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PAIRS OF RINGS WITH 
THE SAME PRIME IDEALS, II 

DAVID F. ANDERSON AND DAVID E. DOBBS 

Introduction. Much of [2] was devoted to studying pairs of subrings A C B 
of a field with the property that A and B have the same prime ideals. In this 
paper, we continue that investigation, but we no longer assume that A and B 
are comparable. Interestingly, most of the results of [2] carry over to this more 
general context. Besides such extensions of [2], additional motivation for the 
more general context comes from the need to explicate some naturally occurring 
examples (see Examples 2.5, 3.6, and 4.3). 

Section 2 begins by showing that we may reduce to the case in which R 
is a quasilocal domain with nonzero maximal ideal M and quotient field K. 
Proposition 2.3 establishes that the set C{R) of all subrings A of K with 
Spec(A) = Spec(/?) forms a complete semilattice. Theorem 2.4 shows that C (R) 
is naturally isomorphic to the complete semilattice J (A) of all subfields of the 
ring A — (M : M)jM. Conversely, Theorem 2.6 shows that for any commu­
tative ring A which contains a field, J (A) may be realized as C (R) for some 
quasilocal domain R. 

In Section 3, we investigate various common ring-theoretic properties of the 
rings in C(R), with special emphasis on the Noetherian property. Specifically, 
Theorem 3.3 gives several equivalent conditions for each A G C(R) to be 
Noetherian; when these conditions hold, C(R) is finite. In the final section, 
we study the semilattice !F (A) and give several examples that illuminate the 
preceding material. 

All rings are assumed to be commutative, with 1. Usually, R will denote a 
quasilocal domain with nonzero maximal ideal M and quotient field K, and k 
will be the prime subfield of R/M. As usual, we write 

(M :M) = {x eK\xM C M } ; 

the group of units of a ring A will be denoted by U(A)\ and the finite field with 
q elements will be denoted by F^. Any unexplained material is standard, as in 
[4], [5], or [6]. 

2. The semilattice C (R). Let L be a field. Given subrings A and B of L, 
we write A ~ B if A and B have the same set of prime ideals, that is, if 
Spec(A) = Spec(#). Then ~ is an equivalence relation on the set of subrings 
of L, and the —-equivalence class containing L is just the set of subfields of 
L. In this paper, we are interested in the —-equivalence classes determined by 
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subrings of L which are not fields. First, we give a few observations about such 
rings which are reminiscent of results from [2, Section 3]. 

PROPOSITION 2.1. Let A and B be subrings of a field such that A is not afield. 
Then: 

(a) //Spec(A) = Spec(£), then: 
(1) A and B have the same quotient field. 
(2) If A is not quasilocal, then A = B. 
(3) If A is quasilocal with maximal ideal M, then 

B C (M : M). 

(b) Spec(A) = Spec(#) if and only if Max (A) and Max(#) are comparable. 

Proof, (a) (1) Let / be any nonzero common ideal of A and B. Then the 
quotient field of A (or B) consists of the elements ///, where / E / and 0 ^ j El. 
(2) Suppose that A and B have two distinct common maximal ideals M and N. 
Then A = M + N = B. (3) This follows since M is also an ideal of B. 

(b) The "only if" assertion is clear. For the converse, we may assume 
Max(A) C Max(£). By (2) of part (a), we may also assume that A is quasilocal 
with nonzero maximal ideal M. 

Let C = ADB. Clearly M is a prime ideal of C; we shall show that M is 
actually a maximal ideal of C. Choose a EC — M. Then there is an x E A such 
that ax = 1. Since M is also a maximal ideal of B, ay + m = 1 for some y E B 
and m EM. Then 

x — xay + xm = v + JCW 6 J + M C 5 . 

Hence JC G C and a E U(C). Thus M E Max(C). By [2, Theorem 3.10], 
as applied to C C A, we have Spec(A) = Spec(C). Another application of 
[2, Theorem 3.10] (or [2, Proposition 3.8]) yields Spec(C) = Spec(£). Hence 
Spec(A) = Spec(£). 

Remark 2.2. Most of the results of this paper carry over for a commutative 
quasilocal ring A whose maximal ideal M contains a regular element. However, 
if M consists entirely of zero divisors, then both (1) and (3) of Proposition 2.1(a) 
may fail since A may itself be a total quotient ring. For example, consider the 
dual numbers over the reals: let A = R[e] with e2 = 0. Then A is a quasilocal 
ring whose maximal ideal M = Re consists entirely of zero divisors. Let B be 
the subring Q + M. Then Spec(A) = Spec(£)(= {M} since M2 = 0), while A 
and B are distinct total quotient rings. 

By Proposition 2.1, we reduce to the case in which R is a domain with proper 
quotient field K, and write 

C(R) = {A\A is a subring of K and Spec(A) = Spec(/?)} 
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for the —-equivalence class of R. Clearly, C(R) is nonempty since it contains 
R. If R is not quasilocal, then in fact C(R) = {R} by part (2) of Proposition 
2.1(a). For this reason, we shall usually assume that R is a quasilocal domain 
with maximal ideal M. Then C(R) is just the set of all (quasilocal) subrings of 
K which have M as (a) maximal ideal. 

C (R) is a partially ordered set under set-theoretic inclusion. In fact, we next 
show that C(R) is a complete (meet) semilattice with respect to intersections 
(i.e., each nonempty subset of C(R) has an infimum). In general, C(R) need not 
be a lattice (see Example 4.3(b)). However, since C (R) is closed under unions 
of chains, we see via Zorn's Lemma that C(R) always has maximal elements. 
(Cf. also [2, Lemma 3.32].) Moreover, C(R) is closed under directed unions. 

PROPOSITION 2.3. Let R be a domain which is not a field. Then OR) is a 
complete semilattice with respect to set-theoretic inclusion and intersection. 
Moreover, C (R) is a (complete) lattice if and only if C (R) has a maximum 
element. 

Proof We may assume that R is quasilocal with maximal ideal M. To show 
that C(R) is a complete semilattice we need only show that C(R) is closed 
under arbitrary (nonempty) intersections. Let {Ra} be a nonempty family of 
subrings of K with each Ra G C(R). We show that T = DRa G C(R). Indeed, 
T is quasilocal with maximal ideal M. Thus Spec(7) = Spec(/?) by Proposition 
2.1(b), whence T G C(R). The "moreover" statement is clear from the above 
remarks. 

For future use, we next define two important subsets of C(R). Given T G 
C(R), let 

L(T) = {AeC(R)\AGT} and 

<UÇT) = {AEC(R)\TCA}. 

Note that L (T) and 11 (T) are each complete subsemilattices of C (R) and that 
L(T) is actually a lattice. For a fixed domain T, these two sets were studied 
extensively (without this notation) in [2]. 

We have already observed that C(R) need not be a lattice. It is well known 
that any partially ordered set may be completed, in the sense of Dedekind-
MacNeille, to a complete lattice (cf. [6, Proposition 5, page 44]). For C{R) (or 
any complete semilattice), this completion is particularly simple: we just add a 
maximum element. Specifically, for any complete (meet) semilattice ( 5 , ^ , A) 
adjoin a new element o° to S to get S* = S U {°o}, and extend the ordering on 
S to 5* by decreeing x < o° for all x G S. For any I J G 5*, define 

xWy = /\{z eS*\x ^ z and j ^ z}. 

It is easily verified that S* is a complete lattice. Moreover, any (nontrivial) 
complete lattice arises from a complete semilattice (which is not a lattice) in 
this manner. 
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For any commutative ring A, we let 7 (A) denote the set of subrings of A 
which are fields. If A is a field L, then 7 (L) is just the (complete) lattice of 
subfields of L. However, 7 (A) may be empty (for instance, if A — Z). In fact, 
7 (A) is nonempty if and only if either A has prime characteristic or A is a 
Q-algebra. Like C(R), 7 (A) is a complete (meet) semilattice with respect to 
inclusion and intersection. Moreover, 7 (A) is a (complete) lattice if and only if 
7 (A) has a maximum element. The semilattice 7 (A) will be studied in more 
detail in Section 4. 

Our next theorem establishes an order-isomorphism between C (R) and 7 (A), 
for a suitable ring A defined in terms of R. It may often be used to reduce ring-
theoretic questions to field-theoretic questions. It also generalizes the bijection 
given in [2, Theorem 3.25]. 

THEOREM 2.4. Let R be a quasilocal domain with nonzero maximal ideal 
M and let A = (M : M)/M. Then the correspondence T +-> T/M gives an 
order-isomorphism from C(R) onto 7(A). 

Proof. Let n : (M : M) —> A be the natural surjection. By part (3) of Propo­
sition 2.1(a), each T G C(R) is contained in (M : M). It is easy to see that the 
function ^ : C(R)-+ 7 (A\ given by ^(T) = TT(T) = T/M, is a well-defined 
injection that preserves and reflects order. 

Let F G 7 (A). To show that ^ is surjective, we need only show that D = 
TT~1(F) G C(R)', for then F = D/M = W(D). Note that D has M as a maximal 
ideal. Proposition 2.1(b) then yields Spec(£>) = Spec(fl). Hence D e C(R), as 
desired. 

In the above bijection between C(R) and 7(A), the minimum element of 
C(R) corresponds to the prime subfield of R/M. Moreover for any T G C(R), 
L(T) corresponds to 7(T/M), and Zl(T) corresponds to the subsemilattice of 
7 (A) of all fields which are contained in A and contain T/M. 

Example 2.5. Let L be any field and R = L[[X]] = L + M, where M = XR 
is the maximal ideal of R. In this case, (M : M) — R and R/M = L. Theorem 
2.4 therefore gives a bijection between C(R) and 7 (L), namely k + M <-• k for 
each subfield k of L. If we choose L to be either F^ or Q, then C(R) = {R}. 
Thus C (R) may be a singleton even when R is quasilocal (cf. (2) of Proposition 
2.1(a)). In Example 4.3(a), we shall give an example of a quasilocal domain R 
for which C(R) = {/?}, but with (M : M) a proper overring of R. 

The above reasoning leads to the following conclusion. Let R be a domain 
with nonzero maximal ideal M. Then C(R) = {R} if and only if either (a) R is 
not quasilocal or (b) R is quasilocal and 

7((M :M)/M) = {R/M}. 

Moreover, if (b) holds, then R/M is canonically either F^ or Q. 
Our next theorem may be viewed as a converse to Theorem 2.4. We show 

that for any ring A which contains a field, there is a quasilocal domain R with 
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nonzero maximal ideal M such that A - (M : M)/M. Thus by Theorem 2.4, 
the semilattice J (A) may be realized as C(R). 

THEOREM 2.6. A commutative ring A has the form (M : M)/M for some 
quasilocal domain R with nonzero maximal ideal M if and only if A contains a 
field k; equivalently, if and only if either A has prime characteristic or A is a 
Q-algebra. In this case, we may choose R so that R/M = k. Moreover, R may 
be chosen to be Noetherian if A is finite-dimensional over k. 

Proof. If A = (M : M)/M for some quasilocal domain R with nonzero 
maximal ideal M, then A contains the field k = R/M. 

Conversely, suppose that A contains a field k. Then A = k[{Xa}]/I for some 
set {Xa} of indeterminates and nonzero ideal / . Let T = &[{Xa}] and let TC : 
T —• A be the natural surjection with ker7r = I. Define 

S = {ue T\TT(U) G U(A)}. 

Then S is a saturated, multiplicatively closed subset of T. Also, IT induces a 
surjective homomorphism 

given by 

7r*(r/j) = 7r(07r(5)-1, 

with ker7r* — Is- Moreover, x G U(Ts) if and only if TT*(X) G U(A). This 
follows easily from the fact that S is saturated, as does the assertion that 

U(TS) = {si/s2\sus2 ES}. 

Since 7r*(l + IS) = 1,1 + Is C U(TS). Thus Is is a nonzero ideal contained 
in rad(Ys). We claim that R = k + Is is a quasilocal subring of T$ with nonzero 
maximal ideal M = Is. To see this, it is enough to show that a + i/s G U(R) 
for each 0 =É a G k and //s G /s. Since Is C rad(Ys), a + i/s G U(Ts), and 
hence (a + //^)JC = 1 for some x eTs. Thus 

x = a~l - a~\i/s)x G k + /5 = R, 

proving the claim. Since M = Is is a nonzero ideal of the completely integrally 
closed (Krull) domain Ts, we have (M : M) = Ts [4, (34.3) Theorem]. Thus 

(M :M)/M - 7s//s = A. 

The "equivalently" statement has been noted earlier. 
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Next, we prove the "moreover" assertion. Suppose that A is finite-dimensional 
over k. Then by the above proof, T, and hence 7$, may be chosen to be Noethe-
rian. In addition, Ts is finitely generated as an R-module since A( = Ts/M) 
is finitely generated as a k(= R/M)-vector space. Hence R is Noetherian, by 
Eakin's Theorem. 

Remark 2.7. An easier proof of Theorem 2.6 is available if A is a domain 
which contains a field k. In this case, let T = A[[X]] and M = XT C rad(7). 
Then R = k + M is quasilocal with maximal ideal M and (M : M) = T. Thus 

(M : M)/M = A[[X]]/XA[[X]] = A. 

3. C (R) for R Noetherian. We next investigate what common ring-theoretic 
properties are shared by the elements of C (/?). In [2] , we investigated the ascent 
and descent of various ring-theoretic properties between comparable pairs of 
rings with the same prime ideals. Those techniques can sometimes be used for 
incomparable elements of C(R). Let A,B G C{R) and let C be the subring 
AHB e C(R). If a certain property holds in A and is preserved by both descent 
and ascent to rings with the same prime ideals, then it holds in C, and hence also 
in B. (This technique has already been used in the proof of Proposition 2.1(b).) 
Another such extension applies to [2, Proposition 3.5]: if Spec(A) = Spec(Z?) 
for domains which are not fields, then AP = BP for each nonmaximal prime 
ideal P G Spec(A), and Spec(A) and Spec(B) are homeomorphic as topological 
spaces with the Zariski topology. Many other such extensions of [2] may be 
found in this way: consider [2, Propositions 2.2, 3.15, and B.l], for instance. 

We next concentrate on what can be said about C (R) when R is Noetherian. 
The following result will be useful both for studying C (R) and for constructing 
examples in the next section. 

PROPOSITION 3.1. Let {Ra\oc G A } be a nonempty family of commutative rings 
and R = HRa Fix an element (3 G A. Suppose that for each a G A we have 
an Fa G 7 (Ra) and an isomorphism (pa : Fp —• Fa (with ipp = I). Then 

F = {(Va(x))aeA \x G Fp} G T (R). 

Conversely, any F G J (R) arises in such a manner from suitable (Fa), (<£«). 

Proof The first assertion admits a routine verification, and so we omit the 
details. For the converse, consider F G !F(R). Then Fa = pa(F) G 7 (/?<*), 
where pa : R —• /?a is the natural projection. Fix (3 G A. Consider xp G F p. 
Since the restriction of pp to F gives an isomorphism between F and Fp, there 
is a unique x G F such that pp(x) = xp. For each a G A, define <pa : Fp —> Fa 

by <Pa(x/3) — Pa{x). Then each (pa is an isomorphism and 

F = {(<pa(x))a€A\x eFp}. 
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COROLLARY 3.2. Let {Ra} and R be as in Proposition 3.1. Then: 
(a) J (R) is nonempty if and only if either each Ra has the same prime 

characteristic or each Ra is a Q-algebra. 
(b) / / A and each J (Ra) are finite, then J (R) is finite. 

THEOREM 3.3. Let R be a quasi local domain with nonzero maximal ideal 
M, and let k the prime subfield of R/M. Then the following statements are 
equivalent: 

(a) Each A G C(R) is No ether ian; 
(b) The minimum element B of C (R) is Noetherian; 
(c) Some D e C(R) is Noetherian and [D/M : k] < oo. 
Moreover, if any of the above equivalent statements holds, then C (R) is finite 

and [A/M : k] < oo for each A G C(R). 

Proof It is clear that (a) => (b). Moverover, (b) => (c) since it follows from 
the comments after Theorem 2.4 that B/M = k. We shall prove (c) => (a). 

Take D as in (c) and once again let B be the minimum element of C(R). We 
have B/M = k and B C D. By [2, Corollary 3.29], B is Noetherian if and only 
if both D is Noetherian and [D/M : B/M] < oo. Hence, by (c), B is Noetherian. 
Another application of [2, Corollary 3.29] now yields that each A G C(R) is 
Noetherian (and [A/M : k] < oo). 

We next prove the "moreover" statement. Suppose that the minimum element 
B of C(R) is Noetherian. Then T = (M : M) is a finitely generated B-module. 
Hence S = T/M is a finitely generated k(= Z?/M)-module. If k = ¥p, then S 
is finite and hence !F(S) is also finite; Theorem 2.4 then yields C(R) = 7 (S) 
is finite. Thus, we may assume that k = Q. 

Since S is Artinian, we have S = S\ X . . . X Sn, where each 5/ is a (complete) 
local Artinian ring with maximal ideal M; and residue field Kt. As 5/ is finite 
dimensional over /:, we have that [Kt : k] < oo. Moreover, by Cohen structure 
theory [7, (31.10) Corollary], each Si has a unique coefficient field, which is 
isomorphic to K[. Thus each J (Si) is finite, and hence 7 (S) is finite by Corol­
lary 3.2(b). By Theorem 2.4, C(R) is then also finite. The second part of the 
"moreover" statement was noted in the above proof that (c) => (a). 

COROLLARY 3.4. Let R be a quasilocal Noetherian domain which is not a 
field. Then the following statements are equivalent: 

(a) C (R) is finite; 
(b) L(R) is finite; 
(c) Each A G C(R) is Noetherian. 

Proof, (a) => (b) is trivial; and (c) => (a) is included in the "moreover" 
assertion in Theorem 3.3. We next prove (b) => (c). Assume that L(R) is finite. 
Then 7 (R/M) is finite, by the comments following Theorem 2.4. Thus [R/M : 
k] < oo, where k is the prime subfield of R/M. Hence each A G C(R) is 
Noetherian, by the "(c) => (a)" part of Theorem 3.3. 
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COROLLARY 3.5. Let R be a quasilocal domain which is not afield, such that 
C (R) is finite. Then the following statements are equivalent: 

(a) R is No ether ian; 
(b) Each Ae C(R) is Noetherian; 
(c) Some A £ C(R) is Noetherian. 

Proof, (a) => (b) is just the "(a) => (c)" part of Corollary 3.4; and (b) => (c) 
is clear. Finally, (c) => (a) follows from the "(a) => (c)" part of Corollary 3.4 
since C(A) = C(R\ 

Of course, C (R) may be finite and [A/M : k] < °° for each A £ C (R) even 
when R is not Noetherian (see Example 4.3(a)). 

In Example 4.3(c), we shall give an example of a (necessarily nonNoetherian) 
quasilocal domain R with maximal ideal M such that [A/M : k] < o° for each 
A £ C(R), but C(R) is infinite. In contrast to Corollary 3.4, we next give 
examples to show that for a quasilocal Noetherian domain R, we may have 
either <U(R) finite and C(R) infinite, or both L(R) and IKK) infinite. 

Example 3.6. (a) Let 

R = V2[{Xn\\ûn«x>}}N, 

where {Xn} is a denumerable set of indeterminates and 

N = ({Xn\l^n<oc}). 

Then C(R) = {/?}, but R is not Noetherian. 
(b) Let R = R[[X]] as in Example 2.5. Then R is Noetherian, <U(R) = {/?}, 

and £(/?)(= C(/?) = J (R) ) is infinite. 
(c) Let ^ = Fp(^, 0 for indeterminates s and r, and let F be the subfield 

Fp(sP, f). Let /? = K[[X]] = K + M, and put A = F + M. Then A is Noetherian 
by [2, Corollary 3.29], since [K : k] < oo. However, both £,(A) and ^/(A) are 
infinite since there are infinitely many subfields between F and Fp, and infinitely 
many subfields between K and F (cf. [5, Exercise 15, page 289]). 

We close this section by studying whether three other classical properties are 
stable under ascent/descent in C(R). 

Remark 3.7. Let R and S be domains which are not fields such that R ~ S, 
that is, such that Spec(/?) = Spec(S). Then R satisfies accp (ascending chain 
condition on principal ideals) if and only if S satisfies accp. Indeed, since R and 
S share the same nonunits, a chain of proper principal ideals Ra\ C Ra2 C ... 
in R is strictly ascending if and only if the corresponding chain Sa\ C Sa2 C . . . 
in S is strictly ascending. 

Besides "Noetherian," the most natural sufficient condition for accp is "UFD" 
(unique factorization domain). However, for this property, the above type of 
descent fails. To see this, consider R = C[[X]] and S = R 4- XC[[X]]. Then 
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R ~ S, R is a UFD, but 5 is not a UFD since S is not completely integrally 
closed. Indeed, if R ~ S for any domains which are not fields, then R and -5 
have the same complete integral closure (cf, [2, Proposition 3.15]). 

Thirdly, if R ~ S, then R satisfies PIT (ht(P) = 1 for each prime P of R 
which is minimal over a nonzero principal ideal of R) if and only if S satisfies 
PIT (cf. [3, Corollary 3.2(b)]). 

4. The semilattice 7 (A). In this section, we make a few remarks about the 
semilattice 7(A) and give some examples. First, let's consider the case in which 
A is a field, L. In this case, 7 (L) is the complete lattice of all subfields of L. 
When L is a finite algebraic extension of its prime subfield k, Galois theory gives 
an order-reversing bijection between 7 (L) and a certain lattice of subgroups. 

Specifically, when k = Fp and [L : k] - n < o°, 7 (L) is anti-isomorphic to 
the lattice of subgroups of Z/wZ, or equivalently, the lattice of positive divisors 
of n. If k = Q and [L : Q] < o°, let E be the normal closure of L over Q, 
G = Aut(£/Q), and H = Aut(L/Q); then 7 (L) is anti-isomorphic to the lattice 
of subgroups of G which contain H. 

When L is an arbitrary infinite extension of &, the structure of J (L) is much 
more complicated and does not seem to have been studied extensively. Recently, 
the lattice of intermediate fields between F(X) and F has been investigated in 
[1]. 

Proposition 3.1 may be used to give a satisfactory description of J (L\ X . . . X 
Ln) when each L; is a finite field. Out next result follows easily from Proposition 
3.1 and the following two well known facts about finite fields: 

Fpm C ¥pn & m\n; and 

Aut(FpW) = (a)(= Z/nZ), 

where a(x) = xp. 

PROPOSITION 4.1. Let A = Fp«i X. . . X Fpnt, with t ^ 2, and e = gcd(ni,...,«,) 
Then each F G 7 (A) has the form 

F = {(a,<T\(a),...,(Tt-i(à))\a eFpd} 

for a fixed integer d ^ 1 with d\e and fixed 07 G Aut(Fpd). In particular, 

\7(A)\ = YJd'-X-
d\e 

COROLLARY 4.2. Let A = F^ X . . . X Fpnt, with t ^ 2. Then 7 (A) is a lattice 
(i.e., A has a maximum subfield) if and only if gcd(«i,..., nt) = 1. Moreover, 
in this case, 7(A) = {Fp}. 

We next give several examples promised earlier in the paper. 
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Example 4.3. (a) Let A = ¥p X ¥p. By Theorems 2.6 and 2.4, there is 
a local Noetherian domain R with nonzero maximal ideal M such that C(R) 
is order-isomorphic to 7(A). By Proposition 4.1,|C(/?)| = 17 (A)\ = 1. Thus 
C(R) = {#}, but fl/M( = Fp) is a proper subring of (M : M)/M(= A). 

(b) Let A = F4 X F4. By Theorems 2.6 and 2.4, there is a local Noetherian 
domain R with nonzero maximal ideal M such that C (R) is order-isomorphic to 
7(A). By Proposition 4.1, |C(R)\ = \7(A)\ = 3. By Corollary 4.2 and Theorem 
2.4, C(R)( = 7(A)) is not a lattice, even though R is Noetherian and C(R) is 
finite. 

A concrete example for the domain R in both Example (a) and (b) may be 
constructed as follows. Let T = ¥q[X]s, where 

S =¥q[X]-((X)U(X + 1)). 

Next, let R = ¥q + M, where M = X(X + l)T. Then R is a local Noetherian 
domain with nonzero maximal ideal M (cf. [7, (E2.1), page 204]) such that 

(M : M)/M = T/M = ¥q X ¥q. 

(c) Let A be a direct product of denumberably many copies of F4. By Propo­
sition 3.1, the only subfields of A are its prime subfield (= F2) and an infinite 
number of fields each isomorphic to F4. By Theorem 2.6, there is a quasilocal 
domain R with nonzero maximal ideal M such that (M : M)/M = A. By The­
orem 2.4, C(/?)(= 7(A)) is infinite, but [D/M : F2] < » for each D e C(R) 
(and hence R is not Noetherian by Theorem 3.3). 

We close this paper with one special case in which 7 (A) (and hence C (R)) 
is a lattice. 

PROPOSITION 4.4. (a) Let A be a domain such that 7 (A) is nonempty and 
finite. Then 7 (A) is a lattice. 

(b) Let R be a quasilocal domain with nonzero maximal ideal M such that 
(M : M)/M is a domain and C(R) is finite. Then C(R) is a lattice. 

Proof, (a) In this case, each F G 7 (A) is a finite algebraic extension of its 
prime subfield k. Since A is a domain, 

K = {a G A\a is algebraic over k} 

is a field, and hence K is the maximum subfield of A. Thus the semilattice 7 (A) 
has a maximum element (K), and so 7 (A) is a lattice, 

(b) This follows readily via Theorem 2.4 and (a). 

Our final example shows that the assertion in Proposition 4.4(a) fails if we 
remove the hypothesis that J (A) is finite. 

Example 4.5. Let Ai = Q(X) and A2 = Q(^), withX and Y indeterminates. 
Let A be the subring of Q(X, Y) generated by A\ and A2. It is easily verified 
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that the domain A is not a field. Hence, 7 (A) is not a lattice since A\ and A2 
are distinct maximal elements of 7(A). Note, however, that 5'(A) is infinite. 

REFERENCES 

1. V. Alexandra and N. Popescu, On subfields of k(x), Rend. Sem. Mat. Univ. Padova 75 (1986), 
257-273. 

2. D. F. Anderson and D. E. Dobbs, Pairs of rings with the same prime ideals, Can. J. Math. 32 
(1980), 362-384. 

3. V. Barucci, D. F. Anderson and D. E. Dobbs, Coherent Mori domains and the principal ideal 
theorem, Comm. Algebra 15 (1987), 1119-1156. 

4. R. Gilmer, Multiplicative ideal theory (Dekker, New York, 1972). 
5. T. W. Hungerford, Algebra (Springer-Verlag, New York, 1974). 
6. J. Lambek, Lectures on rings and modules (Blaisdell, Waltham, 1966). 
7. M. Nagata, Local rings (Interscience, New York, 1962). 

University of Tennessee, 
Knoxville, Tennessee 

https://doi.org/10.4153/CJM-1988-063-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1988-063-8

