon(A[s],C) = CYO7XO' (8.21.4)

We can similarly form the free A-monoid on sq,...,5;, §; : X; — Y;, and we have

Alsy,..., 5] = Als1] @4 @4 Als)) = AQp Flsy,...,5) = [[ A-smom) (8.21.5)

ni,...,n; =0

with sMom) ;. xO™M g . g Xl®"’ SYPM ... Yl®nl. Taking the direct limit over finite
subsets of a set S over |F| x |F| we have the free A-monoid on S

AlS) = lim  Alsy,....s) (8.21.6)
{51,...,51}§S

and S — A[S] is the left-adjoint to the forgetful functor A-Mon — Sets/|F| x |F|.

Ideals of an F-monoid. An ideal a« C A, A € F-Mon, is an A-submodule of A. Ideals a;
have intersections (), a;, sums Y, a;, and finite products [[}"; a;, which are again ideals. The ideal
generated by s; € Ay, x, is given explicitly by

(51,...,81) = {f o <@ a; ®5i> og ‘ I € Fyowev) 9 € Foz.ox),x:0i € Awi,zi}' (8.22.1)

Homogeneous ideals a, ie. a is generated by apy [y, correspond one-to-one with H-ideals,
i.e. a C Apyqy such that for

S1,...,51 € a,a; € Aw, z,, f € F[lL@Wi’g € F@th = fo (@az ®5i) og € a. (8.22.2)
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An ideal p C A (respectively H-ideal p C Apjy)) is called S-prime (respectively prime) if A\ p
(respectively Apy)y\p) is closed under @. We let SPEC(A) (respectively Spec(A)) denote S-primes
(respectively primes).

Primes and spectra. Anideal a C A (respectively H-ideal a C Apy) )) is called E-ideal (respec-
tively H-FE-ideal) if a = ZE(a), respectively a = (ZE(a))p,, or explicitly

fo<ao@@ai®5i>og€a & fo(ay®0)ogea, fors; €a,a; € A. (8.22.3)
i

We let E-SPEC(A) (respectively E-Spec(A)) denote the S-E-primes (respectively E-primes). We
have the sets
Va(a) = {p € SPEC(A) | p D a}, aC A ideal;
Da(f) ={p € SPEC(A) [p Z [}, [e A
Va(a) = {p € Spec(A) [ p 2 a},a C Ay y) H-ideal;

Da(f)={p €Spec(4) [pZ [}, [€Anp:
The V4(a) define the closed sets, the D4(f) define a basis for the open sets of the Zariski topology
on SPEC(A) and on Spec(A).

For an ideal a (respectively E-ideal, H-ideal, H-E-ideal), and for f € A (respectively f € Ay
for H-ideals) with f®" ¢ a for all n, a maximal element of the set of ideals (respectively E-ideals,
H-ideals, H-E-ideals) containing a and not containing any f®"is S-prime (respectively S-E-prime,
prime, E-prime), and it follows that

(8.22.4)

Va={f € A(respectively Ay ) | f®" e a for some n > 1} = ﬂ p, (8.22.5)
aCp

where the intersection is taken over all S-primes (respectively S-E-primes, primes, E-primes) con-
taining a. For a subset X C SPEC(A) (respectively E-SPEC(A), Spec(A), E-Spec(A)) we have the
ideal (respectively E-ideal, H-ideal, H-FE-ideal),

I(X)=(» (8.22.6)
peX
and
Va=1I(Va(a), Va(I(X))=X. (8.22.7)

It follows that we have bijections between the closed sets in SPEC(A) (respectively E-SPEC(A),
Spec(A), E-Spec(A)), and the radical a = \/a ideals (respectively E-ideals, H-ideals, H-E-ideals);
the irreducible closed sets correspond to S-primes (respectively S-E-primes, primes, E-primes).
There is a commutative diagram of spaces

E-SPEC(A)—— SPEC(A)
i i (8.22.8)
E-Spec(A)——— Spec(4)

with the horizontal arrows embedding of subspaces (with the subspace topology), and the vertical
arrows are surjective continuous maps (to show surjectivity one needs localization, cf. below). For
a map of F-monoids ¢ : A — B, the pull-back along ¢, ¢*(p) = ¢ (p), gives a map from the
diagram (8.22.8) associated with B to the one associated with A. Since

P " Va(a) = Va(p(a)), "' Dalf) = Dp(e(f)), (8.22.9)
636
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" is continuous, and we have four functors from F-Mon to the category of compact sober spaces
and continuous maps.

Localization and structure sheaf O4. The theory of localization of an F-monoid A (respec-
tively A-module M) with respect to a multiplicative subset S C Ay 1) goes exactly as in §5, and
produces an F-monoid S™!A (respectively S~!A-module S~*M). The functor A — S~ A (respec-
tively M ~ S~1M) commutes with direct limits, tensor products, finite inverse limits, free objects;
in particular it preserves kernels ¢~1(0), KER(p), cokernels, and commutes with the operations
E, Z. Propositions 5.12, 5.13, and 5.14 remain valid: surjectivity or injectivity of a map in A-Mod
can be checked locally at every prime (or maximal H-ideal). For an F-monoid A (respectively
A-module M), and for p € Spec(A), or for f € Apy 1), we put

Ay = Sp_lA (respectively M, = Sp_lM), Sp = Ay \ b5

7 _ P (8.22.10)
Ap =5, A (respectively My = S, "M), Sp={f"|n > 0}.

Over Spec(A) we have a sheaf O4 of F-monoids (respectively a sheaf of O4-modules M ) such
that

Oa(Da(f)) = Ay (respectively M(Da(f)) = My), f €A (8.23.1)
and with stalks at p € Spec(A) given by
Oap = Ay (respectively ]Tﬂp = M,). (8.23.2)

The proof of (8.23.2) goes exactly as for F-rings, cf. Proposition 5.19. The proof of (8.23.1) goes as
for F-rings, cf. Proposition 5.20, with only a minor change at the end: since the sets D 4(g;) cover
D(f) we have

fm=fio (@gi ® bi> o fa, withf; € F,b; € A,

and we let a = (idy ® f1) o (B, a; ® b;) o (idx ® f2), giving again g; ® a = f™ @ a;.

Stalk Q4 is a local F-monoid, having a unique maximal H-ideal my, and F, = O4p/m, is a
field in F-Mon. We remark that we have again four notions of fields (and four notions of local
F-monoids) given by the conditions in Definition 4.23.

A map of F-monoid ¢ : A — B induces the localized map
o 1 OA(U) = Op(p*~'U), U C Spec(A),
giving rise to a local homomorphism
0t Apeq) = Bey  @h(myuq) Cmg,  q € Spec(B), (8.23.3)
and a commutative diagram with p = ¢*(q),q € Spec(B) as follows:

®

A B
/ . VAN
Alp B/q
/ (8.23.4)
A # B
p q
N/ 4\
ol Fy
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One defines the categories of F-monoid spaces, F-Mon.Sp (respectively of local F-monoid
spaces, Loc.F-Mon.Sp) as the category with objects (X, Ox), X a topological space, Ox a sheaf
of F-monoids on X (respectively with local F-monoids for stalks Ox ,,x € X), and with maps
(f, %) : (X,0x) — (Y,Oy), continuous maps f : X — Y, and maps of sheaves of F-monoids
over Y, ft: Oy — f.Ox (respectively such that the induced map on stalks fﬁ 1 Oy ) — Ox o 18
a local homomorphism). Then A — (Spec(A),O4) is a contravariant functor

Spec : F-Mon — Loc.F-Mon.Sp (8.23.5)
which is the adjoint to the global section functor
I': Loc.F-Mon.Sp — F-Mon, T'(X,0x)=0x(X), (8.23.6)
so that we have
Hom oe. p-mon.sp(X, Spec A) = Homp_pon (A, I'(X, Ox)). (8.23.7)

DEFINITION 8.24. A Zariski F-monoid scheme is a local F-monoid space (X, Ox) such that there
exists an open covering X = J,; U;, with (U;, Ox|v,) =~ SpecOx (U;). Maps of Zariski F-monoid
schemes are maps of Loc.F-Mon.Sp, thus we have a full subcategory of Loc.F-Mon.Sp consisting
of Zariski F-monoid schemes.
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