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Poisson Brackets and Structure of
Nongraded Hamiltonian Lie Algebras
Related to Locally-Finite Derivations

Yucai Su

Abstract. Xu introduced a class of nongraded Hamiltonian Lie algebras. These Lie algebras have a
Poisson bracket structure. In this paper, the isomorphism classes of these Lie algebras are determined
by employing a “sandwich” method and by studying some features of these Lie algebras. It is obtained
that two Hamiltonian Lie algebras are isomorphic if and only if their corresponding Poisson algebras
are isomorphic. Furthermore, the derivation algebras and the second cohomology groups are deter-
mined.

1 Introduction

A Lie algebra (A, [-,-]) is called to have a Poisson bracket structure if there exists a
commutative associative algebra structure (A, -) such that the compatibility condi-
tion holds:

(1.1) [u,v -w] = [u,v] -w+v-[u,w] foru,v,we A

The algebra (A,-, [-,-]) with two algebraic structures is also called a Poisson alge-
bra. Poisson bracket structures have many applications in areas of mathematics and
physics; they are fundamental algebraic structures on phase spaces in classical me-
chanics; they are also the main objects in symplectic geometry (cf. [Z]).

Let IF be a field of characteristic zero. A Lie algebra A is called graded if A =
@D, cr Aa is a I'-graded F-vector space for some abelian group I such that

(1.2) dimA, < oo, [Aq,Agl CApsg fora,Bel.

A classical Poisson algebra P(¢) is a polynomial algebra A = F[t;,t,, ..., ] in 24
variables with the Lie bracket

4

(1.3) [£,8]1 =D (8.()Duy(8) = 01, (D, () for f,g € A,

i=1

where 0, stands for partial derivative %. Define

20

n; € N, Zn,- :n+2} for—2<neZ,
i=1
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then P(¢) is a Z-graded algebra P({) = @nEZ P(£),. When we consider only its
Lie algebra structure, this Lie algebra is denoted by J(¢). Then JH(¢) (or the simple
Lie algebra [H(£), H(¢)]/F) is a classical Lie algebra of Cartan type H (also called
a Hamiltonian Lie algebra) [K1], [K2]. Generalizations of graded Hamiltonian Lie
algebras have been studied in [O], [OZ].

Nongraded Lie algebras appear naturally in the theory of vertex algebras and their
multi-variable analogues, and they play important roles in mathematical physics. Xu
[X2] constructed a family of in general nongraded Hamiltonian Lie algebras based on
certain derivation-simple algebras and locally finite derivations (we refer to [SXZ] for
the classification of derivation-simple algebras). In [SX], Xu and the author of this
paper determined the isomorphism classes of Poisson algebras constructed in [X2]
(two Poisson algebras are called isomorphic if there exists an isomorphism which
preserves both associative algebra structure and Lie algebra structure). However, the
structure theory of the Hamiltonian Lie algebras in general does not seem to be well-
developed. Since the Poisson algebras have two compatible algebraic structures while
the Hamiltonian Lie algebras only have a Lie algebraic structure, the problem of de-
termination of the isomorphism classes of Hamiltonian Lie algebras is thus more
complicated, and one can see that some special treatments are needed in order to
determine their isomorphism classes.

In [OZ], Osborn and Zhao determined the isomorphism classes of the graded
Hamiltonian Lie algebras under certain finiteness condition on the skew-symmetric
Z-bilinear forms ¢. They used the “derivation method” to determine the isomor-
phism classes of the Hamiltonian Lie algebras, mainly, they first determined the
derivation algebras of the Lie algebras in order to obtain their isomorphism theorem.
In this paper, we shall determine the isomorphism classes of in general nongraded
Hamiltonian Lie algebras H (¢, I'), where £ is a 7-tuple of nonnegative integers and
I' is some free abelian group, which correspond to the Lie algebras in [SX] with the
skew-symmetric Z-bilinear form ¢ being zero and ¢4 = 0. The reason we choose
¢ = {4 = 0 is that the Hamiltonian Lie algebras look more natural and more ex-
plicit, and are therefore easier for application, and also they are general enough to
cover already most interesting cases (see Section 2). The Hamiltonian Lie algebras
considered in [OZ] in case ¢y = 0 are the cases of the Hamiltonian Lie algebras
[H(,T), H(,T)]/F with £ = (£,0,...,0).

Unlike the graded case, where the sets of ad-locally finite elements and ad-locally
nilpotent elements can be determined, in the nongraded case, the determination of
the sets of ad-locally finite elements and ad-locally nilpotent elements seems to be
un-achievable. Here, we use a “sandwich” method to estimate them (see Lemma 3.1).
By studying some important features of the Hamiltonian Lie algebras (Lemma 3.4),
we are able to obtain the isomorphism theorem without the need to know the struc-
ture of their derivation algebras. We obtain:

Main Theorem Two Hamiltonian Lie algebras are isomorphic if and only if their cor-
responding Poisson algebras are isomorphic.

In Section 2, we shall rewrite the presentations of the above-mentioned Hamil-
tonian Lie algebras up to certain obvious isomorphisms, which we call normalized
forms. Then we shall prove the main theorem in Section 3. In Section 4, we shall
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use a different method from those in [F], [OZ] to determine the derivation algebras
of the Hamiltonian Lie algebras. The reason we determine the derivation algebras
after the determination of the isomorphism classes is that we want to emphasize that
the determination of the isomorphism classes does not depend on the determination
of the derivation algebras. Then in the final section, we shall determine the second
cohomology groups of the Hamiltonian Lie algebras (the second cohomology groups
of the Hamiltonian Lie algebras considered in [OZ] was determined by Jia [J]).
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Zhao for helpful discussions. Part of this research was carried out during the author’s
visit to the Academy of Mathematics and Systems Sciences, Chinese Academy of Sci-
ences; he wishes to thank the Academy for hospitality and support. This research was
supported by a NSF grant no. 10171064 of China and two research grants from the
Ministry of Education of China.

2 Normalized Forms

Before we present the normalized forms of the Hamiltonian Lie algebras, to better
understand general Hamiltonian Lie algebras, we first explain how one can generalize
the classical Hamiltonian Lie algebras H(¢) defined in (1.3).

For convenience, we denote

(2.1) i=i+l forl <i<U.

The constructional ingredients of the classical Hamiltonian Lie algebra 3{({) are the
pairs (A, D) consisting of the polynomial algebra

(2.2) A =Tty t7,... te, t7],

and a finite dimensional space D = span{0;,, J,. | 1 < i < £} of commuting locally
finite derivations. The derivations 0;,, = % are called down-grading operators by its

obvious meaning for 1 < i < 2/. Then the type of derivation pairs {(9y,, ) | 1<
i < £} for H(L) is

(2.3) d,d),

where d stands for down-grading operators.
If we replace the polynomial algebra by the Laurant polynomial algebra

(2.4) A=Fl ! T,

and rewrite (1.3) as

14
(2.5) [f,8] = (xpxp) " (0;())05(8) — D5(£)D;(9))  for f,g € A,

p=1
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where 8; stands for x, % for 1 < p < 24, then we obtain a Hamiltonian Lie algebra,
denoted by H(¢). Now the derivations 0, are called grading operators by its obvious
meaning, and the type of derivation pairs {(9;, 9%) | 1< p < (} for H(£) is then

(2.6) &9,

where g stands for grading operators.
Furthermore, we can replace A by a semigroup algebra which is the tensor product
of a Laurant polynomial algebra (2.4) and a polynomial algebra (2.2):

+1 +1 +1 +1
(2.7) A =[x SELXT LI Xy B X t7,

and replace 8; by 0, = 8;‘ + 0, for 1 < p < 2/, then (2.5) defines a Hamiltonian
Lie algebra, denoted by H(¢). The derivations 0, are called mixed operators, and the
type of derivation pairs {(d,,05) | 1 < p < £} for H(£) is now

(2.8) (m,m),

where m stands for mixed operators.
In the examples above, we can generally denote a monomial as

(2.9) xa,g‘ _ x(ll] x;_lT . _x?engt{1 t;_T . téktg,
for
(210) Oé:(Oél,OéT,...,Oég,Oéz)EF, 1:(1171T7a15a17)€3a

where T is an additive subgroup of F?’ such that I' = {0} in the case of H(¢) (where
there are no nonzero grading operators), and I' = 7% in the cases of FH(£) and ﬁ(f)
(where there are nonzero grading operators), and where J is some semi-subgroup of
N?¢ such that § = N? in the cases of H(¢) and I (¢) (where there are nonzero down-
grading operators), and § = {0} in the case of {(¢) (where there are no nonzero
down-grading operators). In all three cases, we can define operators 9; = xp%,
O, = % and 0, = 6; + 0y, such that 8;‘ = 0 in the case of }{(£) and J;, = 0 in the
case of H(¢).

With the above examples in mind, we can now give generalizations of the Hamil-
tonian Lie algebras as follows.

First for convenience, for m, n € 7, we denote

(2.11) {{m,mﬂ,...,n} ifm < n
: m,n =

o) otherwise.

We shall construct a semigroup algebra F[I" x J] (¢f. (2.7)), where I is some free
abelian subgroup of an [F-vector space " and J is some semi-subgroup of N”, and
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construct 7 groups of derivation pairs {(9,95) | p € I;} fori € 1,7, where I; are
some indexing sets such that if we denote each type of derivation pairs {(d,, 95) |
p € L} by (T;, T:) for i € 1,7, then the types of derivation pairs in the order of the
groups {(9,,05) | p € I;} fori € 1,7 are

(212) (T1> TT) = (g;g)7 (T27 TE) = (m7g)7 (T37 Tg) = (m7g)7
(T47 T4_) = (ma m)a (T57 Tg) = (g7 d)7 (T67 TE) = (m7d)7 (T77 T7) = (d7 d)

Then we shall see that (2.3), (2.6) and (2.8) correspond respectively to the three spe-
cial cases:

(i) L=1fandl; =@ifi#7,
(i) I :1,_€andIi = gifi # 1,and
(iii) Iy =1,fand [; = @ ifi # 4.

To construct, we let

(2.13) L= (fy,...,0;) € N\ {0}.

Set

(2.14) 0w=0, i=0+bL+--+¥¢, i€1,7,
(2.15) Lij=ti—1+ 1,0 fori,jel,7,i<j.
Denote

(2.16) L=1L; I=IL; J=12.

Definethemap : ] — Jby

= e

(cf. (2.1)). For any subset K of 1, 217, we denote

(2.18) K={p|peK}.

In particular, we have J = I U 1. Set

(2.19) Ji=LUIL, Jij=1I;Ul; fori,jel,7,i<j.

Let IF be a field of characteristic zero. We write an element v of F2 in the form

(2.20) a=(ag,oq,...,0,,05) with «a, €F,
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(cf. (2.10)). Set

(2.21) ep = (61,907 ps -1 00,p,05p) €F7 forp e J.

For a € F27 and K C ], we use a, to denote the vector in FIX| (where |K| is the size
of K), obtained from « by deleting all the coordinates «, with p € J \ K; for instance,

(2.22) apsy = (a,m) €, aps5 = (ar,03,05) € P

Sometimes, when the context is clear, we also use «, to denote the vector in IF?7 by
putting its p-th coordinate to be zero for p € J\ K.
We fixa set {o,, | p € J} of elements in F*7 as follows:

Eptep ifpel ULz,
(2.23) op =1 ¢€p ifp el
0 lfp € 1577,

and 05 = 0. Using the notations (2.9) and (2.23), the factor (xpxﬁ)_1 that appears
in (2.5) is simply x~% if p € I;. If we re-denote xp_1 by x, (and x, by x;l ), then the
factor (xpxﬁ)*1 in (2.5) can be written as

(2.24) (xpr,)*1 = x%.

Now we take an additive subgroup I" of IF?7 such that
(2.25) ag ., =0 forael,
(this condition is necessary since we require that Tz = Ty = T; = T5 = d by (2.12),
which means that 6; = 0, i.e., we shall have o, = 0if p € IsgU Jfora €T (.
(2.2) and (2.3))), and we shall also require that

(226) Op S F, Eq S F, ]Fc?r NI # {0} forp € I]A’4, q S 15,6) r e ]174,

where the first condition is necessary since we require that x°» will appear as a factor
in the Lie bracket (cf. (2.5) and (2.24), also see (2.36)), and where the last two condi-
tions are called the distinguishable conditions among the derivations 0, defined later
in (2.33), which are necessary in order to guarantee the simplicity of the Hamiltonian
Lie algebras (cf. [X2]).

Note that N2 is an additive sub-semigroup of 7. We take

(2.27) J={i= (G it - iy, i5) €N | i) 7 o =0},
(¢f. (2.10)), where the condition i Ul,ur, = 01s necessary since Ty = Ty = T =

T3 = Ts = g by (2.12), which means that atp = 0, ie, we shall have i, = 0 if
pe L ULsUIfori € J(cf (2.4) and (2.6)).
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Now we let A = F[I" x J] be the semigroup algebra with basis
(2.28) {x* | (a,i) €T x 3},
(¢f. (2.9)), and the multiplication

(2.29) X xPd = xR for (o 1), (6, 7) € T x J.

Then A forms a commutative associative algebra with 1 = x%° as the identity ele-
ment. Set

(2.30) A, = span{x*t |i € J} fora eT.

Then A is T'-graded: A = P
convenience, we denote

aer Aa (butin general A, is infinite dimensional). For

(2.31) X =x®0 H =0 t,=t", foracl,ied,pe].
In particular,
(2.32) = H ti”, X =x%% forael,ie],
peJ
(cf. (2.9)). Define the derivations {9,, 9, 0;, | p € J} of A by
(2.33) Op=05+0, and I5(x™) = apx™, G, (x) = ipx™%,
forp € ], (o,i) € I' x J, where we treat
(2.34) x =0 if(a,i) ¢ T xJ.
In particular,

(2.35) 8; =0, (“)tq =0 for p e 75,6 U J, qec iU 72_3 Uls,
by (2.25) and (2.27) (cf. (2.12)). We call the nonzero derivations 8; grading operators,
the nonzero derivations 0; down-grading operators, and the derivations ;" +0;, mixed
operators if both 0} and 0,, are not zero. Then the types of derivation pairs in the
order of the groups {(0,,9) | p € I;} fori € 1,7 are as shown in (2.12).

Now we define the following Lie bracket on A:

(2.36) (u,v] = Zx"” (8p(u)(“)§(v) — 65(u)8p(v)) ,

pel

foru € Ay, v € Ag (cf (2.30), (2.5) and (2.24)), where x?» appears just as in (2.5)
and (2.24). Then (A, [-,-]) forms a Hamiltonian Lie algebra, denoted by (¢, T'),
and (A,-,[-,-]) forms a Poisson algebra. Then H(¢,I") is the normalized form of
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a class of in general nongraded Hamiltonian Lie algebra constructed in [X2]. From
this definition, one sees that the classical Hamiltonian Lie algebra J{(¢) is simply the
Lie algebra 3((¢£’,0) with £/ = (0,...,0, ), and the Hamiltonian Lie algebras J((¢)
and j-\f(f) are respectively 3(¢’, 7) and H('"',7"), where £’ = (¢,0,...,0), and
2" =(0,0,0,¢,0,0,0) (cf. (2.12) and the statement after it). The Hamiltonian Lie
algebras considered in [OZ] in case ¢y = 0 are the cases of the Hamiltonian Lie
algebras [H(£,T), H (L, T)]/F with £ = (£,0,...,0).

The Hamiltonian Lie algebras (¢, I') can also be viewed as generalizations of the
Lie algebras in [DZ], [X1], [Zh] in the sense that they have some common features
stated in Lemma 3.4.

The following theorem was proved in [X2].

Theorem 2.1 The Lie algebra H (¢, T') is central simple, i.e., [H(£,T), H (L, T')]/F (the
derived algebra modulo its center) is simple.

3 Isomorphism Classes

In this section, we shall determine the isomorphism classes of the Hamiltonian Lie
algebras of the form H = J{({,I"). We assume that IF is an algebraically closed field.
By (2.25), (2.27) and (2.35), we can rewrite (2.36) in the following more explicit

form:
1 3,7 Bi+j
GD M=) (g = apfye
pEh4
+ > (apjp — gy
pELS
+ ) iy — jpap I
pEL,
+ Z (ipjp — "Ejp)xg”mﬂg’ﬁi_a”_gﬁa
pELUIL 7

for (o, 1), (3, l’) € I' x J, where the first summand over p € I, 4 corresponds to the
fact that T; # d # T; fori = 1,2,3,4 (cf. (2.12)). As for other summands in (3.1),
they are also obvious by (2.12). In particular, we have

(3.2)
[xa,xﬁ] _ Z (apﬁﬁ _ aﬁﬁp)x(rl,ﬂlﬂf — Z ‘g{l’:?} xrfp+a+{3 fora, B €T,
pEh4 pehy |C1PP}
(¢f. (2.31) and (2.22)), where ’ L;gg = (’:1}: C;g isa 2 x 2 determinant, and
(ﬁp - 6§)le ifpel,
_B.j .
(33) [ty { P ifpen,
7 By — ﬂﬁ)xﬁ’l + ]'pxﬁ’l_gp ifpels,

(Bp = Bl 4 jpx 175 — jpal 755 i p e I,
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and

B
(3.4) [t7, x74] = { Bgx™L

For any i € J, we define the level of i to be

(3.5) il = ip

pej

For any (a, i) € I' x J, we define the support of («, i) to be

(3.6) supp(a,i) ={p € J| a, #0ori, #0}.

—Bpxi— jxiTE g € .

Yucai Su

For any Lie algebra £, we denote by LF and by LV the sets of ad-locally finite
elements and of ad-locally nilpotent elements, of L respectively. Generally, to obtain
the isomorphism theorem, the ordinary way is first to find the sets H* and HN.
However, in our case here, the determinations of the sets HF and HY seem to be
un-achievable. Thus, we use a “sandwich” method to estimate them. To do this, we

introduce the following three subsets of JH{. Denote

(37) H] = {Xigp, tq ‘ p S 11_’4,q S 15,6}7
(3.8) H, = {x(%i | Ay, = i]l.4U75_6 =0, lplﬁ =0 fOI‘p € ]7}’
(39) H; = Span{xai | Ay = i]l_4U75_6 = 0}7

(¢f. (2.22). Then our first result is the following “sandwich” lemma.

Lemma 3.1
(3.10) H, UH, C H' C span(H, U H3),
(3.11) H, c KN C H;.

Proof By (3.3) and (3.4), we have H; C HF. Suppose x*! € H,. Then by (3.8),
(3.12) supp(a,i) C I U J;, and p ¢ supp(a,i) if p € supp(a,i).
Let x* € H. By (3.1) and (3.12), we see

0, or
] = a linear combination of the elements

x7% such that there exists at least a
p € (Isg U J7) \ supp(a, i) with k, < jp.

(3.13) [xt xHi

Thus if we set

(3.14) m=1+ Z ips

pEs6UJ7)\supp (i)
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then ad™;(x*1) = 0. This proves H, ¢ HN ¢ HF.

o

Suppose u ¢ span(H; U H;). Write

(3.15) u= Z ca,ix“’i, where
(i) €Sy
(3.16) So ={(a,i) €' x J|caj #0} isafinite set.

Then by (3.7) and (3.9), there exist (v, k) € Sp and p € I, ¢ such that at least one of
p and p is in supp(, k), mainly,

(317) (’vaﬂyﬁvkpka) # 07
and such that

(318) (’77I_<) 7é (_Up70) lfp € Il,47 and
(3.19) (1B # (0,25), ks 0 ifpe g

We prove that u is not ad-locally finite. To do this, we choose a total order on I"
compatible with group structure of I" and define the total order on I' x { by the
lexicographical order, such that the maximal element (v, k) of Sy satisfies (3.17)—
(3.19) for some p € I, 4, and that o, > o, for all ¢ # p. This is possible because the
set of all nonzero o is F-linear independent. To see how it works, say, p € I; and
(7p73) # 0 (the proof for other cases is similar). Choose 3 = be3 € I for some
b e F\ {0} (¢ (2.26)) such that

(3.20) Ypb +m(ys —7p) #0 forallm e N.

Then for n € N, the “highest” term of ad/,(x?) is x**"*"7¢k wyith the coefficient

n—1 n—1
3.21) T (85 + mys — m) — v(my, —m)) = ] (b +m(vg — 7)) #0.
m=0 m=0

Thus by (3.18), the set {ad” (x) | n € N} is linearly independent, which implies
(3.22) dim(span{ad)(x”) | n € N}) = occ.
Thus u ¢ HE. This proves HF C span(H; U H;). Similarly, HN C H;. [ ]

For any subset X C J{, we denote by E(X) the set of the zero vector and the
common eigenvectors in H for adx, mainly

(3.23) EX) ={ue H|[X,u] C Fu}.
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Next, we shall determine E(HF). To this end, we need to find the eigenvalues for
elements of ady,. So we define amap m: I' — s by

(324) 7T(Oé) =p= (/J/la s 7/’[/%)7 with
Qp — ()z? lfp S I] U 1334,
(3.25) Hp = § —Qp lfp € b,
—Qp lfp S 15.6)

(¢f. (3.3) and (3.4)). We define

(3.26) M =span{x* € H | a €T},
(3.27) M, = span{x® | 7(a) = p} for p € w(I).

Then we have:

Lemma 3.2

(3.28) EH) = |J M,

pemn(T)

thus M = span(E(J{F)) .

Proof By (3.10) and the definition (3.23), we have
(3.29) E(H, UH,) D E(H") D E(span(H, U Hj)).
We want to prove

(3.30) E(H, UH,) C U M,, C E(span(H; UH3)).
pen(l)

Let 1 € w(I'). By (3.3), (3.4), (3.7)—(3.9) and (3.24)—(3.27), elements in M, are com-
mon eigenvectors for ady,, and ady, acts trivially on M. Since elements in H; com-
mute with each other, elements in M, are common eigenvectors for adpan(s, UH,)-

That is,

(3.31) J M. C E(span(H, U Hz)).
pen(T)

Suppose

(3.32) u= Z ca_’ixa’i € H, where Sy ={(a,i) el xJ|ca;#0},

(1) €So
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is a common eigenvector for ady,up,. Since adpy, is locally nilpotent, ad , must act
trivially on u. If (o, 1) € Sy with i, # 0 for some p € Is¢ U J;, then we can choose
v € Hy:

(3.33) yo {7 ifp el
tﬁ lfp € Jr

such that [v,x*%] # 0 by (3.1) and thus [v,u] # 0, contradicting the fact that ad,
acts trivially on u. Thus i, = 0. Similarly, since u is a common eigenvector
for adp,, we must have i; ;= 0 (and thus i = 0) and 7(«) = p for some p if
(ar,i) € Sp. This shows that u € M,,. This together with (3.31) proves (3.30). Now
(3.29) and (3.30) show that all these sets are equal, i.e., we have (3.28). [ |

Next we shall determine the sets MF and MY. Recall that the Lie bracket in M has
the simple form (3.2).

Lemma 3.3
(3.34) MF = span{x~7,x* | p € L4, cj,, = 0},
(3.35) MY = span{x” | a,, = 0}.

Proof We shall prove (3.34) as the proof (3.35) is similar. It is straightforward to
verify that by (3.2) elements in the right-hand side of (3.34) commute with each other
and they are ad-locally finite on M. Thus the right-hand side of (3.34) is contained
in MF. Conversely, suppose u € M is not in the right-hand side of (3.34). Then we
can write u as in (3.15), where now

(3.36) So={(a,i) €T xJ|i=0, co; #0} 1isafinite set.

Thus we still have (3.17)—(3.19), and the same arguments after (3.19) show that u is
not ad-locally finite on M. ]

Now we shall study some important features of the Lie algebra M, which is crucial
in the proof of the isomorphism theorem.

Lemma 3.4

(1) Assumethat vy # 0. For p € w(I'), regarding M, as an Mo-module via the adjoint
action, we have
(1) if pp,, = 0, then the action of Mo on M, is trivial and

(ii) if pr,, # 0, then M, is a cyclic Mo-module, the nonzero multiplicative scalars
of x* for all o« € " with w(o) = p, are the only generators.

(2) Assume that 1y = 0 and 15 # 0. Then (|
eigenvectors of H' in M.

acr Fx®) \ {0} are the set of the common
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Proof (1) Assume that ¢y # 0. From (3.2) and the definition of 7 in (3.24), we see
that x* commutes with x” if 7(c) = 0 and (7(0)) i, = 0. Thusif py, = 0, the

adjoint action of My on M, is trivial. Assume

(3.37) u= Z csx’ € M, with py, #0, where
BESy
(3.38) So={B el |n(B) =p,cg#0} isa finite set.

By (3.2), one has

(3.39) x*, u] = — Z apppx”™uifm(a) = 0.
pEliy
Thus the subspace
. =spanq x?' " -u = cpxt o ekery,peligg,
(3 40) U p opta ‘ optatf k p I
BESo

is a My-submodule of M,,. Let (1) denote the cyclic submodule of M, generated by
u. Then (u) C U. If the size |So| of Sy is > 2, then U in (3.40) is a proper submodule
of M, and so u is not a generator of M,,.

Now assume that S is a singleton {5} with 7(3) = p1. Suppose p, # 0 for some
p € I 4. Forany k # 1, by (3.25), ko, € ker,, thus

(3.41) xFkoy — —((k — 1)up) 71[x(k71)”17,xﬁ] € (u).

For any a € kery, by (3.25), o — (k + 1)0, € ker,. Thus by (3.2), (3.25) and (3.41),
noting that 8; = 3, — 4 for q € I 4, it is straightforward to compute that

(3.42) kupxa+;/f + Z (617711 _ Oéq)ﬂqxa+“37(rp+”q — [xaf(k-*—l)(rp’xﬁ-%—krfp] c <1/l>
q€h 4

This shows that x**% € (u) for all & € ker,,, but M, is spanned by such elements.
Thus u is a generator of M.
(2) is obtained directly from (3.28). [ |

Let H(¢',T’) be another Hamiltonian Lie algebra defined in last section. We shall
add a prime on all the constructional ingredients related to J(£,T'’); for instance,
H', 30!, 0,4, ete.

To state our isomorphism theorem, denote by M, , the space of m x n matrices
with entries in [F and by GL,, the group of m x m invertible matrices with entries
in .

Definition 3.5 Let I',T’ be two additive subgroups of IF*7 satisfying (2.25) and
(2.26). A group isomorphism 7: o — «a* from I' — T is called preserving if T

https://doi.org/10.4153/CJM-2003-036-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-036-7

Poisson Brackets and Nongraded Hamiltonian Lie Algebras 869

has the following form: there exists a permutation v: p — p* on the index set I; 4,
which maps Iy — I for k = 1, 2, 3, 4, such that

(3.43) a?p*ﬁ‘?} =g, Ap forp el

(¢f. (2.22)), where A, € GL,; the multiplication in the right-hand side of (3.43) is
the vector-matrix multiplication;

_ a, +b, a, 1 0 b, 0
(3.44) 4y = (l—ap—bp 1—a, or a, b or 1—-b, 1)’

if p € I; U, or I or I respectively, for some a,, b, € IF with b, # 0;

(345) Oé;; = (Oé]l — afl)Bl,S — 04723275 + 0415B5’57 where
(3.46) Bis € My xe,, Bas € My,xe,, Bss € GLy;
and

(3.47)

E3
o = (0511 — O‘TI)Bl.ﬁ — Oészz’ﬁ + (0513_4 —ag,, )B3’6 + 05153576 + a1536,6; where

(3.48)
Bis € My xe, Bag € Myyxe,, Bse € M, e)xes, Bse € Mesxe,, Bss € GLy, .

Note that the above uniquely determine the isomorphism by (2.25). Let us explain
the above definition. First we introduce the following notations. For any m x n matrix
A = (ap4), we denote byAv = (apq) (resp. A= (@p,q)) the 2m x n matrix such that
the odd rows of A (resp. X) form the matrix A (resp. the m X n zero matrix) and the
even rows of A (resp. X) form the matrix —A, i.e.,

(3.49) Arp—1q = —Apg = Apg, G2p-14=0, arpg= —pg

for p € 1,m, q € 1,n. A preserving isomorphism 7 can be decomposed into the
composition of two isomorphisms 7 = 7, - 7y such that 7, only involves the per-
mutation v, i.e., in (3.43)—(3.48), all A, and B; ; are identity matrices and all B; ; are
zero matrices for i # j; and 7 only involves matrices, i.e., v = 1y, in (3.43). Fur-
thermore, 7y can be decomposed into 79 = 7 - 7, such that 71, 7, have the following

forms:

(3.50) n: (o, of ) = (ay,, o)A,  where
(351) A= diag(Al,...,AL4,B5,5,B6,6),

and

(352) T2 (a}kma Ck;;ﬁ) = (ah,u 0515_5)(:, C= 121,4+k‘5+(f(, + D;
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where in general 1,, denotes the m x m identity matrix, and where D has the form

_ Bis
Bis Byg
(3.53) D=(0,D5,D5), Ds= |Bys|, Ds=|Bss]|>
0 Bsg
0

where 0 denotes some proper zero matrices whose orders are clear from the context.
Now we can state the main result of this paper.

Theorem 3.6 0: H({,T) =2 H(¢',T) ifand only if£ = £ and there exists a preserving
isomorphism : T =T,

Theorem 3.7 (Main Theorem) Two Hamiltonian Lie algebras are isomorphic if and
only if their corresponding Poisson algebras are isomorphic.

Proof By Theorem 3.6 and by [SX], the condition for two Hamiltonian Lie algebras
being isomorphic is the same as the condition for the corresponding two Poisson
algebras being isomorphic. ]

Proof of Theorem 3.6 “<”: Suppose { = £’ and 7: I' — I'/ is a preserving isomor-
phism. By the explanation above, 7 can be written as 7 = 7, - 71 - 72, thus it suffices
to consider the following 3 cases.

Case A First assume that 7 = 7, is determined by permutation v.
For any i € J, we define i* € J which is obtained from i by permutation v. Then
it is straightforward to verify that the linear map

(3.54) 0,: H — H' such that 6, (x*%) = x* 1,

is a Lie algebra isomorphism.

Case B Next assume that 7 = 77 as in (3.50).

We shall define an isomorphism 6: H{ — 3’ as Poisson algebra isomorphism
(then 6 is clearly a Lie algebra isomorphism). By (1.1), it suffices to find the images
of the generators x*,t, fora € I', p € Ly U7 U I7 (cf (3.58) and (3.62)—(3.64)
below) such that the following conditions hold (cf. [SX]):

O([x", x"]) = [0("),0xM)],  0([tp,x"]) = [0(z,), 0(x")],
0([ty, 14]) = [0(2p),0(t5)],

for o, ﬁ € I"and p,q € 1274 ] 16,7 U T4’7.
Let A =} . Zo,bethesubgroup of I' generated by {o, | p € I 4} and define

x: A — F* = F\ {0} to be the character of A (i.e., the group homomorphism
A — F*) determined by

(3.55)

(3.56) x(op) =b, forpely,,
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where b, are elements in [F appearing as entries of matrices A, in (3.44). We prove
that x can be extended to a character y: I' — F* as follows: Assume that A} D A
is a maximal subgroup of I such that x can be extended to a character x: A; — F*.
If Ay # T, then we choose @ € I' \ A and extend x to A, = Za + A} — F* by
defining

X(B)  ifZana, ={o},

(3.57) x(ma+ ) = {amx(ﬂ) if 700 Ay = Znoy

form € Z, 3 € Ay, where a is an n-th root of x(na) in the second case (recall that
IF is algebraically closed). This leads to a contradiction with the maximality of A;.
Thus x can be extended to a character x: I' — F*.

Now we define the images of x“ to be

(3.58) 0(x*) = x(a)x'® foraeT,
(recall that we add prime on the constructional ingredients related to H’). Then by

(3.2) we see that the first equation of (3.55) holds because (3.44) and (3.50) guaran-
tees that 0, = o, and that the determinant of A, is [A,| = b, = x(0,) and

aip,ﬁ}
{p.p}

(3.59)  x(a)x(B)

= x(a+ ) ‘%{m
{p.p}

o
gl = xtap+a+ ) [GieD
! ! Bir)

Next we shall find the image of t,. To do this, we introduce a new notation: For any
vector s = (51, 57,52, 53, - - - » S15 5,) (with entries in F, 3 or in H'), we denote

(3.60) 5= (=S7,51, =55, 52, - - -, =5;, 5,,)-

For a subset K C ], we denote by 5 the vector obtained from s by deleting —s3, s,
for p,q € J\ K; for instance,

(3.61) g{iis,ﬂ} = (=57, =53, 53, =57, 54),

(cf. (2.22)). We define

(3.62) H(tp) =S$p for pe 1274 ] 16,7 U T477, where
(3.63)

sp = tl/” 59 = bqté, (=sr,5,) = b(—tL, t)A" forp e g€ Iy € Iy
(364) 375.6 = ffls.e diag(BS,S; Béﬁﬁ)ilﬁ 316 = ?;53567 S = t;77

where the up-index “T” stands for the transpose of a matrix. Then if p € I, 3, we
have

(365)  [6(1,), 6] = x(@)byazx'™ " = flaga™™r) = (1), ")),
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because by (3.44) and (3.50), a% = bpazif p € I, and oz% =agpifpe . Ifp €y
as 1 x 2 matrices with entries in H, we have

(3.66) [0 (5.57), 0] = X(@)byar}, 534, 5"

= X+ op)ag,zx" 7 = 0([Fp 5y, x°]).
Furthermore, we have [(ETS.()’ tr,up), X" = (ag,,0)x, and

(3.67) aj.

56

= ay,, diag(Bs s, B g),
by (3.50). From this and (3.64), we obtain
(3.68) [(0Gy,,),0G0)) 0] = 0([(F,, Froup), %) -

From this and (3.66), we obtain the second equation of (3.55).
To verify the last equation of (3.55), note that

T _ .
(3.69) [t12_3U]4U15U]6,77 t1273U]4U15U]6‘7] = dlag(oa SZ& 0, S[(,-%—Zy)a

where

. 0 X713+l 0 x%u
(3.70) 74 = diag (<_xm,3+1 0 > v <—x‘7‘4 0 >> ’

is a 2¢4 x 2¢4 matrix with entries in 3, and where, in general

(3.71) Sy = diag ((_01 é) (_01 é)) € GLay .

Using (3.69), (3.63) and (3.64), we can obtain

- - _T _
(372) [9(t12.3U]4U15U]5,7)T7 9(t12,3U/4U15U]5.7 )] = 9( |:t1273U]4UISU]6‘77 tIZ,SULlUISU]ﬁJ] ) .
For example, if p € I, by (3.56), (3.58) and (3.63), we have

(3.73) [0G (50" 0G (5] = bp(Ay ) [F 530 (5 10pA,

0 X/Uf: -T _
=bp( 5o ) =00t 5t )

This proves the last equation of (3.55).

Case C Assume that 7 = 7, as in (3.52).
We define (3.58) with x(«) = 1 and we define (3.62) with

— =/ —/
(374) SLaUJy = t1273U]4 + tIGElﬂ

— —/ -/ —o’ _ —/
(3.75) S, = tfs.eEz + tI(,E3 +x' 77 Ey, Spup = tLug,
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where Ej, ..., E4 are some matrices to be determined in order that (3.55) holds and
where x' 77 denotes the vector

’

(3.76) X7 = (L X T,

We shall not give the explicit forms of Ej, . .., E4 here, but an interested reader can
find the solutions by considering two special cases of (3.53):

(1) D5 = 0)
(2) D¢ = 0 (the general case is the composition of the two special cases), or refer to
[SX] (also, cf. the proof of necessity).

“=7”: Assume that there exists a Hamiltonian Lie algebra isomorphism 6:
H(L,T) — I, T).

First, we make the following conventions: If a subset of H is defined, then we take
the definition of the corresponding subset of H' for granted. If a property about H
is given, the same property also holds for H’, without description.

Clearly, § maps H', HN to H'F, H'N respectively, thus also maps M — M’ by
Lemma 3.2. By Lemma 3.3, we have dim(M! /M~) = 4. This shows that

(3.77) Ly =ty

For simplicity, we assume that ¢4 # 0 (if t4 = 0, using Lemma 3.4 (2), one sees that
all statements or arguments below either work or do not apply to the case; if 15 = 0,
then one can go directly to Claim 8 below). Denote

(3.78) Ny={ael|(n(a), =0},

(cf- (3.24) and (2.22)). By Lemma 3.2, there exists a bijection 71 : w(I') — 7(I'’) such
that

(3.79) O(M,,) = M () forp € (") and 7,(0) = 0.

From this and Lemma 3.4, there exists a bijection I' \ ", 4 — T"" \ ' , which shall be
denoted by 7: o — «* such that

(3.80) 0(x*) = c,x’® fora €T \I'; 4 and some ¢, € F*.
We shall prove the necessity by establishing several claims.
Claim 1 There exists a bijection I; 4 — Ij , denoted by v: p + p* such that
(3.81) O(x ) = dpx'_”ﬂ/* for p € I 4 and some d,, € F*.
By (3.7)—(3.9) and Lemma 3.3, we have

(3.82) {ueM'| [u,HHUH,] =0} =span{x~" | p € L4}
= {u € B"| [u,H, UH;] = 0}.
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Thus by Lemma 3.1,

(3.83) {ue M" | [u, "] = 0} = span{x~"

P € L}

Let p € I 4. Then by (3.83),

(3.84) Ox) € Y Fx'
q€l,

Suppose

(3.85) 0y ¢ | J B/
‘1611/.4

By (2.26), there exists a € F* such that acy € I". By (3.2), we have
(3.86) [x™? 7% x7%P 7] = 2ax™ ",
Note that ac; — 0, —acs — o, ¢ I'1 4, by (3.81),
(3.87)
O(x<7) € Fx'*\ {0}, O(x 7 ) € Fx’?\ {0} forsomea, B € '\ T,

By (3.2), we have

(3.88) [x/a,x/ﬂ] — Z (aqﬁq _ Oégﬁq)x/a”llﬂwﬁ.
q€ly,

By (3.84)—(3.86) and (3.88), there exist q, r € I , with q # r such that O'q/ +a+f=
—o/. Thus

(3.89) B=—-a—o; -0/,
and (3.88) becomes
1—o/

(3.90) [, 5] = (agng + agx’ =7 + (o + ap)x’ %,

where in general, for g € J; 4, we denote

1 lfq S 11’4,
(3.91) ng=4 -1 ifgel, ULy,
0 lfq € Tz,

and we define 7)‘; similarly (then O’é = 5[; - 775/%) ¢f. (2.23)). By (3.85), both coeffi-

cients in (3.90) are nonzero. Since 2ac; — 0, € I' \ T'; 4, we have

(3.92) 0(x*7%) € Fx'7\ {0} forsomey € I'"\T},.
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From [x**7 % x~%5 ] € Fx*7~%, it follows from (3.87) that
(3.93) [x"7,x"7] € Fx'*.

Thus there exists g’ € If , such that

(3.94) YoBg — Vg By #0 and op +y+ 6=
Hence
(3.95) y=a—-fB-o0y=2a+0,+0/ -0y,

by (3.89). If g # q' # r, we deduce from (3.89) and (3.95) that
(3.96) [x/'V’x’ﬂ] — (aqnq/ + aq)xlo—q’mw n (Ofﬂ];/ N Oc;)x’”r/”’”“ﬁ
+ (g By — ’Yq’ﬂq')xm‘;’ww ¢ Fx'®,

a contradiction with (3.93). Similarly, if g’ = q or g’ = r, we can still deduce a
contradiction from (3.89), (3.93) and (3.95). This proves the claim.

We extend v to v: J; 4 — ]1”4 such that v(p) = p” for p € I 4. For p € I; 4, by
(2.26), we fix e, € IF* such that

(3.97) Ap = epep € T\ {0}
Then X, ¢ I'; 4. Denote Ay = T(Ap) (cf: (3.80)). Write

(3.98) Xy = (A5 Ao g N An ) €T C P

1 Pp 10 )4

*
=/
bty

(cf. (2.20)). For p,q € I 4, applying 0 to [xY, x—%] = 5p7qepx’\l’, by (3.80) and
(3.81), we obtain

(3.99) dq(ﬂq/* Apge tApze) = 0pqep forp,q € Ly

Let p # q. Applying 6 to 0 = [x*#, x™] and using (3.99), we obtain
(3.100) 0=X, 0 Njar — Nz dggr = Mg Ngge + A0 ) = )\;q*d;leq.

The above two equations imply

(3.101) Apgr =0 forp€lig,q€ Jiaq# p, P
Denote
(3.102) Iy =(Fe, +Fep)NT.
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Exactly as in the proof of (3.101), we have

(3.103) a;* =0 fora ey \T4p.q€ N1aq# P, P

Claim2 T7: a — o* can be uniquely extended to a group isomorphism 7: ' — T/
such that o, = UI/)* for p € I 4.

Noting that by (3.24), (3.25) and (3.78), o ¢ T'y 4 implies a+koy ¢ T’y 4 fork € Z.
Foranya € T', f € I'y with o, B, a + 3 ¢ I'y 4, we have (recall (3.91))

(3.104)  (au(Br+np) — ag(Bi — 1)) apgoo X"
= catgo, (- (B = 01} — af+ (B8 — on)fu ) /71 I

by applying 6 to (3.2) and by (3.103). By comparing the power of x’, this implies
(3.105) (a+B) =0l +a*+(B—01)"
if v, 3 satisty
(3.106) BeTl), a,B,a+Be€l\T4, and a(Br+nr) — ap(B — 1) #0.
Let @ € T\ I’y 4. We prove by induction on |k| that
(3.107) N N

(ka)* —ka* €T, where I'j={B€T' |3, =0forq€ 4, q#1*,1 }.

Lety € I' such that v, o + v ¢ I'; 4. We have

(3.108)

o 1(op+aty)* _ k% _x o\ [0 ltat Yt
Z (ap5 — AYp)CoprarX 7P = Caly Z (ap*wﬁ* 5 Ype )x%r .
p€h 4 PEL,

We inductively assume that (3.107) holds for k (for instance, k = 1). Let v = ka. + 8
for some suitable 3 € T'; such that condition (3.106) holds for all the involved pairs
for which we need to make use of (3.105) in the following proof (when «, k are fixed,
by (2.26), such 3 exists), by (3.107) (note that we assume (3.107) holds for k), (3.105)
and (3.103), we see that all terms in (3.108) vanish except the terms corresponding
to p = 1 in both sides. Thus we obtain

(3.109) ol + ((k+Da) +p8* = (o1 + (k+ Da+ )"

=0l +a* + (ka+ )"

=20{. +a* + (ka)* + (B — 01)",
where the first and last equalities follow from (3.105) and the second follows from
(3.108). From this we see that (3.107) holds for k + 1. This proves (3.107). Now

replacing @ by ja (with j # 0) and 8 by ka + 8 — o in (3.108) (with suitable
0 € I'y), since (3.107) holds, we have again that all terms in (3.108) vanish except
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the terms corresponding to p = 1 in both sides. Thus we have a similar formula to
(3.109):

(3.110) (G+Ra+p)" =20/ +(ja) + (k)" + (B — 201)".
From this we obtain
(3.111)  (ja)* + (ka)* = (j'a)* + (K'a)* if j+k=j +K,jk j k' #0.
From this we obtain
(3.112) (jo)* = ja* foraeT'\T4, jeZ\{0}.
For some suitable 5 € I';, by (3.105), (3.110) and (3.112), we have
(3.113) of. + (ja+ )" + (6 —201)* = ((ja+ o)+ (B —01)”
= (ja+ B)* =20{. + ja* + (8 — 201)".
From this we obtain
(3.114) (ja+o0)" =ja* +0{. fora el \T4 jeZ\{0}.
Now take any «, v € I" such that
(3.115) a,v,a+y €T \T1y and oy —agy #0.

Using (3.114) in (3.108), by comparing the term x'(@1+t)" in both sides, we obtain

(@+y)" =a"+7" + Z ké’f,)),(al',* —o04.), where
pel.
(3.116) o

kP =0,1 such that Z kP <1

oy
PELA

We claim that (o +7)* = o* +~* if the pairs (o, 7), (2, 27y) satisfy (3.115). Assume
that k&q_)7 = 1 for some g € I; 4. Then we obtain

(3.117)
Q) + @)+ YK, (o) — o) = (2o +279)"

PELA *
= (Z(Oz +’y)) =2(a+7)*

= z(a* + % + Z kgﬂ(al/,* - J@)) ,

pEh4

from this we obtain k;qa),h = zkEZL, > 1, which is a contradiction to (3.116).
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For any o, 3, + 3 € I' \ I’y 4, we can always choose v € I' \ T'; 4 such that the
pairs

(3.118) (a+f,7), Qa+28,2v), (ofB+7),
Qo,28+2v), (B,7), (26,27),

satisfy (3.115). Hence

(3.119) (a+P) +7" =(a+f+7)" =" +(B+7)" =a"+ 5"+,

which shows

(3.120) (a+p) =a"+03" fora,B,a+B €T\,

This shows that 7 can be uniquely extended to a group isomorphism 7: I' — T'’ such
that of = o{. and so similarly o = 0. for p € I, 4. This proves the claim.

Claim 3 We have v(I;) = I/ fori = 1,2,3,4. In particular, (¢1,6,,03,44) =
(01, 65,03,6)), I = If fori = 1,2,3,4,and 0y, = 0, 1mp = n, for p € 14 (cf.
(2.23) and (3.91)).

Note that ad -, is a semi-simple operator on H if and only if p € I, (cf. (3.3)).

Thus
(3.121) v(liy) =1I,, andso v(l3,) =1I;,.
Denote
(3.122) N={ueH|[uM] CcM}

=M+ span{x“’i | =ap,, |if =1ori= i,ﬁUh},
(3.123) No=M+{ueN|[x°,ul =0forp el s}

= M +span{x", x| a = oy, 9 € s, j = It

(3.124) Ny, =M+span{u € N|[x 7, u]l =0} forp €I,

Then Nj is a Lie algebra and N is an No-module such that N, is a submodule for
p € I, 4. Note that the quotient module N/N,, is zero if p € I, is a cyclic Np-module
(with generator t5) if p € I3, and is not cyclic (with two generators ¢, t5) if p € I4.
Applying 6 to the above sets and by (3.121), we obtain the claim.

Using Claim 3 and (3.54), by replacing H by 6,,(3() (cf. (3.54)), we can now sup-
posev = 1.

Claim 4 . There exists A = diag(A,,...,A,,) € GL,,, where

_ a, +b, a, (1 0
(3.125) Ap_<1_ap_bp 1) A, = 0 b, € GL,,
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for p € I U Iz, g € I, such that a’{*p‘ﬁ} =apmpdpforael \T14,p € L4
Using that 7 is a group isomorphism and applying 6 to

(3.126) [x™7, x"] = (ap + np0)x"
(¢f. (3.3) and (3.91)), by (3.80) and (3.81), we obtain
(3.127) dp(a% tnpa,) = az+npa, ifag+nga, #0,a €T\ Ty, p € L

Comparing the coefficients in (3.108), we obtain

(OZP’YE - Oéﬁ’YP)CU +aty = CO‘C’Y(a*’yi - O(t’)/*) if
(3.128) ' o .

Oép'}? - aﬁ'}/p 7é 07 o, a+y € r \ I—‘1,4~

Suppose a £y ¢ T'; 4. Replacing y by —v in (3.128), and dividing by the result from
(3.128), we obtain

(3.129) c_vc;1 = cgpm_vcgp{raﬂ = ca_vc;rlv.
In particular, by taking v = o, + A, (recall (3.97)) and replacing o by a + o), + A,
we obtain that

(3.130) C—0y—\,Cat20,42), = CaCopth,s

holds under some conditions on « (these conditions are linear inequalities on «,,
ag). Setting v = 0, + 2, in (3.128) and using (3.130), we obtain

(3.131)

(ap(_% +2ep) — 20[5) c:(lfp_AP = c;PIJrAPCUPJrZ,\P (a;(—nﬁ + 2)\;_}—)) — a%(l +20,, ) ,

holds under some conditions on a. Recall from (3.91) that ; = 0if p € I, and
ng = —1 otherwise. Noting that when p is fixed, all coefficients (such as A7 ) of
ap, ap, ap, a% appearing in (3.127) and (3.131) are constant. From (3.127) and
(3.131), using (3.99), we can solve a;, a% as linear combinations of v, a with the
coefficient matrices as required in the claim (i.e., as shown in (3.125)); furthermore,
we have b, = dgl. Since 7 is a group isomorphism, the condition on « can be
removed, i.e., the claim holds for all « € T'.

Claim5 In (3.125),a, = 0if p € .
Let p € I. Wewrite 0(ty) = bt;+3 . 145, j)er <’ by, jx"L for some b, b ; € F.
Then we have )

(3132) aT)C(Jﬁ()'px/a*Jro-p - 0([tp,xa]) = bcaa%x/a*JrgP + .-

for a € T'\T'; 4, where the missed terms do not contain x'®"*%  Thus by (3.125), we
have

(3.133) A5Cata, = bca(apap +(1— ap)al—,) .
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Hence b # 0. Take 0 # « € Fe, N T (then a ¢ T’y 4), we obtain a, = 0. This also
proves (3.43) and (3.44).

Claim 6 Denotec = )

cox'® for some ¢, € F*.
Assume that o € I'y4 with o), # o. Then by (2.26), we can always choose
B = Bypep + PBpey € '\ T'14 for some p € Iy 4, such that

e, Op- Forany o € I' with oy, #+ o, we have (x*) =

(3.134) a = Bylag — Bz +mp) — Balay — B — 1) £ 0.

Then 3,a—f3—0, ¢ T'14and §* € fl’, (where f;, is a similar notation as in (3.107)).
We have

(3.135)

*

o(xoz) _ a*lo([xﬁ,xafﬁf(rp]) _ ailcﬂca—ﬂ—gp [x/g*vx/a*,ﬁ*f(,—p] c ]Fx/a )
By (3.7) and Lemma 3.1, we have

(3.136) 0(t,) € H'" C span(H{ UH;) = > Fx'~"+ > Tt/ + Hj,

’]611/_4 YGTSI_E

for p € Iss. Thus, using notations (2.22) and (3.76), we have (also recall notations
(3.60) and (3.61))

(3.137) 9*1@;;_6) = (x "), F1 +f, F, (modHs),
for some

(3.138) F = (ap,q)pehhqefg)é € M, x(ur+0))s
(3.139) F, = (bp.q)pgﬁ_ﬁ,qej;6 € GLg 4,

(in particular £s + €g = 04 + £}).
Claim 7 We have
(3.140) ayg =0 ifpelhyqels,
(3.141) bpg=0 ifp¢Isqgels,
which implies (€5, {s) = (¢4, ¢¢) and I; = I! fori = 5, 6.
Note that the center of M is € = {x* € I' | @ = ay,,}. Denote the centralizer
Cy¢(C) = {u € H | [u, C] = 0}. It is straightforward to check that
(3.142) {ty| p € Ly U Js UL} C Cac(€) C span{x*t | iz, = 0}.

For p € I 4, (3.142) implies that ad .o, |c,,(e) is semi-simple if and only if p € I, 5,
and ad,, lcsc(c) 1s semi-simple for q € I by (3.142) and is not semi-simple for g € I.
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Moreover, by (3.1), for p € Isg, ad,, is semi-simple if and only if p € Is. We obtain

the claim.
By (3.140) and (3.141), we can write F; and F, is the forms

Bis Big B B
(3.143) Fi=Bys Big|, F= (2 2°°),
' ’ 0 Bgs
0 Bsg :

such that all B; ; have the forms in (3.46) and (3.48).
For any « € I', we denote

(3.144) a = (ag+n04,...,04 +m,0u,) € F,
(cf. (3.91)). Fora € I' \ Ty 4, applying 6! to
(3.145) ap ¢ =[x,

« &%

(¢f. (3.4)), using (3.137), and noting that [H5, M] = 0, we obtain

(3146) Oé;;ﬁxa = [(xiJ)IMFl +f75.6F2,xO‘] = (aFl + OqsiéFz)Xa,
that is
(3147) 0475.6 = &Fl + Oé15_6F2,

holds for all @« € I' \ I'; 4 and so holds for all & € T since 7: @ — «* is an isomor-
phism. From this and (3.143), we obtain formulas (3.43)—(3.48) (cf. (3.49)).

Claim8 (; = (.
Observe from (3.9) that

(3.148) H; = C3¢(M) (the centralizer of M),

(3.149) span{xa'i €H; |i; =0} =C(Hs) (the center of H3).

By exchanging 3 with 3" if necessary, we can suppose ¢; < /7. As in the proof of
sufficiency, we can construct an embedding 6: H — H’ such that

(3.150) O(x*) = 0(x"), () =0(r7,,) (modHy),
(¢f. Claim 6 and (3.137). Note that using (3.137), we can now_obtain that Claim 6
holds for all € I" if {5 + ¢ # 0). Thus by identifying H with 6(H), we can assume

that J{ is a subalgebra of ' such that there exists an isomorphism 6 satisfying

(3.151) 0(x*) =x%, O(t;) =t; (modH;) forael,p e g
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By restricting 6 to H3, we want to prove

(3.152) 0(t,) =t, +c, forp € lsandsomec, €,
(3.153) O(xied) = x* T (6t,)) " H (0(t)) " fora=ay,,i= o j =1, -
pEls q<l;

To prove (3.152), first by (3.149), we have ¢, = 6(t,) —t, € C(H3). Then by (3.151),
we have

(3.154) [t7,¢0] = 0([07 (1), ,]) — [17,1,] =0,

where the second equality follows from the fact that 9*1(%) = tz (mod H3) and
[Hs,t,] = 0. From (3.154), we obtain that ¢, € IF. Thus we have (3.152). Similarly,
we have

(3.155) O(x*r) = x*(ty +ca,p) for p € Is and some c,,,, € F.

By considering 0([x“, t,t5]) = [0(x"), 0(t,t5)], we see that ¢, , = ¢, and we obtain
(3.156)  O(tpty) = (tp +¢p)t5 +u, for p € Iy and some u,, € Coq (C(H;)) )
From this and (3.152), we can deduce

(3.157) O(xr) = x*(t, +¢,) forp e Ig.

Similar to (3.156), we have
(3.158)
O(xTrr78) = x"0(t, + ¢p) + ”1/7 for p € Is and some u}', € Cy¢/ (C(HY)).

Now from (3.152), (3.155)—(3.158), we can obtain (3.153) by induction on |i| in case
j=0.

Assume that (3.153) holds for all j with |l| < n, where n > 1. We denote by A, ; ;
the difference between the left-hand side and the right-hand side of (3.153). Then
the inductive assumption says that A, ; ; = 0 if | j| < n. Now suppose |j| = n. Say
jr > 1 for some r € I (the proof is similar if r € I;). Let k = J —&r+ &7 Then we

have
(3.159) '
(006, Aa i) = 01t x345]) — 011,60~ x)1) T (66)) " TT (60t0)) ™
pels q9€k
= o, T (00) " TT (000)) ]
pels q€ )
= (jr+1) (G(x“*iti‘s’) —x JT (6" T (6) jf&*’)
p€ls q€J;

= (]? + I)Aa,gi—sr = 0,
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where the first equality follows from (1.1), the second equality follows from (1.1) and
(3.151). By (1.1) and (3.159), we obtain

(3.160)  [0(t7), Al = O([t],07 " (Aain)]) = 20(t:[tr, 07 (A ip)]) =O.
On the other hand, exactly similar to (3.159), we have
(3.161) [0(t), Aaix] = 20j7 + DAqj-

Now (3.160) and (3.161) show that A,;; = 0. This proves (3.153). By (3.152),
(3.153) and by identifying C(H3) with C (H; ) using the isomorphism, we see that 6
is an associative algebra isomorphism H; — Hj over the domain ring C(H3). From
this we obtain ¢; = £ since 2{; is the transcendental degree of H; over the domain
ring C(H3). This completes the proof of Theorem 3.6. ]

4 Derivations

In this section, we shall determine the structure of the derivation algebra of the
Hamiltonian Lie algebra 7 = H({,I"). As pointed out in [F], the significance of
derivations for Lie theory primarily resides in their affinity to low dimensional coho-
mology groups; their determination therefore frequently affords insight into struc-
tural features of Lie algebras which do not figure prominently in the defining proper-
ties. Some general results concerning derivations of graded Lie algebras were estab-
lished in [F]. However in our case the algebras are in general nongraded, the results
in [F] can not be applied to our case here. Thus we try a different method to deter-
mine derivations of the Hamiltonian Lie algebras . Our method is also different
from that used in [OZ].

Recall that a derivation d of the Lie algebra J{ is a linear transformation on J{ such
that

(4.1) d([ur, up]) = [d(u1), uz] + [uy,d(uy)]  for uy, u, € H.

Denote by Der H the space of the derivations of 7, which is a Lie algebra. Moreover,
adg¢ is an ideal. Elements in adqg¢ are called inner derivations, while elements in
Der H \ ad g are called outer derivations.

We can embed JH into a larger Lie algebra H such that H has a basis {x* | (o, 1) €
' x N*7} (e, in I, we replace J by N*77, cf. (2.27), and we have (3.1) with the last
three summands running over p € I, 4, p € I; 4 and p € I respectively). Then for
p € hUL3UIs, dearly, t, ¢ H, but [1,, H] C H. Thus

(4.2) dy =ad, |5 forpe U L3 Uls,

defines an outer derivation of . For p € L5 U J; UI5 U Js7, obviously, O, is a
derivation of H (¢f. (2.27), (2.35) and (3.1)). For p € ], we define sgn(p) = 1 if
p € Iand sgn(p) = —1if p € I. Then

(4.3) 0, = sgn(p)ad,, forpe IsU Jo7.
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Define do(x®) = (ZPEIH ap + 1)x for (a,i) € T' x §. It is straightforward to
verify that dy is an outer derivation of H{. Denote o =} I
H = [H, H] + Fx?, and we can define an outer derivation d; by setting

0p. If 17 = £, then

(4.4) dy([F, H]) =0, dy(x”) = 1g¢.

If 7 # £y, wesetdj = 0.
We denote by Hom7 (T, F) the set of group homomorphisms p: I' — T such that

p(op) = 0 for p € I 4. For p € Homy (T, F), we define a linear transformation d,,
on H by

(4.5) d,(x*1) = p(a)x™t for (o, i) € T x §.

Clearly, by (3.1), d,, is a derivation of . We identify Hom (I, F) with a subspace of
Der H by y1 +— d,,. For p € I, g, we define 1, € Hom}(T', IF) by

5+ N3 if p € I 4,
(4.6) pp(a) = agp + N0 1 pclia
Qp lfp € IS,6)

fora € ' (¢f. (3.91)). By (3.3) and (3.4), we have

dﬂp lfp € 1172,
(4.7) adxfrrp = dﬂp + 6tp ifp € 13,
dy, + 0, — &ﬁ ifp eIy,
—d, ifq € Is,
(4.8) ad, = M .
_dllq - atq lfq S Iﬁ.

We fix a subspace Hom} (T, IF) of Hom} (T, F) such that

(4.9) Homj(I",F) = Hom(I", F) & span{y, | p € I 6},

is a direct sum as vector spaces. Since adg = 0, we set H* = span{x®* | (0,0) #
(a,i) €T x g}

Theorem 4.1 . The derivation algebra Der H is spanned by

(4.10)

dy, dp, y,, dy, adge- forp € {0} U ULz Uls, g € L3 U Jy, u € Hom (T, ).

Furthermore, we have the following vector space decomposition as a direct sum of sub-
spaces:
(4.11)

DerH = ((1ng+ > 1de) ® Y I, @Hom;;(r,lF)) @ adye .

pe{0}U UL 5UIs q€h3U ]y

In particular, all derivations of the classical Hamiltonian Lie algebras H(¢) (cf. (1.3))
are inner.
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Proof First note that in [OZ], dy was written as a derivation of the form d,, with u
satisfying p(o,) = p(oy) for p € I 4. Let d € Der } and let D be the subspace of
Der H spanned by the elements in (4.10). Note that D D Hom (T, F) by (4.7) and
(4.8). We shall prove that after a number of steps in each of which d is replaced by
d — d’ for some d’ € D the 0 derivation is obtained and thus proving that d € D.
This will be done by a number of claims.

Claim 1 We can suppose

(i) d(1) =0,
(if) d(x=°) =0forp € Iz4,
(iii) d(x*) =d(t,) =0forq € Isg,r € I¢U J.

By replacing d by d — d(1)d,, we can suppose d(1) = 0. For any (a,i) € I x g,
we write

(4.12) d(x*t) = Z c(‘ ll)x(”‘s’l for some CLIJ € F, where

o,
(B,))EMai

(4.13) Mo ={(B,j)) €T x ]| cfflfi) # 0},

B.j
is a finite set. We set c( = 0if (3, ]) ¢ M, ;. We shall denote M, simply by

M,. Using the mductlve assumption, suppose we have proved that d(x~?") = 0 for
re€ zyand r < p. Let (3, l') € M_,,. Using (3.3), one can deduce by induction on
|7| that

(414) x7017+“3’1 = [u(f.,ja x_Up] for some ugj S j’(,

such that ug ; has the following form
(4.15) ugj = Z biox” 7R for some by € F
T ktez
(recall convention (2.34)). Thus we can take
(B,

(4.16) u= Y ¢ ;gus; €H suchthat(d—ad,)(x"") =0,
(B.J)EM_,,

Applying d to [x~7,x~ 7] = 0, we obtain

B,j _ _ 3.
(4.17) S Sl T =0 forr €l r < p,
(B.))EM 5,
ie.,
61) /31+cr (B.j+er)
(4.18) 70— o(ﬂr 57 - 7(,— 0 (]r+ 1)+Cff,— 0 (]r+ 1) =0,

https://doi.org/10.4153/CJM-2003-036-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-036-7

886 Yucai Su

forr € I;4, v < p, from this and by induction on j, + j7 ranging from max{k, + k |
(B,k) € M_,, } down to zero, we obtain

(4.19) Gr=p0r jr=7jr=0 for (/6’,1) EM_;,r€lyr<p.

Then (4.15), (4.16) and (4.19) show that ad,(x~%) = O forr € I3 4, r < p. Thus if
we replace d by d — ad,,, we have d(x~7") = 0 for r € I3 4, v < p. This proves Claim 1
(ii). Note that forv = x%, q € Is, orv = t,, 7 € Is U J7, we have ad,,(3{) = H. Thus

similar to the above proof, we have Claim 1 (iii).
Note that for (ﬂ,l') €I x J,by(3.3) and (3.4), we have

(4.20) (B3 +npBp)x~ 0 Pl =[x~ PL x=7r] for p € I,

(4.21) (=1 + Bp)ep Pl = [0 o] 4 j oI5 for p e 1o,
(recall notations Ay, p € I 4 in (3.97)), and

(4.22) Bpxi = [x"1 151 for p € Ls.

Claim 2 By replacing d by d — d’ for some d’ € D, we can suppose

(4.23) Bs+ms8, =0 for(B,j) €M, p € Ly,
(4.24) By =1 for (ﬂ,l') EM,,,p €l
(4.25) Bp =0 for(B,j) € Moes p € Is.
The proof of (4.23) is similar to that of Claim 1. To prove (4.24), suppose we have
proved
(4.26) 6, =1 for (3, l’) EM),i €141 <p.

To see how the proof works, for simplicity, we assume that p € I, (the proof for
p € L4 is exactly similar). Then the second term on the right-hand side of (4.21)
vanishes. Let

3.4) S
(4.27) w= Z xp0 ((—1+By)ep)  x~7*0.
(B.)EMy,, Bp#1

Then by replacing d by d — ad,,, from (4.21), we see that (4.24) holds for p. We want
to prove that after this replacement, Claim 1, (4.23) and (4.26) still hold. It suffices
to prove

(4.28) [, x77) = [, %% ] = [u, 1] = [, %] = 0,

forq€hiaq €L q" €U J;,r € LLar < p.
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We have
B 4B _ Ay —op A
429)  —ep Y o 5% = —epd(x™) = d([x 7, x™]
(B.J)EM,,
(B:1) i
- Z ¢ go(=1+ Bp)artii
(BEM_,,
3]) 3.7
oy &0 Bp = Bp = ep)x
(B.J)EM,,
This gives
A
(4.30) By — B = (CA 0) "By — 1)C_g o for(B,j) € M,,.

If (8,7) ¢ M_;,, then the right-hand side of (4.30) is zero; on the other hand, if
(B,j) € M_ 7y then (4.23) gives 3, — 5 = 0. In any case, we have 3, — 35 = 0 for
(8, ]) € M,,. Thus by (4.27),

@3 lwxl= Y (1 Be) (B — B =

(B)EMy, By#1

Similarly, we can prove other equations in (4.28). This proves (4.24). Similarly, we
have (4.25).

Claim 3 By replacingd by d — >_ ;1,01
@ € Hom} (T, F), we can suppose d(x~ ) = d(xM) = d(t,) = 0for p € I,
qe 1174, r € Is.

Again for simplicity, we prove that after some replacement, d(x~7) = d(x*) = 0

for p € I. Defining 1 € Hom} (T', F) by () = cf\o%)ep l(aﬁ—ap), and by replacing

a,d, — d, for some a, € I and some

dbyd—d,, we obtain c' o, ©, O) = 0 (recall (4.12) that ¢, e is the coefficient of x**%4, not

«, 1
that of x*7). Obviously, thlS replacement does not affect the result we have obtained
so far. Recalling the definition of d, in (4.2), we have
(4.32)
dp(x™7) = [ty,x™ "] = =1, dp(x ) =1, dp(x™) = e, ds(x™)=0.

Thus by replacing d by d — a,d, — apd; for some a,, a; € IF, we can suppose

(0p,0) (0p,Ap) 0,0
(4.33) =y =g =o.

Note again that the replacement does not affect the results we have obtained so far.
Letq € I, q # p. We have

(4.34) '
0=d(lxr,x]) = S (02 (B — B + s (B, — Bp)) 5,
(4.35)

— (3]) J+a —0p,j) _ X
0=d(lx7r,xM) =Y (cooBeegt ey, By Bp)x oL
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Now (4.23), (4.34) and (4.35) show that 3; = 3, = 0 if (ﬁ,i) € M_,,. Similarly, we
can prove 3, = j, = O0forallr € J,r # p, f)if(ﬂ,l) € M_,,. This and (4.30) show
that (3, j) = (0,,0)if (8, j) € M—,,. But (0,,0) ¢ M_,, by (4.33),i.e, M_,, = @.
Thus d(x~%) = 0. Similarly d (x*) = 0. Analogously, we can obtain other results of
Claim 3.

Claim 4 We can suppose d = 0.
Note that x* is a common eigenvector for the elements of the set

(436) A= {x_‘jp,xs”l, t, | p S 1174, q S 15,63 r e TS,G U ]7}

Since d(A) = 0, d(x*) is also a common eigenvector for the elements of A. From this
and Lemma 3.2, we obtain

(4.37) nﬁﬁp + 65 =3,=0, i: 0 forpeliyqg€lseand (ﬂ,l’) € M,.

B _

3,0
« ,0

For simplicity, we denote ¢ c((l ). We want to prove

(4.38) d(x*) = myx* for o € " and some m,, € T,
i.e., M,, is either empty or a singleton {(0, 0)}. Thus assume that
(4.39) By #0 for some (B,J) €My, p € Lgy,a €T

For convenience, we again suppose p € I;. Denote I') = (Fe;, + ]F€§) NI asin
(3.102), and set H,, = span{x” | & € 'y }. We have

(4.40) dx*) € H, foracly,

by using the fact that x* commutes with elements of A except possibly x =7, x*. By
(4.37) and by

(441) 0 =d(lx Y M) = (), =3 e,
and by (4.40), we obtain

(4.42) d(x=7r ) = apx_’\f’, d(x» %) = —aprP for some a, € F,

where the second equation is obtained from d([x~7~*r, x} = ]) = 0. Applying d

to
(4.43) [x~2% x] = —Zepx*”f’ﬂp, [x 7200, x~0 M) = Zeprz”P*’\P7
(4.44) [x 7202 xM—or] = —3epx_2"”,

we obtain respectively

(4.45) d(x72°r) = —2a,x" %, d(x"2" M) =0, a,=0.
P 14
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Thus all equations in (4.42) and (4.45) are zero. Applying d to [x* % x| =
—kx®D ysing induction on k, we obtain

(4.46) Ay =0 fork>1.

Applying d to
(4.47)

[, x72r] = 2(ap — ap)x* T, [x%, x~ R = (a5 —ap — kozﬁep)x‘kkAP7
(4.48) [x* R K] = kae,xtor,

for k > 1, using (4.37), we obtain

(4.49) 2ag — ap)c?) = 2(a5 — ap)dd,

B
(4.50) (ag — oy — k(a, + 6p)ep) cff) = (a5 —ap — kapep)cf;_)k/\p,
(4.51) Koy + Bplepel” = kapepcilly,.

Ifa, # ag, then the above three equations gives 3, = 0, a contradiction with (4.39).
Thus we obtain

(4.52) By #0, (8,0) € My = ) = a5.
Replacing a by a — o, in (4.51), it gives

_ (3
(4.53) (ap— DV =(ap— 1+ Bp)ea—a, -,

Noting that for o’ = a — 0, — A,, we have a[’) % a’ﬁ. Assume (3,0) € M,. If
(8,0) € M,, then (4.52) shows that 3, = 0, again a contradiction with (4.39).
Thus (53,0) ¢ M, and the right-hand side of (4.53) is zero. This and (4.52) show
that a3 = o, = 1. Note that for o'’ = o — kAp, k > 1, the relation 0/?’ = a[’)’
does not hold, thus the right-hand side of (4.50) is zero. We obtain «, + 3, = 0.
Hence

(4.54) ag=a,=—PFp=—B5=1 iff, #0,(5,0) € M,.

If o, # o (cf. (2.22)), say (o, o) # (1, 1) for some q € I;, q # p. Suppose oy # 1
(the proof is similar if ag # 1), then we can write

(4.55) X = ((ag — Deg)  [x* = tr xa=or].

Since for o’ = o — 04 — Ay + 0, or \; — 0, the relation a; = ol = 1 does not

hold, we have 3, = 0if (3,0) € M,. Then applying d to (4.55) gives that 3, = 0 if
(8,0) € M,, which contradicts (4.39) again. Hence

(4.56) aj;,=o0, and (= -0,
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by (4.37) and (4.54). If {5 + (¢ + {7 # 0, we can write

(457) x* = (Oéq + k)_l [x(¥+l7p+k6q7x—Jp—qu,Sﬁ] for g€ 15,6) ke, g+ k0,
. [x oS x0T ] forr € I.

Note that for
(4.58) (a',i') = (a+op+key,0), (—op—keg e5), (a+op,e) or (—op,e5),

the relation o, = a5 = 1 does not hold; one can prove as above that 3, = 0
if (8,0) € M, ;. Then applying d to (4.57) gives that 3, = 0if (3,0) € M,,
which again contradicts (4.39). Hence {5 + {¢ + £ = 0. Similarly, one can prove
Uy + 03 + ¢4 = 0. But then ¢; = {;, and we can replace d by d — c((f)d(') (¢f. (4.4) and
(4.56)), so that c((f) becomes zero. This proves that the assumption (4.39) does not
hold. Thus we have (4.38).

Now we prove
(4.59) dt)y =0 ifi=i.

By Claim 1, we can suppose |i| = n > 2. Assume that we have proved (4.59) for
|li| < n. Then d([v,t]) = 0 for v € A. From this, we obtain d(t!) € Flg. Suppose
ip > 0 for some p € I;. Thent* = (i5 + 1)’1[t12),ti_51’+5?], and [i — €, +e5| = n,
thus d(t) € [IF, 5% ] + [tf,, IF] = 0. Similarly, by replacing d by d — d’ for some
d e 1€ sUJs IF0;, (which does not affect the results we have obtained so far), we
can suppose

(4.60) d(x*) = mex™ fora eTl,i= i,
and
(461) d(tp) = d(fqz) =0 forp c 12’3 U Iy qe 75 U Js.

Note that HH is generated by elements in (4.60) and (4.61), thus we obtain that (4.60)
holds for all (e, i) € I' x . From this and (3.1), one can easily deduce that
(4.62)

Wi« m, is a group homomorphism such that 4 € Hom} (I, F) if 17 # ¢;.

Assume that t; = £;. Then by (3.2) and (4.38), we have

(4.63) Mo + Mg = Masprg, fa,B5 #azBpanda,BeT, p €l
By (4.42), (4.45), (4.46), and by induction on |i| + | j|, one can prove

(4.64) Mig,+jr, =0 fori, jE€Z, p € I14.

From this we want to prove

(4.65) Mo = Mosig,+jn, fora €T,i,j €.
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By replacing o by some « + 0, if necessary, we can suppose (a, ag) # (0,0), (1, 1).
By (4.64) and by [x®, x =77 iM] = (ap(itjAp) — iaﬁ)xa'*("“)”ﬁj’\ﬂ, we obtain m, =
Matio,+jr, if @p(i — 1+ je,) # (i — 1)agp, from this, one can deduce (4.65). Now
from (4.63) and (4.65), we obtain (4.62) again. Thus by replacing d by d — d,,, we
have d = 0. This proves Claim 4 and also (4.10).

To prove that (4.11) is a direct sum, suppose

(4.66) d=ajdi+ > apdy+ Y bdy+d,+ > cajaden,

pe{0}UNUL3UL 9€hL3Us (0,0)#(a,i) €l % J

is the 0 derivation. Applyingdto AU{1,t, | p € L3U JyUIs} (cf- (4.36)), we obtain
that all coefficients are zero except aj. Thus d = ajd; = 0. By (4.4), we obtain either
ay = 0ord, = 0. Thus (4.11) is a direct sum. [ |

5 Second Cohomology Groups

In this section, we shall determine the second cohomology groups of the Hamilto-
nian Lie algebra H = JH({,I'). It is well known that all one-dimensional central
extensions of a Lie algebra are determined by the second cohomology group. Central
extensions are often used in the structure theory and the representation theory of
Kac-Moody algebras [K3]. Using central extension, we can construct many infinite
dimensional Lie algebras, such as affine Lie algebras, infinite dimensional Heisen-
berg algebras, and generalized Virasoro and super-Virasoro algebras, which have a
profound mathematical and physical background (cf. [K3], [S1], [SZ]). Since the co-
homology groups are closely related to the structures of Lie algebras, the computation
of cohomology groups seems to be important and interesting as well (cf. [J], [LW],
[S1], [S2], [S3], [SZ]).

Recall that a 2-cocycle on I is an F-bilinear function 9: JH{ x H — T satisfying
the following conditions:

(5.1) Y, v2) = =Y(v2,m) (skew-symmetry),
(5.2) ([vi,v2l,v3) + (v, v3l,v1) + ([vs,m],v2) =0 (Jacobian identity),

for vy, v5, v3 € H. Denote by C2(3, F) the vector space of 2-cocycles on J{. For any
[F-linear function f: JH{ — IF, one can define a 2-cocycle 1) s as follows

(5.3) Yi(vi,v2) = f([vi,v]) forvy, v, € H.

Such a 2-cocycle is called a 2-coboundary or a trivial 2-cocycle on H. Denote by
B?(H, ) the vector space of 2-coboundaries on H. A 2-cocycle ¢ is said to be equiv-
alent to a 2-cocycle v if ¢ — 4 is trivial. For a 2-cocycle v, we denote by [¢] the
equivalent class of 1. The quotient space

(5.4)  H*(3H,F) = C*(H,F)/B*(H,F) = {the equivalent classes of 2-cocycles},

is called the second cohomology group of J.
Lemma 5.1 If1; # {1, then H*(H,F) = 0.
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Proof Let ) be a 2-cocycle. Say ¢4 # 0 (the proof is exactly similar if ¢; # 0 for
i # 1,4). We fix p € I,. Define a linear function f by induction on i3 as follows:

w9 e {E )

for (a,i) € I' x J. Set ¢ = 1 — 1)5. Then (5.5) shows that

(5.6) P(ty,x™) =0 for (a,i) €T x J.

Using Jacobian identity (5.2), we obtain

g)wp, (L ™)) = (ap+ B, M) +ipp (=7 x4 jpo (M0,

for (o,1),(3,j) € I' x J. If a5 + B3 # 0, by induction on i + j5, we obtain
d(xi, x*1) = 0. On the other hand, if ag + 35 = 0, then (5.7) gives

(58) (b(xd;i, xﬂ’i) — _]f(lﬁ + 1)—1¢(x(¥,£'+557 xﬂ:i—£§)7
and by induction on j3, we again have P(xi, x*1) = 0. Thus ¢ = 0. ]

Assume that ¢; = /1. Denote o = Zpell o5, and we use notation Hom(I', F) as
in (4.9) (cf. (4.6)). We construct 2-cocycles ¢, gbl'), ¢, for p € I, p € Homy(I',F)

as follows:

(59) ¢p(xa7x3) - apaa+ﬂ,0—ap7
(5.10) ¢p(x*,x7) = 05001500,
(5.11) ¢;L(xa7 xﬁ) = M(a)6(1+/3,07

for a, § € I. Tt is straightforward to verify that they are 2-cocycles (cf. [J]). From the
proof of Theorem 5.2 below, one can see why we construct such 2-cocycles.

Theorem 5.2

(1) H*(H,F) =0ifu; # {y;
(2) ift; = £y, then H*(3(,F) is the vector space spanned by B = {[¢,], (6,1, [¢,] |
p € I, € Hom}(I',F)}.

Furthermore, for a,, b, € ¥, n € Hom} (I, F), we have

(5.12) > (aplp] +bylep)) + [du] =04 ap = by = p =0.

p€l

Proof (1) follows from Lemma 5.1, while (2) follows from [J]. We give a simple proof
of (2) as follows.
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First we prove (5.12). Thus suppose

(5.13) b= (apdp+bpdp) + b+ Uy,

pEnL

is the zero 2-cocycle for some a,, b, € I and some linear function f. Thenfor p € I,
a € T, by applying ¢ to (x =7, x7), (x*r,x*~ %), (x*, x7~*), we have

(5.14) 0=1(x~7,x7) = —a, — by,

(5.15) 0=, x7 M 77) = ¢y,

(5.16) 0= P(x", %) = p(e) + Y _(ap — ap) f(x7™),
peh

(¢f. the definition of A, in (3.97)). We obtain that a, = b, = 0 for p € I, and by
(4.9),

(5.17) = Z cpttp € Hom3(I',IF) Nspan{yu, | p € I} = {0},
peh

where ¢, = — f(x7*?) € IF. This proves (5.12).
Now suppose 1 is a 2-cocycle. We define a linear function f as follows: set f(x?) =
0, and for « € T'\ {0}, we define

(518) pUt = mln{p 6 Il | (Oép;aﬁ) 7é (13 1)}7
and set

N (ap — o) M (x™ %, x) if o # ay,
5.19 =
( ) f(x ) {epl(l . Oép)_lﬂ)(x)\p,xu_gp_)\p) ifOéE = a, £1,
for p = p,. Set
(5.20) =1 =Y (apdy+bpsy) — by,

pel,

where
(5.21) ap = —p(x~ 7, x7) = by, by = e, (M, x0T,

(¢f. (5.14) and (5.15)). Then one can prove
(5.22) Ppx % x*) =0 forpel,ael.

In fact, if @ = o, it follows from (5.9), (5.10), (5.20) and (5.21). Assume & # o. Let
p = po and write

(5.23) o g —ap) T a0 if o # 0y,
61;1(1 - ap)—l[x)\p,xa—ap—)\p] ifaﬁ =, #1,
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(¢f. (5.19)), we can obtain (5.22) by the Jacobian identity (5.2). From (5.22), by
considering ¢(x~ %, [x“, x°]) and by (5.2), we obtain

(5.24) d(x*,x%) =0 if ap + 3, # az + (5 for some p € I.

Now we want to prove

(5.25) d(xM,x*)=0 forael, q €.

By (5.24), we can suppose o), = a5 if p # g, and oy = az +eg. fa =0 — A\ — 0y,

(5.25) follows from (5.9), (5.10), (5.20) and (5.21). So suppose & # 0 — A\, — 0. Let

o =a+ tog # 0. Ifp=pa #q,thena;:a%:ap:aﬁyél,andby

writing x* = e;1(1 — a,) 7 HxM, x9N ], we obtain
(5.26) PN, x%) = —¢; (1 — ) legagp(x, x TN =0,

by (5.19). On the other hand, if p = g, we again have ¢(x*, x¥) = @(x, x"/*"P*AP)

= 0 by (5.19).
Now by (5.25) and by writing (o, — 1)x* = —egl [x*, x*=2~%] we obtain
(5.27) (ap = Do(x",x7) = =Bpp(x* =7, Tt

(528) (ap _ 2)¢(xa—)\p—0p7xﬂ+)\,)+0p) _ _(ﬁp + 1)¢(xa—2/\p—2ap,x/5‘+2)\p+201,),
for p € I, where (5.28) is obtained from (5.27). Using (5.28) in (5.27) and by writing
(5.29) (3(ap — ap) — 2ape,) X720 = [y TP

we obtain

(5.30)
(3(@5 —ap) — 2apep) (op — D(ap — 2)p(x*, x%)

_ ﬁp(ﬁp + 1)(¢([xa'7xﬁ+2)\P+2rrp]7x72)\p73np) + ¢(x(1'7 [x72)\p73trp7x(f+2)\p+2rfp])) .
We prove that
(5.31) S, x0T =0 fora € I,pel.

By (5.24), we can suppose a; = a, +2e,. If ), # 1,2, by setting 8 = —2), —30, in
(5.27) and (5,28), then the right-hand side of (5.28) is zero by (5.22), and thus (5.31)
holds. Suppose o, = 1,2. Then aj = 1+ 2¢, or 2 + 2e,, thus we can write « in the
following form

(5.32)

a=a'+0,+2)\, ora’ +20, +2), forsome a’ € T such that (a,, aj) = (0,0).
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We denote
(5.33)

¢ = ¢(xa’+i(gp+)\},)70p7xfi(aer/\P)fcrp)’ Ci/ — gzj(xa'Jri(crp+)\p)7xfi(aer)\p)fap)7
(5.34) di — ¢(xa/+i((rp+)\p)72(rp,xfi(rrp+/\p)), dl/ _ (ﬁ(xoé’+i((rp+)\p)7(rp7xfi((rp-*—)\p))7

for i € /. By writing
(5.35) (i —2j)epx —ioptA) = — [0t =D =0 ) for j € 7,
we obtain

(5.36) (i—2j)ci = (i+j)cij—(i—j)cj, (i—2j)¢] = i(ci/fj—c;) fori, j €.

By writing

(5.37) 2 — i)e xa’ﬂ(a,,mp)—ap _ [xa’Jrj'(cerrA,,)—zal,7x(i—j)(aﬁxl,)]7
(5.38) (] _ l)e e "FioptAp) [xa'+j(crp+)\},)7rrp7x(ifj)(aer/\P)]’
we obtain

(5.39)

2(j—i)ei = Qi+ jdj—i—(i—j)d;, (j—i)f = (i+j)d]’-_i+(i—j)d]’- fori, j € Z.

Note that the system (5.36) has up to multiplicative scalars unique solutions for ¢;, ¢/,
and we find that

(5.40) ¢ = —i), ¢ =i forieZandsomec,c €F,

1

are the only solutions. If we substitute j by 1 and by i + 1 in (5.39), we then obtain
¢ =c/ =d;=d/ =0foralli € Z. This in particular proves (5.31) by (5.32)—(5.34).

Now using (5.31) in (5.30), noting that 3, — 85 = ap — «, by (5.24), we deduce
that

541 (B8 + D(3(a5 — ap) + 255y — 1)

~ (ap = Dlay = (a5 — ap) = 2ap6) ) 6", %) = 0.

As in the proof of (5.31), we can prove ¢(x*,x**») = 0. Thus we can replace A, by

2], in the above discussion, i.e., if we replace e, by 2e,, (5.41) still holds. This forces
(5.42) o(x*,x"Y =0 or B,—1=—a, forallpel,

ie,if a + 3 # o, then ¢(x*, x7) = 0. Thus we can suppose

(5.43) d(x, x%) = Mada+8,0 fora, B €T and somem, € F.

As in the proof of (5.31), we can prove mj, i\, = 0fori, j € Z, p € I;. Then for
anya,f €, pel,letvy =x% 1 = xP, v; = x°=*F=% in (5.2), one can easily
deduce that i o + m,, is a group homomorphism p: I' — IF such that p(o,) = 0.
Thus 1o € Homy(I',F) and ¢ = ¢,. Furthermore, we can write ¢ = v + X for
v € Hom}(I',F), A € span{u, | p € I} by (4.9). Then ¢ = 1), + . But from
(5.16) and (5.17), one can see that ¢, corresponds to a trivial 2-cocycle, thus we can
suppose ¢ = ¢,,. This proves Theorem 5.1. ]

https://doi.org/10.4153/CJM-2003-036-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-036-7

896 Yucai Su
References

[DZ]  D. Dokovic and K. Zhao, Derivations, isomorphisms and second cohomology of generalized Block
algebras. Algebra Colloq. 3(1996), 245-272.

[F] R. Farnsteiner, Derivations and central extensions of finitely generated graded Lie algebras.
J. Algebra 118(1988), 33-45.

[7] Y. Jia, Second cohomology of generalized Cartan type H Lie algebras in characteristic 0. ]. Algebra
204(1998), 312-323.

[K1] V. G.Kac, A description of filtered Lie algebras whose associated graded Lie algebras are of Cartan
types. Math. USSR-Izv. 8(1974), 801-835.

[K2] , Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv.
Math. 139(1998), 1-55.

[K3] , Infinite Dimensional Lie Algebras. 3rd edition, Cambridge University Press, 1990.

[LIW]  W. Liand R. L. Wilson, Central extensions of some Lie algebras. Proc. Amer. Math. Soc.
126(1998), 2569-2577.

[O] J. M. Osborn, New simple infinite-dimensional Lie algebras of characteristic 0. ]. Algebra
185(1996), 820-835.

[OZ]  J. M. Osborn and K. Zhao, Generalized Poisson brackets and Lie algebras for type H in
characteristic 0. Math. Z. 230(1999), 107-143.

[S1] Y. Su, 2-Cocycles on the Lie algebras of generalized differential operators. Comm. Algebra
30(2002), 763-782.

[S2] , On the low dimensional cohomology of Kac-Moody algebras with coefficients in the
complex field. Adv. in Math. (Beijing) 18(1989), 346-351.

[S3] , 2-Cocycles on the Lie algebras of all differential operators of several indeterminates.
(Chinese) Northeast. Math. J. 6(1990), 365-368.

[SX] Y. Suand X. Xu, Central simple Poisson algebras. To appear.

[SXZ] Y. Su, X. Xu and H. Zhang, Derivation-simple algebras and the structures of Lie algebras of Witt
type. J. Algebra 233(2000), 642—662.

[SZ] Y. Su and K. Zhao, Second cohomology group of generalized Witt type Lie algebras and certain
representations. Comm. Algebra 30(2002), 3285-3309.

[X1] X. Xu, Generalizations of Block algebras. Manuscripta Math. 100(1999), 489-518.

[X2] , New generalized simple Lie algebras of Cartan type over a field with characteristic 0.
J. Algebra 224(2000), 23-58.

[Z] H. Zhang, The representations of the coordinate ring of the quantum symplectic space. J. Pure Appl.
Algebra 150(2000), 95-106.

[Zh] K. Zhao, A class of infinite dimensional simple Lie algebras. J. London Math. Soc. (2) 62(2000),

71-84.

Department of Mathematics
Shanghai Jiaotong University
Shanghai 200030

P.R. China

email: ycsu@sjtu.edu.cn

https://doi.org/10.4153/CJM-2003-036-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-036-7

