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Abstract

Matching theorems, fixed point theorems and minimax inequalities are obtained in H-spaces
which generalize the corresponding results of Bae-Kim-Tan, Browder, Fan, Horvath, Kim, Ko-
Tan, Shih-Tan, Takahashi, Tan and Tarafdar to non-compact and/or non-convex settings.
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1. Introduction

In 1972, by applying his infinite dimensional generalization [11, Lemma 1] of
the classical Knaster-Kuratowski-Mazurkiewicz Theorem [18], Fan obtained
a minimax inequality [12, Theorem 1] which has numerous applications to
various and diverse branches of mathematics. Since then there are many
generalizations in topological vector space setting, for example, [1], [2], [4],
[5], [13], [20], [23], [24], [25], [26], [27] and [28]. In [14, 15, 16], Horvath
obtained minimax inequalities by replacing convexity with pseudo-convexity
or contractibility in a topological space but only in compact setting. In [3],
using Horvath’s approach in [16], Bardaro and Ceppitelli obtained some min-
imax inequalities in non-compact setting for mappings taking values in an
ordered vector space.
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In this paper, we shall use Bardaro and Ceppitelli’s notions of “ H-space”,
“ H-convex”, “weak- H-convex” and “ H-compact” in [3] to first obtain some
generalizations of Fan’s matching theorems [13, Theorems 2 and 3] and some
results of Horvath [16, Theorem 2], Kim [17, Theorem 2], Ko and Tan [19,
Theorem 7B] and Tarafdar [27, Lemma 2.1] to non-convex setting. Next by
applying our earlier results, some fixed point theorems are obtained gener-
alizing those of Browder [6, Theorem 2], Horvath [16, Theorem 2'], Kim
[17, Theorem 3] and Tarafdar [27, Theorems 2.2 and 2.3 and Corollaries 2.1
and 2.2] to non-convex and non-compact setting. Several very general min-
imax inequalities are also presented which improve those of Bae, Kim and
Tan [2, Theorem 1], Fan [12, Corollary 1], [13, Theorem 6], Horvath [16,
Propositions 1, 2 and 3], Shih and Tan [21, Theorem 1], Takahashi [25,
Theorem 3] and Tan [26, Theorem 1].

For further and related works and applications and for mappings taking
values in an ordered vector space, we refer to Ding, Kim and Tan [7] and
Ding and Tan {8, 9, 10].

2. Matching theorems

Let X and Y be non-empty sets; we shall denote by 2" the family of
all non-empty subsets of Y and ¥ (X) the family of all non-empty finite
subsets of X . If F: X — 2, define F~', F*: Y - 2¥u{®} and F°: X —
2Yu{@} by

F'0)={xeX:yeF(x)}, F'(»)={xeX:y¢F(x)} and

Fi(x)={yeY:y¢F(x)}
We shall denote by A, the standard n dimensional simplex with the vertices
€, ---,€,. If J is a non-empty subset of {0,...,n}, A, will denote the
convex hull of the vertices {ej: Jj€J}. If E is avector space and 4 C E,
we shall denote by co(A4) the convex hull of 4.

The following notions which were introduced by Bardaro and Ceppitelli in
[3] were motivated by an earlier work of Horvath [16] in generalizing Ky Fan’s
infinite dimensional generalization of the Knaster-Kuratowski-Mazurkiewicz
theorem [18] and Fan’s minimax inequality [12] to topological spaces without
convexity.

A pair (X, {F,}) is said to be an H-space if X is a topological space
and {F,} is a given family of non-empty contractible subsets of X, indexed
by 4 € F(X) such that F, C F,, whenever 4 C A'. Let (X, {F,}) be
an H-space. A non-empty subset D of X is called (i) H-convexif F, Cc D
for each 4 € F(D); (ii) weakly H-convex if F, N D is non-empty and
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contractible for each 4 € # (D) (this is equivalent to say that (D, {F,ND})
is an H-space); (iii) compactly open (closed) in X if DN C is open (closed)
in C for each non-empty compact subset C of X .

Let (Y, {F,}) be an H-space and X be a non-empty subset of Y. A
non-empty subset X, of X is said to be H-compact in X if, for each
A € F(X), there exists a compact, weakly H-convex subset C, of Y such
that X,UA C C,. Amap F: X — 2" iscalled H-KKM if F, C U, F(x)
for each 4 € #(X). We remark here that our definition of “ H-compact in
X ” is slightly more general than that of “ H-compact” in [3]; however, the
two notions coincide when X =Y .

The proof of the following useful result is contained in the proof of The-
orem 1| of Horvath in [16] and is thus omitted.

LEMMA 1. Let X be a topological space. For each non-empty subset J
of {0,...,n}, let F, bea non-empty contractible subset of X . If J C J'
implies F, C F;/, then there exists a continuous map f:A, — X such that
f(A,) c F, for each non-empty subset J of {0, ..., n}.

The following result is a variation of Theorem 1 of Horvath [16]:

LEMMA 2. Let X be a topological space and {R,};_, be a family of subsets
of X . Suppose

(i) for each non-empty subset J of {0, ..., n}, there exists a non-empty
contractible subset F, of X suchthat F; CU;., R; and F; C F, , whenever
JcJ ';

(ii) for each i€ {0, ..., n}, F{O,...,n) N R, is closed in F{o,..

Then N_y R, # 3.

jeJ
,n}

Proor. By Lemma 1, there exists a continuous function f: A, — X such
that f(A;) C F, for each non-empty subset J of {0, ..., n}. For each
i=0,...,n,let §;= f_l(F{om’n} NR;), then S; is a closed subset of the
simplex A, . For each non-empty subset J of {0, ..., n}, we have

Us,;= s (F{O,...,n) n (U Rj)) 2 f_l(F{o,...,n} nF;)
j€J j€J
= 7Y(F) 24,
Therefore
co{e;: jeJ} C U S;.
j€J
By the Knaster-Kuratowski-Mazurkiewicz theorem [18], N\, S, # @. Take

=0~

any p €., S;, then f(p) e ﬂ;’=0(F{0W,"} NR;) sothat _oR; # .
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The following result is the dual of Lemma 2 and generalizes Theorem 2
of Kim in [17] to non-convex setting.

LEMMA 3. Let X be a topological space and {Ri};'=0 be a family of subsets
of X. Suppose

(i) for each non-empty subset J of {0, ..., n}, there exists a non-empty
contractible subset F, of X suchthat F, c|J s R; and F, C F; whenever
JcJ

(ii) for each i € {0, ..., n}, F{O,...,n} NR; is open in F{O,...,n}'
Then N_ R, #@.

ProoF. By Lemma 1, there exists a continuous function f:A, — X such

that f(A,) Cc F, for each non-empty subset J of {0,...,n}. For each
i=0,...,n,let §;,= f_l(F{OW,"} NR,), then S, is an open subset of the
simplex A, and for each non-empty subset J of {0, ..., n}.
—1
Us,=r ( "}n(UR)) “Fro...yNFy)
JEJ JjeJ
-1
= f ( ) _1

Therefore cofe;: j € J} C Uj¢;S;. It follows from Corollary 1 of Shih
and Tan [22] (also Theorem 1 of Kim [17]) that O}_,S; # &. Take any
P E€N,S;, then f(p) € Nio(Fyy, . .y NR,) sothat N R, #D.

As applications of Lemmas 2 and 3, we have the following matching the-
orems.

THEOREM 1. Let X be a topological space and A, ..., A, be n closed
subsets of X such that U;’=1 A; = X. For each non-empty subset J of
{1,...,n},let F, be anon-empty contractible subset of X such that F, C
Fy whenever J C J'. Then there exists a non-empty subset Jy of {1,...,n}
such that FJ0 nﬂjejo A, #£9D.

PROOF. Suppose the conclusion were not true, then F, N, 4; = @
for each non-empty subset J of {1,...,n}. Foreach j =1, , n, let
G; =S\4;, then G, is open in X . It follows that F;, C U;eJ G for each
non-empty subset J of {l,...,n}. By Lemma 3, (}_, G, # @, which
contradicts the assumption U;’=1 A; = X . This completes the proof.

If X is a convex subset of a topological vector space and x,,...,x, € X,
let F, be the convex hull of {xj: J € J} for each non-empty subset J of
{1, ..., n}, we see then Theorem 1 generalizes Theorem 2 of Fan in [13].
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THEOREM 2. Let X be a topological space and B,, ..., B, be n open
subsets of X such that \J;_, B, = X. For each non-empty subset J of
{1,...,n}, let F, be a non-empty contractible subset of X such that F, C
F;. whenever J C J' . Then there exists a non-empty subset Jyof {1,...,n}
such that FJo nﬂjejo B, #£0.

PROOF. Suppose the conclusion were not true, then F, N jer j =g
for each non-empty subset J of {1,...,n}. Foreach j =1, , let
Gj = X\Bj , then Gj is closed in X . It follows that F, C U]GJ G for each
non-empty subset J of {1,...,n}. By Lemma 2, ﬂ;’z G, # @, which
contradicts the assumption U;’=1 B ;= X . This completes the proof.

The above result generalizes Theorem 7B of Ko and Tan in [19] to a non-
convex setting.

THEOREM 3. Let (X, {F,}) be an H-space and S: X — 2% be such that

@) Uyex Sx) =X

(b) for some x, € X, S°(x,) is compact and for each x € X, S°(x,)NS*(x)
is closed in S°(x,);

(c) for each x € X and for each A€ F(X), F, NS (x) is closed in F,.

Then there exists A € ¥ (X) such that F,N,.,S(x) # Q.

PROOF. Suppose the assertion is false; then for each 4 € ¥ (X), F, N
NeesS(x) =B 50 F, € X\, S(x) = U, 8°(x). Define G: X — 2%
by G(x) = S°(x) for each X € X; then G is an H-KKM map. By (c), for
each x € X and for each 4 € 9’(X) , F,NG(x) is closed in F,. Thus by
Lemma 2 the family {G(x): x € X} has the finite intersection property. By
(b), G(x,) is compact and for each x € X, G(x,)NG(x) is closed in G(x,) .
It follows that () __, G(x) # & which contradicts (a). Hence the assertion
must hold.

xeX

Theorem 3 can be restated in its contrapositive form and in terms of the
complement G(x) of S(x) in X as follows.

THEOREM 4. Let (X, {F,}) be an H-space and G: X — 2% be such that

(a) G is an H-KKM map;

(b) for some x, € X, G(x,) is compact and for each x € X, G(x,)NG(x)
is closed in G(x,);

(c) for each x € X and for each A€ F(X), F,NG(x) is closed in F,.

Then ey G(x) # 2.
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As an immediate consequence of Theorem 4, we have the following,.

THEOREM 5. Let (X, {F,}) be an H-space and F,G: X — 2% be such
that

(a) for each x € X, F(x) C G(x) and x € F(x);

(b) for each x € X, F*(x) is H-convex;

(c) for some xy € X, G(x,) is compact and for each x € X, G(x,)NG(x)
is closed in G(x,);

(d) for each x € X and for each A€ ¥ (X), F,NG(x) isclosed in F,.

Then N,cx G(x) # 9.

ProoF. By Theorem 4, we need only to show that G is an H-KKM map.
If G were not H-KKM, then there exists 4 € #(X) such that F, is not
contained in |J,.,G(x); let y € F, be such that y ¢ U, x) It
follows that 4 ¢ G*(y) c F*(y) by (a) so that F, C F*(y) by (b). As

€ F,, we must have y € F *(y) sothat y ¢ F (y) which contradicts (a).
This completes the proof.

Theorem $ generalizes Lemma 2.1 of Tarafdar in [27] to non-convex set-
ting and to a pair of maps and Theorem 2 of Horvath in [16] in several
aspects. As another immediate consequence of Theorem 4, we have the fol-
lowing.

CoROLLARY 1. Let (X, {F,}) bean H-space andlet G: X — 2% be such
that

(a) G is H-KKM,

(b) for some x, € X, G(x,;) is compact and for each x € X, G(x) is
closed in X .

Then N,cx G(x) # 9.

As another application of Lemma 2, we have the following

THEOREM 6. Let (X, {F,}) be an H-space and S: X — 2% be such that

(a) for some x, € X, S"(x,) is compact and for each x € X, S"(x,) N
S*(x) is closed in S™(x,);

(b) for each x € X and for each A € ¥ (X), F, nS‘( ), is closed in F,.

Then there exists A€ ¥ (X) such that F, N ﬂxe y (x) #0.

PrOOF. Suppose the assertion were false; then for each 4 € F(X),
FiNNyes S ' (x) =@ sothat F, € X\N,eys 87 (%) = Upe X\S™' (%) =
UeesS™(x). Define G: X — 2% by G(x) = S*(x) for each x € X;

https://doi.org/10.1017/51446788700030275 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700030275

7N Matching theorems, fixed point theorems and minimax inequalities 117

then G is an H-KKM map. It follows from (b) and Lemma 2 that the
family {G(x): x € X} has the finite intersection property so that by (a)
Niex G(x) # @. Take any y € [\, G(x), then for each x € X, y €
G(x) = S*(x) and hence x ¢ S(y). Thus S(y) = &, which is a contradic-
tion. Hence the assertion must hold.

LEmMA 4. Let (Y, {F,}) be an H-space and X be a non-empty subset of
Y. Let B: X — 2 be such that

(a) for each x € X, B(x) is compactly open in Y ;

(b) Upex BX) =Y

(c) there exists a non-empty compact weakly H-convex subset C of Y such
that X C C.

Then there exists A€ F (X) such that F,N(\, ., B(x) # 3.

Proor. By (a) and (c), B(x)NC is open in C for each x € S. By (b),
C = U,ex(B(x) N C). Thus there exists {x;, ..., x,} € F(X) such that
C= U:’=0(B(xi) NC). Foreach i €{0, ..., n}, let G(x;) = C\(B(x,)NC);
then G(x;) is closed in C. By (c), for each non-empty J C {xo R
(c X ¢ C), F;,nC is a non-empty contractible subset of C such that
F, C F;, whenever J CJ ’. Now suppose that the assertion were false, then
for each non-empty subset 4 of {x,, ..., x,}, F,N,c,B(x) =2 sothat
(F,nC)NN, e (B(x)NC) =D and hence

F,nCcC\ ﬂ nC)):UG(x)

X€EA

By Lemma 2, ﬂi=0 G(x;) # C; but

G(x,) ﬂ(C\(B )nC)) =C\|JBx)nC
i=0 i=0

i=0

which contradicts the fact that C = U:’=0(B(xi) N C). Hence the conclusion
of Lemma 4 must hold.

THEOREM 7. Let (Y, {F,}) be an H-space and X be a non-empty subset
of Y. Let B: X —2¥ be such that

(a) for each x € X, B(x) is compactly openin Y ;

(0) Uyex B(X) =Y

(c) there exists a non-empty subset X, of X which is H-compact in X
such that Y\U, X, B(x) is empty or compact

Then there exzsts A€ F(X) such that F,N(,cB(x)#D.
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PROOF. Case 1. Suppose Y = {J, . X, B(x), then the conclusion follows
from Lemma 4.

Case 2. Suppose Y\U,. X, B(x) is non-empty and compact, then by (b),
Y =U,ex B(x) D Y\UxeXoB(x) so that we can find 4 = {x,,...,x,} C
X\X, such that |J, ., B(x) D Y\UXEXO B(x). Thus UxeXOUA B(xy=7Y.
Since X, is H-compact in X, by Lemma 4 again, we obtain the desired
result.

Theorem 7 may be restated in its contrapositive form and in terms of the
complement F(x) of B(x) in Y as follows.

THEOREM 8. Let (Y, {F,}) be an H-space and X be a non-empty subset
of Y. Let F: X — 2Y be an H-KKM map such that

(a) for each x € X, F(x) is compactly closed in Y

(b) there exists a non-empty subset X, of X which is H-compact in X
such that (¢ X, F(x) is empty or compact.

Then Ny cx F(x) # 9.

Lemma 4, Theorem 7 and Theorem 8 generalize Lemma 1, Theorem 3
and Theorem 4 of Fan in [13], respectively, to a non-convex setting. We
emphasize that our Theorem 8 is a true generalization of Theorem 4 of Fan
in [13] while Theorem 1 of Bradaro-Ceppitelli in [3] only generalizes a special
case (namely, when X =Y) of the corresponding result.

3. Fixed point theorems

We first shall apply Lemma 3 to obtain the following fixed point theorem
which generalizes Theorem 3 of Kim in [17] to a non-convex setting and to
a pair of maps.

THEOREM 9. Let X be a topological space, x;, ..., x, € X and S, T: X
— 2% be such that

(a) foreach i =0,...,n, S(x;) C T(x,);

(b) for each non-empty subset A of {x,, ..., x,}, there exists a non-empty
contractible subset F, of X such that F, C F, whenever A C A

(c) foreach i=0,...,n, F{xo,...,x,,} NS(x;) is closed in F{xo,'_"x"};

(d) for each non-empty subset A of {x,,...,x,} with AC T_l(y) for
some ye X, F, C T_l(y);

(&) UoS(x,)=X.

Then there exists X € X such that % € T(X).
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ProOOF. For each x € X, let F(x) = T°(x) and G(x) = S°(x). Suppose
F, C U, G(x) for each non-empty subset 4 of {x,, ..., x,}. By (c), for
each i=0,...,n, Fxo,--nX,,} N G(x,) is open in Fxo,...,x,,} . By Lemma 3,
ﬂ:;o G(x,) # @, which contradicts (e¢). Thus there must exist a non-empty
subset 4 of {x,,...,x,} such that F, is not contained in |J ., G(x).
Take any X € F, with * ¢ U, ,G(x). It follows that for each x € 4,
% € S(x) C T(x) by (a) so that x € T_I(X’). Therefore A C T_l(fc) and
hence F, C T~ '(%) by (d). As % € F,, we have & € T~ '(%) so that
xeT(x).

THEOREM 10. Let (X, {F,}) be an H-spaceand S, T: X — 2% be such
that

(a) for each x € X, S(x) C T(x);

(B) Ueex S(x) = X;

() for some x, € X, S°(x,) is compact and for each x € X, §°(x,)NS*(x)
is closed in S°(x,);

(d) for each x € X and for each A€ F (X), F, NS (x) is closed in F,;

(e) for each x € X, T_l(x) is H-convex.

Then there exists X € X such that %X € T(X).

ProoOF. By Theorem 3, there exists 4 € & (X) such that F,nN, ., S(x) #
@. Take any % € F,N(\,.,S(x); then X € F, and Ac S (%) c T™'(%)
by (a). By (¢), F, C T~ '(%); but then % € T~'(%) so that % € T(%).

The following is an immediate consequence of Theorem 10.

COROLLARY 2. Let (X, {F,}) bean H-spaceand S, T: X — 2% be such
that

(a) for each x € X, S(x) c T(x);

(b) Urex S(x) = X;

(c) for some x, € S, Sc(xo) is compact and for each x € X, S(x) is open
in X;

(d) for each x € X, T_l(x) is H-convex.

Then there exists X € X such that X € T(X).

Theorem 10 and Corollary 2 generalize Theorem 2.3 and Corollary 2.2 of
Tarafdar in [27] respectively to a non-convex setting and to a pair of maps.

THEOREM 11. Let (X, {F,}) bean H-spaceand S, T: X — 2% be such
that
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(i) for each x € X, S(x)C T(x);

(ii) for each y€ X, S™'(y) is open in X ;

(iii) for each x € X, T(x) is H-convex;

(iv) there exist a non-empty compact subset L of X and a point y, € X
such that y, € S(x) forall x € X\L.

Then there exists a point X € X such that X € T(X).

ProOOF. Suppose the assertion is false, that is, x ¢ T(x) forall x e X.
For each x € X, let G(x) = S*(x) and F(x) = T"(x). Then we have the
following properties:

(a) by (i), foreach ye X, F(y) C G(y);

{(b) for each x € X, since x ¢ T(x), we must have x € F(x);

(c) by (ii), G(y) isclosed in X foreach y € X ; by (iv), G(y,) is a subset
of L so that g(y,) is compact;

(d) since F*(x) = T(x) for each x € X, by (iii) F*(x) is H-convex for
each xe X.

Thus all hypotheses of Theorem 5 are satisfied. By Theorem 35, ﬂyé + GO)

# . Take any u € (\,cx G(v), then u ¢ UyGXS_l(y) = X, which is
impossible. Therefore there must exist X € X such that x € T(X).

As an immediate consequence of Theorem 11, we have

COROLLARY 3. Let X be a convex subset of a topological vector space E
and S, T: X — 2% be such that

(i) for each x € X, S(x) Cc T(x);

(ii) for each y € X, S_l(y) isopenin X,

(iii) for each x € X, T(x) is convex;

(iv) there exist a non-empty compact subset L of X and a point y, € X
such that y, € S(x) forall x € X\L.

Then there exists a point X € X such that x € T(X).

Proor. For each 4 € #(X), let F, = co(A4); then all hypotheses of
Theorem 11 are satisfied; the conclusion follows from Theorem 11.

Even when S = T, Corollary 3 improves Theorem 2 of Browder in [6]
where X is also assumed to be closed.

THEOREM 12. Let (X, {F,}) be an H-spaceand S, T: X — 2% be such

that
(a) for each x € X, S(x) c T(x);
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(b) for some x, € X, S*(x,) is compact and for each x € X, S"(x,) N
8*(x) is closed in S™(x,);

(c) for each x € X and for each A€ F (x), F,nS"(x) is closed in F;

(d) for each x € X, T(x) is H-convex.

Then there exists X € X such that x € T(X).

ProOF. By Theorem 6, there exists 4 € & (X) such that F,n, ., s! (x)
#@. Take any % € F,N(,,S™'(x); then £ € F, and A C S(%) C T(x)
by (a). By (d), F, c T(x). Therefore % € T(%).

Theorem 12 generalizes Theorem 2.2 of Tarafdar in [27] to a non-convex
setting and to a pair of mappings. The following result is an immediate
consequence of Theorem 12.

COROLLARY 4. Let (X, {F,}) bean H-spaceand S, T: X — 2% be such
that

(a) for each x € X, S(x) C T(x);

(b) for some x, € X, S*(x,) is compact and for each x € X, S*(x) is
closed in X ;

(c) for each x € X, T(x) is H-convex.

Then there exists X € X such that x € T(X).

Corollary 4 generalizes Corollary 2.1 of Tarafdar in [27] to a non-convex
setting and Theorem 2’ of Horvath in [16] to a non-compact setting.

4. Minimax inequalities

Throughout this section, X denotes a topological space and A: X x X — R
denotes a fixed real-valued function. For each (x,r) € X xR, let H(x,r) =
{y € X: h(y, x) < r}. We shall assume that the function /4 has the following
property: For each 4 € #(X), the set F, = (\{H(x,r): Ac H(x, r) and
(x,r) € X x R} is contractible. Clearly, we have F, C F,, whenever
Ac A'. Hence (X, {F ",}) becomes an H-space.

THEOREM 13. Let f, g: X x X — R be such that

(i) gx,y)< f(x,y) foreach (x,y) € X x X;

(ii) for each y, z € X and foreach A€ ¥ (X), if f(z,y) < f(x,y) for
each x € A, then there exists w € X such that h(x, w) < h(z, w) for each
X€EA;

(ii1) for each fixed x € X and for each A € ¥ (X), g(x,y) is a lower
semi-continuous function of y on F E
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For any A € R, if there exist a non-empty compact subset L of X and
X, € L such that

(iv) g(xq,¥) >4 forall ye X\L,

(v) gl(x,y) is also a lower semi-continuous function of y on L,
then either there exists y € L such that g(x,p) <A forall x € X or there
exists X € X such that f(x, X) > 4.

PROOF. Suppose f(x,x) <A forall xe€ X. Foreach xe X, let
F(x)={yeX:f(x,y)<A} and G(x)={yeX:g(x,y)<4i}.

(a) Foreach x € X, F(x) C G(x) by (i) and x € F(x) by the assumption.
(b) Suppose 4 C F*(y) for some y € X, then 4 nFl(y) =@ so that for
any fixed z € F_l(y) ,

flz,y)<Ai< f(a,y) forall ac A4,
by (ii), there exists w € X such that
h(a,w)<h(z,w) forallaeA.

Choose r, € R such that h(a, w) < ry < h(z, w) for all a € 4; then
ACH(w,ry) and z ¢ H(w, ry) sothat z€ F, forany z € F'o). It
follows that F, C F*(y). Thus F*(y) is H-convex for each y € X .

(c) By (iv), G(x,) C L and by (v) G(x,) is closed in L; thus G(x,) is
compact. Moreover, for each x € X, G(x)NL isclosed in L by (v) so that
G(xy)) NG(x) = G(x5) N(G(x)N L) is closed in G(x,) .

(d) By (iii), for each x € X and for each 4 € ¥ (X), F,NG(x) is closed
in F,.

Tlferefore all hypotheses of Theorem 5 are satisfied. By Theorem 35,
MNeex G(x) # . Let y € N, c,G(x). Then y € L as G(x,) C L and
g(x,p) <A forall xe X.

Theorem 13 generalizes Proposition 1 of Horvath in [16] to non-compact
topological spaces and hence also generalizes the corresponding results of
Ben-El-Mechaiekh, Deguire and Granas in [4] and of Fan in [12].

COROLLARY 5. Let ¢, w: X x X = R be such that

(1) ¢ < w onthediagonal A= {(x,x): x€ X} and ¢ > y on (XxX)\A;

(ii) for each fixed x € X, y — ¢(y, y) — d(x, y) is lower semi-continuous
on X;

(iii) for each y,z € X and for each A € F(X), if w(a,y) < w(z,y)
for all a € A, then there exists w € X such that h(a, w) < h(z, w) for all
acA;
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(iv) there exist a non-empty compact subset L of X and x, € L such that

é(y,y)>d(xy,y) forall ye X\L.
Then there exists y € L such that ¢(y, p) < od(x, ) forall xe X.

PrROOF. Define f, g: X x X — R by

f(x’y)=W(yay)—‘//(x’y), g(X,y)=¢(y,y)—¢(X,y).

Then f and g satisfy the hypotheses of Theorem 13 with A = 0 and
f(x,x) =0 for all x € X. By Theorem 13 there exists y € L such
that g(x, p) <0 forall x € X; thatis, ¢(p,p) < p(x,y) forall xe X.

The above result generalizes Proposition 2 of Horvath in {16] and Theorem
1 of Shih and Tan in [21] which in turn generalizes Corollary 1 of Fan in
[12].

COROLLARY 6. Let a: X - R and [, g: X x X - R be such that

(i) for each r € R, the set {y € X: a(y) < r} is empty or contractible;

(i) gx, )< f(x,y) forall x,ye X;

(iii) for x,y,ze X, if f(z,y)< f(x,y), then a(x) < a(z);

(iv) for each fixed x € X and for any r € R, g(x,y) is a lower semi-
continuous function of y on {y e X:a(y) <r}.

For any A € R, if there exist a non-empty compact subset L of X and
Xy € L such that

(v) &(xy,y) >4 forall ye X\L.

(vi) g(x,y) is also a lower semi-continuous function of y on L,
then either there exists y € L such that g(x,p) <A forall x € X or there
exists X € X such that f(x, x)>A.

PrOOF. Define #: X x X — R by h(x, y) = a(x); then for each 4 €
FX), Fy=N{H(x,r):Ac Hx,r) and (x,r) € X xR} = ({{y €
X:ay)<r}:Ac{yeX:a(y)<r}and reR} ={y € X:aly) <7}
where 7 = inf{r e R: 4 C {y € X: a(y) < r}. Thus Theorem 13 can be
applied to obtain the desired conclusion.

Corollary 6 generalizes Proposition 3 of Horvath in [16] to a non-compact
setting.

THEOREM 14. Let [, g: X x X — R be such that

(@) g(x,y) < f(x,y) foreach x,y€ X;
(b) for each fixed x € X, g(x,y) is a lower semi-continuous function of
y on C for each non-empty compact subset C of X ;
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(c) for each y,z € X and foreach A€ ¥ (X), if f(z,y) < f(x,y) for
each x € A, then there exists w € X such that h(x, w) < h(z, w) for each
X€EA.

For any A € R, ifthere exist a non-empty subset X, of X and a non-empty
compact subset K of X such that for each B € F(X), there is a compact
weakly H-convex subset Cp of X having the following properties:

(d) X,uBC Gy,

(e) for each y € C,\K, there is x € Cy such that g(x,y) >4,
then either there exists ¥ € K such that g(x,y) <A forall x € X or there
exists X € X such that f(x, x)>2).

PROOF. Suppose f(x,x) <A forall x€ X. Foreach x € X, let
K(x)={yeK: g(x,y)<4i};

then K(x) is closed in K by (b). Let B € #(X) be given. By hypotheses,
there exists a compact weakly H-convex subset C, of X satisfying (d) and
(e).

Now for each x € Cp, let

Fx)={yeCg: f(x,y)<4}, Gx)={yeCy:g(x,y)<Ai}.

Then we have

(1) for each x € Cp, F(x) C G(x) by (a) and x € F(x) by assumption;

(i1) since Cp is weakly H-convex, (Cy, {F, N Cg}) is also an H-space;
let 4 € F(Cp) be an arbitrarily given set such that 4 C F *(y); then AN
F‘l(y) = (& so that for any fixed z € F"l(y), flz,y) <A< f(a,y) for
all a € A. By (c), there is w € X such that h(a, w) < h(z, w) for all
a € A. Choose ry € R such that h(a, w) < r, < h(z, w) forall a € 4;
then 4 C H(w, ry)) and z ¢ H(w, ry) sothat z ¢ F, forall z eF_l(y).
It follows that F,N Cy C F*(y) and hence F*(y) is H-convex for each
yeCy.

(1i1) by (b), for each x € Cp, G(x) is closed in Cy and is therefore also
compact.

By Theorem 5 with X = Cp, nxec,, G(x) # <. In other words, there
exists a point y, € Cp such that g(x,y,) < 4 forall x € C,. By (e),
we must have y, € K so that y, € [,z K(x) by (d). This shows that
{K(x): x € X} has the finite intersection property. By the compactness of
K, we have N .y K(x) # @. Take any j € (., K(x), then y € K and
g(x,p) <4 forall x € X. This completes the proof.

As an immediate consequence of Theorem 14, we obtain the following
very general minimax inequality in a topological vector space.
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THEOREM 15. Let X be a non-empty convex subset in a topological vector
space E. Let f, g: X x X = R be such that

(a) g(x,y) < f(x,y) foreach x,y € X;

(b) for each fixed x € X, g(x,y) is a lower-semicontinuous function of y
on C for each non-empty compact subset C of X .

Forany A€R, if

(c) for each fixed y € X, the set {x € X: F(x,y) > A} is convex,

(d) there exist a non-empty compact convex subset X, of X and a non-
empty compact subset K of X such that for each y € X\K, there exists
x € co(XyU{y}) such that g(x,y)> 4,
then either there exists y € K such that g(x, p) <A forall x € X or there
exists X € X such that f(%x,%X)> 4.

ProofF. For each (x,y)e X x X, let h(x, y) = —f(x, y); then we have
Hy,rnN={xeX:h(x,y)<r}={xeX: f(x,y)>-r}.

By (c), for each y € X and for each r € R, H(y, r) is convex, so that
foreach A€ F(X), F,=N{H(y,r):AC H(y,r) and (y,r) € X xR}
is convex and hence F, is a non-empty contractible subset of X . Thus
(X, {F,}) is an H-space. For each B € #(X) let Cy = co(X,UB). It
is easy to see that all hypotheses of Theorem 14 are satisfied so that the
conclusion follows.

Theorem 15 is equivalent to a minimax inequality of Bae, Kim and Tan
[2, Theorem 1] which in turn generalizes minimax inequalities of Tan [26,
Theorem 1], Allen [1, Theorem 2], Yen [28, Theorem 1] and Fan [13, Theo-
rem 6]. For applications of Theorem 15 to variational inequalities and fixed
point theorems, we refer to Bae, Kim and Tan [2].

We now observe the following.

LEMMA 5. Let (Y, {F,}) bean H-space, X be a non-empty subset of Y,
y: X xY >RU{*xoo} and a €R.

(1) If wix,x) < a forall x € X and for each y € Y, the set {x €
X: w(x,y) > a} is H-convex, then foreach A€ ¥ (X) and foreach y € F,
min__, y(x,y) < a.

() If w(x,x)<a forall x € X, define F: X —» 2" by F(x)={y €
Y:w(x,y)<a} forall xe€ X. Then F is an H-KKM map if and only if
Jor each A€ ¥ (x) and for each y € F,, min, ., y(x,y)<a.

PRrOOF. (1)Let 4 € #(X) and y € F, be given. Suppose min,_, y(x, y)
> a; then 4 C {x € X: y(x, y) > a} so that by assumption F, C {x €
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X:wy(x,y) >a}. As y € F_, it follows that w(y,y) > a which is a
contradiction. Hence we must have min , y(x,y) < c.

(2) Suppose F is H-KKM. Let 4 € ¥(X) and y € F,;as y€ F, C
Uyes F(x), we must have y(x, y) < o for some x € 4 and hence

) <o
r)pel/r‘w(x,y)_a

Conversely, if F is not H-KKM, then there exists A € & (X) such that
F, ¢ U,y F(x). Let y € F, be such that y ¢ U ., F(x); it follows that
y(x,y)>a forall x €4 sothat min _, y(x,y)>c.

We remark here that the condition “for each 4 € ¥ (X) and for each
y€F,, min , y(x,y) < a”is a generalization of the notion “a-DQCV
in x ” introduced by Zhou and Chen in [29].

As an application of Theorem 8, we present another very general minimax
inequality:

THEOREM 16. Let (Y, {F,}) be an H-space, X be a non-empty subset of
Y, ¢: X xY - RU{%, oo} and a € R be such that

(a) for each fixed x € X, ¢(x,y) is a lower semi-continuous function of
y on C for each non-empty compact subset C of Y ;

(b) for each A € F(X) and for each y € F,, min,_ ¢(x,y) <a;

(c) there exists a non-empty subset X, of X which is H-compact in X
such that the set {y € X: ¢(x, y) <« for all x € X} is compact.

Then either there exists a point y € Y such that ¢(x, )< a forall xe X
or there exists a point X € X such that (X, X) > a.

PrROOF. Suppose ¢(x,x) < a forall x € X. Define F: X — 2Y by
F(x)={yeY: ¢(x,y) <a} foreach x € X. Then by (b) and Lemma 5, F
is an H-KKM map and by (a), for each x € X, F(x) is compactly closed in
Y and by (¢), N,¢ X, F(x) is compact. Thus by Theorem 8, (., F(x) # D.

Take any y € .y F(x); then ¢(x,y) <a forall xe€ X.

As an application of Theorem 16, we have the following new minimax
inequality:

THEOREM 17. Let (Y, {F,}) be an H-space, X be a non-empty subset of
Y, ¢, w: X xY —-RU{£, 0o} and a € R be such that

(@) ¢(x,y)<wy(x,y) forall (x,y)e X x7Y;

(b) for each fixed x € X, ¢(x,y) is a lower semi-continuous function of
y on C for each non-empty compact subset C of Y ;

(c) for each fixed y € Y, the set {x € X: w(x,y) > a} is H-convex;
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(d) there exists a non-empty subset X, of X which is H-compact in X
such that the set {y € Y: ¢(x,y) < a forall x € X} is compact.

Then either there exists a point y € Y such that ¢(x,p) <« forall xe€ X
or there exists a point X € X such that y(X, %) > a.

PROOF. Suppose y(x, x) < a forall x € X. Then by (c) and Lemma 5,
for each 4 € #(X) and for each y € F,, min,_, w(x, y) < a, so that by
(a), min _, ¢(x, y) < . Hence by (a) and Theorem 16, there exists y € Y
such that ¢(x, y) <a forall xe X.

Even when Y is a subset of a topological vector space, Theorem 17 gen-
eralizes a minimax inequality of Takahashi [25, Theorem 3] in several ways.
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