
A LINEAR DIOPHANTINE PROBLEM 

S. M. JOHNSON 

1. I n t r o d u c t i o n . Let #i, a2, . . . , at be a set of groupwise relatively prime 
positive integers. Several authors , (2; 3 ; 5; 6) , have determined bounds for 
the function F(di, . . . , at) defined by the proper ty t h a t the equat ion 

(1) n = aiXi + a2x2 + . . . + atxt 

has a solution in positive integers Xi, . . . , xt for n > F(a,\, . . . , at). If 
F(ai, . . . , at) is a function of this type , it is easy to see t h a t 

(2) G(au • • • ,at) = F(au . . . , at) - ax - a2 - . . . - at 

is the corresponding function for the solvability of (1) in non-negative x's. 
I t is well known t h a t axa2 is the best bound for F(a,i, a2) and aia2 — a,\ — a2 

for G(di, a2) . Otherwise only in very special cases have the best bounds been 
found, even for t = 3. 

In the present paper a symmetr ic expression is developed for the best bound 
for F(di, a2, a3) which solves t h a t problem and gives insight on the general 
problem for larger values of t. In addit ion, some relations are developed which 
may be of interest in themselves. 

2. A Genera l Property . For t > 2, let B(a\, a2, . . . , at) be the best bound 
for F(di, a2, . . . , dt), t h a t is, B is the maximum number N where 

t 

(3) N 9^ 22 %i°"i for any Xj > 0. 

Then note t h a t B is the maximum N from a restricted set of numbers N 
satisfying both (3) and 

t 

(4) N+dt = 22 yijdj, yij > 0 for each i. 

since the definition of B implies B satisfies (4). Thus , in part icular , 

N = (yn - ! )# ! + 3,i2«2 + . . . + yi&u yij > 0. 

Bu t by (3), 3/11 — 1 < 0 so t h a t yu = 1 since yu > 0. By symmet ry we have 

T H E O R E M 1. For every N sdtisfying (3) dnd (4) there dre representdtions of N 
for each i = 1, 2, . . . , t of the form 

t 

(5) N = Yl yaah ytj > 0' 
. 7 = 1 

dnd B is the mdximum such N. 
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3. The Case t = 3. A reduction formula. We seek an expression for 
B = B(ah a2l a3) having the property that (1) is satisfied for n > B but is not 
satisfied for n = B. Let us first reduce the problem to the case of pairwise 
relatively prime as. 

Let dij = (auaj)y at = b4ijdik, so that (h, b2) = (b2, 63) = (#3, &i) = 1. 
Then we have 

THEOREM 2. 

(6) B(aly a2, a3) = di2d2SduB(bu b2, £3). 

Proof. First we show that if we write d = dx2, b\ = dubh b2 = d2^b2 so that 
(d, a3) = (6i,62) = 1, then 

(7) B(dbi, db2, a3) = dB(bu b2, a3). 

Suppose that dB(bi, b2, a3) = dbix + db2y + a3s, x, y, z > 0. Then since (d, 
a3) = 1, we must have z = wd, w > 0, so that B(bu b2, a3) = b±x + b2y 
dzW, x, y, w > 0, a contradiction to the definition of B(bi, b2, a*). In addition, 
for any positive integer m > 0, we show that 

(8) dB(bi, b2, a3) + m = dbix + ^62^ + a3s, x, 3/, s > 0. 

We apply a result from (2). 

LEMMA 1 (Brauer). Let a and b be relatively prime positive integers. Then every 
positive integer m divisible neither by a nor by b is representable either in the form 

(9) m = au + bv, u > 0, v > 0, 
or 

(10) m = ab — au — bv, b>u>0,a>v>0. 

Letting d = a and a3 = b in Lemma 1, if (9) holds, we have 

(11) dB(bu b2, a3) + m = d(B(bh 52, a3) + w) + z>a3 

= J61X + ^62^ + a3(efe + z/) 

by the definition of -B(5i, 52, #3), giving (8). 
If (10) holds, we have 0 < u < a3, and 0 < v < d, so that 

(12) d(B(bi, b2, a3) + a3 — w) — z>a3 = dbix + db2y + (dz — v)az, 

for x, y, and (dz — v) > 0, giving (8). 
Finally, if m = ud, then (8) follows directly. If m = va%, write m = da% 

+ (v — d)a% giving (8). Thus (7) holds. Applying the method of obtaining 
(7) twice more gives (6) and Theorem 2. 

We have thus reduced the problem to where the a's are pairwise relatively 
prime. For the moment let a\ > a2 > a3. If 

(13) a\ = ua2 + va%, u,v>0, 

then B(ai, a2, a 3) = a2a% + a\ as Brauer showed in (2). Otherwise 

(14) B(au a2, a3) < ataj + ak. 
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4. An expression for B(ai, a2, a3). We develop a symmetric expression for 
B(ai, #2, 03) for the case of pairwise relatively prime a's where each a* ^ xdj 
+ yak, x > 0, y > 0. Later we show that this same form of expression gives 
the general solution for / = 3. 

DEFINITION. Let Lt = the minimum positive Kt satisfying 

(15) Kifit = Vijdj + vikak, vtJ > 0, vik > 0, i = 1, 2, 3. 

Such a number exists since B{ah ak) = djdk < Kat for large if. 

THEOREM 3. Given 

(16) (ai, a2) = («2, a8) = (as, ai) = 1 
awd 

(17) i * > l , i = 1, 2, 3 
and 

(15 ) JUjCLi =• Xijdj -f- X{kdk} 

then the xtj are uniquely defined and 

(18) x^ > 0. 

Since Lt > 1, it follows from (10) and (16) that 

(19) at = a/z* — ^,-a,- — »waA 

where 0 < vi3 < ak, 0 < p a < a^. Thus vikak + a* = (a* — fl^)a^ > Z,/^ and 
so by symmetry 

(20) Lj < akj for each j 9e k. 

If Xji = 0, then Ltdi = x^a^ and by (16) Lj = mdkl a contradiction to 
(20). This gives (18). Also the xtj are uniquely determined since if Ltdt = x^a^ 
+xÎÀ;afc = Zijdj+Zijcdjc, then by (16) we have xtj = Zij+mak and x t t = zik — mdj. 
If m > 0, x^- > a*. But then for some d > 0, I^a* = (a* + d)dj + x # f c and 
by (19) we get (Lt — \)at = (d + vij)dj + (xik + vik)dk, contradicting the 
definition of Lt. Similarly, for m < 0. 

For / = 3 and (16) and (17) we show that there are just two numbers N 
with properties (3) and (4) so that B is the larger of these numbers. From 
(5) such a number N has representations of the form 

(50 N = yijdj + yikdk i = 1, 2, 3. 

Next observe that from (18) we have 

(21) ytJ < Lj 

since otherwise for some dj > 0 we would have N = (Lj + dj)dj + ytkak 

= Xjidi + djdj + (xjk + yik)dk, contradicting (3). From (20) and (21) we 
have 

(22) ykj < ak, ykj < at. 
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Next we show that the representations (5') for N are unique for each i. 
For otherwise ykiaf + ykiaj = zkiai + zkja,j and from (16) and (22), ykj — zkj 

= mau m < 0, and yki — zki = ma, m > 0, so that m = 0 and 3^ = s^, etc. 
From (5') and Theorem 1 we now have unique representations of N of the 

form 

N = Jkidi + ykjdj = ytjds + yikak = yjkak + y^a*. 

If 3 ^ = ytjj then y^ = mak, contradicting (22). Thus either ykj < ytJ or 
yki > ytj-

Case 1. If 

(23) ykj < yi3 

then ykiat = {yi3 — ^ ; ) a y + yikak so that yt< > L*. Thus by (21) we have 

(24) yki = Lt. 

Then by (24) and (5') 

N = Ltai + ykjaj = y^at + yjkak 

or (L t - yji)ai + ykja*= 3 ^ * , where L* > ?,< by (21). If Lt = y,, then 
3>&;- = ma*, contradicting (22), so that Li — yjt > 0 and yjk > Z,# by the 
definition of Lk. But then yjk = Lk by (21). Thus (23) implies that yki = Lu 

yjk = Lk, and cyclically, ytj =JLj. But then by (15') 

N = (xij + ykj)aj + xikak = Ljaj + yikak 

and by the uniqueness of these representations and by cyclic permutation of 
subscripts, we have 

(25) yik = xik 

and 

(26) Lj = Xij -\- xkj. 

Thus if ykJ < yih we get a unique number N where 

(27) N = Li/at + xkjaj 

with cyclic permutations of subscripts. 

Case 2. If 

(28) ykj > ytj, 

we get another number where by symmetry 

(29) N' = Lifii + xjkak 

with cyclic permutations of subscripts. N j£ Nf since otherwise % jkak xkjaj 

which implies xjk > a}j which by (25) contradicts (22). Note that these two 
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numbers are the only numbers with properties (3) and (4) for (16), (17), 
and t = 3. Since B is the largest number with property (3), it satisfies (4) so 
that B is the maximum of N and N' and we have 

THEOREM 4. Given (16) and (17), then for cyclic permutations of subscripts 

(30) B{ax, a2, a3) = L&t + max (xkjaj, xJkak) 

and (26) holds. 

Also it is easy to verify that C, the corresponding best bound for G(a\, a2, a3), 
satisfies 

(31) C(ai, a2, az) + ax + a2 + a3 = 5(a i , a2, a3). 

5. A computing algorithm for Lt and x^-. Thus we have shown that 
finding B is equivalent to finding the set of positive integers Lt and Xtj ex­
hibited in the form of a matrix of detached coefficients of the three equations 
(15r) a s follows: 

fll a2 az 

- i l * 1 2 xn 
* 2 1 - L 2 X23 

Xzi x32 - i s 

In order to develop a simple computing algorithm for these numbers, we 
need the following result. 

LEMMA 2. Given (#i, a2) = (a2, a3) = (a3, ai) = 1, £/zew aw^ system of integers 
Kt > 1 and A*, > 0 (w^ necessarily Lt and xi}) satisfying (15) awd (26) 
i^z = Vji + ^z-, implies that 

(32) X ^ - » j ^ i = VjtvkJ + vkiKj = \ak > ak 

for some positive integer X. 

If we write 
VjkiKtai — Vijdj) = vikvJkak = vik(Kjaj - vjial), 

then 

(vjkKt + vikvjl)ai = (vikKj + vJkVij)aj 

and (32) follows by (16) and (26). 
Furthermore, we have 

THEOREM?5. / / (16) and (17) hold, then the Li and Theorem 4 are 
characterized by the equations (15') and (26), and 

{So) Lihj -\- XijXji = ak, 

for cyclic permutations of subscripts. That is, X = 1 in (32). 
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Proof. Suppose a system of Kt and vtj satisfy (15), (26), and (33) where 
at least one Kt > Lu the minimum positive integer satisfying (15). 

Case 1. If Kx = Llt K2 = L2, then i£3 = U by (26) and Theorem 3. 

Case 2. Suppose K\ = Lu but K2 > L2, Kz > Z3. 

Then x12 = v12 and xu = vu by Theorem 3 and by (15), (26), and (33) 
ax = K2KZ — vZ2v2z = K2KZ — (K2 — x12)(Kz — xu) = x12K^ + xuK2 — 
XuXn > XuLz + XnL2 — xi2Xu = L2L% — x32x23 > a± by (32), a contradiction 
to the assumption that K2 > L2j K% > L3. 

CaseS. If K± > Liy L2 > K2,K^ > L%, then first observe that either vtj > xtj 

or vik > xik} but not both. For suppose vtj > xtj and vik > xik. By (33) 
VijVjjc + KjVik = at < XijXjk + LjXtk by (32). Thus vjk < xjk. Similarly 
VijKk + vikvkj = at < XijLk + x^x^- so that vk] < xkj. But then at < L^L* 
— xjkxkj < KjKk — vjkvkj = au a contradiction. 

In addition either vn > xjt or vki > xki but not both. For suppose v}i > xjt 

and vki > Xjt. By the previous remark vjk < xjk, vkj < xkj, leading to the 
same contradiction obtained above. Thus either vu, ^23, ^31, or v2\, v-i2, Vn are 
larger than the corresponding x's. That is vti > xtj for cyclic permutations 
of subscripts. 

Suppose z/21, v%2, Vu are larger than x2i, X32, x i3 respectively. Then by (26) 

(K2 — L2)a2 + (x23 - v2z)az = (v2i — x2X)ax > Lxa^ 

by the definition of L\. Thus v2i > Li and by cyclic permutation of subscripts 
^32 > L2, Z/13 > L 3 . 

Finally a3 < LXL2 — Xi2x2i < LXL2 < v21v^2 < v2iv^2 + K2v-S1 = 03,
 a c o n -

tradiction. 
Thus X = 1 in (32) implies that Kt = Lu vi3 = xi3. 
Conversely, X = 1 in (32), for Kx — Lu vtj = xtj etc. By the following 

computing algorithm we can always find sets of Kt and vtj with X = 1 in 
(32). Thus they are the desired Lt and x^-. Moreover since the Xtj are unique 
by Theorem 3, X is unique and must equal 1. 

The usefulness of Theorem 5 is apparent since it will be easier to find X's 
and v's satisfying (15), (26), and (33) rather than find minimal solutions to 
(15). 

The algorithm follows. First we solve for any ak in terms of at and a/, for 
instance, for k = 3, giving 

(34) z>2iai — K2a2 + a3 = 0 

with 0 < v2i < a2, 0 < K2 < ai by (10), easily done for example as in (4). 
Next construct 

(35) — Kidi + Z>12#2 + ^13^3 = 0 

where 

Vn = jT-J , Ki = a2 - »2i»is, ai = K2vn + vu 
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so that X = 1 in (32). If Ki > v2ï, then K± = Lly K2 = L2j and L3 can be 
found by (26). Then apply Theorem 4 for B(ah a2, a3). If Ki < v2i, note that 
Ki^v2i. For if K^Vn, then since Kx = a2 — VnViz, K\\a<2> But then in (34) 
Ki\a%. Thus (&2, a3) > i£i > 1, by (17) a contradiction. 

Therefore if K\ < v2\ we can construct another equation 

(36) (v2l - ^ i ) a i - (i£2 - pvl2)a2 + (1 + ^ 1 3 ) a 3 - 0 

with 

Since v2i — £i£i > 0, K2 = K2 — pv\2 forms a smaller value of K2 in (34). 
Note that the pair of equations giving the smallest values of Ki and K2 

will still give X = 1 in (32). At each stage we repeat the above generating 
of a smaller Ki or K2 until eventually Ki = Li, K2 = L2. By Theorem 5 this 
will come about when we obtain equations of the type (34) and (35) with 
Ki > v2\ and K2 > V\2. 

To illustrate we find 5(137, 251, 256). First calculate that 

ax - 75a2 + 73a3 = 0. 

Then by the algorithm we obtain 

3ai + 31a2 - 32a3 = 0, 

7ai - 13a2 + 9a3 = 0, 
17ai + 5a2 - 14a3 = 0. 

Thus the matrix of detached coefficients is 

0 1 a2 « 3 

- 2 4 8 5 
7 - 1 3 9 

17 5 - 1 4 

and B = 24ai + 9a3 = 5,592. 
It should be pointed out that solving for (34) is not always necessary. 

Many computational short cuts become apparent after some practice. Note 
that the suggested algorithm is not merely numerical but gives algebraic 
relations as well, enabling one to solve all previously solved special cases for 
t = 3 by a unified approach. For example, see the end of the next section. 

6. Extensions and restatement of basic theorem. Even if L3 = 1, the 
statement of Theorems 4 and 5 still holds, dropping the minimality con­
dition on the Lt. In this case, B = a\a2 + a3, see (2). But the matrix of co­
efficients is 
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dl a2 a3 

— a2 dl 0 
a2 — Xzi —&i — x32 1 

#31 #32 -1 

with x3i < a2. Then X = 1, so that Theorem 5 gives the same result a\a2 + a3. 
Next we show that Theorems 4 and 5 hold even though the a / s are not 

reduced to a pairwise relatively prime set bu b2, #3. 
We compare the L's and x*/s associated with ax, a2, a3 with those L"s and 

#i / ' s associated with 61, b2j bs. From (15r), Ltai = xtiaj + xikaky we see that 
dJk\Lu dij\xik, dik\xij. Thus, setting Lt = dûkL(, xik = dijXik, we have 

(35) LjLfc — x^x^- = flf if and only if L)Lk — x^4y = bu 

since dijdik\JLj JLk Xjk xkj ) = dijdikbi = a^ 
Finally, all these results can be collected in the following form : 

THEOREM 6. For (ai, a2, #3) = 1, define B to be the largest number not of the 
form xa\ + ya2 + sa3, x, y, z > 0. Then for cyclic permutation of subscripts 

B = L&i + max (xjkakl xkjaj), 

where 

Ltiai = xijaj -j- Xikak, JLi j> u, Xfj ^ (J, Xik ^ (J, Lu = x^ -r x&i 

-Z-/ î-i-/1' x ï jOC j i — ak . 

The Z/s and x's can be found either by the computing algorithm discussed in 
§5, modified to solve first for dif,k in terms of at and ah or by first applying 
Theorem 2. 

In conclusion, observe that the special cases previously obtained for t = 3 
can be derived directly from the results of this paper. 

Example. We can extend the results stated in (5) for B{a, a + 1, a + z). 
Write a = kz — u, 0 < u < z, & > 1, 2 > 2. Then for u < k + 1 the co­
efficient matrix is 

a = ai = kz — u a2 = kz — u + 1 a3 = kz — u + z 

— (z + k — u) z — u k — 1 
2 - 1 - 2 1 

& + 1 — U U —k 

If u < 1, then 

£ = L3#3 + xua2 = ( ) (a + 2) + (z — «)(a + 1). 
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To correspond to the notation of (5), we solve for C + 1 = B + 1 — X ai-
Then 

-{*¥)• C + 1 = [ ---^--- ) a + (z - 2 - M)a. 

If u > 1, then £ = L3a3 + X2i#i = k(a + z) + (z — l)a, and 

C + 1 = + *) + ( * - 3)a 

since 

a + u a+ 1 
s J 

+ 1. 

For / > 3, Theorem 1 holds and the author has verified that relations 
analogous to Theorem 4 hold in many cases. However, this will be the subject 
of a later paper. 
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