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CONTINUITY CHARACTERISATIONS OF DIFFERENTIABILITY
OF LOCALLY LIPSCHITZ FUNCTIONS

J.R. GILES AND SCOTT SCIFFER

Recently David Preiss contributed a remarkable theorem about the differentiabil-
ity of locally Lipschitz functions on Banach spaces which have an equivalent norm
differentiable away from the origin. Using his result in conjunction with Frank
Clarke's non-smooth analysis for locally Lipschitz functions, continuity characteri-
sations of differentiability can be obtained which generalise those for convex func-
tions on Banach spaces. This result gives added information about differentiability
properties of distance functions.

For a continuous convex function <f> on an open convex subset A of a real normed
linear space X where <j> is Gateaux differentiable on a dense subset D of A, it is
known that <j> is Gateaux (Frechet) differentiable at x £ A if and only if <j)'(xn) is
weak * (norm) convergent for all xn £ D converging to x.

In [5, Corollary 2, p.64] it was shown that a similar result holds for a distance
function d on a normed linear space X with uniformly Gateaux (uniformly Frechet)
differentiable norm.

Here we prove that such a continuity characterisation of differentiability applies
with locally Lipschitz functions on a real Banach space with equivalent norm Gateaux
differentiable away from the origin. This result in turn contributes further to our
knowledge of differentiability properties of distance functions. But it is also of use in
non-smooth optimisation relying as it does on the Clarke generalised subdifferential
which is not in itself a good indicator of differentiability.

A real function ^ on an open subset A of a normed linear space X is said to be
locally Lipachitz on A if for each x £ A there exists a K > 0 and a S > 0 such that

\4>{y) - <j>{z)\ < K \\y - z\\ for all y,z £ B{x;S).

Such a function <j> is said to be Gateaux differentiable at x £ A if there exists a
continuous linear functional fi(x) on X where, given e > 0 and ||i/|| = 1 there exists
a 6(e, x, y) > 0 such that

(x + ty) - 4>{x) ,
< e when 0 < \t\ < 6.
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The function <j> is said to be Frechet differentiable at x if there exists a S(e, x) > 0
such that the inequality holds for all ||y|| = 1. Given a locally Lipschitz function <j> on
an open subset A of a normed linear space X , the Clarke generalised subdifferentialof
<j> at x £ A is

d<!>(x) = {feX*: f(y) < limsup *** + ty] " ^ for aU y G X}.
z—»z I

t->0+

The function <$> is said to be strictly differentiable at x £ A if there exists a continuous
linear functional F(x) on X such that

lim «' + *)-«*) = j^fc) f o r a U y £ I .

The function ^ is said to be uniformly strictly differentiable at x if this limit is ap-
proached uniformly for all \\y\\ — 1.

Now for a locally Lipschitz function cj>, d<j>{x) is singleton at x € A if and only if
4> is strictly differentiable at x, [2, p.33].

To compute with Clarke's generalised subdifferential we need the following propo-
sition.

PROPOSITION 1. The Lebourg Mean Value Theorem, [2, p.41]. Fora
locally Lipschitz function <f> on an open set A in a normed linear space X, given
x,y € A where {Xx + (1 — X)y : 0 ^ A ^ 1} C A, there exists a 0 < Ao < 1 such that

4>{y) - 4>{x) = f(y - x) f°r some f e d<j>(\ox + (i - -My)-

We now explore the relation between strict and uniformly strict differentiability
and Gateaux and Frechet differentiability.

LEMMA 2 . For a locally Lipschitz function (f) on an open subset A of a normed
linear space X, if <f> is strictly (uniformly strictly) differentiable at x G A then <f> is
Gateaux (Frechet) differentiable at x and

lim «* + *)«') = 0 ' ( x ) ( y ) {or aJi y € X.

PROOF: We may suppose that x = 0 and <£(0) = 0 and that

lim
tz->o+

As both cases are proved with a similar argument we will only consider the uniformly
strictly differentiable case.
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Suppose t h a t t he re exists an .r > 0 and sequences tn —> 0 and \\yn\\ = 1 such tha t

—i > r for all n.

By the Lebourg Mean Value Theorem, for each n there exists a 0 < An < tn such that

% ^ = /»(y») ^ some /„ G d<j>(\nyn).

But there exists \\zn — Xnyn\\ < 1/n and 0 < t'n < 1/n such that

from which we deduce that

which implies that ^ is not uniformly strictly differentiable at x = 0. D

In general, if <j> is Gateaux differentiable at x € A then <£'(a:) G 9<^(a;), but 9<£(x)
is not necessarily singleton. So the converse for the strict differentiability case does not
hold in general. That the converse for the uniformly strict differentiability case does not
hold in general is shown by the following example of a locally Lipschitz function which is
Frechet differentiable and strictly differentiable but not uniformly strictly differentiable.

EXAMPLE 3. Consider the Banach sequence space lip, \\ ||pJ with 1 < p < oo and

standard basis {ci, e^, ..., en, . . . } . Given K > 0, we define a real function <j> on ip

by

0 ^ I'K £
tf(|«|-i) i f i < | t | < a ^

and for x — xxex + x2ex + . . . + xnen + ... £ tp,

Now 4> is locally Lipschitz at x = 0 since

by Minkowski's inequality,
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Also <f> is Frechet differentiable at x — 0 with <j)'(0) — 0 since, given e > 0 there exists
a v > 1/e such that for all |f| < \jv and all | | j / | | p = 1,

t nt
< £.

Now <f> is strictly differentiable at x — 0 since, for ||y||p = 1, given e > 0 there exists
/ oo \'/f

a i/ > 1/e such that I £) |2/n|
p 1 < £ and so for all 0 < t < \/2v and ||z|| < l/2i/

\n=i/ /

we have

(x + ty) - <j>(z)

by Minkowski's inequality.

However, <f> is not uniformly strictly differentiate at x = 0 since for all 0 < t <
l/(n(nK - 1)) we have

* D
For a continuous convex function <j> on an open convex subset A of a normed

linear space X, if <f> is Frechet differentiable at x £ A then the subdifferential mapping
x —> d<l>{x) is upper semi-continuous at x, [3, p.147]; that is, given any open set
W D d<f>{x) there exists a S > 0 such that

^^(y) Q W for all ||y — x\\ < 6.

But further, if ^ is strictly differentiable at x £ A and the subdifferential mapping is

upper semi-continuous at x then <f> is Frechet differentiable at x.

We show that for a locally Lipschitz function <j>, uniformly strict differentiability

can be similarly characterised by upper semi-continuity of the subdifferential mapping.

THEOREM 4 . A locally Lipschitz function <j> on an open subset A of a noimed

linear space X is uniformly strictly differentiable at x £ A if and only if <j> is strictly

differentiable at x and the sub differential mapping x —* d<f>(x) is upper semi-continuous

at x.

PROOF: If <f> is uniformly strictly differentiable at x £ A then d<f>(x) is singleton

and from Lemma 2 we have that (p is Frechet differentiable at x. Suppose that the
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subdifferential mapping x —» 34>{x) is not upper semi-continuous at x . Then there
exists an r > 0 and a sequence {x n } in A where x n —> x and fn G d<j>(xn) such that

||/n - * ' (*) | | > r for all n.

So there exists a sequence {yn}, | |yn|| = 1 such that

/»(y») - *'(*)(»«) > »• for all n.

For each x , since / „ 6 d<f>(xn) there exists zn £ A where \\zn — x n | | < 1/n and
0 < tn < 1/n such that

t . . . tt'n + tnyn) - *(*») 1

But then

_ 1
n

which implies that <f> is not uniformly strictly differentiable at x.

Conversely, suppose that (f> is strictly differentiable at x £ A and the subdifferential
mapping x —> d<f>(x) is upper semi-continuous at x. Then from Lemma 2, <j> is Gateaux
differentiable at x and given e > 0 there exists a 6 > 0 such that

||/z — ^'(3)| | < £ for all fz £ d$(z) where ||z — x|| < 5.

The Lebourg Mean Value Theorem implies that for given \\y\\ — 1 and 2 £ B(x\ 6/2)

and 0 < t < 6/2,

inf{fw(iy) '• i" £ B(x\ 6)} ^ ^(z + <y) — <j>(z) ^ sup{/u(t2/): tw £ B(x; 6)}.

So

: 2e for all ||z - x|| < - and all ||y|| = 1;

that is, </> is uniformly strictly differentiable at x . D

Theorem 4 reveals some important inherent differentiability properties of convex
functions.
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COROLLARY 5 . For a continuous convex function <f> on an open convex subset
A of a. nonned linear space X, <f> is strictly (uniformly strictly) differentiable at x £ A
if and only if it is Gateaux (Frechet) differentiable at x.

PROOF: The equivalence of Gateaux differentiability and strict differentiability is
well-known, [4, p.122]. However, it is also known that if <j> is Frechet differentiable at
x £ A then this subdifferential mapping is upper semi-continuous at x, [4, p-147] so
we deduce from Theorem 4 that <f> is uniformly strictly differentiable at x. Lemma 2
completes the equivalence. U

Our final characterisation theorem depends on the significant advance in our knowl-
edge of the differentiability properties of locally Lipschitz functions given in the following
proposition.

PREISS' THEOREM 6 . [6, Theorem 2.4]. Let X be a Banach space with an
equivalent norm Gateaux (Frechet) differentiable away from the origin. Then every lo-
cally Lipschitz function <f> on an open subset A of X is Gateaux (Frechet) differentiable
on a dense subset D of A.

In both cases, and for the appropriate derivative, for every open ball B in A and
every y, z € B

\ni{(j)'(x){y - z): x £ B C\ £>} < <f>(y) - <f>{z) < sup{<£'(z)(t/ - z): x £ B D £>}.

THE CHARACTERISATION THEOREM 7. Let X be a Banach space with an
equivalent norm Gateaux differentiable away from the origin. Then a locally Lipschitz
function <f> on an open subset A of X is strictly (uniformly strictly) differentiable at
x £ A if and only if <f>'(xn) is weaic* (norm) convergent as xn —* x for all xn £ D the
dense subset of A on which <f> is Gateaux differentiable.

PROOF: It follows from Preiss' Theorem, that d(f>(x) is the weak* closed convex
hull of the weak* cluster points of {<j>'(xn)} for xn £ D as xn —> x. So if <f>'(xn) is
weak* convergent as xn —• x then d(f>{x) is singleton and so <f> is strictly differentiable.

Conversely, if <j> is strictly differentiable at x £ A then 4>'{xn) is weak* convergent
to 4>'{x) as xn—>x.

We now turn to the uniformly strictly differentiable case. Suppose that <f>'(xn) is
norm convergent as xn —• x. Then <f> is Gateaux differentiable at x and given e > 0
there exists a S > 0 such that

<£'(z)|| < e for y £ D and ||y - z|| < 8.

From Preiss' Theorem, for given ||y|| = 1 and z £ B(x\ 6/2) and 0 < t < 6/2

in{{<f>'(w)(ty): w £ DClB{x;6)} ^ <j>{z + ty) - <j>{z) ^ sup{>'\w){ty): w £ DDB{x;6)}.
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So

: 2e for all \\z - x\\ < - and 0 < t < - and \\y\\ = 1;
2 2i

that is, <j> is uniformly strictly differentiable at x.
Conversely, suppose that <f> is uniformly strictly differentiable at x £ A. Then

by Lemma 2, $ is Frechet differentiable at x and from Theorem 4, the subdifferential
mapping x —> 3^(z) is upper semi-continuous at x. But this implies that <j>'(xn) is
norm convergent to <f>\x) as xn —> a; for all xn £ D. D

Notice that, for a Banach space X with equivalent norm Frechet differentiable away
from the origin (or indeed for any Asplund space), given a locally Lipschitz function <j>
on an open subset A of X, to obtain uniformly strict differentiability of <f> at x £ A
we need only have <j>'(xn) norm convergent for xn —> x at points xn £ D the dense
subset of A where <j> is Frechet differentiable.

We now explore the consequences of this characterisation for distance functions.
Given a non-empty closed set K in a normed linear space X the distance function d
generated by K is defined by

d(x) = d(x, K) = inf{||x - 2/11 : y £ K}.

1. It is known that on a normed linear space X with uniformly Gateaux differentiable
norm, a distance function d as generated by a non-empty closed set K is strictly
differentiable at x £ X \ K if and only if it is Gateaux differentiable at x, [1, p.525].
However, from the continuity characterisation of differentiability of distance functions,
[5, p.64] we deduce from Theorem 7 that when X is a Banach space with uniformly
Frechet differentiable norm, it is uniformly strictly differentiable at x £ A if and only
if it is Frechet differentiable at x.

2. But further, Theorem 7 improves the continuity characterisation of differentiability
of distance functions given in [5, p.64] by establishing that in a Banach space with
equivalent norm Gateaux differentiable away from the origin, d is Gateaux (Frechet)
differentiable at x £ X \K if d'(xn) is weak* (norm) convergent for all xn —> x where
xn £ D the dense subset of A on which d is Gateaux differentiable.

In paper [3], Preiss' Theorem was used to establish generic differentiability prop-
erties for certain locally Lipschitz functions. Using Theorem 7, Corollaries 2.4 and 2.5,
[3, p.44] can be restated in stronger form. To pursue this we need the following result.

LEMMA 8. Consider a Banach space X with equivalent norm Gateaux (Frechet)
differentiable away from the origin and a locally Lipschitz function <j> on an open subset
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A of X with the property that wherever tf> is Gateaux (Frechet) differentiable it is

strictly differentiable. At any point x G A where the real mapping ^ on A defined by

9(x) = inf{||/|| : / 6 d*{x)}

is continuous, we have \\fn\\ —* \\f\\ a s i ! n - » i for all /„ 6 d<t>(xn) and f € d<f>(x).

PROOF: From the weak* upper semi-continuity of the sub differential mapping
x —» d<f>(x) and the weak* lower semi-continuity of the dual norm we have that *£ is
lower semi-continuous. But also the local Lipschitz mapping A on A defined by

ijWl: y,z € B(x;S), y* z}

is upper semi-continuous. So as xn —* x,

\(x) ^ limsupA(zn) ^ limsup | | /n | | for all /„ e d<f>(xn)

> liminf ||/B|| > liminf V(xn) > *(aj).

But at a; € A where ty is continuous, we have from [3, Theorem 2.3(c), p.43] that

\(x) = *(z) = Il/H for all / G d<f>(x). We conclude that at such a point x,

| | /B| | -» Il/H as xn -» x for all / „ € d<j>(xn) and / 6 d<f>{x).

D
A normed linear space X is said to have sequentially weak* Kadec dual norm if

whenever a sequence {/„} is weak* convergent to / in X* and | | /n | | —• | | / | | then
{/„} is norm convergent to / . A normed linear space with a rotund sequentially weak*
Kadec dual norm has norm Frechet differentiable away from the origin, [4, p.152].

We are now ready to present the generic differentiability properties of locally Lip-
schitz functions.

COROLLARY 9 . On a Banach space X which can be equivalently renormed to

have a rotund dual (and a sequentially weak* Kadec dual norm), a locally Lipschitz

function <j> on an open subset A of X with the property that wherever <j> is Gateaux

(Frechet) differentiable it is strictly differentiable is strictly (uniformly strictly) differ-

entiable on a dense G& subset of A.

PROOF: Consider X so renormed. The strictly differentiable case is given in [3,
Theorem 2.3, p.42] so we concern ourselves with the uniformly strictly differentiable
case. At a point x of continuity of $ we have that <j> is strictly differentiable at x.

From Theorem 7, we have that <j>'(xn) is weak* convergent to (j>'(x) and from Lemma
8, that ||<^'(a;n)|| —* ||< '̂(a:)|| a s i n - n for all xn 6 D the dense subset of A where <j>
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is Frechet differentiable. But since the dual norm is sequentially weak * Kadec we have
that <j>'(xn) is norm convergent to <f>'(x) as xn —• x for all xn £ D. From Theorem
7, we deduce that <f> is uniformly strictly differentiable at x. But the set of points of
continuity of $ is a dense Gg subset of A. D

On a finite dimensional normed linear space X a locally Lipschitz function has the
following satisfying properties.

THEOREM 1 0 . For a locally Lipschitz function (j) on an open subset A of a finite

dimensional normed linear space Xn,

(i) if <j> is Gateaux differentiable at x then it is Frechet differentiable at x,

and
(ii) if <)> is strictly differentiable at x then it is uniformly strictly differentiable

at x.

PROOF: (i) Consider the unit sphere in Xn and for any given e > 0 consider
a cover by open balls centres yk G X, \\yk\\ = 1 with radius e. Since Xn is finite-
dimensional, the unit sphere is compact, so it has a finite subcover by such balls with
centres ylt 3/2> •••1/m- Since <f> is Gateaux differentiable at x, given yk, where k 6
{1, 2, . . . , m } , there exists a Sk(e, yk) > 0 such that

< £ for all 0 < Ifl < 6k.

Since <j> is locally Lipschitz there exists a K > 0 and a S'(x) > 0 such that

\<f>(x + ty) - <f>{x + ty*)| ^ K \t\ \\y - yk\\ for all yk, k £ {1, 2, . . . , m} and 0 < |t| < 6'.

Therefore, given ||y|| — 1,

+ ty) - 4>{x+tyk)-<l>{x)

tyk)-4>{x)
\4>'{x){y) - *'(x)(yh)\

< K \\y - yk\\ + e + W(x)\\ \\y - yk\\ when 0 < |<| < min{6',Sk}

<{K + \\<j>'{x)\\ + l)e for yk chosen such that ||y - yk\\ < e.

and this holds for all ||y|| = 1 where 0 < \t\ < min{6', 6X, . . . , £ m } . That is, <j> is
Frechet differentiable at x.

(ii) Since Xn is a finite dimensional normed linear space it has an equivalent norm

Gateaux differentiable away from the origin. From Theorem 7, we have that if <j> is

strictly differentiable at x £ A then <f>'(xn) is weak* convergent to 4>'{x) as xn —> z
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for all xn G D the dense subset of A on which <f> is Gateaux differentiate. But again
since Xn is finite-dimensional we have that <j>'(xn) is norm convergent to <f>'(x) which
by Theorem 7, implies that <j> is uniformly strictly differentiable at z . D

Theorem 10(i) is a special case of a more general result given in [7, Theorem 3.3.3,
p.43]. We note that Theorem 10 (i) does not hold under the less restrictive condition
that 4> is Lipschitz at x .
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