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The Mean Width of Circumscribed
Random Polytopes

Dedicated to Professor Tibor Bisztriczky on the occasion of his 60th birthday

Kéroly J. Boroczky and Rolf Schneider

Abstract. For a given convex body K in RY, a random polytope K is defined (essentially) as the in-
tersection of n independent closed halfspaces containing K and having an isotropic and (in a specified
sense) uniform distribution. We prove upper and lower bounds of optimal orders for the difference of
the mean widths of K and K as # tends to infinity. For a simplicial polytope P, a precise asymptotic
formula for the difference of the mean widths of P and P is obtained.

1 Introduction and Results

The convex hull of n independent, uniformly distributed, random points in a given
convex body K in d-dimensional Euclidean space is a type of random polytope that
has been studied extensively (basic references are found in the surveys [21, 22], see
also [12]). As in the seminal papers of Rényi and Sulanke [16, 17] (restricted to
the planar case), which initiated this line of research, most of the investigations deal
with asymptotic results for # tending to infinity. In a third paper, Rényi and Sulanke
[18] studied a dual way of generating random polytopes related to a convex body K
(again in the plane) by taking intersections of independent random closed halfspaces
containing the body. Subsequently, this approach has attracted less attention than the
convex hulls of random points, although it deserves similar interest. In the present
paper, we obtain some results on random polytopes generated in the second way.
Throughout the following, K is a convex body with interior points in d-dimen-
sional Euclidean space R? (d > 2). For any notions on convexity in this paper, see
the monographs of Schneider [20] or Gruber [13]. Let BY be the unit ball of R? with
center at the origin; then K; := K + B? is the parallel body of K at distance 1. By
H we denote the space (with its usual topology) of hyperplanes in RY, and Hx is
the subspace of hyperplanes meeting K; but not the interior of K. For H € Hk,
the closed halfspace bounded by H that contains K is denoted by H~. The measure
{ is the motion invariant Borel measure on 3, normalized so that u({H € I :
HN M # @}) is the mean width W(M) of M, for every convex body M C R
Let 2p1x be the restriction of z to Hy. Since u(Hg) = W(K + BY) — W(K) =
W(B?) = 2, the measure ik is a probability measure. For n € N, let Hy,...,H,
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be independent random hyperplanes in R? (H-valued random variables on some
probability space (€2, A, P)), each with distribution px. The intersection ()\_, H; is
a random polyhedral set, possibly unbounded. We put

n
K™= NH NnkK
=1

and ask for EW (K™), where [E denotes mathematical expectation. Alternatively, we
might consider £, W (K (m), the conditional expectation of W (K™) under the condi-
tion that ('_, H;” C K;. Since EW (K™) = E,W(K™) + O(y") with v € (0, 1), as
is easy to see, there is no difference in the asymptotic behaviors of both quantities as
n — 00. We also remark that for the asymptotic results the parallel body K; could be
replaced by any other convex body containing K in its interior; this would only affect
some normalization constants.

The preceding model has to be distinguished from the one where n independent
random points are chosen from the boundary of K and the intersection of the sup-
porting halfspaces of K at these points is the random polyhedron under considera-
tion. For this model and sufficiently smooth convex bodies, Béroczky and Reitzner
[7] have derived asymptotic expansions of the expectations of volume, surface area
and mean width.

For comparison, we mention first some results involving convex hulls of random
points. Let K, be the convex hull of # independent, uniformly distributed, random
points in the convex body K. Throughout this paper, ¢;, ¢,, . . . are positive constants
that depend only on K and d. In writing n > 1y, we indicate that a result is true for
all sufficiently large n € N. There exist ¢y, . .., ¢4 such that, for n > ny,

(1.1) an )« W(K) — EW(K,) < on~ Y% and

(1.2) en 'In i < V(K) — EV(K,) < eun~ 2D,

where V' denotes the volume. Inequalities (I.I)) are due to Schneider [19], and (L2)
to Bérdny and Larman [6]. The orders are best possible, being attained in (L) (left)
and (L2)(right) by sufficiently smooth bodies, and in (LI)(right) and (L2])(left) by
polytopes.

If one sets about obtaining analogous results for random polytopes obtained as
intersections of halfspaces, the idea of dualizing immediately comes to mind. Sup-
posing that o € int K, polarization with respect to the unit sphere sends K to its polar
body K*, and it interchanges hyperplanes not meeting int K with points in K* (hence,
mean width and volume should interchange their roles); cum grano salis, intersec-
tions of halfspaces correspond to convex hulls of points. Measures on hyperplanes
correspond to measures on points; however, uniform measures do not correspond to
uniform measures, and mean width and volume are not exactly related under polar-
ity. Nevertheless, this approach can be put to work in some cases, or arguments may
find their dual analogs in a more heuristic way. In this more or less vague sense, du-
ality has been applied to polygons and vertex numbers in the plane by Ziezold [24],
and to smooth and general convex bodies in higher dimensions by Kaltenbach [14].
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In particular, Kaltenbach has established a counterpart to (L)), namely

esn @) < EV(KM) — V(K) < cgn™ V7.
We obtain here a counterpart to (I.2)), again with optimal orders.

Theorem 1.1 Forn > n,
(1.3) e In™t n < EW(K™) = W(K) < cgn™2/ @0,
The right side follows from a result of independent interest.

Theorem 1.2 For each n € N, the functional K — IEW(K("))/W(K) attains its
maximum at balls.

The following precise asymptotic formula is a counterpart to a result of Affen-
tranger and Wieacker [2].

Theorem 1.3 If P is a simplicial polytope in R? with r facets, then, as n — oo,

2rd n*'n
(d+ D41 pn

EW (P™) — W(P) ~

For the polytope P in Theorem[I.3] we also obtain asymptotic results for the num-
bers of vertices and facets. We denote by fi(P™) the number of k-faces of P that
are contained in the interior of P; (recall that P(P" ¢ P;) = O(y") with0 < v < 1).
Then

(n) rd‘ d—1
(1.4) Efo(P )N?Ml(Ad—l)ln n,

where the constant M;(A,_;) is given by (3.2), and

rd 1 d—1

7(d+1)d*1 n" n.

(1.5) Efi1(P™) ~
Remark Based on the paper [5] by Barany and Buchta, generalizing the results
of Affentranger and Wieacker [2], one can most probably extend Theorem [L.3] as
follows. Let P be any polytope in RY. We write T(P) to denote the number of flags
(or towers) of P; namely, the number of chains Fy C --- C F;_; where F; is an i-face
of P. Then, as n — oo,

2T(P) n? '
EW (P™) — W (P) ~

) (P) d+ D1 d—1) n

T(P) _

(n) d—1
Haa P @y ™

d

EfyP™ ~ T(P)d M (Ag_) In ',

(d!)?

Moreover, it is well known that M; (A;) = 1/3 and M;(A,) = 1/12, and Buchta and
Reitzner [8] proved M;(A;) = 13/720 — 72 /15015.
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2 Proofs of Theorems and

First, we fix more notation. In the following, $9~! := {x € R : (x,x) = 1} (where
(-, -) denotes the scalar product) is the unit sphere of R%, ) is the Lebesgue measure
onR?, and o is the spherical Lebesgue measure on ga-1,

Forsets A, ..., A, and points xi, .. ., x; in R%, m, k € Ny, we write

[A1, .. Apy X1, .o xi] == conv(Ay U« -~ UA, U{xy, ..., x}).

Before the proofs, we want to substantiate the remark made in the introduc-
tion about the comparison between EW(K™) and the conditional expectation
EiW (K™). Clearly, there are finitely many hyperplanes E; € H, j = 1,...,k, such
that ﬂl;zl E; CK+ (1/2)B“. We can choose neighborhoods N; of Ej, j = 1,...,k,
of equal measure ug(N;) =: o € (0, 1), such that any hyperplanes Hj, . .., Hy with
H; € Nj, j = 1,...,k, satisfy ﬂl;zl H C K+ B?. Now let Hi,...,H, be inde-
pendent random hyperplanes with distribution yx, and define ();_, H;” := P,. The
event P, ¢ K; occurs only if one of the events A; := {H; ¢ Njfori = 1,...,k}
occurs. It follows that

k k
PP, ¢ K1) <P(UA4;) <X PA) =k(1-a)

j=1 j=1
From
EW(K™)—(1—-P(P, ¢ K))E;W (K™) = / W(K™)dP < W(K)P(P, ¢ K;)
PyZ Ky

we now conclude that EW (K) — E,W (K™) = O(y") with v € (0, 1).

Turning to the proof of Theorem we first recall that Barany and Larman [6]
proved (L2)) after establishing the following general result. For x € K, let v(x) be the
minimal volume that a closed halfspace with x in its boundary cuts off from K. For
(small) £ > 0, let

(2.1) K@) ={x e K:v(x) <t}
In [6], the existence of positive constants cg, ¢ with
(2.2) eV (K(1/n)) < V(K) —EV(K,) < c10V (K(1/n))

for n > ny was proved. Part of this approach will now be ‘dualized’

For x € RY, let K, := [K,x], and let w(x) be the p-measure of the set of hyper-
planes separating K and x, thus w(x) = W(K,) — W(K). For a hyperplane H € Hk,
let

m(H) := min{w(x) : x € H},

and for t > 0 (sufficiently small), define

Hy(t) == {H € Hy : m(H) < t}.

https://doi.org/10.4153/CMB-2010-067-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2010-067-5

618 K.J. Boroczky and R. Schneider
It is convenient to describe this set of hyperplanes in a different way. For this, put
K[t] :== {x e R : w(x) < t}.

Letx, y € K[t], A € [0,1],and z € K(1_))xpy. Thenz = (1 =) [(1 = Nx+Ay] +ak
with suitable k € K and « € [0, 1]. It follows that

z=(1-XN[(1—a)x+ak] +A[(1 —a)y+ak] € (1 - MK+ AK,,
thus K—yxiny C (1 — MK, + AK,,. This gives

W(K(lf)\)xh\y) <W((1 - MK, + )\Ky) =1 - OW(K) + )\W(Ky)
<A =XNW(EK)+1)+ AMW(K) +1t) = W(K) +t,

hence w((1 — A\)x + Ay) < tand thus (1 — A)x + Ay € K[t]. This shows that K[t] is
convex.

Now, let H € Hg. If HN K[¢t] # @, then H contains a point x with w(x) < t,
hence m(H) < t and, therefore, H € Hg(t). If H N K[t] = &, then everyx € H
satisfies w(x) > t, and since m(H) is an attained minimum, also m(H) > t and hence
H ¢ Hy(t). Thus, Hk(#) is the set of hyperplanes meeting the convex body K[¢] but
not the interior of K. In particular,

W(Hg (1)) = W(K[t]) — W(K).

The left inequality in (2.2 admits a straightforward dualization, as already noted
by Kaltenbach [14]. The following argument, which we give for the reader’s conve-
nience, is the exact dual analog of that in [6, p. 283]. Let Hy, ..., H, and K™ be as in
the introduction, n > d. Let H € Hy and choose xo, € H such that w(xy) = m(H).
If H; does not separate xy and K fori = 1,...,n, then HN K™ # &, hence

P(HNK™ # @) > (1 — m(H))".

For small ¢t > 0, we obtain
EW((K™) - W(K) = / / 1{H N K™ +# &} u(dH) dP
Hx

_ / P(H N K™ # @) u(dH) > / (1 — m(H))"u(dH)
Hy

Hk
> / m(H) < t}(1 — )" u(dH)
Hx
=1 =0)"u(Hk @) = 1 = )" (W(K[t]) = W(K)).
The choice t = 1/n gives

(2.3) cit(W(K[1/n]) — W(K)) < EW(K™) — W (K).
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Next, we carry over results from [6] by applying them to the polar body. We
assume that 0 € intK and let K* denote the polar body of K. We write the points
of R? in the form ru with u € $*~! and r > 0 and the hyperplanes of R? in the
form H(u,t) == {x € R? : (x,u) = t} withu € S ' andt > 0. The map
¢ :R?\ {0} — H is defined by
(2.4) o(ru) == H(u,r").

Let v denote the image measure of A under ¢, then

v(A) = / / OOI{H(u,t) € A}t~ dt o (du)
si=1 Jo

for Borel sets A C JH. For comparison, the invariant measure p is given by

2

Consequently, there exist positive constants c),, 13 such that
cav(A) < p(A) < ev(A) if A C Hkg.

In the following, we assume that 0 < t < fj, where #; is chosen such that K" N
K*(ty) = @; here K; := (K;)*, and K*(¢) is defined by 2.I)). Let x € K*(¢). There
is a hyperplane E through x such that A(K* N E*) < ¢, where E* is the halfspace
bounded by E that does not contain 0. Let H := ¢(x) and y := ¢ !(E), then
y € H. The mapping ¢ maps the cap K* N E* bijectively onto the set of hyperplanes
separating y and K, which is denoted by J{} and is a subset of 3, by the choice of t;.
We conclude that

m(H) < p(Hy) < esv(Hy) = cisAMK*NET) < ¢p3t

and hence that H € JHg(cj3t). Since x € K*(t) was arbitrary, this shows that
@(K*(t)) C Hk(cyat); therefore,

AK* () = v(p(K*(1)) < v(Hk(ast)) < o' i H (er3t)).
Now (2.3)) together with this inequality gives
EW (K™) = W(K) 2 eiip(Hi(1/m)) = enenpM(K*(1/ei3n)).
for n > ny. By [6, Th. 2],
AK*(€)) > ciaeln® ' (1/€)

for € > 0. This yields the left inequality of (L3).
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The right inequality of (2.2)) relies heavily on the technique of Macbeath regions
(see Barany [3,4] for expositions of this technique and its applications), which does
not dualize in an obvious way. The proof of the right inequality of (I.3) can, however,
be deduced from Theorem [[.2] The latter is a counterpart to Groemer’s inequality
[10], which says that EV (K,,)/V (K) is minimal if K is an ellipsoid. In the subsequent
proof of Theorem [L2] ‘dualization’ becomes a bit vague: Steiner symmetrization,
which is a tool in Groemer’s proof, is replaced by Minkowski symmetrization.
Let h(K, -) be the support function of K. By (2.3)) and the definition of the mea-
sure fig, we have

1 1
Lk (A) = m/w/o 1{H(u, h(K,u) +t) € A} dt o(du)

for Borel sets A C Hg. We write H™ (u,t) := {x € R? : (x,u) < t} and use the
abbreviations U := (uq,...,u,), T := (t1,...,t,) and

P(K, U, T) = Hf(ul,h(K,ul) +t1) [AEEE ﬂHf(un,h(K, Lln) + tn) ﬂKl

Then we get

EWK?) = [ [ WO R0 Hy 0K ) - (@)

1 n
= —— W(PK,U,T))dT ¢"(dU).
(O—(Sd—l)) [S‘Il)" 0.1 ( ( s Y )) U( )

Let K, M C R be two convex bodies. Let & € [0, 1] and x € (1 — «)P(K, U, T) +
aP(M,U,T). Thenx = (1 —a)y+azwithy € P(K,U,T) andz € P(M, U, T). For
eachi € {1,...,n}, wehave (y,u;) < h(K,u;)+1t; and (z, u;) < h(M, u;) +1;, hence

(x,u;) < (1 — a)(W(K,u;) +1;) + a(h(M, ;) +t;) = h(1 — &)K + oM, u;) + t;.
Since also x € Kj, we see that x € P((1 — a)K + aM, U, T). This shows that
(1— @)P(K,U,T) +aP(M,U,T) C P((1 — &)K + aM, U, T)
and hence that
W(P(1—a)K+aM,U,T)) > (1 —a)W(PK,U,T))+aW(P(M,U,T)).
Inserting this in the representation of EW (K™), we obtain
EW([(1 — @)K + aM]™) > (1 — a)EW(K™) + aEW (M™).
Thus, the function K — EW (K™) is concave with respect to Minkowski addition,

and it is clearly invariant under rigid motions and continuous with respect to the
Hausdorff metric. Now the following standard argument shows that on the set of

https://doi.org/10.4153/CMB-2010-067-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2010-067-5

Mean Width of Random Polytopes 621

convex bodies of given mean width, the function EW (K) attains its maximum at
the balls. A rotation mean of K is every convex body of the form K’ = m~}(§,K +
-+ 40,,K) with m € N and rotations 1, . . . , 6,, of R%. By the concavity shown above
and the linearity of the mean width, we have EW ((K")™) > EW (K) and W (K') =
W(K). By a theorem of Hadwiger (see [20, Theorem 3.3.2]), there is a sequence of
rotation means of K converging to a ball B. This ball satisfies EW (B™) > EW (K™)
and W(B) = W(K). We can write the result as
W(K)

EW (K™) — W(K) < T[IEW((Bd)(”)) - w(®BH],

which proves Theorem[I.2] The right side is of order n~/(“*D as n — co. This can be

deduced from below for K = BY, once the analogous result for the convex hull
of independent, identically distributed points in the ball B is known, for the case
where the Lebesgue measure (yielding the distribution of the points and the volume
functional) is replaced by Lebesgue measure with a density that is continuous in a
neighborhood of bdB? and constant on bdB?. Such a result, in turn, is obtained by
a straightforward extension of the Lebesgue measure case, first treated by Wieacker
[23] and generalized by Affentranger [1]. This completes the proof of Theorem[L1

3 Polarity and a Useful Functional

In our preparations for the proof of Theorem we make use of the mapping ¢
defined by (2.4). We assume that K is a convex body containing the origin o in its
interior. The same holds then for its polar body K*. We define

Xi =l (K* \ K}),

thus ¢(Xx) = Hg. Writing p*, ui for the image measures of u, uk, respectively,
under ¢!, we have

1
*(A) = —(d+1)
pp(A) = ) /A IEY] dx

for any Borel set A C Xk. For a convex body M containing K, it is clear (and well
known, see Glasauer and Gruber [11]) that

W(M) — W(K) = ﬁ/K [ oc]| =D dx.

By K, we denote the convex hull of Kj and # independent random points in Xx
with distribution z%. Thus, K" is stochastically equivalent to the polar body of K,
and we have

2
(3.1) EW(EK™) - W(K) = 715/ [loc]| =V dx = 2 pp(K* \ K.
For Hy,...,H, € Hk, we say that a (d — 1)-dimensional convex compact set F

is a proper facet of K = (\_ H; NK,, if F = H; N K™ for some H; which is
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a supporting hyperplane of K intersecting int K;. Further, v is a proper vertex of
K™ if v € intK, and {v} is the intersection of the proper facets of K containing
v. We write f(K™) and f;_,(K™) for the number of proper vertices and facets,
respectively, of K (),

Next, let K = [K{,x1,...,%,]) for x;,...,x, € Xgx. We say that a (d — 1)-di-
mensional convex compact set F is a proper facet of K} if Ki N afftF = @& and F
is the intersection of K and a supporting hyperplane of K. Further, some x; is a
proper vertex of K¥ if x; ¢ Ki and {x;} is the intersection of K} and a supporting
hyperplane of K. We write f;(K}) and f;—(K;) to denote the number of proper
vertices and facets, respectively, of K. If K ) — ﬂ:;lgo(xi)_ N K, then ¢ defines
bijective correspondences between the proper vertices of K;i and the proper facets of
K™, and between the proper facets of K;* and the proper vertices of K.

As we have seen in Section 2} there exists a number v € (0, 1) depending only on
K such that with probability at least 1 — O(y") we have K C int K}}. In this case, K}
is a polytope with vertices among the n random points determining K.

Now we assume that P is a simplicial polytope (with o in its interior), then P* is
a simple polytope. Similarly as in Affentranger and Wieacker [2], we consider the
function T;(P:) below, where g > 0 and P}, = [P}, x,...,x,] forx;,...,x, € Xp.

If Fisa (d — 1)-dimensional convex set whose affine hull intersects P* and avoids
Py} then let vr be a vertex of P* which is separated from P} by aff F, and where there
exists a supporting hyperplane to P* parallel to aff F. Further, let S = [F vg]. We
write F(P};) to denote the family of proper facets of P;;, and we define

Tr(Py) = Y pp(Se).

FEF(Py)

The functionals T; (Py) are closely related to our problem, because f;_(P;) =
To(Py) and we will prove E up(P* \ Pf) ~ ETy(P}) in Section @l Now the core
of the arguments leading to Theorem [L3]is the following lemma. For this, we need
some notation. The (d — 1)-dimensional Lebesgue measure is denoted by A;_;. For
q > 0and a (d — 1)-dimensional compact convex set A, let

(32) My(A) = Ad__dl_q(A)/ Aaca (31, xa) T NG (s %))
Ad

Let Ay be a fixed (d — 1)-dimensional simplex, then My(A) = M,(A4_;) for any
(d — 1)-dimensional simplex A, by affine invariance. For an arbitrary (d — 1)-dimen-
sional compact convex set A, there exists a (d — 1)-dimensional simplex B C A such
that A is contained in a translate of —(d — 1)B, therefore

(3.3) My(A) < (d — D)= DHDM (A ).

Lemma 3.1 Ifq > 0isan integer and P is a simplicial polytope in R? with r facets,
then, as n tends to infinity,

r(d+q— Dd My (Ag_y) I
(d—1)”? ni

ET}(P}) ~
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Proof To prove Lemma[3.1] it is sufficient to verify for any ¢ > 0 the existence of
and I' depending on ¢, g and P such that, if n > ny, then

. 1 rd+q— D My (Ag—y) In
(3.4) ETI(P)) >

(1 + g)2d+2q (d— 1) "
Flndﬂ n
o T)
3.5) ETHP 1 2d+2q r(d+q— 1)!dd71Mq+1Ad71) n*'n
() q( n)<( +€) (d_l)!z —
Fh’ldﬁ2 n
+ - -
n4
In the rest of this section, we write I';,I';, . . . to denote constants that may depend

oneg,qandP.

Many calculations are simpler if we do them with respect to an orthonormal basis,
therefore we introduce some notation. Let ey, . . ., es be an orthonormal basis of R9,
and let = [o,e,...,e4]. For p = 0,...,d, and a (d — 1)-dimensional convex
set F, we define 9};’ = 1 if aff F intersects each open ray Rye;, i = 1,...,d, and aff F
separates p points out ofe, ..., e; from o, and define #5 = 0 0therw1se In addmon,
we define Sp = [o, F], and 7jp denotes the distance of aff F from 0. Moreover, let C, F
be the simplex cut off by aff F from Z R>oe; if aff F intersects each open ray R.e;,
i=1,...,d,andletCp = Q otherwise. For s=(s1,...,84) € R{ we write H(s) for
the hyperplane H that contains the points s;e; for i = 1,...,d. It follows that (see
also [2, pp. 298-299])

(3.6) V(Cry) = 51 -~ sa/d,

(3.7) dp(H(s)) = 8 (s - - s0)*ds.

Finally, we recall the lemma in [2, p. 296]. It says that for integers k,m > 0 and
p > 2,and for ¢ € (0, 1], we have

(3.8) / (51~~sp)k (17651'”51));17;11 d(si,...sp) =
(0,117

k! In""'n In""%n
(P _ l)!ck“ nk+l ( nk+l )

as n tends to infinity, where the implied constant in O(-) depends on k, m, p, c. In
addition, if p = 1, then

K1 1

k n—m

(39) / (1 — CS) ds = k+1 F +0 (nk+2> .
0
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We choose a number w > 0 with the following four properties:

* Any edge of P* is of length at least 3w.

* Ifyisavertexof P* and wy, ..., w,  are the points on the d edges of P* meeting
at y such that ||w,; — y|| = w, then Q,, := [y, w, 1, ..., w,4] is disjoint from P}.

» Ifyisavertex of P* and x € 2, then

A+ yI™ 7 < el < )y

o If yisavertex of P*, then (1 +&)o(S9~1) 71|y =41V (Q,) < L.

Let y be a vertex of P*, which we keep fixed until (3.16). For p = 0,...,d, and a
(d—1)-dimensional convex set F, we define 95‘ ¢ = 1if P has a supporting hyperplane
at y that is parallel to aff F and aff F separates y from K; and from p points out of
Wy1,- .., Wy, and define 95_’1; = 0 otherwise. We write ®, to denote the linear map
with ®,¢; = w,; — yfori =1,...,d, and hence det ®, = 4!V (€2,). Let

AT SO
FEF(Pr)

A standard argument yields

* " * * n—d
0100 517,80 = () 360G
XP
X ei[xh»»-,x,d dpp(x1) - - - dpp(xa),

where C|y, .., denotes the part of P* containing y that is cut off by aff{x,, ..., x4}.
We start with the case p = d. It follows by the definition of w that, writing 3 :=
a (SN |ly||4*, we have

(311 ETL,(P)) > (Z)u +g) (@) g (dra) /Q YV (Starn)?

y

(3.12)

(1+e)V(Cpyy,.x)) "
X (1— Tt ) DAL

B

We write I/ to denote the integral in (3.12). Applying ® !, we deduce that

I = (d!V(Qy)) d /Qd V(§[X17~~~;xd])q(l 3

X é?xl,m,xd] dx; - - - dxg.

Following [2, pp. 298-299], we apply first a Blaschke—Petkantschin formula and the
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definition of M,(-), then and (3.7), to obtain

q+d

"= (dv(Q) " d 1My (Ag_)(d — 1)

AV (Q,)(1+2)V(Ch)
B

= (dV(2,)) " d My (Ago)(d — 1)1

V(,)(1 n—d
X/ (Sl...sd)d+q_l(l_Msl...sd) d(sl7._.’sd).
(0,1}

- n—d _
x / ﬁgAjiqfl(HmQ)@ ) g% du(H)
H

B

We may apply (3.8) because V(£2,,)(1 +¢)/8 < 1 by the choice of w. We deduce by

(B.I1) that

(3.13) E Tiy(Pj;) > <Z> 1+ 5)7(d+q)ﬂ*(d+q) BE
o (d+q— 1)!dd71Mq+1(Ad71) In“"'n r n? 25
N (d—1)12(1 +¢)2H24 w0

Now a similar argument with the obvious changes leads to
(3.14)

(1+&)#24(d + g — DA "My (Ag—y) In" ' Lpnd—2n
2 .

d s«
ET, ,(P;) < d_1e > ”

Next, let p € {1,...,d — 1}. We define 7 to be the smallest number such that
71 < o($T||x[|**! < 7 for x € Xp, and set P, := & !(P — y). Starting from
(B10), applying <I>;1 and then the Blaschke—Petkantschin formula and (3.3]), we ob-

tain
ET? (P})
V(C o] N P*)\ n—d
< p3nd/ V(S _'”xd])q(l _ M) ,gl’[x [y - dxg
Xd yeeey T VilX1,.-05Xd
P
~ AV (Q)V (Cry.oog VPN 7
< Dmd/ V(S[xl,.“,xd])q(l - OV .. y)> Gfxl ]
o -
X dxl ce dxd
AV (Q,)V(Cy N Py)\ =4
< and/ AL 0 Py (1- (€)VCr y)) 8, dyu(H).
T T
Fors = (s1,...,s4) € R, we have 9{1(5) = 1 if exactly p coordinates out of sy, ... ,5s4

are at most one. In particular, we may assume thats; < 1ifi < P, and s; > 1if
i > p, and hence
i Ad—1(H(s) N Py) < Tgsy -+ - sp,
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~ Sl ce. S
V(Cres N Py) > T".

First we change the varlable as in (3.7), and second we apply (3.8) or to obtain
inthe case p € {1,...,d — 1} that

V(Q n—d
(3.15) ET! (Py) < rynf / (51 -+ - 5p) ! (1 ALY sy ~5p)
' 1Loo)d—r J(0,1 T

In”"'n

-2 -2
X syt ees md(syy e, 8p) d(spr, -y 5q) < Tg "

Finally, if p = 0 then (3.10Q) yields
(3.16) ETS,(Py) < Ton(1 — pp(€2,))" .

Since

d
ET;(P) = > > ETE(P)),

y vertex of P* p=0

combining (3.13), (3.19), and (B.16]) leads to (3.4)), and combining (3.14), (3.19), and
(B:14) leads to (B.5). This completes the proof of Lemma[3.1]

4 The Proofs of Theorem [1.3]and Equations (1.4), and (1.5)

In this section, the implied constant in O(-) depends on P. Formula ([4) readily
follows by Lemma[3.1] since

E fo(P"™) = E f;_1(P}) = ET; (P).
Following the proofs of Propositions 1 and 2 in [2], we verify the following lemma.

Lemma 4.1

1 d—2
4.1) ET}(P) < Eup(P*\ P}) S ET{(P}) + O = " ).

Proof The lower bound in (£J]) is a consequence of the fact that the interiors of the
sets S are pairwise disjoint as F runs through F(P}).
The upper bound in (41) is proved in several steps. For any convex body Q and
z € 0Q, let
N(Q,2) = {ueR?: (u,x —z) < 0forallx € Q}.

If Q is a polytope and e is an edge of Q, then N(Q, z) is the same (d — 1)-dimensional
cone for any z in the relative interior of e, which cone we denote by N(Q,e). In
addition, N(Q, z) is d-dimensional if Q = P} and z is a proper vertex, or Q = P* and
z is a vertex. For a given P}, and for a vertex y and an edge e of P*, we write f; ,(P};)
and fy.(P;) to denote the number of proper vertices x of P}, such that N(P},x) C
N(P*, y), respectively that N(P}, x) intersects N(P*, ). Since for any z € P* \ P},
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the cone N([z, P}],z) either is contained in N(P*, y) for some vertex y of P*, or
intersects N(P*, e) for some edge e of P*, we have

* * * 1 * 1 *
Eup(PAP) < —— > Efy(Pr)+ —— > EfoelPr).

+
y vertex of P* e edge of P*
Let us consider x1, . . ., x,+1 € Xp such that x,; is a proper vertex of
%k k
Pn+l = [xla e 7xn+l>P1 ]7

NP}, %011) C N(P*,y) for some vertex y of P*, and P C intP} for P; =
[x1,...,%,, P{]. In this case, the ray starting from y and passing through x,,; en-
ters into P} intersecting a (proper) facet F of P, and x,,+; € Sg. Since the probability
that P} C int P}, is at least 1 — O(y") for some vy € (0, 1), we deduce that

* * * * * 1 * n
(42)  Epp(P*\ PY) <ET;(P!)+ — dzfp E foe(P5)) + O((n + 1)4").
e edge of P*

Therefore, we fix an edge e of P* and estimate [ fy (P}, ,). Let y be one of the end-
points of e. From here on, we use the notation set up in the proof of Lemma[3.1l We
may assume that w, 4 € e. Forx = y + Zle si(wy; — y) with s, ... 55 > 0,let

v = [y, wya,y +min{s;, 1} (wy,; — ), ...,y + min{sg_y, 1} (wyq—1 — )] C Q.

In particular, V(Z,) = min{s;, 1} ---min{ss_1, 1}V(€,). In addition, if P} , =
[x1,. ..y %ne1, PY] for x1,. .., x1 € Xp, if x,41 is a proper vertex of P, |, and if
N(P},,,xn11) intersects N(P*,e), then Z, , is disjoint from int P},,. Considering

the number p of the numbers sy, . .., s;_; that are at most one, we have

EfoePr) < (n+1) [ (1= pp(Ey)"dup(x)
-

V(Q n
(€)) 51-~-sp) d(s1,...,sp).

d—1
<D —p@) +om s [ (1-
p=1J(0,1]7
Since for p = 1,...,d — 1, the last integral is O(In" ' 1/n) according to (B.8) and
[B9), we conclude that E fy.(Pr,,) = O(In“2 n). Therefore, (E2) yields Lemma
41l [

We note that M,(Ay_1) = (d — 1)!/d*~1(d + 1)~ according to Reed [15], and

hence

rd In*'n
T d+ DT
by Lemma[3l Therefore, combining (3.1)) and Lemma [ ]yields Theorem[T.3l For
X,X1,...,%, € Xp, the point x is a proper vertex of [x, x1, ..., x,_1, P{] if and only if
x € [x1,...,%,—1, Pf]. We conclude that

ET; (P})

1’61 1 d—1

Efur(P) = E fo(P}) = nE (P \ Piy) ~ gy In

n

(see also Efron [9]), and thus assertion (I.5)) holds.
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