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Bogumił Kamiński1, Łukasz Kraiński1, Paweł Prałat2∗ and François Théberge3

1Decision Analysis and Support Unit, SGHWarsaw School of Economics, Warsaw, Poland, 2Department of Mathematics,
Toronto Metropolitan University, Toronto, ON, Canada, and 3Tutte Institute for Mathematics and Computing, Ottawa,
ON, Canada
∗Corresponding author. Email: pralat@ryerson.ca

Action Editor: Ulrik Brandes

Abstract
Graph embedding is a transformation of nodes of a network into a set of vectors. A good embedding
should capture the underlying graph topology and structure, node-to-node relationship, and other rele-
vant information about the graph, its subgraphs, and nodes themselves. If these objectives are achieved,
an embedding is a meaningful, understandable, and often compressed representation of a network.
Unfortunately, selecting the best embedding is a challenging task and very often requires domain experts.
In this paper, we extend the framework for evaluating graph embeddings that was recently introduced in
[15]. Now, the framework assigns two scores, local and global, to each embedding that measure the quality
of an evaluated embedding for tasks that require good representation of local and, respectively, global
properties of the network. The best embedding, if needed, can be selected in an unsupervised way, or the
framework can identify a few embeddings that are worth further investigation. The framework is flexible
and scalable and can deal with undirected/directed and weighted/unweighted graphs.

Keywords: graph embeddings; null models; evaluation of node embeddings

1. Introduction
Network Geometry is a rapidly developing approach in Network Science (Hoff et al., 2002] which
enriches the system by modeling the nodes of the network as points in a geometric space. There
are many successful examples of this approach that include latent space models (Krioukov, 2016),
and connections between geometry and network clustering and community structure (Gastner &
Newman, 2006; Zuev et al., 2015). Very often, these geometric embeddings naturally correspond
to physical space, such as when modeling wireless networks or when networks are embedded in
some geographic space (Expert et al., 2011; Janssen, 2010).

Another important application of geometric graphs is in graph embeddings (Aggarwal &
Murty, 2021). In order to extract useful structural information from graphs, one might want to
try to embed them in a geometric space by assigning coordinates to each node such that nearby
nodes are more likely to share an edge than those far from each other. Moreover, the embedding
should also capture global structure and topology of the associated network, identify specific roles
of nodes, etc.

Due to their spectacular successes in various applications, graph embedding methods are
becoming increasingly popular in the machine learning community. They are widely used for
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tasks such as node classification, community detection, and link prediction, but other applica-
tions such as anomaly detection are currently explored. As reported in Chen et al. (2021), the
ratio between the number of papers published in top three conferences (ACL, WWW, and KDD)
closely related to Computational Social Science (CSS) applying symbol-based representations and
the number of papers using embeddings decreased from 10 in 2011 to 1/5 in 2020. We expect this
trend to continue with embeddings eventually playing a central role in many machine learning
tasks.

There are over 100 algorithms proposed in the literature for node embeddings. The tech-
niques and possible approaches to construct the desired embedding can be broadly divided into
the following three families: linear algebra algorithms, random walk-based algorithms, and deep
learning methods (Aggarwal & Murty 2021; Kamiński et al., 2022). All of these algorithms have
plenty of parameters to tune, the dimension of the embedding being only one of them but an
important one. Moreover, most of them are randomized algorithms which means that even
for a given graph, each time we run them we get a different embedding, possibly of different
quality. As a result, it is not clear which algorithm and which parameters one should use for
a given application at hand. There is no clear winner and, even for the same application, the
decision which algorithm to use might depend on the properties of the investigated network
(Dehghan-Kooshkghazi et al., 2020).

In the initial version of the framework, as detailed in Kamiński et al. (2020), only undirected,
unweighted graphs were considered. A null model was introduced by generalizing the well-known
Chung–Lu model (Chung et al., 2006) and, based on that, a global divergence score was defined.
The global score can be computed for each embedding under consideration by comparing the
number of edges within and between communities (obtained via some stable graph clustering
algorithm) with the corresponding expected values under the null model. This global score mea-
sures how well an embedding preserves the global structure of the graph. In order to handle huge
graphs, a landmark-based version of the framework was introduced in Kamiński et al. (2020),
which can be calibrated to provide a good trade-off between performance and accuracy.

In this paper, we generalize the original framework in several ways. Firstly, we add the capability
of handling both directed and undirected graphs as well as taking edge weights into account.
Moreover, we introduce a new, local score which measures how well each embedding preserves
local properties related to the presence of edges between pairs of nodes. The global and local scores
can be combined in various ways to select good embedding(s). We illustrate the usefulness of our
framework for several applications by comparing those two scores, and we show various ways to
combine them to select embeddings. After appropriate adjustments to directed and/or weighted
graphs, landmarks can be used the same way as in the original framework to handle huge graphs.

The paper is structured as follows. The framework is introduced in Section 2. The geomet-
ric Chung–Lu (GCL) model that is the heart of the framework is introduced and discussed in
Section 3. Section 4 presents experiments justifying the usefulness of the framework and inves-
tigating the quality of a scalable approximation algorithm. Finally, some conclusions and future
work are outlined in Section 5. Some extra details and experiments are available in the companion
“supplementary document.”

Finally, let us mention that standard measures such as various correlations coefficients, the
accuracy, and the adjusted mutual information (AMI) score are not formally defined in this paper.
The reader is directed to any book on data science or machine learning (e.g. to Kamiński et al.
(2022)) for definitions and more.

2. The framework
In this section, we introduce the unsupervised framework for comparing graph embeddings, the
main contribution of this paper. Section 2.1 is devoted to high-level description and intuition
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behind the two embedding quality scores, local and global one, returned by the framework. The
algorithm that computes them is formally defined in Section 2.2. Looking at the two scores to
make an informed decision which embedding to chose is always recommended but if one wants
to use the framework to select the best embedding in an unsupervised manner, then one may
combine the two scores into a single value. We discuss this process in Section 2.3. The description
of the scoring algorithm assumes that the graph is unweighted and directed. Generalizing it to
undirected or weighted graphs is straightforward, and we discuss it in Section 2.4.

2.1 Intuition behind the algorithm
The proposed framework is multi-purposed, that is, it independently evaluates embeddings using
two approaches.

The first approach looks at the network and the associated embeddings “from the distance,”
trying to see a “big picture.” It evaluates the embeddings based on their ability to capture global
properties of the network, namely, edge densities. In order to achieve it, the framework compares
edge density between and within the communities that are present (and can be easily recovered) in
the evaluated graphGwith the corresponding expected edge density in the associated random null
model. This score is designed to identify embeddings that should perform well in tasks requiring
global knowledge of the graph such as node classification or community detection. We will call
this measure a global score.

The second approach looks at the network and embeddings “under the microscope,” trying to
see if a local structure of a graph G is well reflected by the associated embedding. The local score
will be designed in such a way that it is able to evaluate if the embedding is a strong predictor of
(directed) adjacency between nodes in the network. In general, this property could be tested using
any strong supervised machine learning algorithm. However, our objective is to test not only pre-
dictive power but also explainability of the embedding (sometimes referred to as interpretability).
Namely, we assume that the adjacency probability between nodes should be monotonically linked
with their distance in the embedding and their in and out degrees. This approach has the follow-
ing advantage: embeddings that score well should not only be useful for link prediction, but they
should perform well in any task that requires a local knowledge of the graph. To achieve this, we
use the same random null model as we use to calculate the global score to estimate the probability
of two nodes to be adjacent. This question is the well-known and well-studied problem of link
prediction in which one seeks to find the node pairs most likely to be linked by an edge. When
computing the local score, we calculate a ranking of the node pairs from most to least likely of
being linked. A common evaluation method for such problem is to compute the AUC (area under
the ROC curve). It is important to note that the AUC is independent of the ratio between the
number of edges and the number of non-edges in the graph. As a result, it can be approximated
using random sampling.

Despite the fact that the global and local scores take diametrically different points of view, there
is often correlation between the two. Good embeddings tend to capture both global and local prop-
erties and, as a result, they score well in both approaches. On the other hand, poor embeddings
have problems with capturing any useful properties of graphs and so their corresponding scores
are both bad. Nevertheless, they are certainly not identical, and we will show examples in which
the two scores are different.

2.2 The algorithm
In this section, and later in the paper, we use [n] to denote the set of natural numbers less than or
equal to n, that is, [n] := {1, . . . , n}. Given a directed graph G= (V , E) (in particular, given its in-
degree and out-degree distributionswin andwout onV) and an embedding E :V →Rk of its nodes
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in k-dimensional space, we perform the steps detailed below to obtain (�g
E (G),�

�
E (G)), a pair of

respectively global and local divergence scores for the embedding. Indeed, as alreadymentioned the
framework is multi-purposed and, depending on the specific application in mind, one might want
the selected embeddings that preserve global properties (density-based evaluation) and/or pay
attention to local properties (link-based evaluation). As a result, we independently compute the
two corresponding divergence scores, �g

Ei(G) and ��
Ei(G), to provide the users of the framework

with amore complete picture and let themmake an informative decision which embedding to use.
We typically apply this algorithm to compare several embeddings E1, . . . , Em of the same graph
and select the best one via argmini∈[m]�Ei(G), where �Ei(G) is the combined divergence score that
takes into account the scores of the competitors and that can be tuned for a given application at
hand.

Note that our algorithm is a general framework, and some parts have flexibility. We clearly
identify these below and provide a specific, default, approach that we applied in our implementa-
tion. In the description below, we assume that the graph is directed and unweighted, and we then
discuss how the framework deals with undirected and/or weighted graphs.

The code can be accessed at the GitHub repository1. The first version of the framework
(c.f. Kamiński et al. (2020)) was designed for undirected, unweighted graphs, and only used
the density-based evaluation. Since it was used for experiments reported in various papers, for
reproducibility purpose, the code can still be accessed on GitHub2.

2.2.1 Global (Density-based) evaluation:�E
g(G)

Step 1: Run some stable graph clustering algorithm onG to obtain a partitionC of the set of nodes
V into � communities C1, . . . , C�.

Note: In our implementation, we used the ensemble clustering algorithm for unweighted
graphs (ECG) which is based on the Louvain algorithm (Blondel et al., 2008) and the concept of
consensus clustering (Poulin & Théberge 2018) and is shown to have good stability. For weighted
graphs, by default we use the Louvain algorithm.

Note: In some applications, the desired partition may be provided together with a graph (e.g.,
when nodes contain some natural labeling and so some form of a ground-truth is provided). The
framework is flexible and allows for communities to be provided as an input to the framework
instead of using a clustering algorithm. In the supplementary document, we present a number
of experiments that show that the choice of clustering algorithm does not affect the score in a
significant way (provided the clustering is stable and of good quality).

Step 2: For each i ∈ [�], let ci be the proportion of directed edges of G with both end points in
Ci. Similarly, for each 1≤ i, j≤ �, i �= j, let ci,j be the proportion of directed edges of G from some
node in Ci to some node in Cj. Let

c̄= (c1,2, c2,1, . . . , c1,�, c�,1, c2,3, c3,2, . . . , c�−1,�, c�,�−1)

ĉ= (c1, . . . , c�) (1)

and let c= c̄⊕ ĉ be the concatenation of the two vectors with a total of 2
(
�
2
) + � = �2 entries which

together sum to one. This graph vector c characterizes the partition C from the perspective of the
graph G.

Note: The embedding E does not affect the vectors c̄ and ĉ (and so also c). They are calculated
purely based on G and the partition C.

Step 3: For a given parameter α ∈R+ and the same partition of nodes C, we consider the GCL
directed graph model G(win,wout , E , α) presented in Section 3 that can be viewed in this context
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as the associated null model. For each 1≤ i, j≤ �, i �= j, we compute bi,j, the expected proportion
of directed edges of G(win,wout , E , α) from some node in Ci to some node in Cj. Similarly, for
each i ∈ [�], let bi be the expected proportion of directed edges within Ci. That gives us another
two vectors:

b̄E (α)= (b1,2, b2,1, . . . , b1,�, b�,1, b2,3, b3,2, . . . , b�−1,�, b�,�−1)

b̂E (α)= (b1, . . . , b�) (2)

and let bE (α)= b̄E (α)⊕ b̂E (α) be the concatenation of the two vectors with a total of �2 entries
which together sum to one. This model vector bE (α) characterizes the partition C from the
perspective of the embedding E .

Note: The structure of graph G does not affect the vectors b̄E (α) and b̂E (α); only its degree
distribution win, wout , and embedding E are used.

Note:We used the GCL directed graph model, but the framework is flexible. If, for any reason
(perhaps there are some restrictions for the maximum edge length; such restrictions are often
present in, for example, wireless networks) it makes more sense to use some other model of
random geometric graphs, it can be easily implemented here. If the model is too complicated
and computing the expected number of edges between two parts is challenging, then it can be
approximated via simulations.

Step 4: Compute the distance �α between the two vectors, c and bE (α), in order to measure
how well the model G(win,wout , E , α) fits the graph G.

Note:We used the well-known and widely used Jensen–Shannon divergence (JSD) to measure
the dissimilarity between two probability distributions, that is, �α = JSD(c, bE (α)). The JSD was
originally proposed in Lin (1991) and can be viewed as a smoothed version of the Kullback–Leibler
divergence.

Note: Alternatively, one may independently treat internal and external edges to compensate
the fact that there are 2

(
�
2
) = �(�2) coefficients related to external densities, whereas only � ones

related to internal ones. Then, for example, after appropriate normalization of the vectors, a simple
average of the two corresponding distances can be used, that is,

�α = 1
2

·
(
JSD(c̄, b̄E (α))+ JSD(ĉ, b̂E (α))

)

Depending on the application at hand, other weighted averages can be used if more weight
needs to be put on internal or external edges.

Step 5: Select α̂ = argminα�α and define the global (density-based) score for embedding E on
G as �

g
E (G)= �α̂ .

Note: The parameter α is used to define a distance in the embedding space, as we detail in
Section 3. In our implementation, we simply checked values of α from a dense grid, starting from
α = 0 and finishing the search if no improvement is found for five consecutive values of α. Clearly,
there are potentially faster ways to find an optimum value of α but, since our algorithm is the
fast-performing grid search, this approach was chosen as both easy to implement and robust to
potential local optima.
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2.2.2 Local (Link-based) evaluation:��
E(G)

Step 6:We let

S+ = {(u, v) ∈V ×V , u �= v; uv ∈ E},
S− = {(u, v) ∈V ×V , u �= v; uv /∈ E}.

For a given parameter α ∈R+, we again consider the GCL directed graph model
G(win,wout , E , α) detailed in Section 3. Let p(u, v) be the probability of a directed edge u→ v
to be present under this model.

The receiver operating characteristic (ROC) is a curve showing the performance of a classi-
fication model at all classification thresholds (for the edge probabilities in the present context).
The AUC (area under the ROC curve) provides an aggregate measure of performance across all
possible classification thresholds which can be interpreted as the probability that a randomly cho-
sen positive sample (here, a pair of nodes connected by an edge) is ranked higher that a negative
sample (a pair of nodes without an edge). Thus, the AUC can be expressed as follows:

pα =
∑

(s,t)∈S+
∑

(u,v)∈S− 1{p(s, t)> p(u, v)}
|S+| · |S−|

As a result, the AUC measures how much the model is capable of distinguishing between the
two classes, S+ and S−. In other words, it may be viewed as the probability that p(s, t)> p(u, v),
provided that a directed edge s→ t and a directed non-edge u �→ v are selected uniformly at
random from S+ and, respectively, S−.

Note: In practice, there is no need to investigate all |S+| · |S−| pairs of nodes. Instead, we
can randomly sample (with replacement) k pairs (si, ti) ∈ S+ and k pairs (ui, vi) ∈ S− and then
compute

p̂α =
∑k

i=1 1{p(si, ti)> p(ui, vi)}
k

to approximate pα . The value of k is adjusted so that the approximate 95% confidence interval,
namely, [

p̂α − 1.96
√
p̂α(1− p̂α)/k, p̂α + 1.96

√
p̂α(1− p̂α)/k

]

is shorter that some precision level. In our implementation, the default value of k is set to k=
10,000 so that the length of the interval is guaranteed to be at most 0.02.

Step 7: Select α̂ = argminα(1− p̂α) and define the local (link-based) score for embedding E on
G as ��

E (G)= 1− p̂α̂ .

2.3 Combined divergence scores for evaluatingmany embeddings
As already mentioned a few times, the framework is multi-purposed and, depending on the spe-
cific application in mind, one might want the selected embeddings that preserve global properties
(global, density-based evaluation) or pay more attention to local properties (local, link-based eval-
uation). That is the reason, we independently compute the two corresponding divergence scores,
�

g
Ei(G) and ��

Ei(G).
In order to compare several embeddings for the same graph G, we repeat steps 3–7 above, each

time computing the two scores for a given embedding. Let us stress again that steps 1–2 are done
only once, that is, we use the same partition of the graph into � communities for all embeddings. In
order to select (in an unsupervised way) the best embedding to be used, one may simply compute
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the combined divergence score, a linear combination of the two scores:

�Ei(G)= q · (�g
Ei(G)+ ε)

minj∈[m] (�
g
Ej(G)+ ε)

+ (1− q) · (��
Ei(G)+ ε)

minj∈[m] (��
Ej(G)+ ε)

(3)

for a fixed parameter q ∈ [0, 1], carefully selected for a given application at hand, and ε = 0.01,
introduced to prevent rare but possible numerical issues when one of the scores is close to zero.
Note that �Ei(G)≥ 1 and �Ei(G)= 1 if and only if a given embedding Ei does not have a better
competitor in any of the two evaluation criteria. Of course, the lower the score, the better the
embedding is. The winner Ej can be identified by taking j= argmini�Ei(G).

Let us briefly justify the choice of function (3). First note that both �
g
Ei(G) and ��

Ei(G) are in
[0, 1]. However, since they might have different orders of magnitude (and typically they do), the
corresponding scores need to be normalized. In decision theory, one typically simply tunes q to
properly take this into account. While we allow for the more advanced user to change the value
of q, we believe that it is preferable to provide a reasonable scaling when the default value of q,
namely, q= 1/2 is used.When choosing a normalization by minimum, we were guided by the fact
that it is not uncommon that most of the embeddings score poorly in both dimensions; if this is so,
then they affect for example the average score but they ideally should not influence the selection
process. On the other hand, the minimum clearly should not be affected by bad embeddings. In
particular, the normalization by the minimum allows us to distinguish the situation in which two
embeddings have similar but large scores (indicating that both embeddings are bad) from the
situation in which two embeddings have similar but small scores (one of the two corresponding
embeddings can still be significantly better).

Finally, let us mention that while having a single score assigned to each embedding is useful, it
is always better to look at the composition of the scores,

⎛
⎝ (�g

Ei(G)+ ε)

minj∈[m] (�
g
Ej(G)+ ε)

,
(��

Ei(G)+ ε)
minj∈[m] (��

Ej(G)+ ε)

⎞
⎠

to make a more informative decision. See Section 4.3 for an example of such a selection process.

2.4 Weighted and undirected graphs
For simplicity, we defined the framework for unweighted but directed graphs. Extending the
density-based evaluation to weighted graphs can be easily and naturally done by considering the
sum of weights of the edges instead of the number of them, for example, ci is the proportion of
the total weight concentrated on the directed edges with both end points in Ci. For the link-based
evaluation, we need to adjust the definition of the AUC so that it is equal to the probability that
p(s, t)> p(u, v) times the weight of a directed edge s→ t (scaled appropriately such that the aver-
age scaled weight of all edges investigated is equal to one), provided that a directed edge s→ t
is selected from S+ (the set of all edges) and a directed non-edge u �→ v is selected from S− (the
set of non-edges), both of them uniformly at random. As before, such quantity may be efficiently
approximated by sampling.

On the other hand, clearly undirected graphs can be viewed as directed ones by replacing each
undirected edge uv by two directed edges uv and vu. Hence, one can transform an undirected
graph G to its directed counterpart and run the framework on it. However, the framework is
tuned for a faster running time when undirected graphs are used but, of course, the divergence
score remains unaffected.
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3. GCLmodel
The heart of the framework is the associated random graph null model that is used to design
both the global and the local score. The GCL model, a generalization of the original Chung–Lu
model (Chung et al., 2006), was introduced in Kamiński et al. (2020) to benchmark embeddings
of undirected graphs (at that time only from the global perspective). Now, we need to general-
ize it even further to include directed and weighted graphs. We do it in Section 3.1. A scalable
implementation in discussed in Section 3.2.

3.1 Geometric directedmodel
In the GCL directed graph model, we are not only given the expected degree distribution of a
directed graph G

win = (win
1 , . . . ,w

in
n )= ( deginG (v1), . . . , deginG (vn))

wout = (wout
1 , . . . ,wout

n )= ( degoutG (v1), . . . , degoutG (vn))

but also an embedding E of nodes of G in some k-dimensional space, E :V →Rk. In particular, for
each pair of nodes, vi, vj, we know the distance between them:

di,j = dist(E(vi), E(vj))
It is desired that the probability that nodes vi and vj are adjacent to be a function of di,j, that is,

to be proportional to g(di,j) for some function g. The function g should be a decreasing function
as long edges should occur less frequently than short ones. There are many natural choices such as
g(d)= d−β for some β ∈ [0,∞) or g(d)= exp (− γ d) for some γ ∈ [0,∞). We use the following,
normalized function g:[0,∞)→ [0, 1]: for a fixed α ∈ [0,∞), let

g(d) :=
(
1− d − dmin

dmax − dmin

)α

=
(

dmax − d
dmax − dmin

)α

where

dmin =min{dist(E(v), E(w)) : v,w ∈V , v �=w}
dmax =max{dist(E(v), E(w)) : v,w ∈V}

are the minimum, and respectively the maximum, distance between nodes in embedding E . One
convenient and desired property of this function is that it is invariant with respect to an affine
transformation of the distance measure. Clearly, g(dmin)= 1 and g(dmax)= 0; in the computa-
tions, we can use clipping to force g(dmin)< 1 and/or g(dmax)> 0 if required. Let us also note that
if α = 0 (that is, g(d)= 1 for any d ∈ [dmin, dmax) with the convention that g(dmax)= 00 = 1), then
the pairwise distances are neglected. As a result, in particular, for undirected graphs we recover
the original Chung–Lu model. Moreover, the larger parameter α is, the larger the aversion to long
edges is. Since this family of functions (for various values of the parameter α) captures a wide spec-
trum of behaviors, it should be enough to concentrate on this choice, but one can experiment with
other functions. So, for now we may assume that the only parameter of the model is α ∈ [0,∞).

The GCL directed graphmodel is the random graph G(win,wout , E , α) on the set of nodes V =
{v1, . . . , vn} in which each pair of nodes vi, vj, independently of other pairs, forms a directed edge
from vi to vj with probability pi,j, where

pi,j = xouti xinj g(di,j)
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for some carefully tuned weights xini , x
out
i ∈R+. The weights are selected such that the expected

in-degree and out-degree of vi is win
i and, respectively, wout

i ; that is, for all i ∈ [n]

wout
i =

∑
j∈[n],j�=i

pi,j = xouti
∑

j∈[n],j�=i
xinj g(di,j)

win
i =

∑
j∈[n],j�=i

pj,i = xini
∑

j∈[n],j�=i
xoutj g(di,j)

Additionally, we set pi,i = 0 for i ∈ [n] which corresponds to the fact that the model does not
allow loops.

In the supplementary document, we prove that there exists the unique selection of weights,
unless G has an independent set of size n− 1, that is, G is a star with one node being part of every
edge. (Since each connected component of G can be embedded independently, we always assume
that G is connected.) This very mild condition is satisfied in practice. Let us mention that in the
supplementary document, it is assumed that g(di,j)> 0 for all pairs i, j. In our case, g(di,j)= 0
for a pair of nodes that are at the maximum distance. It causes no problems in practice but, as
mentioned earlier, one can easily scale the outcome of function g( · ) to move away from zero
without affecting the divergence score in any nonnegligible way.

Finally, note that it is not clear how to find weights explicitly, but they can be efficiently approx-
imated numerically to any desired precision. In the supplementary document, we prove that, if the
solution exists, which is easy to check, then the set of right-hand sides of the equations, considered
as a function from R2n to R2n, is a local diffeomorphism everywhere in its domain. As a result,
standard gradient root-finding algorithms should be quite effective in finding the desired weights.
In our implementation, we use even simpler numerical approximation procedure.

Note: The specification of the GCL directed graph model implies that the probability of hav-
ing a directed edge from one node to another one increases with their out-degree and in-degree,
respectively, and decreases with the distance between them. This is a crucial feature that ensures
that the local divergence score is explainable. For instance, potentially one could imagine embed-
dings where nodes that are far apart are more likely to be connected by an edge. However, under
our framework, such embeddings would get a low local score.

3.2 Scalable implementation
Themain bottleneck of the algorithm is the process of tuning 2nweights xouti , xini ∈R+ (i ∈ [n]) in
the GCL Graph (both in directed and in undirected counterpart). This part requires �(n2) steps
and so it is not feasible for large graphs. Fortunately, one may modify the algorithm slightly to
obtain a scalable approximation algorithm that can be efficiently run on large networks. It was
done for the framework for undirected graphs in Kamiński et al. (2020) to obtain the running
time of O(n ln n) which is practical.

The main idea behind our approximation algorithm is quite simple. The goal is to group
together nodes from the same part of the partition C obtained in Step 1 of the algorithm that
are close to each other in the embedded space. Once such refinement of partition C is generated,
one may simply replace each group by the corresponding auxiliary node (that we call a landmark)
that is placed in the appropriately weighted center of mass of the group it is associated with. The
reader is directed to Kamiński et al. (2020) formore details.Minor adjustments are only needed for
the density-based evaluation to accommodate directed graphs and approximating the link-based
score is easy. Both issues are discussed in the supplementary document.

The framework, by default, uses the approximation algorithm for networks with 10,000 nodes
or more. In Section 4.4, we show how well the approximation algorithm works in practice.
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4. Experiments
In this section, we detail some experiments we performed showing that the framework works as
desired. In Section 4.1, we provide descriptions of both synthetic and real-world networks that
we used for the experiments. A few embedding algorithms for directed graphs are introduced
in Section 4.2. We used two of them for our experiments. In Section 4.3, we present results of
an experiment with a small “toy example” to illustrate how one can use the framework to select
the best embedding among several ones. As explained earlier, in order to have a scalable frame-
work that can be used to evaluate huge graphs, we introduced landmarks to provide approximated
scores. We show in Section 4.4 that this approximation works well. Finally, we ran experiments
showing the usefulness of the framework. In Section 4.5, we show that the global score may be
used to predict how good the evaluated embedding is for algorithms that require good global
properties such as node classification or community detection algorithms. Similarly, the correla-
tion between the local score and the ability of embeddings to capture local properties (for example,
with link prediction algorithm) is investigated in Section 4.6. A few more experiments showing
the differences between the two scores are presented in Section 4.7.

Experiments were conducted using SOSCIP3 Cloud infrastructure. We used Compute G4-
x8 (8 vCPUs, 32GB RAM) machines and Ubuntu 18.04 operating system. Computation used
for experimentation and calibration of the scripts took approximately 1500 vCPU-hours. For
reproducibility purpose, the scripts and results presented in this paper can be found on GitHub
repository4.

4.1 Synthetic and real-world graphs
In order to test the framework, we performed various experiments on both synthetic and real-
world networks.

4.1.1 Stochastic block model
Tomodel networks with simple community structure, we used the classical stochastic blockmodel
(SBM) (Holland et al., 1983) (see Funke & Becker (2019) for an overview of various generaliza-
tions). The model takes the following parameters as its input: the number of nodes n, a partition
of nodes into � communities, and an � × � matrix P of edge probabilities. Two nodes, u from ith
community and v from jth community, are adjacent with probability Pij, and the events associ-
ated with different pairs of nodes are independent. The model can be used to generate undirected
graphs in which case matrix P should be symmetric, but one can also use the model to generate
directed graphs.

For our experiments, we generated directed SBM graphs with n= 10,000 nodes and 30 com-
munities of similar size. Nodes from two different communities are adjacent with probability
Pij = 0.001= 10/n, and nodes from the same community are adjacent with probability Pii =
0.025= 250/n. As a result, about 54% of the edges ended up between communities.

4.1.2 LFRmodel
The LFR (Lancichinetti, Fortunato, Radicchi) model (Lancichinetti & Fortunato, 2009;
Lancichinetti et al., 2008) generates networks with communities, and at the same time it allows for
the heterogeneity in the distributions of both node degrees and of community sizes. As a result,
it became a standard and extensively used method for generating artificial networks. The original
model (Lancichinetti et al., 2008) generates undirected graphs, but it was soon after generalized to
directed and weighted graphs (Lancichinetti & Fortunato, 2009). The model has various param-
eters: the number of nodes n, the mixing parameter μ that controls the fraction of edges that are
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between communities, power law exponent γ for the degree distribution, power law exponent β

for the distribution of community sizes, average degree d, and the maximum degree �.
For our experiments, we generated two families of directed graphs that we called LFR and

noisy-LFR. To generate LFR graphs, we used n= 10,000, μ = 0.2, γ = 3, β = 2, d = 100, and
� = 500, whereas for noisy-LFRwe used n= 10,000,μ = 0.5, γ = 2, β = 1, d = 100, and� = 500.

4.1.3 ABCDmodel
In order to generate undirected graphs, we used an “LFR-like” random graph model, the
Artificial Benchmark for Community Detection (ABCD graph) (Kamiński et al., 2021) that was
recently introduced and implemented5, including a fast implementation that usesmultiple threads
(ABCDe)6. Undirected variant of LFR and ABCD produce graphs with comparable properties,
but ABCD/ABCDe is faster than LFR and can be tuned to allow the user to make a smooth tran-
sition between the two extremes: pure (independent) communities and random graph with no
community structure.

For our experiments, we generated ABCD graphs on n= 10,000 nodes, ξ = 0.2 (the counter-
part of μ ≈ 0.194 in LFR), γ = 3, β = 2, d = 8.3, and � = 50. The number of edges generated was
m= 41,536, and the number of communities was � = 64.

4.1.4 EU email communication network
We also used the real-world network that was generated using email data from a large European
research institution (Paranjape et al., 2017). The network is made available through Stanford
Network Analysis Project (Leskovec & Sosič, 2016)7. Emails are anonymized, and there is an edge
between u and v if person u sent person v at least one email. The dataset does not contain incom-
ing messages from or outgoing messages to the rest of the world. More importantly, it contains
“ground-truth” community memberships of the nodes indicating which of 42 departments at the
research institute individuals belong to. As a result, this dataset is suitable for experiments aiming
to detect communities, but we ignore this external knowledge in our experiments.

The associated EMAIL directed graph consists of n=1,005 nodes,m= 25,571 edges, and � = 42
communities.

4.1.5 College Football network
In order to see the framework “in action,” in Section 4.3, we performed an illustrative experiment
with the well-known College Football real-world network with known community structures.
This graph represents the schedule of U.S. football games between Division IA colleges during the
regular season in Fall 2000 (Girvan &Newman, 2002). The associated FOOTBALL graph consists
of 115 teams (nodes) and 613 games (edges). The teams are divided into conferences containing
8–12 teams each. In general, games are more frequent between members of the same confer-
ence than between members of different conferences, with teams playing an average of about
seven intra-conference games and four inter-conference games in the 2000 season. There are a
few exceptions to this rule, as detailed in Lu et al. (2018): one of the conferences is really a group
of independent teams, one conference is really broken into two groups, and three other teams play
mainly against teams from other conferences. We refer to those as outlying nodes.

4.2 Node embeddings
Asmentioned in the introduction, there are over 100+ node embedding algorithms for undirected
graphs. There are also some algorithms explicitly designed for directed graphs, or that can handle
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both types of graphs, but their number is much smaller. We selected two of them for our experi-
ments,Node2Vec andHOPE, but there are more to choose from. Embeddings were produced for
16 different dimensions between 2 and 32 (with a step of 2).

4.2.1 Node2Vec
Node2Vec8 (Grover & Leskovec, 2016) is based on random walks performed on the graph, an
approach that was successfully used in Natural Language Processing. In this embedding algo-
rithm, biased random walks are defined via two main parameters. The return parameter (p)
controls the likelihood of immediately revisiting a node in the random walk. Setting it to a high
value ensures that we are less likely to sample an already visited node in the following two steps.
The in–out parameter (q) allows the search to differentiate between inward and outward nodes,
so we can smoothly interpolate between breadth-first search (BFS) and depth-first search (DFS)
exploration. We tested three variants of parameters p and q: (p= 1/9, q= 9), (p= 1, q= 1), and
(p= 9, q= 1/9).

4.2.2 HOPE
HOPE (High-Order Proximity preserved Embedding) (Ou et al., 2016) is based on the notion of
asymmetric transitivity, for example, the existence of several short directed paths from node u to
node v makes the existence of a directed edge from u to v more plausible. The algorithm learns
node embeddings as two concatenated vectors representing the source and the target roles. HOPE
can also be used for undirected graphs, in which case the source and target roles are identical, so
only one is retained. Four different high-order proximity measures can be used within the same
framework. For our experiments, we used three of them: Katz, Adamic-Adar, and personalized
PageRank (denoted in our experiments as katz, aa and, ppr, respectively).

4.2.3 A few other ones
Similarly to HOPE,APP (Asymmetric Proximity Preserving) (Zhou, 2021) is also using asymmet-
ric transitivity and is based on directed random walks and preserved rooted page rank proximity
between nodes. It learns node embedding as a concatenation of two vectors representing the
node’s source and target roles. NERD (Node Embeddings Respecting Directionality) (Khosla
et al., 2019) also learns two embeddings for each node as a source or a target, using alternating
random walks with starting nodes used as a source or a target; this approach can be interpreted as
optimizing with respect to first-order proximity for three graphs: source-target (directed edges),
source-source (pointing to common nodes), and target-target (pointed to by common nodes).
Other methods for directed graphs try to learn node embeddings as well as some directional vec-
tor field. For example, ANSE (Asymmetric Node Similarity Embedding) (Dernbach & Towsley,
2020) uses skip-gram-like random walks, namely forward and reverse random walks, to limit
dead-end issues. It also has an option to embed on a hypersphere. In another method that also
try to learn a directional vector field (Perrault-Joncas & Meila, 2011), a similarity kernel on some
learned manifold is defined from two components: (i) a symmetric component, which depends
only on distance, and (ii) an asymmetric one, which depends also on the directional vector field.
The algorithm is based on asymptotic results for (directed graph) Laplacians embedding, and the
directional vector space can be decoupled.

4.3 Illustration of the framework
In order to illustrate the application of the framework, we ran the two embedding algorithms
(HOPE and Node2Vec) in different dimensions and sets of parameters on the FOOTBALL
graph. For each combination of the parameters, an embedding was produced and assessed with
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Figure 1. Normalized global and local scores for FOOTBALL graph.

Figure 2. Two-dimensional projections of embeddings of FOOTBALL graph according to the framework: the best (left), the
worst with respect to the local score (middle), and the worst with respect to the global score (right).

our framework. Local and global scores were normalized, as explained in Section 2.3, and are pre-
sented in Figure 1. In particular, good embeddings are concentrated around the auxiliary point
(1, 1) that corresponds to the embedding that is the best from both local and global perspective.
(Such embedding might or might not exist.)

We recommend to select the best embedding by careful investigation of both scores but, alter-
natively, one can ask the framework to decide which embedding to use in an unsupervised fashion.
In order to do it, one may combine the global and the local scores, as explained in Equation
(3), to make a decision based on a single combined divergence score. This way we identified the
best and the worst embeddings. To visualize the selected embeddings in high dimensions, we
needed to perform dimension reduction that seeks to produce a low-dimensional representation
of high-dimensional data that preserve relevant structure. For that purpose, we used the Uniform
Manifold Approximation and Projection (UMAP)9 (McInnes et al., 2018), a novel manifold learn-
ing technique for dimension reduction. UMAP is constructed from a theoretical framework based
in Riemannian geometry and algebraic topology; it provides a practical scalable algorithm that
applies to real-world datasets. The results are presented in Figure 2. The embedding presented on
the left-hand side shows the winner that seems to not only separate nicely the communities but
also puts pairs of communities far from each other if there are few edges between them; as a result,
both scores are good. The embedding in the middle separates communities, but the nodes within
communities are clumped together resulting in many edges that are too short. There are also a
lot of edges that are too long. As a result, the local score for this embedding is bad. Finally, the
embedding on the right has a clear problem with distinguishing communities, and some of them
are put close to each other resulting in a bad global score.
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Figure 3. Approximated vs. exact global scores for LFR graphs and HOPE (left) and Node2Vec (right) embeddings.

Figure 4. Approximated vs. exact local scores for LFR graphs and HOPE (left) and Node2Vec (right) embeddings.

4.4 Approximating the two scores
Let us start with an experiment testing whether our scalable implementation provides a good
approximation of both measures, the density-based (global) score �

g
E (G) and the link-based

(local) score ��
E (G). We tested SBM, LFR, and noisy-LFR graphs with the two available embed-

dings (using the parameters and selected dimensions as described above). The number of
landmarks was set to be five times larger than the number of communities in each graph, namely
SBM graph used 30× 5= 150 landmarks, LFR had 75× 5= 375 landmarks, and for noisy-LFR
the number of landmarks was set to 54× 5= 270.

Figures 3 and 4 present the results of experiments for LFR graph and both embedding algo-
rithms. (Experiments for other graphs can be found in the supplementary document.) The first
figure shows how well the global score is approximated by a scalable algorithm and the second fig-
ure concentrates on the local score. Recall that graphs on 10,000 nodes are, by default, the smallest
graphs for which the framework uses scalable algorithm. The default setting in the framework is
to use at least 4 landmarks per community and at least 4

√
n of them overall, so 400 landmarks for

graphs of size 10,000 andmanymore for larger graphs. In our experiment, we see good results with
even fewer landmarks. This was done in purpose to test approximation precision in a challenging
corner case. As expected, global properties reflected by the global score are easier to approximate
than local properties investigated by the local score that are more sensitive to small perturbations.
Nevertheless, both scores are approximated to a satisfactory degree. The Pearson correlation coef-
ficients for bothHOPE and Node2Vec are close to 1 for the global score and roughly 0.99 for the
local score. For other standard correlation measures, see Tables 1 and 2.
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Table 1. Correlation between approximated and (exact) global scores

Graph embedding Pearson Spearman Kendall-Tau

SBM10K-HOPE 0.98 0.98 0.94
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SBM10K-N2V 1.0 1.0 0.97
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-HOPE 1.0 1.0 0.99
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-N2V 1.0 1.0 0.99
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nLFR10K-HOPE 1.0 1.0 1.0
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nLFR10K-N2V 1.0 0.96 0.87

Table 2. Correlation between approximated and (exact) local scores

Graph embedding Pearson Spearman Kendall-Tau

SBM10K-HOPE 0.99 0.99 0.92
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SBM10K-N2V 0.99 0.97 0.87
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-HOPE 0.99 0.99 0.93
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-N2V 0.99 0.98 0.90
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nLFR10K-HOPE 1.0 1.0 0.98
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

nLFR10K-N2V 1.0 0.99 0.94

Figure 5. Pearson’s correlation between approximated and exact global scores for SMB, LFR, noisy-LFR graphs, and HOPE
(left) and Node2Vec (right) embeddings.

Finally, we checked if the number of landmarks used by the framework as a default value
(namely, 4

√
n) is a good choice. We see in Figures 5 and 6 that the approximation quickly sta-

bilizes, and so there is no need for a large number of landmarks to get the desired approximation.
As commented earlier, the local score is more challenging to approximate (see Figure 6 again),
and the Pearson correlation between the approximated and the exact local scores does not seem
to tend to 1 quickly but it is very close to 1, providing a satisfactory precision.
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Figure 6. Pearson’s correlation between approximated and exact local scores for SMB, LFR, noisy-LFR graphs, and HOPE
(left) and Node2Vec (right) embeddings.

4.5 Node classification and community detection vs. the global score
It is expected and desired that the global score measures how useful a given embedding is for any
application that requires a good understanding of a global structure of the network. In our next
experiments, we tested two such applications: node classification and community detection.

Node classification task aims to train a model to learn to which class a node belongs to.
Typically, the goal is to label each node with a categorical class (binary classification or multi-
class classification) or to predict a continuous number (regression). The process is supervised in
nature, that is, the model is trained using a subset of nodes that have ground-truth labels.

For each graph (SBM, LFR, noisy-LFR, and EMAIL), each of the two embeddings (HOPE
and Node2Vec) was used as an input for community detection task based on XGBoost model.
XGBoost10 is an open-source software library that provides a regularizing gradient boosting
framework, the algorithm of choice for many winning teams of machine learning competitions.
Since we aim to have a fair benchmark evaluating if an embedding extracts any useful global prop-
erties of the network instead of optimizing the quality of the outcome, we used vanilla XGBoost
with default hyperparameters. For each embedding, we conducted 10 independent repetitions of
the standard training process. First, nodes with the corresponding embedding was randomly par-
titioned into a training and a test set (25% of all observations). Then, XGBoost model was trained
on the training set together with the corresponding labels indicated the ground-truth community
the nodes belong to. Finally, the model was used to predict the communities on the test set, and
the accuracy was reported.

Similarly, in order to investigate how much of the community structure got preserved by the
evaluated embeddings, each embedding was independently clustered 20 times using the classic
k-means algorithm, a well-known method that aims to partition n vectors into k clusters in which
each vector belongs to the cluster with the nearest mean (center of mass). As before, since we
aim for a fair and easy benchmark rather than a carefully tuned specific approach, we simply
used the vanilla k-means algorithm and the value of k set to the true number of communities.
The AMI score was then calculated based on the two partitions of the set of nodes: the clusters
assignment returned by the k-means algorithm and the ground-truth communities. This approach
is similar to the one used in the recent paper (Tandon et al., 2021) in which the authors investigate
if embeddings can be used to detect communities.

The results of both experiments are presented on Figure 7 (the accuracy score for node classifi-
cation task is presented on the left side, whereas the AMI score for community detection task can
be found on the right side). The embeddings that are identified by the framework as good (left-
bottom corner, close to the auxiliary point (1, 1) representing the hypothetical perfect score) tend
to perform well in both applications (large balls representing large values of the accuracy/AMI).
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Figure 7. Global and local scores with accuracy (left) and AMI (right) overlay for SBM, LFR, noisy-LFR, EMAIL graphs, and
HOPE and Node2Vec embeddings.
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Table 3. Correlation coefficients between the accuracy scores in node classification task and global/local scores
(averaged over all parameters)

Pearson Spearman Kendall-Tau

Graph embedding Global Local Global Local Global Local

SBM10K-HOPE −0.97 −0.99 −1.0 −1.0 −0.97 −0.96
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SBM10K-N2V −0.9 −0.82 −0.57 −0.57 −0.42 −0.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-HOPE −0.96 −0.93 −1.0 −0.97 −0.97 −0.89
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-N2V −0.8 −0.71 −0.25 −0.23 −0.16 −0.14
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NLFR10K-HOPE −0.98 −0.98 −1.0 −1.0 −0.96 −0.96
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NLFR10K-N2V −0.91 −0.85 −0.14 −0.1 −0.08 −0.04
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EMAIL-HOPE −0.97 −0.68 −0.9 −0.72 −0.77 −0.61
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EMAIL-N2V −0.86 −0.87 −0.69 −0.69 −0.54 −0.54

Table 4. Correlation coefficients between the AMI scores in community detection task and global/local scores
(averaged over all parameters)

Pearson Spearman Kendall-Tau

Graph embedding Global Local Global Local Global Local

SBM10K-HOPE −0.98 −0.99 −1.0 −1.0 −0.97 −0.95
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SBM10K-N2V −0.93 −0.85 −0.91 −0.91 −0.8 −0.81
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-HOPE −0.98 −0.96 −1.0 −0.97 −0.96 −0.89
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-N2V −0.82 −0.73 −0.76 −0.75 −0.6 −0.59
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NLFR10K-HOPE −0.99 −0.99 −0.99 −0.99 −0.95 −0.95
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NLFR10K-N2V −0.92 −0.86 −0.4 −0.39 −0.29 −0.29
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EMAIL-HOPE −0.86 −0.46 −0.62 −0.48 −0.54 −0.42
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EMAIL-N2V −0.86 −0.87 −0.77 −0.80 −0.61 −0.65

On the other hand, poorly scored embeddings (top-right corner) perform poorly (small balls).
The same conclusion is obtained after more rigorous investigation of the correlation coefficients
between the accuracy/AMI and the global/local scores (see Table 3 and, respectively, Table 4). Let
us note that the rank-based correlations (Spearman and Kendall-Tau) report a smaller correlation
for Node2Vec embeddings as in our experiment we generated many embeddings that were com-
parable and of very good quality. As a result, their rankings with respect to the global/local scores
and the accuracy/AMI might not be exactly the same but, in any case, the framework was able
to distinguish good embeddings from bad ones. More experiments can be found in the supple-
mentary document. In particular, since the accuracies and the AMI scores are not always easy to
compare on Figure 7, we present them directly as functions of local and global scores.
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4.6 Link prediction vs. the local score
As discussed in the previous section, the global score returned by the framework captures how
well the embedding preserves global properties of embedded networks. Similarly, it is expected
and desired that the local score evaluates the power of embeddings to encapsulate local properties.
In the next experiment, we tested one local algorithm, namely, link prediction algorithm.

Indeed, most the the methods for directed graph embeddings are validated via link prediction
(Zhou et al., 2017), where one deletes a subset of edges (typically randomly selected) and then
measures how well they can be recovered. A commonly used scoring method is the AUC obtained
from ranking of node pairs from most to least likely to have an edge between them. A variation of
that approach is known as node recommendation, where one removes some outgoing edges for
a subset of nodes and try to recover the most likely missing neighbors. Another score that may
potentially be used is to compare precision and recall among the top-k candidate node pairs for a
specific k. This is useful, for example, if one has a limited “budget” to investigate if a given pair of
nodes are actually linked by an edge or not, so one can only test a small number of pairs.

In our experiments, for each of the four graphs we tested (SBM, LFR, noisy-LFR, and EMAIL),
given graph G, we randomly selected 5% of its edges and removed them to form a graph G′. Then
we took another random sample of nonadjacent pairs of nodes in G, set E′. Both classes had the
same number of pairs of nodes so that the test set created in such a way was balanced. Our goal
was to train a model that uses one of the embeddings of graph G′ to detect which pairs of nodes
in E∪ E′ are adjacent in G. We repeated this process independently five times (with five different
seed values) and reported the average AUC scores.

For each of the two algorithms (HOPE andNode2Vec), each combination of their parameters
and 16 dimensions we tested, we produced an embedding of graph G′. For evaluation purpose,
we computed both the global and the local divergence scores for the produced embedding. In
order to create a training set for the classifier, we considered all pairs of adjacent nodes in G′
(the positive class) as well as a random subset of pairs of nonadjacent nodes (the negative class)
that is of the same size as the number of edges in G′ (as for the test sets, to keep both classes
balanced). Finally, we concatenated embeddings of pairs of nodes representing edges/non-edges
into feature vectors to be used for prediction. Such training set was used to train XGBoost model
with default hyperparameter values. As already mentioned, in order to measure the quality of
this simple model, we computed the AUC score that provides a measure of separability, as it tells
us how capable the model is of distinguishing between the two classes, edges E and non-edges
E′, both coming from the original graph G. (Note that some pairs of nodes in the test set might
overlap with pairs of nodes in the training set. Even more, some positive pair in the test set might
be negative in the training one.)

The results of this experiment are presented on Figure 8. The embeddings that score well by
the framework (left-bottom corner of the plots, near to the auxiliary point (1, 1)) turn out to per-
form well in predicting links (large balls representing large values of AUC), and the opposite is
true for the embeddings that are identified as poor ones (right-top corner of the plots). More
rigorous approach can be found in Table 5 where the correlation coefficients between the AUC
and the global/local scores are reported. As before, since there are many Node2Vec embeddings
that are almost indistinguishable, ranking-based correlation coefficients report weaker correla-
tion. The framework has no chance to predict the exact ranking of the embeddings based on their
global/local scores, but it is clearly able to identify good embeddings and separate them from
bad ones. As usual, more experiments can be found in the supplementary document, including
counterpart of Figure 8 presenting the AUC score as functions of local and global scores.

4.7 More challenging situations
Based on experiments in Section 4.5, we see that both global (as expected) and local (far
from being obvious) scores correlate well with the quality of both node classification and

https://doi.org/10.1017/nws.2022.27 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2022.27


342 B. Kamiński et al.

Figure 8. Global and local scores with AUC overlay for SBM, LFR, noisy-LFR, EMAIL graphs, and HOPE and Node2Vec
embeddings.

community detection. Similarly, experiments in Section 4.6 imply that both scores correlate with
the quality of link prediction algorithm (this time, we expect this from the local score but not
necessarily from the global one). We see such behavior as the two scores often correlate with
one another. Indeed, for a relatively easy graph to deal with, a good quality embedding should
be able to preserve both local and global properties of the network. On the other hand, poor
quality embeddings (e.g., when the dimension is too small or the parameters are not properly
selected) typically fail to produce anything useful, from any of the two perspectives. Our syn-
thetic models and EMAIL graph seem to confirm this. However, it is expected and plausible that
large, real-world graphs are more challenging to deal with. For such graphs, it might be difficult if
not impossible to find an embedding that scores well from both perspectives. In such situations,
one needs to make a decision which embedding to use based on a specific application at hand
(using either global or local properties). In order to illustrate such situations, we experimented
with an undirectedABCD graph and 32-dimensionalNode2Vec embedding (with parameters set
to p= q= 1).

First, we rewired a specified fraction p of edges within each community. The rationale behind
it is that such operation should destroy local properties of the embedding (many edges within
communities are now long with respect to the associated embedding and some pairs of close nodes
are not adjacent), but global properties should remain unchanged.

We independently generated five graphs with the following rewiring fractions: p= 0.2,
p= 0.4, p= 0.6, p= 0.8, and p= 1.0; note that p= 0 corresponds to the original ABCD graph. As
expected, the global score and the quality of both node classification and community detection
algorithms remain the same. More importantly, the local score increases (the quality of the
embedding gets worse) and the quality of link prediction algorithm (AUC) gets worse—see
Figure 9 (left).
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Table 5. Correlation coefficients between the AUC scores in link prediction task andglobal/local scores (averaged
over all parameters)

Pearson Spearman Kendall-Tau

Graph embedding Global Local Global Local Global Local

SBM10K-HOPE −0.92 −0.95 −0.99 −0.96 −0.91 −0.83
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SBM10K-N2V −0.81 −0.73 −0.3 −0.31 −0.21 −0.22
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-HOPE −0.94 −0.91 −0.99 −0.95 −0.94 −0.82
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LFR10K-N2V −0.92 −0.9 −0.91 −0.87 −0.82 −0.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NLFR10K-HOPE −0.96 −0.87 −0.97 −0.9 −0.89 −0.73
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

NLFR10K-N2V −0.91 −0.95 −0.96 −0.9 −0.86 −0.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EMAIL-HOPE −0.9 −0.49 −0.75 −0.43 −0.58 −0.35
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EMAIL-N2V −0.8 −0.86 −0.65 −0.76 −0.48 −0.57

Figure 9. Comparison of local/global scores (and associated qualitymeasures for various tasks) for rewired graphs (left) and
rescaled embeddings (right).

In order to test the opposite scenario, we kept the original ABCD graph but slightly modi-
fied the original embedding. Each community was independently rescaled by a factor of q> 1.
Formally, all points in the embedding that are associated with nodes that belong to a given com-
munity increased their distance from the center of mass of this community while keeping the
direction from it. The idea behind this approach is that, on average, the distance between nodes
from different communities (most pairs of nodes) remain the same, and the distance between
nodes within one community is only slightly increased (small fraction of pairs of nodes anyway).
As a result, local properties should be preserved almost as well as in the original embedding. On
the other hand, inflated communities tend to overlap more in the embedded space than before
and, as a result, the global quality measure should decrease.

We independently generated five embeddings with the following rescaling factors: q= 1.1,
q= 1.2, q= 1.3, q= 1.4, and q= 1.5; note that q= 1 corresponds to the original embedding.
As expected, the local score and the quality of link prediction algorithm remain the same. More
importantly, the global score increases (the quality of the embedding gets worse), and the quality
of both node classification (accuracy) and community detection (AMI) get worse—see Figure 9
(right).

The conclusion can be summarized as follows. Global score might not be able to detect prob-
lems with a given embedding if these problems are local by nature. For example, despite the fact
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that an embedding properly captures between-community distances, it may inaccurately reflect
relationships between nodes within communities. On the other hand, local score might fail to
capture the fact that in the embedding, communities (treated globally as a cloud of points) are
not appropriately separated. For this reason, although in many cases global and local scores are
consistent, they are in general not equivalent and it is useful to calculate them both and investigate
carefully.

5. Conclusions
In this paper, we introduced a framework that assigns two scores (global and local) for embeddings
of a given graph. The two scores measure the ability of analyzed embeddings to preserve global
and, respectively, local properties of the embedded graph. The code is written in Julia (high-level,
high-performance, and dynamic programming language) and available online11. The framework
is easy to use (knowledge of Julia is not required to use it; default parameters should be suitable
for most cases) and flexible (more advanced users may modify parameters, if needed).

If the embeddings need to be used for unsupervised tasks, the framework is able to identify the
best embedding in an unsupervised way via combined divergence score. However, the user might
still want to consider a few embeddings that score well from both perspectives and, if possible,
select an embedding generated by a simple/explainable algorithm. In particular, there is usually
no need to use very high-dimensional embeddings if the improvement is marginal. On the other
hand, if the embedding is to be used for supervised tasks, the best course of action might be to
consider a number of top-scoring embeddings and select the winner by performing a standard
supervised selection for a given application at hand.

Let us also discuss some potential future directions. In Dehghan-Kooshkghazi et al. (2020),
some throughout analysis of the original framework for undirected graphs (and using only the
global score) was performed. A natural next step is to test in more detail the current version of the
framework (using the two scores) on both real-world and synthetic networks. More importantly,
it would be valuable to show the predictive power and usefulness of the framework for a large
dataset and some real-world important application. The industry partners we collaborate with
provide a positive feedback so far, but having a publishable results of experiments performed on
publicly available datasets will be of high value.

When analyzing the correlation between the link prediction algorithm and the local score
(Section 4.6), we independently performed a few more experiments investigating the reason why
embeddings are able to predict missing links. In particular, we created two additional training
sets. The first training set was the same as the original one but with five additional columns: in-
degree and out-degree for both nodes as well as the distance between them. The second training
set consisted with only these five additional columns. The quality of models obtained by using
both such training sets turned out to be comparable to the original one we used for our tests. As
expected, the richer set typically gave slightly better quality results but not always. This implies
that the embeddings encoded the most important information about the graph via the distances
between nodes (or XGBoost was not able to extract more from other sources). This suggests that
the GCL model should be able to accurately model the shape of the embedded networks as they
require exactly the five columns as the parameters/input. We plan to use the GCL model, along
with graph-based communities and other properties such as transitive closure, to build a better
quality link prediction algorithm. Another potential and important application is to detect over-
lapping communities or to detect anomalies. In both cases, the GCL model equipped with a good
embedding would be the heart of such an algorithm.
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Notes
1 https://github.com/KrainskiL/CGE.jl
2 https://github.com/ftheberge/Comparing/Graph/Embeddings
3 https://www.soscip.org/
4 https://github.com/KrainskiL/UnsupervisedFrameworkForComparingGraphEmbeddings
5 https://github.com/bkamins/ABCDGraphGenerator.jl/
6 https://github.com/tolcz/ABCDeGraphGenerator.jl/
7 https://snap.stanford.edu/data/email-Eu-core.html
8 https://github.com/eliorc/node2vec
9 https://github.com/lmcinnes/umap
10 https://github.com/dmlc/xgboost
11 https://github.com/KrainskiL/CGE.jl
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Kamiński, B., Prałat, P., & Théberge, F. (2021). Artificial benchmark for community detection (ABCD)—Fast random graph

model with community structure. Network Science, 9(2), 1–26.
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