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The Distributions in the Invariant Trace
Formula Are Supported on Characters
Robert E. Kottwitz and Jonathan D. Rogawski

Abstract. J. Arthur put the trace formula in invariant form for all connected reductive groups and certain
disconnected ones. However his work was written so as to apply to the general disconnected case, modulo
two missing ingredients. This paper supplies one of those missing ingredients, namely an argument in Galois
cohomology of a kind first used by D. Kazhdan in the connected case.

Let F be a number field and let G be a connected component of a reductive group over
F. Assume that G(F) �= ∅. In [Art88a], [Art88b] Arthur puts the trace formula for G in
invariant form, provided that G is the connected component of the identity or arises from
cyclic base change for an inner form of GL(n). However the two papers [Art88a], [Art88b]
are written so as to apply to the general case, aside from two missing ingredients. One is the
trace Paley-Wiener theorem for G(Fw) at the infinite places w of F. We have nothing new
to say about this and will simply assume the validity of Proposition 1.1 of [Art88a] in the
general case. The second missing ingredient is an argument in Galois cohomology, along
the lines of Kazhdan’s proof of Theorem 1 in the appendix to [Kaz86]. Our purpose here
is to supply the required argument, thus proving Theorem 5.1 of [Art88b] in the general
case, assuming the validity of the trace Paley-Wiener theorem.

In fact our proof of Theorem 5.1 of [Art88b] is unconditionally valid for cyclic base
change over p-adic fields, because then in the global arguments we are free to use totally
complex base fields. Since twisted harmonic analysis reduces to ordinary harmonic analysis
at places where the cyclic extension splits completely, no difficulty arises at the infinite
places.

We use the following notation. For a field F we write F for an algebraic closure of F. For
a number field F and a finite place v of F we write Fun

v for a maximal unramified extension
of Fv and ov (respectively, oun

v ) for the valuation ring of Fv (respectively, Fun
v ). For a number

field F, a variety X over F and a place v of F we sometimes write Xv for the variety over
Fv obtained from X by extension of scalars. For a connected reductive group G we write
Gder for the derived group of G, Gsc for the simply connected cover of Gder, and Gad for the
adjoint group of G. We write Ĝ for the connected Langlands dual group of G and Z(Ĝ) for
its center. For a group G over a number field F we write ker1(F,G) for the kernel of

H1(F,G)→
∏

v

H1(Fv,G),

the product being taken over all places v of F.
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1 Weak Approximation

Let F be a number field and let S be a finite set of places of F. We write FS for the F-algebra∏
v∈S Fv. Let G be a connected reductive group over F. Consider the closure G(F)− of

G(F) in G(FS). By strong approximation for semisimple simply connected groups, G(F)−

contains the image of Gsc(FS), a normal subgroup of G(FS) with abelian quotient. Therefore
G(F)− is a normal subgroup of G(FS) with abelian quotient.

Elements of H1
(
F,Z(Ĝ)

)
define continuous characters on G(A) [Lan89], trivial on G(F).

Let H1
(

F,Z(Ĝ)
)

S
denote the subgroup of H1

(
F,Z(Ĝ)

)
consisting of elements that are trivial

in H1
(
Fv,Z(Ĝ)

)
for every place v outside of S (and similarly for H1

(
WF,Z(Ĝ)

)
S
, where

WF denotes the Weil group of F/F, and H1
(
L/F,Z(Ĝ)

)
S
, where L denotes a finite Galois

extension of F in F such that Gal(F/L) acts trivially on Z(Ĝ)). There is an obvious pairing
between

G(F)− \ G(FS)

and
H1
(
F,Z(Ĝ)

)
S
/ ker1(F,Z(Ĝ)

)
.

The following lemma is a variant of a result of Sansuc (see [San81], Thm. 8.12) and is an
easy consequence of strong approximation and the Hasse principle.

Lemma 1

(a) The abelian groups G(F)− \ G(FS) and

H1
(
F,Z(Ĝ)

)
S
/ ker1(F,Z(Ĝ)

)

are finite and the natural pairing between them is perfect.
(b) Suppose that there exists a place w /∈ S and a finite Galois extension K of F in F such that

Kw is a field and Gal (F/K) acts trivially on Z(Ĝ). Then G(F) is dense in G(FS).

Proof Let L be any finite Galois extension of F in F such that Gal (F/L) acts trivially on
Z(Ĝ). Using class-field theory for L, it is easy to see that

H1
(
WF,Z(Ĝ)

)
S
= H1

(
L/F,Z(Ĝ)

)
S
,

and hence that
H1
(
F,Z(Ĝ)

)
S
= H1

(
L/F,Z(Ĝ)

)
S

as well.
We draw three conclusions from this discussion. The first is that (b) follows from (a).

Indeed, by hypothesis

H1
(
K/F,Z(Ĝ)

)
→ H1

(
Kw/Fw,Z(Ĝ)

)

is an isomorphism, and therefore H1
(
K/F,Z(Ĝ)

)
S

is trivial, since w /∈ S.
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The second conclusion is that H1
(
F,Z(Ĝ)

)
S

is finite. In fact it is easy to see that H1(H,A)
is finite for any finite group H and any diagonalizable C-group A on which H acts (alge-
braically).

The third conclusion is that H1
(
F,Z(Ĝ)

)
S

does not change if we enlarge S by adding all
of the infinite places of F. We simply use that the decomposition group of any infinite place
of L is cyclic and hence, by the Tchebotarev Density Theorem, is also the decomposition
group of an infinite number of places of L. An easy reduction step now shows that it is
enough to prove (a) when S contains every infinite place of F; we assume this for the rest of
the proof.

First we consider the case in which G is a torus T. The group of continuous quasi-
characters on T(F)− \ T(FS) is the same as the group of continuous quasi-characters on
T(F) \T(A) that are trivial on T(Fv) for all v /∈ S. By [Lan97] (see also [Lab84]) this group
of quasi-characters is equal to

H1(WF, T̂)S/ ker1(WF, T̂),

which is in turn equal to
H1(F, T̂)S/ ker1(F, T̂).

This proves (a) for T.
Next we consider the case in which Gder is simply connected. Let D = G/Gder. Since

Z(Ĝ) = D̂ and D is a torus, it is enough to prove that

G(F)− \ G(FS)→ D(F)− \ D(FS)

is an isomorphism. By what has already been proved for tori we may omit the infinite places
from S while proving the surjectivity of this arrow, but then even

G(FS)→ D(FS)

is surjective by Kneser’s vanishing theorem for H1 for semisimple simply connected p-adic
groups. To prove the injectivity consider an element g ∈ G(FS) whose image d in D(FS)
belongs to D(F)−. We want to show that any open neighborhood U of g in G(FS) contains
an element of G(F). Let V be the image of U in D(FS). There exists an element d0 ∈ D(F)
in V since d ∈ D(F)−. The coboundary of d0 for the exact sequence

1→ Gsc → G→ D→ 1

is locally trivial at every infinite place of F (since these places belong to S) and is therefore
trivial by the Hasse principle for H1 of Gsc. We conclude that d0 is the image of some
g0 ∈ G(F). Then g−1

0 U meets Gsc(FS). Applying the strong approximation property for
Gsc, we see that g−1

0 U contains an element of Gsc(F)−. Therefore U contains an element of
G(F)−.

Finally we consider the general case. Choose a z-extension H → G (see [Kot82, Sec-
tion 1]). Then

H(F)− \H(FS)→ G(F)− \ G(FS)
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is surjective. On the other hand the maps

H1
(
F,Z(Ĝ)

)
S
→ H1

(
F,Z(Ĥ)

)
S
,

ker1(F,Z(Ĝ)
)
→ ker1(F,Z(Ĥ)

)

are isomorphisms (see [Kot84, Lemma 4.3.2 and its proof]). Thus it is enough to prove (a)
for H, and this has already been done.

2 Approximation of a Local Automorphism by a Global One

Let F1 be a local field of characteristic 0, let G1 be a connected reductive group over F1, and
let θ1 ∈ AutF1 (G1).

Lemma 2 There exist a number field F, a connected reductive group G over F, an automor-
phism θ ∈ AutF(G), a place v of F and an isomorphism (Fv,Gv)

∼
→ (F1,G1) such that θv and

θ1 differ by an inner automorphism Int g for some g ∈ G1(F1) (of course we transport θv to G1

via Gv
∼
→ G1).

Proof Choose a finite Galois extension K1/F1 that splits G1. Then there exist a finite
Galois extension K/F of number fields and a place v of F such that Kv is a field and Kv/Fv

is isomorphic to K1/F1. We may as well replace F1 by Fv. There exists a quasi-split group
G∗ over F such that G∗v is an inner form of G1. Since

H1(F,G∗ad)→ H1(Fv,G
∗
ad)

is surjective (see [BH78, Thm. 1.7]), there exists an inner form G of G∗ and an isomorphism
Gv

∼
→ G1. Thus we may as well assume that G1 = Gv.
Choose a finite Galois extension L of F that splits G and choose a place w of L lying

over v. Replacing F by the decomposition field of w, we may assume that Lv is a field,
so that Gal(L/F) = Gal(Lv/Fv). Choose α ∈ AutF(G) such that α, θ1 differ by an inner
automorphism. Then since Gal(L/F) = Gal(Lv/Fv) and L splits G, the automorphisms
xτ := α−1τ (α) for τ ∈ Gal(F/F) are all inner, and therefore (xτ ) defines an element of
H1(F,Gad) that is trivial in H1(Fv,Gad). Replacing F by a suitably large finite extension in
which v splits completely, we may assume that (xτ ) is trivial in H1(Fw,Gad) for every place
w of F. By the Hasse principle for H1 of adjoint groups (see [San81, Cor. 5.4]) (xτ ) is trivial
in H1(F,Gad). Modifying our choice of α, we may assume that xτ = 1 for all τ , which just
says that α ∈ AutF(G). Then α and θ1 differ by an element of Gad(Fv). But Gad(F) is dense
in Gad(Fv) (see [San81, Rem. 5.5]); thus we can modify α by an element of Gad(F) so as to
obtain θ ∈ AutF(G) such that θ, θ1 differ by an element of the open subgroup im

(
G(Fv)

)
of Gad(Fv).

3 Existence of Suitable Global Situations

Let F be a field, arbitrary for the moment. We consider extensions G̃ of Z/rZ by a connected
reductive group G:

1→ G→ G̃→ Z/rZ→ 1.
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We consider only those extensions G̃ for which G̃(F) maps onto Z/rZ. For any positive
integer s we can pull back the extension via the canonical surjection

Z/rsZ→ Z/rZ

to obtain an extension of Z/rsZ by G; we refer to this process as inflating G̃ by s.
Now suppose that we have such an extension

1→ G1 → G̃1 → Z/rZ→ 1

over a local field F1 of characteristic 0. We say that G̃1 can be globalized if there exist a
number field F, an extension G̃ of Z/rZ by a connected reductive group over F such that
G̃(F) maps onto Z/rZ, a place v of F and an isomorphism

(Fv, G̃v)
∼
→ (F1, G̃1).

Lemma 3 There exists a positive integer s such that the inflation of G̃1 by s can be globalized.

Proof By Lemma 2 we may assume that (F1,G1) is of the form (Fv,Gv) for some number
field F, some connected reductive group G over F and some place v of F. Moreover we may
assume (still by Lemma 2) that there exists an automorphism θ of G over F and an element
xv ∈ G̃1(Fv) such that xv maps to the standard generator of Z/rZ and the restriction of
Int(xv) to G1 = Gv coincides with θ. Let yv = xr

v ∈ G(Fv). Note that θ(yv) = yv.
Write Z for the center of G. In order to construct a suitable extension of Z/rZ by G it

would be enough to find zv ∈ Z(Fv) such that (xvzv)r ∈ G(F). Since we allow inflation as
well it is enough to find zv ∈ Z(Fv) and a positive integer s such that (xvzv)rs ∈ G(F).

Consider the embedding
Gθ/Zθ → Gad,

where Gθ (respectively, Zθ) denotes the invariants of θ in G (respectively, Z). Then θr

belongs to Gad(F) and lies in the image of Gθ/Zθ (check this over Fv); let t denote this
element of (Gθ/Zθ)(F). Since H1(F,Zθ) is a torsion group, some power of t lies in the
image of Gθ(F). Replacing r by a suitable positive multiple we may as well assume that
there exists y ∈ Gθ(F) such that Int(y) = θr. Then y and yv differ by an element of Zθ(Fv).
Replacing r by a suitable positive multiple we may assume that y and yv differ by an element
of (Zθ)◦(Fv).

We are free to replace (F, v) by (F ′, v ′), where F ′ is a finite extension of F and v ′ is a place
of F ′ lying over v such that Fv → (F ′)v ′ is an isomorphism. In fact we do this twice. First we
choose a finite Galois extension K of F that splits (Zθ)◦ and replace F by the decomposition
field of some place of K lying over v. Thus we may assume that Kv is a field. Then we
replace F by any quadratic extension F ′ in which v splits and replace K by K ⊗F F ′, which
is necessarily a field (look at what happens at v). At this point we may assume that (Zθ)◦ is
split by a finite Galois extension K of F such that Kw is a field for some place w �= v. Then by
Lemma 1 (Zθ)◦(F) is dense in (Zθ)◦(Fv), and by modifying our choice of y we may assume
that y and yv differ by an element of the open subgroup

{zr | z ∈ (Zθ)◦(Fv)}

of (Zθ)◦(Fv). Therefore there exists zv ∈ (Zθ)◦(Fv) such that (xvzv)r = yvzr
v = y ∈ G(F).

This completes the proof.
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4 A Lemma on the Galois Cohomology of Diagonalizable Groups

Let F be a number field, let v be a place of F, and let D be a diagonalizable group over F
(diagonalizable over F, that is). Recall that the cup product

H1(Fv,D)×H1
(
Fv,X

∗(D)
)
→ H2(Fv,Gm) ↪→ Q/Z

is a perfect pairing between the finite abelian groups H1(Fv,D) and H1
(
Fv,X∗(D)

)
(see

[Mil86, Cor. 2.4]). Let S be a finite set of places of F including v, all the infinite places of
F, and all the places where the Gal(F/F)-module X∗(D) is ramified. For w /∈ S the group
Dw extends naturally to a group scheme over ow with diagonalizable geometric fibers, and
we denote by H1(ow,D) the group H1

(
Gal(Fun

w /Fw),D(oun
w )
)
, a subgroup of H1(Fw,D) (see

[Mil86, Thm. 2.6]]). We denote by H1(A,D) the restricted direct product over all places of
F of the groups H1(Fw,D), the restriction being with respect to the subgroups H1(ow,D)
for w /∈ S.

The local pairings induce a continuous pairing between the locally compact group
H1(A,D) and the discrete group H1

(
F,X∗(D)

)
. By the local theory the annihilator of

H1(A,D) in H1
(
F,X∗(D)

)
is ker1(F,X∗(D)

)
. Milne shows (see [Mil86, Thm. 4.20]) that

the annihilator of H1
(
F,X∗(D)

)
in H1(A,D) is equal to the image of H1(F,D) in H1(A,D);

in particular this image is a closed subgroup of H1(A,D).

Lemma 4 Suppose that the restriction map

H1
(
F,X∗(D)

)
→ H1

(
Fv,X

∗(D)
)

is surjective. Then there exists a finite set S ′ of places of F, containing S, such that for any
element d ∈ H1(F,D) whose image in H1(Fw,D) is trivial for all w ∈ S ′−{v} and belongs to
H1(ow,D) for all w /∈ S ′, the image of d in H1(Fv,D) is trivial.

Proof Consider the commutative diagram

H1(A,D)/ im H1(F,D) −−−−→ H1
(
F,X∗(D)

)D

α

� γ

�
H1(Fv,D)

β
−−−−→ H1

(
Fv,X∗(D)

)D

where ( )D denotes Pontryagin dual. The map β is an isomorphism, and the map γ is
injective by our hypothesis on the dual map. Therefore α is injective, which means that

H1(Fv,D) ∩ im H1(F,D) = {1}.

Since H1(Fv,D) is finite and im H1(F,D) is closed in H1(A,D) we can find an open sub-
group U of H1(A,D) such that if x ∈ H1(Fv,D), x �= 1, then

xU ∩ im H1(F,D) = ∅.

By shrinking U we may assume that it is of the form∏
w /∈S ′

H1(ow,D)

for some finite set S ′ of places of F, containing S. This proves the lemma.
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5 Stable Conjugacy in an Unramified Situation (Crude Version)

Let G be a (possibly disconnected) reductive group over a number field F, and let γ be a
semisimple element of G(F). Let X denote the conjugacy class of γ under G◦, let i denote
the inclusion of X in G, and let f denote the morphism g �→ gγg−1 from G◦ to X. Then f
is smooth and surjective, and i is a closed immersion, since γ is semisimple. There exists
a positive integer N such that G, G◦, X, γ, i, f come from objects over oF[ 1

N ]. Replacing
N by a suitable positive multiple we may assume that f is smooth and surjective and i is a
closed immersion, over oF[ 1

N ] (see EGA IV (8.10.5) and (17.7.8)).

Lemma 5 For every finite place v of F not dividing N and for every δ ∈ G(ov) such that δ is
conjugate under G◦(Fv) to γ there exists y ∈ G◦(oun

v ) such that yγy−1 = δ.

Proof By hypothesis δ belongs to G(ov)∩X(Fv), which is equal to X(ov), since i is a closed
immersion. The fiber of f : G◦ → X over δ ∈ X(ov) is a smooth scheme Y of finite type
over ov, and the structural morphism Y → Spec(ov) is surjective. Therefore Y has a point
in some finite extension of the residue field of ov, and hence by smoothness has a point
in the valuation ring of some finite unramified extension of Fv; this shows that Y (oun

v ) is
non-empty, which just means that there exists y ∈ G◦(oun

v ) such that yγy−1 = δ.

6 Arthur’s Distributions Are Supported on Characters

In this section we adhere strictly to the notation and conventions in Arthur’s papers
[Art88a], [Art88b]. Let F1 be a local field of characteristic 0, and let G1 be a connected
component of a reductive group over F1. We assume that G1(F1) is non-empty, and we
write G+

1 for the group generated by G1, and G◦1 for the identity component of G+
1 . Our

goal is to prove

Theorem 1 For any Levi subset M1 of G1 over F1 and any γ1 ∈ M1(F1) the distribution
IM1 (γ1) is supported on characters.

Proof If G1 = G◦1 or G1 is an inner twist of a component

G∗ =
(
GL(n)× · · · × GL(n)

)
� θ∗,

this theorem is Theorem 5.1 of [Art88b], and our goal here is simply to check that Arthur’s
proof of his Theorem 5.1 can be made to work in the general case. In fact most of Arthur’s
proof is perfectly general; it is just the parts involving Galois cohomology that need to be
extended.

Our proof cannot be read independently of Arthur’s papers since it is part of the long
inductive argument that occurs throughout [Art88a], [Art88b]. For this reason we have
kept our proof as close as possible to that of Arthur’s Theorem 5.1. In fact we have simply
copied or summarized Arthur’s arguments whenever possible. We should also recall that
we are operating under the assumption that the trace Paley-Wiener theorem is valid; this
has yet to be verified in the archimedean case (for disconnected groups).
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Now we begin the proof of Theorem 1. Fix a positive integer N1, and assume that the
theorem is valid for any F1, G1 with dimF1 G1 < N1. Having made this induction assump-
tion, we fix G1 and F1 such that dimF1 G1 = N1. If L1 ∈ L0(M1), the distributions IL1

M1
(γ1)

are by hypothesis supported on characters. This matches the induction assumption of Sec-
tion 2 of [Art88a] which must be satisfied in order to define IM1 (γ1).

Let f1 be a fixed function in H
(

G1(F1)
)

such that f1,G1 = 0. We must show that the
distributions all vanish on f1. It is convenient to fix M1 and make a second induction
assumption that

IL1 (δ1, f1) = 0 δ1 ∈ L1(F1)

for any L1 ∈ L(M1) with L1 �= M1. We must show that

IM1 (γ1, f1) = 0(6.1)

for all γ1 ∈ M1(F1). At this point Arthur uses the two induction hypotheses and some
results from [Art88a, (2.2), (2.3) and Corollary 8.3] to show that it is enough to verify (6.1)
for all γ1 ∈ U , where U is the set of G1-regular semisimple elements of M1(F1) that are
elliptic in M1(F1). In fact by continuity it is enough to verify (6.1) for any dense subset of
U , and this is what we will do, using a global argument introduced by Kazhdan [Kaz86].

There is no harm in inflating G1; thus by Lemma 3 we can find a number field F, a
reductive group G+ over F, a component G of G+ such that G(F) �= ∅, a place v of F and
an isomorphism

(Fv,G
+
v ,Gv)

∼
→ (F1,G

+
1 ,G1).

Choose a maximal F1-split torus A1 of M◦1 and choose a maximal F1-torus T1 of M◦1 con-
taining A1. Changing the isomorphism G+

v
∼
→ G+

1 by an inner automorphism obtained
from an element of G◦1 (F1), we may assume that there exists a maximal F-torus T of G◦

such that G◦v
∼
→ G◦1 carries Tv into T1. Let K be a finite Galois extension of F that splits

T. Replacing F by the decomposition field of some place of K lying over v, we may assume
that Kv is a field. Replacing F by a finite extension F ′ in which v splits completely (and
replacing K by K ⊗F F ′, which is necessarily a field), we may assume that there is another
place v ′ of F besides v such that Kv ′ is a field. Let A be the maximal F-split torus in T.
We have arranged that A is a maximal F-split torus of G◦ and that Av is a maximal Fv-split
torus of G◦v ; therefore the standard (for A) Levi subsets of G correspond bijectively with the
standard Levi subsets of Gv. We now replace (F1,G+

1 ,G1) by (Fv,G+
v ,Gv). Note that M1 is

of the form Mv for a standard Levi subset M of G. Moreover M(F) is dense in M(Fv) by
Lemma 1, since K splits M◦ and Kv ′ is a field.

Therefore it is enough to prove that IMv (γ, f1) = 0 for all G-regular semisimple γ ∈
M(F) such that γ is elliptic in M(Fv). Fix such an element γ and let D denote its centralizer
in G◦. It is enough to consider γ which are G-regular in the strongest sense; for these γ
the group D is a diagonalizable group over F (but not necessarily a torus). All we have left
is to show that IMv (γ, f1) = 0 for our fixed γ, and in doing so we are free to replace (F, v)
by (F ′, v ′), where F ′ is a finite extension of F and v ′ is a place of F ′ lying over v such that
Fv
∼
→ F ′v ′ .
By making such a replacement we may assume that

H1
(
F,X∗(D)

)
→ H1

(
Fv,X

∗(D)
)
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is surjective. Indeed, since H1
(
Fv,X∗(D)

)
is finite, there exists a finite Galois extension L

of F and a place v ′ of L lying over v such that

H1
(
Lv ′/Fv,X

∗(D)
)
→ H1

(
Fv,X

∗(D)
)

is surjective. Replacing F by the decomposition field of v ′ does the job.
Let S be a finite set of places of F including all the infinite places and all the places where

the Gal(F/F)-module X∗(D) is ramified. It is convenient to assume that S contains v and
that S − {v} contains at least one finite place. By Lemma 4 we can enlarge S so that the
following statement becomes true: if d ∈ H1(F,D) is an element whose image in H1(Fw,D)
is trivial for all w ∈ S− {v} and belongs to H1(ow,D) for all w /∈ S, then the image of d in
H1(Fv,D) is trivial.

Next we apply the considerations of Section 5 to γ. Lemma 5 tells us that there exists a
positive integer N and oF[ 1

N ] structures on G and G◦ such that for every place v of F not
dividing N and for every δ ∈ G(ov) such that δ is conjugate under G◦(Fv) to γ, there exists
y ∈ G◦(oun

v ) such that yγy−1 = δ. Then by enlarging S so as to include all places dividing
N we can make the following statement hold: if δ ∈ G(F) is conjugate under G◦(Fw) to an
element of G(ow) for all w /∈ S and is conjugate under G◦(Fw) to γ for all w ∈ S − {v},
then δ is conjugate under G◦(Fv) to γ. To prove this one considers the element of H1(F,D)
corresponding to δ.

Now we apply the trace formula to certain functions f ∈ H
(

G(A)
)

, all of the form∏
w fw with fw ∈ H

(
G(Fw)

)
. We take fv to be our fixed function f1. For w /∈ S we take

fw to be the characteristic function of G(ow). At each finite place w ∈ S − {v} we fix a
compact neighborhood Cw of γ in the subset of regular semisimple elements in G(Fw), and
we take fw to be the characteristic function of some compact open neighborhood Uw of γ
with Uw ⊂ Cw. At each infinite place w ∈ S − {v} we fix a compact neighborhood Cw

of γ in G(Fw) such that KwCwKw = Cw, and we take fw to be any left and right Kw-finite
C∞-function on G(Fw) that is supported in Cw.

At this point Arthur uses the hypothesis f1,Gv = 0 to show that the trace formula for any
f as above reduces to the equality

∑
L∈L

|W L
0 | |W

G
0 |
−1

∑
δ∈(L(F))L,S ′

aL(S ′, δ)IL(δ, f ) = 0(6.2)

for some finite set of places S ′ containing S. It is part of Thm. 3.3 of [Art88b] that the set
S ′ may be chosen to be independent of f and that the sums over δ can be taken over finite
sets, independent of f . Suppose that L ∈ L and δ ∈ L(F). Then Arthur uses the splitting
formula (see [Art88a, Corollary 9.2]) and the hypothesis that f1,Gv = 0 to show that

IL(δ, f ) = IL(δ, fv)
∏
w �=v

IG(δ, fw).

Looking at any finite place w ∈ S − {v}, we see that IL(δ, f ) is 0 unless δ is G-regular
semisimple, in which case

aL(S ′, δ) = |Lδ(F) \ L(F, δ)|−1 vol
(
Lδ(F) \ Lδ(A)1

)
,
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a positive number independent of S ′. We conclude that there is a finite set S of pairs (L, δ),
containing the pair (M, γ), as well as positive numbers c(L, δ), such that

∑
(L,δ)∈S

c(L, δ)IL(δ, fv)
∏
w �=v

IG(δ, fw) = 0(6.3)

for all f as above. We may assume that δ is G-regular semisimple for all (L, δ) ∈ S. Let T
denote the set of infinite places of F, other than v if v happens to be infinite, and let

G(FT) =
∏
w∈T

G(Fw), CT =
∏
w∈T

Cw, KT =
∏
w∈T

Kw, fT =
∏
w∈T

fw.

In deriving the equality (6.3) we were obliged to use left and right KT-finite C∞-functions
on G(FT ), supported on CT . Such functions are dense in the space of C∞-functions on
G(FT), supported on CT , where we use the supremum norm on this space of functions. But
the orbital integrals IG(δ, fT) are defined on this bigger function space and are continuous
for the supremum norm topology (here we use that semisimple conjugacy classes are closed
to see that the orbital integrals can be taken over a compact set depending only on CT).
Therefore (6.3) remains valid if we drop the requirement that fT be left and right KT-finite.
This allows us to assume that for each w ∈ T the function fw has non-negative values, is
non-zero at γ, and is supported on an arbitrarily small neighborhood of γ.

By shrinking the support of all the functions fw for w ∈ S− {v} we may assume that S

contains only pairs (L, δ) for which δ is conjugate under G◦(Fw) to γ for all w ∈ S − {v}.
By our choice of fw for w /∈ S we may assume that S contains only pairs (L, δ) such that
δ is conjugate under G◦(Fw) to an element of G(ow) for all w /∈ S. By our choice of S we
conclude that S contains only pairs (L, δ) for which δ is conjugate under G◦(Fv) to γ.

Now consider the contribution of (L, δ) to (6.3). Since δ is conjugate under G◦(Fv) to γ,
and γ is elliptic G-regular in M(Fv), the Levi subset L must contain some conjugate of M.
Therefore by [Art88a, (2.4)∗], and our second induction assumption, IL(δ, fv) = 0 unless
L is conjugate to M. Using [Art88a, (2.4)∗], again, plus the fact that δ and γ are conjugate
under G◦(Fv), we see that if L is conjugate to M, then

IL(δ, fv) = IM(γ, fv).

Therefore every non-zero term in (6.3) is a non-negative multiple of IM(γ, fv). Of course at
least one term is actually a positive multiple, namely the one indexed by (M, γ). Therefore
IM(γ, fv) = 0.
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