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ABSTRACT 
As an iceberg melts, the resulting change 

of shape can cause it to list gradually or to 
become unstable and topple over suddenly. 
Similarly, when an iceberg breaks up some of the 
indi vidual pieces may capsi ze . We have used 
Zeeman ' s analysis of the stabi li ty of ships, 
which is based on catastrophe theory, to examine 
this problem . We deal only with statical equi l i­
brium; dynamical effects induced by water motion 
are important for ships, but very large icebergs 
have correspondingly small oscillations and 
therefore dynamical aspects are ignored in this 
first study. The advantage of the catastrophe­
theory approach over the conventional stability 
theory used by naval architects lies in the con­
ceptual clarity that it provides. In particular, 
it gives a three-dimensional geometrical picture 
that enables one to see all the possible equili­
brium attitudes of a given iceberg, whether they 
are stable or unstable, whether a stable atti ­
tude is dangerously close to an unstable one, 
and how positions of stable equi.librium can be 
destroyed as the shape of the iceberg evol ves with 
time. 

By making two-dimensional computations we 
examine the stability of two different shapes of 
cross-section, rectangles and trapezia, with 
realistic density distributions. These shapes 
may list gradually or topple suddenly as a single 
parameter is changed. For example, we find that 
a conversion of the vertical sides of a rectangu­
lar section into the slightly inward-Sloping 
sides of a trapezium has a comparatively large 
adverse effect on stability. The main purpose 
of this work is to suggest hOl" the stabi l i ty 
characteristics of any selected iceberg may 
be investigated systematically . 

1 . INTRODUCTION 
If icebergs are to be towed and used as 

sources of fresh water we need a basic under­
standing of their mechanical stability. As an 
iceberg melts, the change of shape can cause it 
to list or to become unstable and capsize. 
Similarly, if a section of a large tabular ice ­
berg is about to break off, naturally or by 
design, it may be important to know whether it 

will simply float away upright, list to a new 
stable position, or capsize. 

To analyse this, one could use the standard 
physical principles governing the statical 
equilibrium of floating objects that are familiar 
to naval architects. Recently, however, there 
has been an important conceptual advance (Zeeman 
1977) which uses the new mathematics called 
"catastrophe theory" t o provide a different way 
of viewing the statics of a floating object . 
Although the new method could l ead eventually 
to advances in ship design, its immediate 
advantage lies rather in the conceptual clarity 
that it provides. This advantage is pre­
eminently present in the iceberg problem because 
t he catastrophe-theory approach focuses a t ten­
tion on precisely t he feature of most interest, 
namely the interplay between the di fferent 
positions of equilibrium and their stability as 
the shape of the iceberg changes with time. We 
have therefore taken some of the ideas from 
catastrophe theory that Zeeman appl ies t o ships 
and have used them to study the statics of ice­
bergs . 

Dynamical effects are more comp l icated to 
deal with than are statical effects; therefore 
we ignore dynamical behaviour in this first 
study. Although ro ll ing and pitching and other 
motions are of great importance in ships , very 
large tabu l ar icebergs are much larger than 
ships and, crudely speaking, the larger the body 
the smaller will be its oscillations. 

A very usefu l introduction to Zeeman ' s 
theory, with some extensions, is given by Poston 
and Stewart (1978, chapter 10) . Potter (unpub­
lished) and Davis (unpublished) have written 
full reports of the study we describe here. We 
first review t he main theoretical ideas and then 
describe computations on specific iceberg shapes . 

2. GENERAL THEORETICAL BACKGROUND 
2 Ca) . Two dimensions 

We begin with a two-dimensiona l mode l 
I"hich would be appropriate for studying the 
ro lli ng of an iceberg whose I ength is much 
greater than its width. Consider an inhomo­
geneous body with cross-section S floating in a 
static fluid of uniform density and not neces­
sarily in equi l ibrium (Fig. la). The resultant 
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of the forces exerted by the fluid is an upward 
force equal to the weight of the displaced 
fl uid K (Fig. lb) acting at the geometric 
centroid B of the submerged region of S which 
replaces K. B is called the centre of buoyancy . 
If 8 denotes the angular displacement from an 
equilibrium position, there will be for each 
8 a unique height of the body for which the 
upthrust of the water equals the weight of S . 
The equilibrium we study is that associated 
wi th changes in 8. For each 6, since there is a 
definite height for S ,. there is a well-defined 
shape for K wi th its centroid B. 

For equilibrium it is clearly necessary 
for B and G, the centre of gravi ty of S , to be 
in the same vertical line. When they are not, 
the upward buoyancy force through B and the 
equal downward weight of S through G give a 
turning moment which tends to change 8. The 
distance between the lines of action of these 
two forces is called the righting arm, r 
(positive when the torque tends to decrease 161, 
as in Figure la) . 

To decide whether a posltlon of equilib­
rium is stable or unstable we proceed as follow s : 
The shape of K, and hence the position of B 
relative to the body, changes with 8 . The locus 
of B in the body, denoted B, is called the 
buoyancy locus (Fig. 2). "'We emphasize that the 
curve § is fixed relative to the body . We can 
now draw the evolute of § , that is, the locus of 
its centre of curvature M. This is called the 
metacentric locus and we denote it by M; it i s 
the same as the envelope of the normal~ to § . 
It may be proved (see, for example, Poston and 
Stewart 1978, p 197) that when the body is at an 
angle 6 the buoyancy locus § passes horizontall y 
through the point B corresponding to thi s angle. 
Thus M lies vertically above B. G can, in 
principle, lie anywhere, but if it lies on the 
vertical through B the body is in equilibrium. 
If G lies below M (as in Figure 2) the equili­
brium is stable, and if it lies above M the 
equilibrium is unstable. This is the leading 
principle. The body behaves as a pendulum sus­
pended from M. The distance of M above G is 
called the metacentric height. Note that it is 
not the position of G with respec t to B that is 
important but its position with respect to M. 

An important special case occurs when 
there is symmetry about 6 = O. Then M is a cusp 
point of ~ and locally ~ has the form of either 
Figure 3a (standard cusp) or Figure 3c (dual 
cusp). In Figure 3a G is below M and the equili­
brium is s table. If G is above M (Fig . 3b) the 
equilibrium is unstable. But this does not mean 
that the body will topple over completely, for, 
passing through G, there are three lines, GM , 

a b 

Fig . l. (a) Two-dimensional iceberg of cross-
section S and (b) the fluid it displaces. B, 
centre of buoyancy; G, centre of gravity of 
S; r, righting arm. 

M 

B 

B 
Fig. 2. B, centre of buoyancy; la , buoyancy 

locus; M, metacentre; !t! ,metacentric locus; 
G , centre of gravity. 

GM', GM", which are all tangents to .M. Thus, 
if the body is now turned (carrying M with it) 
so that G is vertically below M' or M", there 
will be stable equilibrium. We can now see 
that if G should rise continuously from a posi­
tion below the cusp point M to a position above 
it the equilibrium will always be stable, but 
after G has risen above M the body will list 
more and more to one side or the other. One 
position of stable equilibrium has bifurcated 
into a position of unstable equilibrium flanked 
by two positions of stable equilibrium. This 
bifurcation of equilibrium positions is called 
a cusp catastrophe and the angle associated with 
M' or M" the angle of list . Such mergings of 
the stationary points of functions, here the 
maxima and minima of the potential-energy func­
tion, are the basic subject matter of catastrophe 
theory . 

It is important to note that in a melting 
iceberg the cusp catastrophe can equally well be 
brought about by ~ moving through G rather than 
vice versa; only their relative positions 
matter . 

The situation is radically different when 
the cusp points the other way. Then if G is 
above M (Fig. 3c) the equilibrium at 6 = 0 is 
unstable and if G is below M (Fig. 3d) the 
equilibrium at 8 = 0 is stable. But it is a 
precarious stability because, if 8 is changed 
enough to bring GM' (or GM") vertical (this 
change of 8 being ca lled the capsizing angle ), 
we encounter a position of unstable equilibrium. 
Further change of 6 causes a capsize. Thus, if 
G rises continuously from below the cusp (or the 
cusp sinks continuously from above G), stabl e 
equilibrium becomes increasingly precarious and 
then disappea~s completely as G passes through 
M. Zeeman points out that ships are designed to 
give the safe cusp catastrophe while the more 
primitive canoe gives the unsafe dual cusp. 
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In these examples we have kept G on the 
symmetry line of the cusp. If this condition is 
relaxed it is easy to see that for the standard 
cusp (Fig. 3e), IVhatever the position of G, 
there is always at least one position of stable 
equilibrium near e = O. For the dual cusp, if 
G is outside M there is only one equilibrium 
and it is unstable; if G is inside M there is 
a stable equilibrium position but it is closely 
flanked by unstable ones. 

Symmetry about a vertical line, but no 
further restriction, necessarily produces a cusp 
(standard or dual) in M (that is, a curve ~hose 
local form is given by the equation y = x 2 ; 
in this special case the x axis of the cusp 
points vertically upwards or downwards). Ships 
are designed to be symmetrical; icebergs, how­
ever, are not designed but are shaped by circum­
stance. This is one of the features that makes 
catastrophe theory in its usual form particularly 
appropriate for our study, for it identifies 
and analyses precise ly those singularities in M 
that occur generically, that is to say, without 
any special conditions. Even when there is no 
symmetry M will still possess cusps, for cusps 

- 3 
in M, of the form y = x"2 with x no longer 
"vertical", are generic. Moreover, catastrophe 
theory shows that the cusp is the only type of 
singularity on M that will occur generically. 
(This result depends on S being smooth; the 
rectangles and trapezia we use for calculation 
in section 3, later,are not smooth but the dif­
ference is not serious.) 

Fig.3. (a) and (b) Standard cusp IVith G below 
and above M . (c) and (d) Dual cusp with G 
above and below M. (e) Standard cusp wi th G 
off-centre. 

For a body of given shape and weight, the 
locus ~ , and therefore M, is independent of the 
position of G, and therefore of the distribution 
of density. Given a complete locus ~ (as, for 
example, in Figure 5), the rule for finding all 
possible equilibrium pos itions corresponding to 
a given position of G i s first to draw all 
possible tan gents through G to M: GMl, GM 2 ••• , 

and then to choose anyone of these, G ~ say, 
and rotate the body so that G~ is vertical with 
the tangent point Mi above (rather than below) 
it s associated point on B. If G is then below 
M£ the body is in stable- equilibrium, and if G 
is above Mi it is in unstable equilibrium. 

Notice that as G moves through M from the 
convex side (or as M moves through G) two pos­
sible tangents are lost. Thus two equilibrium 
positions, one stabl e and one unstabl e , merge 
together and disappear. This leads to the simp­
lest type of catastrophe, the fold catastr ophe . 
Thus if the body is in fact in the stable position 

under discussion (and not in some other stable 
position) it will suddenly tip over as G crosses 

M· 
For a body of given weight and shape, IZ. 

and M depend on the ratio A of the density of 
the body to that of the fluid, the r elative 
density . If the shape of the body aT!'; its 
r e lative density change with time, ! and ~ 
will change too, and it is generic for pairs 
of cusps on M to merge together and 
annihilate in the swallowtail event (Fig . 4a). 
We call this occurrence on ~ an event , reserving 
the word catastrophe to denote what happens when 
G passes through M or one of its singular points. 
Higher cuspoid events such as the butterfly (Fig. 
4b) will not occur generically as time evolves, 
but they will be encountered in theoretical 
problems such as those of section 3 where the 
shape is artificially constrained to remain 
symmetrical . 

» ') AA A 
M ~ ~ 

Fig.4 . 

z = ' ·0 
'05 

-· 0 5 

-·05 

b 

(a) S\.JalloIVtail event. 
(b) Butterfly event . 

- ·05 

-0 ·1 

'05 

Fig.s. The metacentric locus M for a rectangle 
computed for a relative density A = 0.828 and 
aspect ratio Z = 1.0 and 1.2. The thickness 
is taken as unit length; note the small size 
of ~. 

We can now see that, as the shape and 
relative density of an irregular two-dimensional 
"iceberg" change with time, the path of G \;ill 
be a curved line \;hich will, in general, inter­
sect W, but not (except with vanishingly small 
probability) at a cusp or a swallowtail . Of 
course, during this process M is changing too. 
Thus, since there is no symm;try, we can assert 
that the only catastrophe that will occur 
generically is the fold. 

2 (b). Three dimensions 
These ideas carry over quite naturally into 

three dimens ions. The iceberg can be of any 
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shape and the buoyancy locus J! is now a surface, 
,yhich is strictly convex (Zeeman 1977, p. 445, 
Poston and Stewart 1978, p. 197) . Associated 
with each point on J! there are now two centres 
of curvature, corresponding to the two principal 
radii of curvature of §., and their locus M is 
now a surface with two sheets. The surface 
possesses sharp creases, or cusp lines, and 
generically these lines themselves contain three 
different kinds of singular points called 
swallowtail, e l lipt ic umbilic, and hyperbolic 
umbilic. 

Given the position of G, the centre of 
gravi ty of the floating body, the rule for find­
ing all possible equilibrium orientations is as 
follows. Draw all possible normals from G to !!; 
usually there will be several. Each of these 
normals, when set vertical with the foot of the 
normal below G, represents an equilibrium 
orientation . Taking anyone of these orienta­
tions, it is stable if, and only if, G lies below 
both centres of curvature (that is, belOly both 
sheets of M looking upwards). 

As the shape of the iceberg and its rela­
ti ve density change lYi th time, G moves along a 
curved line and !)II changes its shape . Generi­
cally the path of G wi 11 intersect M, but not on 
one of its singular lines or at one of its singu­
lar points. We conclude that, as in tlYO dimen­
sions, the only catastrophe that will occur 
generically is the fold. That is to say, a 
stable orientation can be destroyed if it merges 
with an unstable one (a minimum in the potential­
energy surface merges lYith a saddle), and any­
thing more complicated that this only occurs wi th 
vanishingly small probability. 

3. APPLICATION TO ICEBERGS 
Classical theory has always been used for 

ship design, usually lYi th great success. Why 
then should we use catastrophe theory for ice­
bergs? The main reason is that by considering 
the whole of the buoyancy locus J! and the meta­
centric locus M we can study the stability of a 
given iceberg three-dimensionally in any orien­
tation in one global view. Once § and ~ are 
computed lYe can also see at a glance how stable 
equilibrium positions can be destroyed or created 
as the iceberg evolves. 

One could imagine a computer program which 
could be applied routinely to any iceberg of 
particular interest and which would calculate § 
and M in three dimensions. One has to locate 
the n-;;rmals from G to § . One of them will be 
vertical. If G should happen to be near the 
relevant part of M there will also be another 
normal which is n;ar-vertical, signalling a 
nearby unstable orientation. The subsequent 
track of G relative to M as the iceberg melted 
would then be crucial for stability. 

The relative density of icebergs is much 
higher than that of ships and this leads to a 
very small metacentric locus ~ (for a relative 
density of unity it would be a point); this 
tells us that quite small changes in M or in the 
posi tion of G can be important. By contrast, 
ships have larger loci ~ and they are designed 
to be safe and reliable in the worst weather. 
The stability of an iceberg may thus be much more 
precarious despite its reassuring size. 

Coming now to specific computations, we 
first note that tabular icebergs sui table for 
towing are usually roughly rectangular in verti-

cal cross-section . A better approximation to 
the cross-section of a weathered iceberg might 
be a near-rectangul ar trapezium. We have there­
fore made two-dimensional computations, first on 
rectangles, because they are simpler, and then 
on trapezia, using the catastrophe theory out­
lined above . Davis (unpublished) and Brooks 
(1979) also report analyses of stability for 
rectangles and other shapes. 
3(a). Rectangular icebergs 

By fitting a quadratic curve to the 
empirical density-depth curve for tabular ice­
bergs reported by Weeks and MelIor (1978), we 
computed both the mean relative density A and 
the position of the centre of gravity G as 
functions of the thickness of the iceberg . For 
example, A for a 250 m-thick iceberg was cal­
culated to be 0.828. 

Poston and Stewart (1978) give equations 
for the buoyancy locus ~ for rectangles valid 
for 0 < A ~ 0.5 and shOly how these may be trans­
formed to apply to 0 . 5 :; A < 1, which is the 
range we need and which is the case we consider. 
For a rectangle the locus !! is oval in shape and 
consists (unless A = 0.5) of parts of four para­
bolae and four hyperbolae. J! , and therefore ~; 
is determined completely by A and by Z, the 
aspect ratio of the rectangle (ratio of width to 
thickness) . ~ is a figure containing either 8 
cusps (4 standard and 4 dual) or 16 cusps (8 
standard and 8 dual), such is the complexity of 
the global stability pattern for a shape as 
simple as a rectangle. For example, Figure 5 
shows M for A = 0.828 and Z = 1.0 and 1. 2. 
Sections suggesting the dual butterfly event 
appear at the top and bottom of the figures and 
this is typical for Z ~ 1. As Z and A change, 
the movements of the pattern are extremely rapid, 
and at Z = 2(1 - A) and 1/2(1 - A) pairs of 
cusps annihilate one another in four swallowtail 
events of the type shown in Figure 4a. For 
A = 0.828 these events occur at Z = 0.344 and 
2. 907. To collapse the butterfly sections to 
obtain the butterfly event shown in Figure 4b 
the cross-section of the floating body would have 
to be made non-rectangular (Zeeman 1977). 

The rapid movements mean that the stability 
properties depend strongly on Z and A. With 
A ~ 0.8 the M locus is qui te small, as expec­
ted, being typically one-tenth of the size of 
the iceberg for shapes which are almost square. 
This makes the variation of density with depth 
and other density inhomogeneities very important 
because these effects shift the centre of gravity 
G away from the centre of the iceberg, and even 
small shifts can be significant. In a 200 m­
thick iceberg the normal increase of density 
lYi th depth depresses G be 10ly the centroid by 
4.75 m. Abnormalities of density could change 
further the height of G by perhaps 0.01 of the 
ice thickness and could raise the mean A by, say 
0 . 013. We also estimated the lateral shifts of 
G that could be caused by cavities or by surface 
melt water permeating the upper layers of a 
ti 1 ted iceberg preferentially on one side. In 
this lYay we arrived at intermediate and worst­
expected cases of density abnormalities. 

To draw the metacentric locus for each 
choice of Z and A would give complete informa­
tion but lYould be very lengthy. Therefore we 
chose two classical measures of stability, the 
righting arm, as a function of attitude e, and 
the metacentric hei ght, and then computed graphs 

https://doi.org/10.3189/S0260305500016955 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500016955


Nye , Potter: Catastrophe theory to analyse stability of icebergs 

to show their dependence on Z and A. (The cap­
sizing angle, the value of 9 for which the right­
ing arm becomes negative, is often chosen to 
measure stability but we found that this can be 
misleading. One iceberg can have a larger 
capsizing angle than another but be easier to 
capsize, because its maximum righting arm is 
less . ) 

If the centre of gravity G were at the 
centroid and if A < 0.79, a rectangular iceberg 
would not be stable with its long dimension verti­
cal for any aspect ratio Z. Larger A and a lower 
position of G tend to stabilize the iceberg when 
it is in this attitude by raising the position 
of the relevant standard cusp relative to G. 
With a realistic depth-density curve as used 
above (A = 0 . 828), but without density anomalies, 
there is stability without listing if Z > 0.8, 
for the relevant standard cusp is then above G. 
For 0.7 < Z < 0.8 the cusp is below G, so the 
iceberg lists, while if Z < 0 . 7 even this listed 
posi tion becomes unstable because G encounters 
a dual cusp. The upright stability for Z = 0.8 
may rest anywhere in the range 9 = 0 to S°, but 
very little turning moment is needed to topple 
the iceberg to another more stable equilibrium at 
about 60° to the vertical. Typically density 
anomalies are able to reduce the metacentric 
height to half its former value . 

3eb). Trapezoidal icebergs 
If an iceberg is larger belO\~ the water 

line than above, it is not obvious whether this 
will tend to make it more or less stable . Cal­
culations with symmetrical trapezia (Fig. 6) 
throw some light on this question. There is nm~ 
one extra parameter, the angle of inclination 
of the side~. Laboratory experiments by Davis 
(unpublished), involving melting ice blocks a 
few centimetres acros~ showed that the irregular 
trapezium shapes into which they evolve are more 
liable to sudden toppling than rectangular 
shapes. These experiments and others made with 
floating blocks of paraffin wax (A = 0. 9) also 
suggested that it \~ould only be profitable to 
consider the two attitudes shmm in Figure 6a 
and b, because models in other orientations 
invariably capsized to give the ·atti tude shmm 
in Fjgure 6a, upside down, which was always 
stable. (These experiments also showed, inci­
dentally, that surface tension can have a major, 
-and unwanted, effect on stability on thi s scale.) 
The equations for the relevant parts of the 
buoyancy locus and the metacentric locus for 
trapezia were calculated from first principles 
and simple numerical techniques were needed to 
solve them. For ~ = 0, the results coincide 
with those for rectangles, as they should. 

Whereas M for the rectangle had two lines 
of symmetry at right angles, there is nO\~ only 
one, which is vertical. As ~ increases from 
zero, an evolution in the top half of M takes 
place whereby two pairs of cusps annihilate one 
another by two swallowtail events (Fig. 7 and 
Potter,unpublished) . As for rectangles, we com­
puted graphs to shO\~ how the righting arm curve 
(righting arm as a function of 9) and the meta­
centric height depend on the parameters Z (which 
is now the ratio of the half-height \~idth of 
the trapezium to its thickness), A, ~,and the 
coordinates of G. It \~as impos sible to explore 
all combinations and we had to content our­
selves with a cursory s tudy. 

o 

Fig.6. Trapezium attitudes used for computation . 

8 8 ' 

A 

Fig . 7. The rel evant part of the metacentric 
locus !la for trapezia with Z = 1.1, showing hO\~ 
it changes with the side inclination ~. 
Corresponding cusps a r e labelled by the same 
1 etter . As ~ increases the standard cusp A 
moves dmm, decreasing the metacentric hei ght. 
The dual cusps B, B' annihilate the standard 
cusps C , C' in two swallowtail events. The 
origin 0 is on the centre line mid-way between 
the top and bottom of the trapezium. The 
scale line shows 0.01 x the thi ckness . 

The most important r esult is that only a 
small value of ~ (with Z and all other parameters 
held constant) decreases the metacentric hei ght 
greatly . A value for ~ of 10° may decrease the 
metacentric hei ght by some 25% . It must be 
remembered that, s ince 83% of an iceberg is sub­
merged, a value of 10° may be very difficult to 
distinguish from O. For ~ = 10° and Z near 1, 
the righting am r is much reduced for nearly all 
9. This can be seen in the righting curves for 
~ = 0, 10, and 20° shown in Figure 8 for Z = 1.0 
and 1. 4. For Z = 1. 0 and ~ = 20° the s lope of 
r (9) becomes negative at the origin, signifying 
instability. The implication of th ese r esult s 
for trapezia is that icebergs \~ith enlarged 
underwater bases are l ess stable than rectangular 
icebergs with the same Z va lue. Potter (unpub­
lished) shows nine fami lies of righting curves 
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for trapezia with cp as parameter for various Z 
and for normal density, intermediate density 
abnormalities (considering water permeation), 
and worst density abnormalities (considering 
both water permeation and cavities) . 

z~ 1A 
20' 

_--....",,...,:.==-0::::::= 10· 

50' 

o· 

e 

Fig.8. The righting arm r (see Fig . 1) as a 
function of attitude e for trape zia of differ­
ent aspect ratio Z and s ide inclination ~ 

(shown in degrees against each curve). The 
normal density distribution of Weeks and Mellor 
(1978) was used. r is measured in units of 
the thickness of the trapezium. 

4. CONCLUSION 

o' 

The main advantage that catastrophe theory 
has to offer over conventional techniques is that 
it provides a global view of all the possible 
equilibrium attitudes, in three dimensions, of a 
given iceberg. It replaces the concept of the 
metacentre by the metacentric locus, which, for 
a given relative density and shape of iceberg, 
is a surface whose shape can be computed. 
Together with the buoyancy locus and the posi tion 
of the centre of gravity the metacentric locus 
summarizes the geometric information . 
One can then find the equilibrium attitudes of 
the iceberg, whether they are stable or unstable, 
and whether a stable attitude is dangerous l y 
close to an unstab l e one. As the iceberg melts, 
the metacentric locus evolves; its relation to 
the centre of gravity determines how t he various 
equilibrium attitudes change and how attitudes of 
stable equilibrium may be destroyed. 

Two-dimensional computations show that ice ­
bergs with certain, almost square cross-sections 
can topple over readily . An iceberg with a 
trapezoidal shape, larger below t he water line, 
is significantly less stable than one with a 
rectangular shape and the same aspect ratio. 

ACKNOWLEDGEMENTS 
The work described here was completed as 

part of an undergraduate project by J.R . Potter 
and C. Davis, supervised by J.F. Nye. We are 
grateful to Christine lJavis for putting her work 
a t our disposal for the writing of this paper . 
We are al so grateful to John Alcock for help 
with some of the analytical work. 

REFERENCES 
Brooks L D 1979 Another hypothesis about 

iceberg draft. In POAC 79: the fifth 
International Conference on Port and 
Ocean Engineering under Arctic Conditions , 
Trondheim, Norway , 1979. Proceedings Vol . 1. 
Trondheim, University of Trondheim, 
Norwegian Insti t ute of Technology : 241-252 

Davis C Unpublished. The toppling of icebergs . 
Report in Physics Depart ment Library, 
Universi t y of Bri sto l , England [written 
1979 ] 

Poston T, Stewart I 1978 Catastrophe theory 
and its applications . London, Pitman 

Potter J R Unpub l ished . An analysis of iceberg 
stability and toppling using elementary 
catastrophe theory . Report in Physics 
Department Library , Universit y of Bris t o l , 
Eng l and [wr itten 1979] 

Weeks W F, Me llor M 1978 Some elements of 
iceberg techno l ogy. CRREL Report 78 - 2 

Zeeman E C 1977 A catastrophe mode l for the 
stability of ships . In Catastrophe theory . 
Selected papers, 1972- 1977. Reading Mass., 
Addison Wesley: 441-493 (Paper 17) 

https://doi.org/10.3189/S0260305500016955 Published online by Cambridge University Press

https://doi.org/10.3189/S0260305500016955

	Vol 1 Year 1980 page 49-54 - The use of catastrophe theory to analyse the stability and toppling of icebergs - J.F. Nye and J.R. Potter

