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TRANSIENT SOLUTION
TO THE TIME-DEPENDENT
MULTISERVER POISSON QUEUE

B. H. MARGOLIUS,∗ Cleveland State University

Abstract

We derive an integral equation for the transient probabilities and expected number in
the queue for the multiserver queue with Poisson arrivals, exponential service for time-
varying arrival and departure rates, and a time-varying number of servers. The method
is a straightforward application of generating functions. We can express pĉ−1(t), the
probability that ĉ − 1 customers are in the queue or being served, in terms of a Volterra
equation of the second kind, where ĉ is the maximum number of servers working during
the day. Each of the other transient probabilities is expressed in terms of integral equations
in pĉ−1(t) and the transition probabilities of a certain time-dependent random walk. In
this random walk, the rate of steps to the right equals the arrival rate of the queue and the
rate of steps to the left equals the departure rate of the queue when all servers are busy.

Keywords: Transient probability; time-dependent Poisson arrival rate; time-dependent
exponential service rate; time-dependent queue; multiserver queue; single-server queue;
modified Bessel function
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1. Introduction

Many queueing systems have time-varying arrival and departure rates. In this paper, we
are motivated by police calls for service, which occur more frequently in the evening – when
the bars close – and during morning rush hour than in the dead of night, when residents are
asleep (see Figure 1). Relatively few exact results exist for transient transition probabilities
because computations tend to be fairly involved even in the case of constant rates. Here, we
present a method of computing the transition probability pi,n(s, t), the probability that there are
n customers in the queue at time t given that there were i customers in the queue at time s, for
a multiserver queue with time-varying arrival and departure rates. We also derive an integral
equation for the expected number in the system. In the case of constant parameters, these
formulae are consistent with those found by Parthasarathy and Sharafali [3].

The paper is organized as follows. In Section 2, we derive an integral equation for the
transient probability distribution for the Mt /Mt /c queue and find a formula for the expected
number in the queue at time t . The transient probabilities and the expected number in the
queue are expressed in terms of integral equations in pc−1(t), the transient probability that
there are c − 1 customers in the system. We write pc−1(t) in terms of a Volterra equation of
the second kind. In Section 3, we extend the results of Section 2 to the case of a time-varying
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Hourly Rate of Calls for Service by Priority City of 

Cleveland 4th District

0

5

10

15

20

25

0:00 3:00 6:00 9:00 12:00 15:00 18:00 21:00

P5

P4

P3

P2

P1

0:0
0

3:0
0

6:0
0

9:0
0

12
:00

15
:00

18
:00

21
:00

0

5

10

15

20

25

24
:00

Car Plan City of Cleveland 4th District
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Figure 1: Data from the 4th District of the City of Cleveland. The left-hand panel shows the hourly rate
of police calls for service versus time of day. The bands indicate, in increasing order from top to bottom,

the priority of calls. The right-hand panel shows the staffing plan for police cars versus time of day.

number of servers. In Section 4, we provide a condition for asymptotic stability in the case of
a time-varying number of servers and, in Section 5, we provide numerical examples.

2. The transient probability distribution for the Mt /Mt /c queue

We can write the Chapman–Kolmogorov forward differential equations for a time-dependent
multiserver queue with c servers as

ṗi,0(s, t) = −pi,0(s, t)λ(t) + pi,1(s, t)µ(t), (2.1)

ṗi,n(s, t) = −pi,n(s, t)(λ(t) + nµ(t)) + pi,n−1(s, t)λ(t)

+ (n + 1)pi,n+1(s, t)µ(t), 1 ≤ n < c, (2.2)

ṗi,n(s, t) = −pi,n(s, t)(λ(t) + cµ(t)) + pi,n−1(s, t)λ(t)

+ cpi,n+1(s, t)µ(t), c ≤ n, (2.3)

and

pi,n(s, s+) = δ(n, i) :=
{

1 if n = i,

0 otherwise,

where, recall, pi,n(s, t) is the probability that there are n customers in the system at time t given
that there were i customers at time s, λ(t) > 0 is the time-varying arrival rate of the queue,
µ(t) > 0 is the service rate, and a dot denotes a time derivative. We will usually write pn(t)

for pi,n(s, t). We define the generating function Pc(z, t) for the number of customers awaiting
commencement of service (again suppressing the dependence on s and i in the notation) as

Pc(z, t) =
c−1∑
n=0

pn(t) +
∞∑

n=c

zn−c+1pn(t) = qc−1(t) +
∞∑

n=1

znpn+c−1(t),

where qm(t) = ∑m
n=0 pn(t). Note that

Pc(z, s) = 1, i < c, and Pc(z, s) = zi−c+1, i ≥ c.

Using (2.1)–(2.3), and the definition of the generating function Pc(z, t), we obtain the following
differential equation:

Ṗc(z, t)

= (zλ(t) − (λ(t) + cµ(t)) + cµ(t)z−1)(Pc(z, t) − qc−1(t)) + λ(t)pc−1(t)(z − 1).
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This has the solution

Pc(z, t) =
∫ t

s

�c,z(η, t)(λ(η)pc−1(η)(z − 1)

− (zλ(η) − (λ(η) + cµ(η)) + cµ(η)z−1)qc−1(η)) dη

+ �c,z(s, t)Pc(z, s)

=
∫ t

s

�c,z(η, t)(cµ(η)pc−1(η)(1 − z−1)

− (zλ(η) − (λ(η) + cµ(η)) + cµ(η)z−1)qc−2(η)) dη

+ �c,z(s, t)Pc(z, s),

where

�c,z(s, t) = exp

{∫ t

s

(zλ(η) − (λ(η) + cµ(η)) + cµ(η)z−1) dη

}
.

Using integration by parts and the facts that

q̇c−2(t) = −λ(t)pc−2(t) + (c − 1)µ(t)pc−1(t),

∂

∂s
�c,z(s, t) = −(zλ(s) − (λ(s) + cµ(s)) + cµ(s)z−1)�c,z(s, t),

we obtain

Pc(z, t) =
∫ t

s

�c,z(η, t)(cµ(η)pc−1(η)(1 − z−1)

− (−λ(η)pc−2(η) + (c − 1)µ(η)pc−1(η))) dη (2.4)

+ qc−2(η)�c,z(η, t)|η=t
η=s + �c,z(s, t)Pc(z, s)

=
∫ t

s

�c,z(η, t)(µ(η)pc−1(η)(1 − cz−1) + λ(η)pc−2(η)) dη

+ qc−2(t) − qc−2(s)�c,z(s, t) + �c,z(s, t)Pc(z, s). (2.5)

Define

Ĩn(s, t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
k=0

�n+k(s, t)

(n + k)!
ckMk(s, t)

k! exp{−�(s, t) − cM(s, t)} if n ≥ 0,

∞∑
k=0

�k(s, t)

k!
ck−nMk−n(s, t)

(k − n)! exp{−�(s, t) − cM(s, t)} if n < 0,

where �(s, t) = ∫ t

s
λ(η) dη and M(s, t) = ∫ t

s
µ(η) dη. Note that Ĩn(s, t) is the probability of

a random walk, with time-dependent rates λ(t) for steps to the right and cµ(t) for steps to the
left, making n more steps to the right than it does to the left during the time interval from s to
t . The probability Ĩn(s, t) is related to the modified Bessel function In(x). Recall that

In(x) =
(

x

2

)n ∞∑
k=0

( 1
2x)2k

(n + k)! k! ;
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hence, we can write

Ĩn(s, t) =
(

�(s, t)

cM(s, t)

)n/2

In(2
√

�(s, t)cM(s, t)) exp{−�(s, t) − cM(s, t)}

and Ĩ0(t, t) = I0(0) = 1. The Ĩn(s, t), n ∈ N, have the property that

∂

∂t
Ĩn(s, t) = λ(t)Ĩn−1(s, t) − (λ(t) + cµ(t))Ĩn(s, t) + cµ(t)Ĩn+1(s, t),

∂

∂s
Ĩn(s, t) = −λ(s)Ĩn−1(s, t) + (λ(s) + cµ(s))Ĩn(s, t) − cµ(s)Ĩn+1(s, t).

It can be shown that

�c,z(s, t) =
∞∑

n=−∞
znĨn(s, t) (2.6)

(see, for example, [4, Appendix B]). Using (2.6) and the fact that the coefficient of zn in (2.5)
is pn+c−1(t), we can write a formula for the probability that there are n + c − 1 customers in
the queue for n > 0:

pn+c−1(t) =
∫ t

s

(µ(η)pc−1(η)(Ĩn(η, t) − cĨn+1(η, t)) + λ(η)pc−2(η)Ĩn(η, t)) dη

+ Ĩn−i+c−1(s, t)(1 − qc−1(s)) + qc−1(s)Ĩn(s, t). (2.7)

For n = 0, we have

qc−1(t) =
∫ t

s

(µ(η)pc−1(η)(Ĩ0(η, t) − cĨ1(η, t)) + λ(η)pc−2(η)Ĩ0(η, t)) dη

+ qc−2(t) + Ĩ−i+c−1(s, t)(1 − qc−1(s)) + qc−1(s)Ĩ0(s, t),

meaning that

pc−1(t) =
∫ t

s

(µ(η)pc−1(η)(Ĩ0(η, t) − cĨ1(η, t)) + λ(η)pc−2(η)Ĩ0(η, t)) dη

+ Ĩ−i+c−1(s, t)(1 − qc−1(s)) + qc−1(s)Ĩ0(s, t),

since qc−1(t) − qc−2(t) = pc−1(t). From (2.1) and (2.2), using the equation for ṗc−2(t) gives

ṗ(t) = p(t)A(t) + (c − 1)µ(t)pc−1(t)ec−1,

where

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ(t) λ(t) 0 · · · · · · 0

µ(t) −λ(t) − µ(t) λ(t) 0

0 2µ(t) −λ(t) − 2µ(t)
. . . 0

...
. . .

. . .
. . .

...
...

. . .
. . . λ(t)

0 0 0 · · · (c − 2)µ(t) −λ(t) − (c − 2)µ(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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ec−1 is a row vector of length c − 1 with 0 in the first c − 2 places and 1 in the last place, and
p(t) is the row vector

p(t) = (p0(t), p1(t), . . . , pc−2(t)).

Let U(s, t) be an evolution operator such that U(t, t) = I (the identity operator) and let
(∂/∂t)U(s, t) = U(s, t)A(t). Then

p(t) =
∫ t

s

(c − 1)µ(ν)pc−1(ν)ec−1U(ν, t) dν + p(s)U(s, t). (2.8)

We can solve for U(s, t) numerically using techniques for solving linear systems of ordinary
differential equations. For each fixed s and t , U(s, t) is a square matrix whose components
we index from 0 to c − 2. In particular, U·,c−2(s, t) is the (c − 2)th (i.e. final) column of this
matrix and uc−2,c−2(s, t) is the element in row c − 2, column c − 2. Then, pc−2(t) is given by
the formula

pc−2(t) =
∫ t

s

(c − 1)µ(ν)pc−1(ν)uc−2,c−2(ν, t) dν + p(s)U·,c−2(s, t).

With this information, we can write pc−1(t) in terms of a Volterra equation of the second kind:

pc−1(t) =
∫ t

s

[
µ(η)pc−1(η)

(
Ĩ0(η, t)−cĨ1(η, t) + (c − 1)

∫ t

η

uc−2,c−2(η, ν)λ(ν)Ĩ0(ν, t) dν

)

+ p(s)U·,c−2(s, η)λ(η)Ĩ0(η, t)

]
dη

+ pc−1(s)Ĩ0(s, t) + Ĩ−i+c−1(s, t)(1 − qc−1(s)). (2.9)

Equations (2.7), (2.8), and (2.9), taken together, yield the complete transient distribution for
the time-dependent multiserver queue.

3. Time-varying numbers of servers

We are interested in applying this technique to queues with time-varying numbers of servers
and time-dependent periodic arrivals. In this section, we take µ(t) = µ, a constant, but permit
c and λ(t) to vary. (The analysis can easily be extended to the case in which µ also varies.)
Define ĉ = maxt c(t).

The analysis proceeds as before. We can write the Chapman–Kolmogorov forward differ-
ential equations for a time-dependent multiserver queue with c(t) servers and constant service
rate µ as

ṗi,0(s, t) = −pi,0(s, t)λ(t) + pi,1(s, t)µ, (3.1)

ṗi,n(s, t) = −pi,n(s, t)(λ(t) + min{n, c(t)}µ) + pi,n−1(s, t)λ(t)

+ pi,n+1(s, t) min{(n + 1), c(t)}µ, 1 ≤ n < ĉ, (3.2)

ṗi,n(s, t) = −pi,n(s, t)(λ(t) + c(t)µ) + pi,n−1(s, t)λ(t)

+ pi,n+1(s, t)c(t)µ, ĉ ≤ n, (3.3)

and
pi,n(s, s+) = δ(n, i),
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where, as before, pi,n(s, t) is the probability that there are n customers in the system at time t

given that there were i customers at time s. (Again, we will usually write pn(t) for this quantity.)
We define the probability generating function Pc(t)(z, t) as

Pc(t)(z, t) =
ĉ−1∑
n=0

pn(t) +
∞∑

n=ĉ

zn−ĉ+1pn(t) = qĉ−1(t) +
∞∑

n=1

znpn+ĉ−1(t).

Using (3.1)–(3.3), and the definition of the generating function Pc(t)(z, t), we obtain the
following differential equation:

Ṗc(t)(z, t)

= (zλ(t) − (λ(t) + c(t)µ) + c(t)µz−1)(Pc(t)(z, t) − qĉ−1(t)) + λ(t)pĉ−1(t)(z − 1).

This has the solution

Pc(t)(z, t) =
∫ t

s

�c(t),z(η, t)(λ(η)pĉ−1(η)(z − 1)

− (zλ(η) − (λ(η) + c(η)µ) + c(η)µz−1)qĉ−1(η)) dη

+ �c(t),z(s, t)Pc(t)(z, s)

=
∫ t

s

�c(t),z(η, t)(c(η)µpĉ−1(η)(1 − z−1)

− (zλ(η) − (λ(η) + c(η)µ) + c(η)µz−1)qĉ−2(η)) dη

+ �c(t),z(s, t)Pc(t)(z, s)

=
∫ t

s

�c(t),z(η, t)(c(η)µpĉ−1(η)(1 − z−1)

− (−λ(η)pĉ−2(η) + min{ĉ − 1, c(η)}µpĉ−1(η))) dη

+ qĉ−2(η)�c(t),z(η, t)|η=t
η=s + �c(t),z(s, t)Pc(t)(z, s)

=
∫ t

s

�c(t),z(η, t)(µpĉ−1(η)(max{0, c(η)−ĉ + 1} − c(η)z−1) + λ(η)pĉ−2(η)) dη

+ qĉ−2(t) − qĉ−2(s)�c(t),z(s, t) + �c(t),z(s, t)Pc(t)(z, s),

where

�c(t),z(s, t) = exp

{∫ t

s

(zλ(η) − (λ(η) + c(η)µ) + c(η)µz−1) dη

}
.

Using this, we can write a formula for the probability that there are n + ĉ − 1 customers in the
queue for n > 0:

pn+ĉ−1(t)

=
∫ t

s

(µpĉ−1(η)(max{0, c(η)−ĉ + 1}Ĩn(η, t) − c(η)Ĩn+1(η, t))+λ(η)pĉ−2(η)Ĩn(η, t)) dη

+ Ĩn−i+ĉ−1(s, t)(1 − qc−1(s)) + qĉ−1(s)Ĩn(s, t).
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For n = 0, we have

qĉ−1(t)

=
∫ t

s

(µpĉ−1(η)(max{0, c(η) − ĉ + 1}Ĩ0(η, t) − c(η)Ĩ1(η, t)) + λ(η)pĉ−2(η)Ĩ0(η, t)) dη

+ qĉ−2(t) + Ĩ−i+ĉ−1(s, t)(1 − qc−1(s)) + qĉ−1(s)Ĩ0(s, t),

meaning that

pĉ−1(t)

=
∫ t

s

(µpĉ−1(η)(max{0, c(η) − ĉ + 1}Ĩ0(η, t) − c(η)Ĩ1(η, t)) + λ(η)pĉ−2(η)Ĩ0(η, t)) dη

+ Ĩ−i+ĉ−1(s, t)(1 − qĉ−1(s)) + qĉ−1(s)Ĩ0(s, t).

Now we write
ṗ(t) = p(t)A(t) + min{c(t), ĉ − 1}µpĉ−1(t)eĉ−1,

which has the solution

p(t) =
∫ t

s

min{c(ν), ĉ − 1}µpĉ−1(ν)eĉ−1U(ν, t) dν + p(s)U(s, t),

where U(s, t) is defined as above, with the coefficient of µ(t) now replaced by min{c(t), j} in
row j of the matrix A(t). In particular, pĉ−2(t) is given by

pĉ−2(t) =
∫ t

s

uc−2,c−2(ν, t) min{c(ν), ĉ − 1}µpĉ−1(ν) dν + p(s)U·,c−2(s, t).

With this information, we can write pĉ−1(t) in terms of a Volterra equation of the second
kind:

pĉ−1(t) =
∫ t

s

[
µpĉ−1(η)

(
max{0, c(η) − ĉ + 1}Ĩ0(η, t) − c(η)Ĩ1(η, t)

+ min{c(η), ĉ − 1}
∫ t

η

uc−2,c−2(η, ν)λ(ν)Ĩ0(ν, t) dν

)

+ p(s)U·,c−2(s, η)λ(η)Ĩ0(η, t)

]
dη

+ qĉ−1(s)Ĩ0(s, t) + Ĩ−i+ĉ−1(s, t)(1 − qĉ−1(s)),

where U·,c−2(s, η) and uc−2,c−2(η, ν) are defined as above. If i < ĉ − 1, this simplifies to

pĉ−1(t) =
∫ t

s

[
µpĉ−1(η)

(
max{0, c(η) − ĉ + 1}Ĩ0(η, t) − c(η)Ĩ1(η, t)

+ min{c(η), ĉ − 1}
∫ t

η

uc−2,c−2(η, ν)λ(ν)Ĩ0(ν, t) dν

)

+ui,c−2(s, η)λ(η)Ĩ0(η, t)

]
dη + Ĩ0(s, t).
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If i ≥ ĉ − 1, we have

pĉ−1(t) =
∫ t

s

[
µpĉ−1(η)

(
max{0, c(η) − ĉ + 1}Ĩ0(η, t) − c(η)Ĩ1(η, t)

+ min{c(η), ĉ − 1}
∫ t

η

uc−2,c−2(η, ν)λ(ν)Ĩ0(ν, t) dν

)]
dη

+ Ĩ−i+ĉ−1(s, t)

and, in particular, for i = ĉ − 1 we have

pĉ−1(t) =
∫ t

s

[
µpĉ−1(η)

(
max{0, c(η) − ĉ + 1}Ĩ0(η, t) − c(η)Ĩ1(η, t)

+ min{c(η), ĉ − 1}
∫ t

η

uc−2,c−2(η, ν)λ(ν)Ĩ0(ν, t) dν

)]
dη

+ Ĩ0(s, t).

Let X(t) be the counting process that gives the number in the queue at time t , and define E[X(t)]
as the expected number in the queue at time t . Then E[X(t)] is given by the formula

E[X(t)] = E[X(s)] + �(s, t) − µ

∫ t

s

c(ν) dν + µ

∫ t

s

ĉ−1∑
j=0

max{c(ν) − j, 0}pj (ν) dν.

By assumption N(s) = i, and substituting for pj (ν) yields

E[X(t)] = i + �(s, t) − µ

∫ t

s

c(ν) dν

+ µ

∫ t

s

ĉ−1∑
j=0

max{c(ν) − j, 0}

×
[∫ ν

s

uĉ−2,j (η, ν) min{c(η), ĉ − 1}µpĉ−1(η) dη + ui,j (s, ν)

]
dν

when i < ĉ − 1, and

E[X(t)] = i + �(s, t) − µ

∫ t

s

c(ν) dν

+ µ

∫ t

s

ĉ−1∑
j=0

max{c(ν) − j, 0}
[∫ ν

s

uĉ−2,j (η, ν) min{c(η), ĉ−1}µpĉ−1(η) dη

]
dν

when i ≥ ĉ − 1. Changing the order of integration and summing before integrating yields

E[X(t)] = i + �(s, t) − µ

∫ t

s

c(ν) dν

+ µ2
∫ t

s

[
pĉ−1(η) min{c(η), ĉ − 1}

∫ t

η

ĉ−1∑
j=0

max{c(ν) − j, 0}uĉ−2,j (η, ν) dν

]
dη.
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4. Stability

The queue length process X(t) for the periodic Mt /Mt /ct queue does not converge in
distribution as t → ∞. We therefore consider the concepts of asymptotic stability for stochastic
processes that do not converge in distribution [2].

For each t ≥ 0, let Ft be the cumulative distribution function (CDF) of X(t). Let L ≡ L(X)

be the set of all CDFs that arise as vague limits of sequences {Ftk } with tk → ∞ as k → ∞.
A sequence of CDFs is said to converge vaguely to a CDF F if there exists a countable dense
subset D of R such that

lim
n→∞[Fn(b) − Fn(a)] = F(b) − F(a)

for all a, b ∈ D. We use L to describe the asymptotic behavior of the stochastic process X(t)

as t → ∞. The stochastic process {X(t), t ≥ 0} is said to be strongly stable if F is proper for
all F ∈ L.

Theorem 4.1. The queue length process X(t) in an Mt /Mt /c(t) queue with general determin-
istic arrival and departure rates λ(t) and µ(t), respectively, and a deterministic, time-varying
number of servers c(t) is strongly stable, and all CDFs in the limit set L have finite moments
of all orders, if there exist positive numbers t0, ε, and T such that∫ t0+(n+1)T

t0+nT

λ(ν) dν ≤ (1 − ε)

∫ t0+(n+1)T

t0+nT

c(ν)µ(ν) dν (4.1)

for n = 0, 1, 2, . . . .

The proof is a straightforward generalization of the proof of Theorem 2.1 of [2] and, so, is
omitted here. See also [1] for a related theorem about multiserver queues with periodic BMAP
arrivals but a fixed number of servers.

We assume that (4.1) holds and that λ(t), µ(t), and c(t) are periodic with period 1, and
define Xn = X(s + n) for any fixed s ∈ [0, 1). Then, from Lemma 3.1 of [2], the embedded
sequence {Xn} is an irreducible, aperiodic, positive-recurrent Markov chain with stationary
transition probabilities.

5. Examples

We consider a variety of simple examples with a maximum of two servers and constant
service rate. In such cases, our equation for pĉ−1(t) = p1(t) becomes

p1(t) =
∫ t

s

µp1(η)

[
max{0, c(η) − 1}Ĩ0(η, t) − c(η)Ĩ1(η, t)

+
∫ t

η

e−�(η,ν)λ(ν)Ĩ0(ν, t) dν

]
dη + Ĩ0(s, t)

and our expression for E[X(t)], the expected number in the queue at time t , is

E[X(t)] = 1 + �(s, t) − µ

∫ t

s

c(ν) dν + µ

∫ t

s

c(ν)

∫ ν

s

e−�(η,ν)µp1(η) dη dν

+ µ

∫ t

s

max{c(ν) − 1, 0}p1(ν) dν.
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Table 1: The piecewise-constant arrival (λ1, λ2) and departure (µ) rates used in the examples.

Example λ1 λ2 µ

1(a) 40 20 30
1(b) 40 20 20
2(a) 30 30 30
2(b) 30 30 20
3(a) 20 40 30
3(b) 20 40 20

We use these formulae to graph six examples with piecewise-constant rates and time-varying
numbers of servers. In each of these examples, the number of servers drops from two to one
halfway through the period and then returns to two at the beginning of the next period. Let
λ(t) = λ1 be the arrival rate for t = n + s, where n is an integer and s ∈ [0, 0.5), and let
λ(t) = λ2 be the arrival rate for t = n + s, where n is an integer and s ∈ [0.5, 1). In each
example, µ is constant.

For each example given in Table 1, we graph p1(t) and E[X(t)] over eight periods. These
graphs are displayed in Figures 2–7. Example (a) in each case satisfies the stability condition
given in Theorem 4.1, and tends to a periodic limit. In example (b) in each case, the average
arrival rate equals the product of the service rate and the average number of servers. This does
not satisfy the stability condition.
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Figure 2: Example 1(a). Probability p1(t) (left) and expectation E[X(t)] (right) versus time (days) for
λ1 = 40, λ2 = 20, and µ = 30.
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Figure 3: Example 1(b). Probability p1(t) (left) and expectation E[X(t)] (right) versus time (days) for
λ1 = 40, λ2 = 20, and µ = 20.
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Figure 4: Example 2(a). Probability p1(t) (left) and expectation E[X(t)] (right) versus time (days) for
λ1 = 30, λ2 = 30, and µ = 30.
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Figure 5: Example 2(b). Probability p1(t) (left) and expectation E[X(t)] (right) versus time (days) for
λ1 = 30, λ2 = 30, and µ = 20.
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Figure 6: Example 3(a). Probability p1(t) (left) and expectation E[X(t)] (right) versus time (days) for
λ1 = 20, λ2 = 40, and µ = 30.
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Figure 7: Example 3(b). Probability p1(t) (left) and expectation E[X(t)] (right) versus time (days) for
λ1 = 20, λ2 = 40, and µ = 20.
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