A LINEAR DIOPHANTINE PROBLEM
S. M. JOHNSON
1. Introduction. Let a4, a;, . .., a, be a set of groupwise relatively prime

positive integers. Several authors, (2; 3; 5; 6), have determined bounds for
the function F(ay, ..., a,) defined by the property that the equation

(1) n=ax +awx:+ ...+ ax,

has a solution in positive integers xi,...,x, for n > F(ay, ...,a,). If
F(ai, ...,a,) is a function of this type, it is easy to see that

(2) G(ay,...,a,) = F(ay,...,a;) —ar —a— ... — a,

is the corresponding function for the solvability of (1) in non-negative x’s.

It is well known that a,as is the best bound for F(ay, as) and aas — a1 — a»
for G(ai, az). Otherwise only in very special cases have the best bounds been
found, even for ¢t = 3.

In the present paper a symmetric expression is developed for the best bound
for F(ai, a2, a;) which solves that problem and gives insight on the general
problem for larger values of ¢. In addition, some relations are developed which
may be of interest in themselves.

2. A General Property. For ¢t > 2, let B(ay, as, . . ., a,) be the best bound
for F(ay, as, ...,a,), that is, B is the maximum number N where
t
3) N # Z Xis forany x; > 0.
=1

Then note that B is the maximum N from a restricted set of numbers V
satisfying both (3) and

12
4) N+4a; = D, yia, yq:; > 0 for each 1.
=1
since the definition of B implies B satisfies (4). Thus, in particular,
N = (yu — Dai + yaz + ... + y1ay, y1;, > 0.
But by (3), y11 — 1 < 0 so that y;; = 1 since y;; > 0. By symmetry we have

THEOREM 1. For every N satisfying (3) and (4) there are representations of N

foreach 1 = 1,2, ...,t of the form
t

(5) N = Zl Yiayp  ¥i; >0,
=
i

and B is the maximum such N.
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3. The Case ¢ = 3. A reduction formula. We seek an expression for
B = B(ay, as, as) having the property that (1) is satisfied for # > B but is not
satisfied for » = B. Let us first reduce the problem to the case of pairwise
relatively prime a’s.

Let dy; = (a4, a;), a; = bididy, so that (by, bs) = (b, b3) = (b3, b;) = 1.
Then we have

THEOREM 2.
(G) B(dly @3, @3) = d12d23d31B (b1, bs, b3).

Proof. Fi_rst_we show that if we write d = dys, b; = d13b1, bs = da3bs so that
(d, az) = (b1, bs) = 1, then
Q) B(dby, dbs, a5) = dB(by, by, ay).
Suppose that dB(by, bs, a;) = dbix + dbyy + as3, x, ¥, 2> 0. Then since (d,
a;) = 1, we must have z = wd, w > 0, so that B(by, by, as) = bix + bay

azw, x, y, w > 0, a contradiction to the definition of B(by, by, as). In addition,
for any positive integer m > 0, we show that

(8) dB (b, by, as) + m = dbyx + dbyy + asz, x,y,z>0.
We apply a result from (2).

LEMmMA 1 (Brauer). Let a and b be relatively prime positive integers. Then every
positive integer m divisible neither by a nor by b is representable either in the form

9) m = au + bv, u>0,v>0,

or

(10) m = ab — au — by, b>u>0,a>v>0.
Letting d = a and a3 = b in Lemma 1, if (9) holds, we have

(1 dB(by, by, a3) + m = d(B(by, bs, as) + u) + vas

= dbyx + dbyy + as(dz + v)

by the definition of B(by, by, as), giving (8).
If (10) holds, we have 0 < # < a3, and 0 < v < d, so that

(12) d(B(Bl, 62, as) + az — u) — a3 = dl;lx + d52y + (dZ - Z/)(lg,

for x, y, and (dz — v) > 0, giving (8).

Finally, if m = ud, then (8) follows directly. If m = va;, write m = da;
+ (v — d)as giving (8). Thus (7) holds. Applying the method of obtaining
(7) twice more gives (6) and Theorem 2.

We have thus reduced the problem to where the a's are pairwise relatively
prime. For the moment let a; > as > as. If

(13) a, = uas + vas, u,v > 0,
then B(ay, as, as) = asas + a; as Brauer showed in (2). Otherwise
(14) B(ay, as a3) <aga; + ap
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4. An expression for B(a,, as, a3). We develop a symmetric expression for
B(ai, as, a3) for the case of pairwise relatively prime a’s where each a; ¥ xa;
+ vyay, x > 0, ¥y > 0. Later we show that this same form of expression gives
the general solution for ¢ = 3.

DEerFINITION. Let L; = the minimum positive K; satisfying
(15) K, = V05 + Vs, 25> 0,05 >0, 1=1,2,3.
Such a number exists since B(a;, a;) = a;a;, < Ka; for large K.

THEOREM 3. Given

(16) (a1, as) = (az, a3) = (asz,a,) =1

and

amn L;>1, 1=1,2,3
and

(15" La; = x40; + Xaa,

then the x ;; are uniquely defined and
(18) x4 > 0.

Since L; > 1, it follows from (10) and (16) that
(19) Qi = Qa; — Vil — Uty

where 0 < v, < a3, 0 < vy < a@;. Thus vya, + @y = (ax — v45)a; > Lja; and
so by symmetry
(20) L; < ay, for each j 5 k.

If x,, =0, then L,a; = xpa, and by (16) L; = may, a contradiction to
(20). This gives (18). Also the x,; are uniquely determined since if La; = x;,a;
+x 40 = 2:50;+ 200z, then by (16) we have x;; = z,,+ma, and x4 = 2, —ma,.
If m > 0, x;; > a;. But then for some d > 0, La; = (a; + d)a; + x;a; and
by (19) we get (L; — 1)a; = (d + vi))a; + (Xu + vu)ax, contradicting the
definition of L;. Similarly, for m < 0.

For t = 3 and (16) and (17) we show that there are just two numbers N
with properties (3) and (4) so that B is the larger of these numbers. From
(5) such a number N has representations of the form

5" N =y0, + yaa 1=1,2,3.
Next observe that from (18) we have
(21) Vi < L

since otherwise for some d; > 0 we would have N = (L; + d))a; + yuax
=x;a; + da; + (x;x + yi)ar, contradicting (3). From (20) and (21) we
have

(22) Yei < Qr, Vg < Q.
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Next we show that the representations (53') for N are unique for each 1.
For otherwise yy.a; + ¥i,8; = 2r0: + 2150, and from (16) and (22), yi; — 2i;
= ma;, m < 0, and yx; — 2z, = ma, m > 0, so that m = 0 and y;; = 2, etc.

From (5") and Theorem 1 we now have unique representations of N of the
form

N = yrtti + Yus05 = Y3305 + Yalx = Yl + V5@
If yi; = vy, then y;; = may, contradicting (22). Thus either v;; < v;; or

Yej > Vije
Case 1. If
(23) Yes < i
then yia; = (¥, — Yr5)a; + Yuar so that yg; > L, Thus by (21) we have
(24) V1 = L.

Then by (24) and (5')
N =L+ Y0; = V001 + Vi

or (Li— y;0a: + Y@, = yuaz, where L; > y,; by (21). If L, = y,; then
Yyr; = may, contradicting (22), so that L; — y;; > 0 and y; > L, by the
definition of L;. But then vy, = L; by (21). Thus (23) implies that v, = L,
v = Ly, and cyclically, y; =EL]-. But then by (15")

N = (xij + ylcj)aj + xaar = La; + Yt

and by the uniqueness of these representations and by cyclic permutation of
subscripts, we have

(25) Yir = Xk
and
(26) L; = x4 + xg,

Thus if y;; < ¥4, we get a unique number N where
27 N =La;+ x50,
with cyclic permutations of subscripts.

Case 2. If
(28) Ve > Vis
we get another number where by symmetry
(29) N' = La; + xpar

with cyclic permutations of subscripts. N # N’ since otherwise x;;a, = % ;0;
which implies x; > a;, which by (25) contradicts (22). Note that these two
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numbers are the only numbers with properties (3) and (4) for (16), (17),
and ¢ = 3. Since B is the largest number with property (3), it satisfies () so
that B is the maximum of ¥ and N’ and we have

THEOREM 4. Given (16) and (17), then for cyclic permutations of subscripts
(30) B(ay, az, a3) = La; + max (x;a;, X 3ayr)
and (26) holds.

Also it is easy to verify that C, the corresponding best bound for G (a1, as, a;),
satisfies

(31) C(ay, @z, a3) + a1 + a2 + a3 = B(ay, as, a3).

5. A computing algorithm for L, and x,;,, Thus we have shown that
finding B is equivalent to finding the set of positive integers L; and x;; ex-
hibited in the form of a matrix of detached coefficients of the three equations
(15") as follows:

ay s as
—L, X12 X13
Xo1 —L, Xeo3
X31 X32 —L;

In order to develop a simple computing algorithm for these numbers, we
need the following result.

LEMMA 2. Given (ay, az) = (as a3) = (as, a1) = 1, then any system of integers
K:>1 and v;; > 0 (not necessarily L; and x,;;) satisfying (15) and (26)
K, = v,; + vy, tmplies that

(32) K.K; — ViU = Uy + 1K, = Ny > a;
for some positive integer \.
If we write
U/k(Kiai - Uijaj) = VUl = ‘Uik(Kjaj - Uji(li),
then
@pKi +vav;a; = WaK; + vu04)a;

and (32) follows by (16) and (26).
Furthermore, we have

THEOREM?5. If (16) and (17) hold, then the L, and x.; in Theorem + are
characterized by the equations (15') and (26), and

(33) LZL] + xi]x]i = Qy,

for cyclic permutations of subscripts. That is, X\ = 1 in (32).
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Proof. Suppose a system of K; and »,; satisfy (15), (26), and (33) where
at least one K; > L;, the minimum positive integer satisfying (15).

Case 1. 1f K, = Ly, Ky = L,, then K3 = L3 by (26) and Theorem 3.
Case 2. Suppose K, = L,, but K; > Ly, K3 > Ls.

Then x;2 = v;2 and x;3 = v;3 by Theorem 3 and by (15), (26), and (33)
a1 = KoKy — v30093 = KoK — (K2 - xn)(Ks - xls) = x12K35 + x13K5 —
X19%13 > X12L3 4+ x13Ls — X19%13 = Lol — X30%23 > a; by (32), a contradiction
to the assumption that Ko > L., K3 > L.

Case3.1f Ky > Ly, L, > K,, K3 > L3, then first observe that eitherv;; > x;
or v4 > X4, but not both. For suppose v;; > x;; and v4 > x4 By (33)
ViU + Kpw =a; < xyxp + Lixye by (32). Thus vy < xj. Similarly
v K + vave; = @y < x4;L; + xgx,; so that v, < x;;. But then a; < L,;L;
— xuxr; < K;Ky — vyor; = a4, a contradiction.

In addition either v;; > x;; or v;; > x;; but not both. For suppose v,; > x;;
and v;; > x;;. By the previous remark v, < x;, v; < xx;, leading to the
same contradiction obtained above. Thus either v12, 923, 031, OF 921, 032, v13 are
larger than the corresponding x's. That is v;; > x;; for cyclic permutations
of subscripts.

Suppose 21, 032, ¥13 are larger than xs;, x39, %13 respectively. Then by (26)

(Kz - L2)(12 + (xza - 023)03 = (7)21 - le)al > Lia,

by the definition of L;. Thus vs; > L;and by cyclic permutation of subscripts
V32 > Lg, V13 > L3.

Finally as < L1L2 — X12X21 < L1L2 < V21U32 < V217032 + K27J31 = asz, a CoI1l-
tradiction.

Thus A = 1 in (32) implies that K; = L;, v4, = x4

Conversely, A = 1 in (32), for K; = L;, v;; = x;; etc. By the following
computing algorithm we can always find sets of K; and v,; with A = 1 in
(32). Thus they are the desired L; and x;;. Moreover since the x;; are unique
by Theorem 3, X is unique and must equal 1.

The usefulness of Theorem 5 is apparent since it will be easier to find K’s
and v's satisfying (15), (26), and (33) rather than find minimal solutions to
(15).

The algorithm follows. First we solve for any a; in terms of ¢; and a;; for
instance, for k& = 3, giving
(34) v910; — Keas + a3 =0

with 0 < 991 < as, 0 < K; < a; by (10), easily done for example as in (4).
Next construct

(35) — Kia; + v12a2 + v13a3 = 0
where

a,
V13 = I:E:] s Ki = a2 — va013, a1 = Kav13 + 012
2
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so that A = 1 in (32). If K; > s, then K; = L;, K; = Lo, and L; can be
found by (26). Then apply Theorem 4 for B(as, as, as). If K; < va, note that
Kl '{/7}21. For if K117}21, then Sil’lCe Kl = A2 — V21013, Kllaz. But then in (34:)
Kilas. Thus (as, a3) > K; > 1, by (17) a contradiction.

Therefore if K1 < v21 we can construct another equation

(36) (v21 — pKi)ar — (Ks — pviz)as + (1 + poig)as; = 0

with
_ |
o~ [32]

Since vo; — pK; > 0, Ky’ = K — pvy» forms a smaller value of K, in (34).
Note that the pair of equations giving the smallest values of K; and K.
will still give A = 1 in (32). At each stage we repeat the above generating
of a smaller K, or K, until eventually K; = L;, Ko = L. By Theorem 5 this
will come about when we obtain equations of the type (34) and (35) with
Kl > Vo1 and Kz > V12
To illustrate we find B(137, 251, 256). First calculate that

ay — 75a; + 73a; = 0.
Then by the algorithm we obtain
3a; + 3las — 32a; = 0,
7(11 — 13a. + 9(13 = 0,
17a, + bas — 14a; = 0.

Thus the matrix of detached coefficients is

a (47} as
—24 8 5
7 —13 9

17 5 —14

and B = 24a, 4+ 9a; = 5,592.

It should be pointed out that solving for (34) is not always necessary.
Many computational short cuts become apparent after some practice. Note
that the suggested algorithm is not merely numerical but gives algebraic
relations as well, enabling one to solve all previously solved special cases for
t = 3 by a unified approach. For example, see the end of the next section.

6. Extensions and restatement of basic theorem. Even if L; = 1, the
statement of Theorems 4 and 5 still holds, dropping the minimality con-
dition on the L. In this case, B = a1a; + a3, see (2). But the matrix of co-
efficients is
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ax asg as
—a:2 ay 0
A — X31 —a1 — X32 1
X31 X32 —1

with x3; < a@2. Then A = 1, so that Theorem 5 gives the same result a1a; + as.

Next we show that Theorems 4 and 5 hold even though the a;'s are not
reduced to a pairwise relatively prime set by, b, b3.

We compare the L’s and x;,'s associated with a1, @s, a3 with those L"’s and
x;;''s associated with &y, b, b3. From (15"), La; = xya; + x4ax, we see that
djkIL'i) dijlxik, diklx”. Thus, Setting Li = djkLi’, X = dijx,-k', we have
(35) L,L; — xp%; = a; if and only if LiL; — xlxr; = by,
since dijd1k(Lj,Lk’ - xjk/xk/) = dijdikbi = Q.

Finally, all these results can be collected in the following form:

THEOREM 6. For (ai, as, as) = 1, define B to be the largest number not of the
form xa, + yas + 2as, x,v,2 > 0. Then for cyclic permutation of subscripts

B = La; + max (xuax, Xra,),
where
La; = xy0; + Xaa, L;>0,%;;>0,%43 >0, L;=ux;+ x;

and
LiLj — Xi%51 = Q.

The L’s and x’s can be found either by the computing algorithm discussed in
§5, modified to solve first for d;;a; in terms of a; and a;, or by first applying
Theorem 2.

In conclusion, observe that the special cases previously obtained for { = 3
can be derived directly from the results of this paper.

Example. We can extend the results stated in (5) for B(a, a + 1, a + 2).
Write a = ks —u, 0 < u <3z k>1, 2> 2. Then for u < B+ 1 the co-
efficient matrix is

a=a=kkz—u as=kz—u-+1 a3 =kz —u-+z
—(z+k—u z2—u E—1
z—1 —32 1
E+1—u u —k
If u < 1, then
B = Lz + %1002 = <g_—|z-_u> (a+3)+ (z—u)(a+1).
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To correspond to the notation of (5), we solve for C+ 1 =B+ 1 — 3 a;.
Then

If > 1, then B = Lias + xn1a, = k(e + 2) + (z — 1)a, and

C+1=[— ————— ](G—FZ)—I-(Z“?))G

2

() =[]

For t > 3, Theorem 1 holds and the author has verified that relations
analogous to Theorem 4 hold in many cases. However, this will be the subject
of a later paper.

since
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