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Introduction

In this paper, we will give a conjectural formula (Conjecture 3.1) for the special values

ζ∗(X,r) of the scheme zeta-function of a regular scheme X projective and flat of dimension

d (so relative dimension d−1) over Spec Z at a rational integer r in terms of singular, de
Rham and Weil-étale motivic cohomology, valid up to sign and powers of 2. (Let G be

any meromorphic function on C, let r be a rational integer and let ar be the order of the

zero of G(s) at s= r. Let G∗(r) be the limit as s approaches r of G(s)(s− r)−ar . If G is
a zeta-function, G∗(r) is referred to as a special value of G.)

We can factor the map from X to Spec Z uniquely through Spec OK , where K is a

number field and the generic fiber of X over Spec OK is a smooth connected algebraic

variety over K. We will construct complexes made up of variants of these cohomology
groups, and the conjectured formula will give the special value as a product of Euler

characteristics of these complexes, equipped with suitable integral structures. We will

prove that, if d ≤ 2, this conjecture is compatible with Serre’s conjectured functional
equation [19] for the zeta-function, and if d > 2, this compatibility is true modulo two

previously existing conjectures which are true in dimension ≤ 2.

We will discuss how this relates to previous work on this subject. In order to make
everything precise, we need to recall the definitions of the scheme zeta-function and what

we will call here the Hasse–Weil zeta-function. If X is a scheme of finite type over Spec Z,

the scheme zeta-function is defined to be ζ(X,s) =
∏
(1−N(x))−s)−1, where the product

is taken over all closed points x of X and N(x) is the number of elements in the residue
field κ(x). Recall that x is closed if and only if κ(x) is finite. This product converges for

Re(s)> d, where d is the Krull dimension of X. It is a well-known conjecture that ζ(X,s)
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496 S. Lichtenbaum

extends to a meromorphic function on the entire plane. If Y is an integral scheme of
dimension d−1 which is projective and smooth over Spec K, where K is a number field,

and m is an integer between 0 and 2d− 2, Serre in [19] defined an L-function Lm(Y ,s).

Serre also conjectured the exact form of a functional equation involving this L-function.
We define the Hasse–Weil zeta-function of X to be

∏2d−2
m=0 Lm(X0,s)

(−1)m , where X0 is

the generic fiber of X. It is also conjectured that the L-functions can be continued to

meromorphic functions. If X is smooth over Spec OK , then the Hasse–Weil zeta-function

of X is equal to the scheme zeta-function of X.
Beilinson, building on a previous conjecture of Deligne, gave a special values conjecture

[24] for r ≤ 0 up to a rational number. More specifically, Beilinson gave a conjectured

formula for the special value L∗
m(X,r) up to a rational number. Bloch and Kato [23] gave a

formula up to sign for this special value when the weightm−2r≤−3. Fontaine and Perrin-

Riou [8] gave a conjectured formula for all integers r. All of these conjectures actually

involve the L-function Lm(X,s) and so by taking products give rise to a conjecture
involving the Hasse–Weil zeta-function of X.

Fontaine and Perrin-Riou first introduced various (conjecturally) finite-dimensional

vector spaces and made a conjecture giving the special value of the L-functions up

to a rational number in terms of determinants of maps between these vector spaces
tensored with R. They then used spaces taken from p-adic Hodge theory to refine

these conjectures to be valid up to sign. Taking the alternating product, we get a

conjecture about the special values of the Hasse–Weil zeta-function of X, which we will call
Conjecture FPR.

A crude description of our Conjecture 3.1 would be to say that it refines Conjecture

FPR by using canonical integral models for the vector spaces used in that conjecture,
avoiding the necessity for p-adic Hodge theory. In fact, the difference between the scheme

zeta-function and the Hasse–Weil zeta-function forces minor changes in the vector spaces

to be considered.

The original version of Conjecture 3.1 was announced in 2017 [17]. This was preceded in
2016 by a special-values conjecture by Flach and Morin [5] for the scheme zeta-function,

which we will refer to as conjecture FM1. Conjecture FM1 does make use of p-adic Hodge

theory and is more closely related to Conjecture FPR than is to our Conjecture 3.1. In
fact, Conjecture FM1 was shown by Flach and Morin to be equivalent to Conjecture FPR

if X is smooth over Spec Z.

In 2019, Flach and Morin made a new conjecture (referred to here as Conjecture FM2)
[6], which avoids p-adic Hodge theory and so is more closely modeled on Conjecture 3.1

and less related to Conjecture FPR. In Appendix B, we discuss the relation between

Conjecture 3.1 and Conjecture FM2. In this paper, we show that Conjecture 3.1 is

compatible with a form of the functional equation for the scheme zeta-function. Flach
and Morin [6] also showed this for Conjecture FM2. This has not been shown for either

Conjecture FM1 or Conjecture FPR.

Conjecture 3.1 is a bit more ad hoc than Conjecture FM2 but has the advantage that it
involves much less elaborate machinery. Of course, as previously mentioned, Conjecture

FM2 is more precise since it includes powers of 2, but we hope that it is possible to

remedy this by modifying Conjecture 3.1 using the Artin–Verdier topology.
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In this paper, as in the papers [5, 6] of Flach and Morin, we only consider the

zeta-function and not the associated L-functions. We believe that the L-function

conjectures are probably not completely correct, basically because of torsion phenomena
in cohomology, which necessitate correction terms in analogous formulas for special values

of zeta-functions of varieties over finite fields. We note that the wonderful formula

[12] of Bloch, Kato and T. Saito, which plays an extremely important role in the
proof of compatibility, is only valid for Euler characteristics and not for individual

cohomology groups, which forces the restriction to zeta-functions. We also remark again

that throughout this paper we work with the scheme zeta-function of X.
Recently, Niranjan Ramachandran and I [14] have shown that, if X is an arithmetic

surface and r= 1, Conjecture 3.1 is equivalent to the conjecture of Birch and Swinnerton-

Dyer for the Jacobian of X. A similar result was proved by Flach and Siebert [7] for

Conjecture FM2.
There are two basic approaches to zeta-function conjectures: One (the Tamagawa

approach) involves writing the formula as a product of local formulas (one for each

prime p) and then using the product formula to show that, although the individual
factors may depend on choices (possibly of a differential), the product does not. This

approach is used by Tate in his Bourbaki talk [22] on the conjecture of Birch and

Swinnerton-Dyer for abelian varieties, by Fontaine and Perrin-Riou [8] and by Flach and
Morin. [5].

The other involves just working with the infinite primes and, for example, choosing a

particularly good differential. This approach was used by the author in his conjectures

on the Dedekind zeta-function [16], by Silverman in stating the conjecture of Birch and
Swinnerton-Dyer for elliptic curves in his book [21, 20] on elliptic curves and is used in

this paper and in [6]. The basic idea of this paper is that, by making the infinite prime

part of the formula of Fontaine and Perrin -Riou more precise, we can dispense with the
detailed local p-adic analysis.

We should make it clear that, even to state our conjecture, we have to assume the

validity of other previous conjectures.
First, we need the conjecture, which is very far from being proved, that the zeta-

function of X, which converges for Re(s) > d, can be meromorphically continued to the

entire plane, so we can talk about ζ∗(X,r) for r < d.

Second, we assume that the ètale motivic cohomology groups that we will define are
finitely generated.

Third, we assume that the Beilinson regulator maps and various Arakelov intersection

pairings induce isomorphisms on the complex vector spaces.
For the proof of compatibility, we need the theorem that the groups H2r+1

et (X,Z(r))

and H
2(d−r)+1
et (X,Z(d−r)) are finite and Pontriagin dual to each other. This was proved

by Flach and Morin [5] if d≤ 2 and under some restrictions in the general case.
We also need, for the full Bloch–Kato–Saito theorem, resolution of singularities for

arithmetic schemes.

The product defining ζ(X,s) is well known to converge for Re(s)> d and is conjectured
to have a meromorphic continuation to the entire plane. We will tacitly assume this

conjecture in what follows. It is further conjectured [19, 2] that there exists a Γ-factor
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Γ(X,s) and a positive rational number A, the conductor, such that if we let φ(X,s) =

As/2ζ(X,s)Γ(X,s), then φ(X,s) satisfies the functional equation φ(X,s) =±φ(X,d−s).

Now, let X be regular, and projective and flat over Spec Z. The basic idea behind
our conjectured formula is to start with Fontaine’s ‘Deligne–Beilinson’ conjectures [8],

which give the special values up to a rational number in terms of determinants of maps of

complex vector spaces with given rational structures. These complex vector spaces come
from singular and de Rham cohomology, and from Weil-étale motivic cohomology, and

have to be slightly modified to reflect the difference between the scheme zeta-function and

the Hasse–Weil zeta-function. We replace the rational structures by integral structures
and take determinants with respect to these. The singular cohomology of course has a

natural integral structure, and the Weil-étale groups conjecturally do also. We define an

integral structure on the de Rham groups by using derived exterior powers. We should

note that these derived exterior powers have an important role to play even in the number
ring case (d= 1).

We also introduce the orders of naturally occurring finite cohomology groups into the

picture. Finally, we replace the period maps in Fontaine’s picture by ‘modified’ period
maps, where we divide by special values of the gamma function.

Our conjectural formula expresses the special values of the zeta-function in terms of the

product of Euler characteristics of exact sequences of complex vector spaces with integral
structures. The complex vector spaces will be derived from singular cohomology, de Rham

cohomology and Weil-ètale motivic cohomology. For the exact formula, see Section §3.
The maps between them arise from Beilinson’s conjectures, Arakelov height pairings and

periods.
As we move along, we will explain how our definitions of groups and maps relate to

those of Fontaine and Perrin-Riou [9].

1. Integral structures and Euler characteristics

Let V0,V1, · · · ,Vn be finite-dimensional complex vector spaces, and

V∗ = 0→ V0 → V1 → ·· · → Vn → 0

be an exact sequence.

Let Bi be a lattice spanned by a basis for the vector space Vi. Let ΛV denote the highest

exterior power of V and ΛB denote the highest exterior power of B. The alternating tensor
product of the ΛV ′

i s is canonically isomorphic to C, and the alternating tensor product

of the ΛB′
is is isomorphic to Z. The natural inclusions of Bi in Vi induce a map from Z

to C and the determinant det(V∗,B∗) in C∗/±1 of the pair (V∗,B∗) is defined to be the
image of a generator of Z in C.

Definition 1.1. Let V∗ be a sequence of finite-dimensional complex vector spaces. An
integral structure on V∗ is a sequence of pairs (A∗,a∗), where A∗ is a lattice in V∗ and a∗
is a positive rational number.

An example of an integral structure on a finite-dimensional complex vector space V

comes from a finitely generated abelian group M with a homomorphism from M to V
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whose image is a lattice M0 in V and whose kernel is the torsion subgroup Mtor of M.
The integral structure is then (M0,|Mtor|).

Definition 1.2. An integral structure (A∗,a∗) is torsion-free if each aj is equal to 1.

Definition 1.3. Let (A∗,a∗) be an integral structure on the finite exact complex V∗.

We define the Euler characteristic of (A∗,a∗) to be det (V∗,A∗)
∏

a
(−1)j+1

j .

Definition 1.4. Let (A∗,a∗) be an integral structure on the exact complex V∗, (B∗,b∗)
be an integral structure on the exact complex W∗ and φ∗ be a map of complexes from V∗
to W∗ such that φj is an isomorphism for all j. Let detj be the determinant of φj with

respect to the lattices Aj and Bj , and let

χ(φj) =
bj detj

aj
.

Define the Euler characteristic

χ(φ) :=
n∏

j=0

(χ(φj))
(−1)j+1

.

Proposition 1.5. The Euler characteristic of the dual of a torsion-free integral structure

is equal to either to the Euler characteristic of the original integral structure or to its

inverse, depending on whether n is odd or even.

Proof. Straightforward.

2. The groups and maps involved in the conjecture

2.1. Weil-étale motivic cohomology

As before, let X be a regular scheme, projective and flat over Spec Z. Let X0 be the fiber

of X over Spec Q, and let K be the algebraic closure of Q in the function field of X. Let

OK be the ring of integers in K. We may regard X as a scheme projective and flat over
Spec OK .

We will first define Weil-étale motivic cohomology groups and then discuss their relation

to the groups defined by Fontaine and Perrin-Riou [8, 4].

Let r be an integer and j a nonnegative integer. We would like to define a Weil-étale
site and complexes of sheaves Z(r) on this site whose cohomology groups Hj

W (X,Z(r))

would beWeil-étale motivic cohomology, but unfortunately we do not know how to do this.

Instead, for j≤ 2r we defineHj
W (X,Z(r)) to be the hypercohomology groupsHj

et(X,Z(r)),
where Z(r) denotes Bloch’s higher Chow group complex sheafified for the étale topology [1,

13]. Sometimes, these groups are referred to as étale motivic cohomology. For j ≥ 2r+1,

we define Hj
W (X,Z(r)) to be hj(RHom(RΓet(X,Z(d− r)),Z[−2d− 1]), so we have the

exact sequence

0→ Ext1(H2d+2−j
et (X,Z(d− r)),Z)→

Hj
W (X,Z(r))→Hom(H2d+1−j

et (X.Z(d− r)),Z)→ 0.
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If we had our hypothetical Weil-étale site, with a global sections functor denoted by
ΓW , this would follow, up to 2-torsion, from a duality theorem which asserted that

RΓW (X,Z(d− r)) was isomorphic to RHom(RΓW (X,Z(r)),Z[−2d− 1]). The analogue

of this theorem, assuming the usual conjectures, is true for Weil-étale cohomology in
the geometric case, as shown in [10]. We note here that in [5], Flach and Morin have

constructed such a complex of abelian groups, which satisfies this duality theorem

assuming that standard finiteness conjectures hold.

The group H2r
W (X,Z(r)) is by definition H2r

et (X,Z(r)), and by standard arguments this
agrees with the group H2r

Zar(X,Z(r)) of codimension r cycles on X modulo rational

equivalence after tensoring with Q. Hence, there is a cycle map φ from H2r
W (X,Z(r))

to singular cohomology with rational coefficients. Let H2r
W (X,Z(r))1 denote Ker φ (cycles

homologous to zero) and H2r
W (X,Z(r))2 denote Image φ (cycles modulo homological

equivalence.).

We have the exact sequence

0→H
2(d−r)
W (X,Z(d− r))1 →H

2(d−r)
W (X,Z(d− r))→H

2(d−r)
W (X,Z(d− r))2 → 0.

Conjecture 2.1. The groups Hj
et(X,Z(r)) are finitely generated for j ≤ 2r+1, and finite

for j = 2r+1.

This implies

Conjecture 2.2. The cohomology groups Hj
W (X,Z(r)) are finitely generated for all j.

Assuming the validity of Conjecture 2.2, we give the complex vector space

Hj
W (X,Z(r))C the standard integral structure Hj

W (X,Z(r)). We also need the following.

Conjecture 2.3. The finite groups H2r+1
et (X,Z(r)) and H

2(d−r)+1
et (X,Z(d− r)) are

Pontriagin duals.

Flach and Morin showed in [5, Proposition 3.4] that this follows from Conjecture 2.2
for d≤ 2 and, under some restrictions, in the general case.

2.2. Singular and de Rham cohomology

We also will have need of singular cohomology groups. Let XC = X ×Z C. Complex

conjugation c acts on Hj
B(XC,Z) via the natural action of conjugation on C. If r is even

(resp. odd), let H̃j
B(X,C(r))+ and H̃j

B(X,Z(r))+ be the set of elements y in Hj
B(XC,C)

and Hj
B(XC,Z) such that c(y) = y (resp. c(y) = −y). We define Hj

B(X,C(r)) (resp.

Hj
B(X,C(r))+) to be Hj

B(XC,C) (resp. H̃
j
B(XC,C)

+), and its standard integral structure
is given by mapping Hj

B(XC,Z) (resp. H̃
j
B(XC,Z)

+) to Hj
B(XC,C) (resp H̃j

B(XC,C)
+) via

the natural map followed by multiplication by (2πi)r.

If r is even (resp. odd), let H̃j
B(X,C(r))− and H̃j

B(X,Z(r))− be the set of elements y in
Hj

B(XC,C) and Hj
B(XC,Z) such that c(y) =−y (resp. c(y) = y). We define Hj

B(X,C(r))−

to be H̃j
B(XC,C)

−, and its standard integral structure is given by mapping H̃j
B(XC,Z)

−

to H̃j
B(XC,C)

− via the natural map followed by multiplication by (2πi)r.
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We will also need the following Euler characteristics:

χ(XC) =
∑

j

(−1)jdim Hj
B(XC), χ+(XC) =

∑

j

(−1)jdim Hj,+
B (XC,C(0)),

χ−(XC) =
∑

j

(−1)jdim Hj,−
B (XC,C(0)).

Let χ+(XC,Z(r)) = χ+(XC) if r is even and χ−(XC) if r is odd.
Let χ−(XC,Z(r)) = χ−(XC) if r is even and χ+(XC) if r is odd.

Let Ω = ΩXC/C. The de Rham cohomology group Hj
DR(XC,C) has the Hodge decom-

position
∏

i+k=j

Hi(XC,Λ
kΩ)

which gives rise to the Hodge filtration Gm =
∏

k≥mHj−k(X,ΛkΩ).

Then, Hj
DR(XC,C(r)) is defined to be Hj

DR(XC,C) but with the Hodge filtration F

given by Fm =Gm+r. If M is Hj(XC,Z(r)), we define tM = tj,r to be

Hj
DR(XC,C(r))/F0 :=

∏

k<r

Hj−k(XC,Λ
kΩ) =

∏

σ

∏

k<r

Hj−k(Xσ,Λ
kΩ).

Here, σ runs through all embeddings of the number field K into C. and Xσ =X×OK
C

where the map from OK to C is induced by σ. The standard integral structure on tM is

given by
∏

σ

∏

k<r

Hj−k(X,λkΩX/OK
),

where λk denotes the kth derived exterior power. (See Appendix A for a discussion of
derived exterior powers).

2.3. Maps between cohomology groups

Let M = Mj,r be the motive hj(XC,Q(r)). Let M∗ = H2d−2−j
B (XC,Z(d− 1− r)), and

N =M∗(1) =H2d−2−j
B (XC,Z(d− r)). The classical period map βj,0 maps HB(Mj,0)C =

Hj
B(XC,C) to HDR(Mj,o)C =Hj

DR(XC,C). Let πj,r be the projection of HDR(M)C onto
(tM )C, and let αj,r = πj,r ◦ (2πi)rβj,0) from HB(M)+C =Hj

B(X,Z(r))+C to (tM )C. We now

define a new map γM (which we call the enhanced period map) as follows: HDR(M)

has a decreasing Hodge filtration Fq′(M). Let Hq′ = Fq′/Fq′+1. Let hq′ be the dimension
of Hq′ . Then HDR(M) has the direct sum Hodge decomposition

∐
Hq′ . We decompose

αM = αj,r into the direct sum of the maps αq′(M), where αq′ is the map αM followed

by the projection onto Hq′ . Let Γ be the usual gamma-function. Recall that the weight
w(M) of M is equal to j−2r, Now, let γq′(M) be Γ∗(−w(M)+q′))αq′(M) and let γj,r be

the isomorphism γ̃M =
∐

q′ γ
q′(M). Since hq′ = h(p,q), where p+q = j and q′ = q−r, the

determinant of γj,r is equal to the determinant of αj,r multiplied by
∏

q′ Γ
∗(−w(M)+

q′)hq′ which is equal to
∏

pΓ
∗(r−p)h(p,q), where p+ q = j and the product is over all p

between 0 and j.
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Consider the following diagram of exact sequences:

0 −−−−→ (HB(M)+)C
i−−−−→ (HB(M))C

p−−−−→ (HB(M)−)C −−−−→ 0

γ̃M

⏐⏐�

0 −−−−→ (F0(M))C
j−−−−→ (HDR(M))C

q−−−−→ (tM )C −−−−→ 0

Let γM = q ◦ γ̃M ◦ i. Let βM = p◦ γ̃−1
M ◦ j. Diagram-chasing immediately shows that γ̃M

induces isomorphisms from Ker γM to Ker βM and from Coker γM to Coker βM .

Proposition 2.4. The exact sequence of complex vector spaces

0→Ker γM → (HB(M)+)C → (tM )C → Coker γM → 0 (2.4.1(M ))

is dual to the exact sequence

0→Ker βN → (F0(N))C → (H−
B (N))C → Coker βN → 0. (2.4.2(N ))

Proof. F0(N)C is the Serre dual of (tM )C. HB(N)− may be identified with HB(M
∗)+,

which is the Poincarè dual of HB(M)+. H2d−2
B (X,C(d−1)) may be canonically identified

with H2d−2
DR (X,C). Poincarè duality is compatible with Serre duality, which implies the

proposition.

We from now on choose an arbitrary basis for Ker γM , the basis for Ker βM induced

by the isomorphism between Ker γM and Ker βM , the basis for Coker γN induced by the

above duality and the basis for Coker βN induced by the isomorphism between Coker γN
and Coker βN We will use these integral structures on the various kernels and cokernels,

If A is a finitely generated abelian group, let Ator denote the torsion subgroup of A

and Atf denote A/Ator.
If φ : A → B is a homomorphism of finitely generated abelian groups, let φtf be the

induced homomorphism from Atf to Btf and let φtor be the induced homomorphism from

Ator to Btor.

Lemma 2.5. Let 0 → A
f→ B

g→ C → 0 be an exact sequence of finitely generated

abelian groups. There is a natural isomorphism from Ker gtf/Imftf to Coker gtor,
and the determinant of 0 → Atf → Btf → Ctf → 0 is equal to the Euler characteristic

|Btor|/|Ator||Ctor| of 0→Ator →Btor → Ctor → 0.

Proof. Exercise

Proposition 2.6. χ(2.4.2(M)) = χ( ˜γM )χ(2.4.1(M))

Proof. Let Λ denote highest exterior power. Let A∗
1 =HB(M)+, let A∗

2 =HB(M), and

let A∗
3 =HB(M)−. Let Aj be a generator of Λ((A∗

j )tf ). Let B
∗
1 = F0(M), B∗

2 =HDR(M),

and B∗
3 = tM . Let Bj be a generator of Λ((B∗

j )tf ).
Let A = A2/A1A3 and B = B2/B1B3. Let aj = |(A∗

j )tor| and bj = |(B∗
j )tor|. Let

χ(Ator) = a1a3/a2 and χ(Btor) = b1b3/b2. χtor(2.4.1(M)) = b3/a1, and χtor(2.4.2(M)) =

a3/b1.
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We have χtor(2.4.1(M))/χtor(2.4.2(M)) = b1b3/a1a3, and

χ(2.4.1(M))

χ(2.4.2(M))
=

det(2.4.1(M))

det(2.4.2(M))

χtor(2.4.2(M))

χtor(2.4.1(M))

=
B1B3a1a3
A1A3b1b3

=
B2 det(B)

A2 det(A)

χ(Ator)a2
χ(Btor)b2

.

Lemma 2.5 implies that this equals B2a2/b2A2, which is χ(γ̄M )−1.

Beilinson defines Chern class maps from the algebraic K-theory groups to Deligne

cohomology. Let γj,r = γM , where M = hj(XC,Q(r)). In our language, Beilinson’s map
becomes a map cj,r (for j ≤ 2r− 2) from Hj+1

W (X,Z(r))C to Coker γj,r. Let N be the

motive M∗(1) = h2d−2−j(XC,Q(d− r)). Since Ker γN may be identified with the dual of

Coker γ2d−2−j,d−r, we also have the dual bj,r (for j ≥ 2d−2r) of Beilinson’s Chern class

map which maps Ker γ2d−2−j,d−r to H2d−j
W (X,Z(d− r))C. We have:

Conjecture 2.7 (Beilinson). If j ≤ 2r−3 the maps cj,r and bj,r are isomorphisms.

Recall that by definition H2r+1
W (X,Z(r))C is dual to H

2(d−r)
et (X,Z(d−r))C which is the

same as H
2(d−r)
Zar (X,Z(d− r))C, that is, codimension (d-r) cycles on X modulo rational

equivalence. Recall that H
2(d−r)
et (X,Z(d− r))1 denote cycles homologically equivalent

to zero, and H
2(d−r)
et (X,Z(d− r))2 denote cycles modulo homological equivalence. Let

H2r+1
W (X,Z(r))1C be the dual of H2d−r

et (X,Z(d−r))1C and H2r+1
W (X,Z(r))2C be the dual of

H2d−r
et (X,Z(d− r))2C.

Conjecture 2.8 (Beilinson). There is an exact sequence

0→H2r−1
W (X,Z(r))C

c2r−2,r→ Coker(γM )→H2r+1
W (X,Z(r))2C → 0

with M =H2r−2(X,Z(r)).

This is a slightly different but more natural variant of Beilinson’s original conjecture,

and it is implicitly used by Fontaine [8].

Conjecture 2.9. There is an exact sequence

0→H2r
W (X,Z(r))2C →Ker(γN )→H2r+2

W (X,Z(r))C → 0.

This is the dual of Conjecture 2.8, with M replaced by

N =M∗(1) =H2d−2r(X,Z(d− r)).

Conjecture 2.10 (Beilinson). The Arakelov intersection pairing induces an isomorphism

from (H2r+1
W (X,Z(r))1)C to (H2r

W (X,Z(r))1)C.

This is the nondegeneracy of the Arakelov intersection pairing restricted to finite cycles

homologous to zero, where it is independent of metrics.
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3. The statement of the conjecture

We would like to first explain the relationship between Weil-étale motivic cohomology
groups and the groups which occur in Fontaine’s Deligne–Beilinson conjecture [8, 9]. We

look at the motive M = hj(XC,Q(r)), Recall that N =M∗(1) is h2d−2−j(XC,Q(d− r)).

Fontaine starts with a projective nonsingular algebraic variety X0 over Spec Q. He
chooses a regular model X for X0 projective and flat over Spec Z. He conjectures that

the following six-term sequence is always exact:

0→H0
f (M)C →Ker(γM )→H1

c (M)C →H1
f (M)C → Coker(γM )→H2

c (M)C → 0.

If j ≤ 2r−2, Fontaine’s H1
f (M) is our Hj+1

W (X,Z(r))Q; we are using motivic cohomology

instead of algebraic K-theory, but these two groups agree after tensoring with Q.

(Actually, Fontaine’s group is the image of K(X) in K(X0), but we conjecture that

the natural map is always injective.)
If j=2r−1, Fontaine’sH1

f (M) is the group of codimension r cycles onX0 homologically

equivalent to zero, tensored with Q,

If j ≥ 2r, H1
f (M) = 0.

Fontaine’s H0
f (M) is zero unless j =2r, in which case it equals the group of codimension

r cycles on X0 modulo homological equivalence, tensored with Q.

Fontaine’s Hi
c(M) is the Q-dual of H2−i

f (N) for i= 1,2.
For each j and r with j ≤ min(2d− 1,2r− 3), we will define a sequence of integral

structures A(j,r). For each j and r with j ≥max(0,2r+1), we will define a sequence of

integral structures A′(j,r). A(j,r) is given by:

(j ≤ 2r−3) cj,r :H
j+1
W (X,Z(r))C → Coker(γj,r)

while A′(j,r) is given by:

(j ≥ 2r+1) bj,r :Ker(γj,r)→Hj+2
W (X,Z(r))C.

If 1< r < d, we define an integral structure C(r) given by: C(r) =

0→H2r−1
W (X,Z(r))C

c2r−2,r→ Coker(γ2r−2,r)→H2r+1
W (X,Z(r))C

er→

→H2r
W (X,Z(r))C →Ker(γ2r,r)

b2r,r→ H2r+2
W (X.Z(r))C → 0.

Here, er is induced by the Arakelov intersection pairing. We give these vector spaces the
standard integral structures previously defined in §2.2.
Conjectures 2.7, 2.8, 2.9 and 2.10 imply that these sequences are exact.

We give degrees to the terms of these complexes by requiring that Ker(γM ) has even

degree and Coker(γM ) has odd degree. (These sequences are all truncations of modified
versions of Fontaine’s six-term sequence in [8], and this convention makes the degrees

agree)

Finally, we define exact sequences B(j,r)C given for all j and r by

0→Ker(γM )→ (Hj
B(XC,Z(r))

+)C
γM→ (tj,r)C → Coker(γM )→ 0.

We put Ker(γM ) in degree zero.
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The integral structures on the cohomology groups here are induced by the standard
integral structures defined in §2.2. Let

χA,C(X,r) = χ(C(r))

min(2d−1,2r−3)∏

j=0

(χ(A(j,r))(−1)j
2d−1∏

j=max(0,2r+1)

χ(A′(j,r))(−1)j ,

χB(X,r) =
∞∏

j=0

χ(B(j,r))(−1)j,

and let

χ(X,r) =
χA,C(X,r)

χB(X,r)
.

Conjecture 3.1. Give all groups in the above exact sequences their standard integral

structures. Then

ζ∗(X,r) = χ(X,r)

up to sign and powers of 2.

(Note that B(j,r) is torsion for j ≥ 2d−1 and zero for j large).

If j �= 2r−1, each of the terms Ker (γM ) and Coker (γM ) occurs exactly twice in the

conjecture with degrees of opposite parity, so the conjecture is independent of the choice
of integral structure. If j = 2r−1, Ker (γM ) and Coker (γM ) are both zero.

Proposition 3.2. a) If 0 ≤ j ≤ 2r− 3, then 2(d− r)+ 1 ≤ 2d− 2− j ≤ 2d− 2 and the
integral structures A′(2d− 2− j,d− r)tf and A(j,r)tf are dual. Hence, det(A(j,r)) =

det(A′(2d−2− j,d− r)).

b) The integral structures C(r)tf and C(d − r)tf are dual. Hence, det(C(r)) =
det(C(d− r)).

Proposition 3.3. χA,C(X,r) = χA,C(X,d− r).

Proof. χ(C(r)) = det(C(r))/|(C(r)tor|. C(r)tf is dual to C(d− r)tf , so det(C(r)) =
det(C(d− r)). χ(A(j,r) = det(A(j,r))/|A(j,r)tor|. χ(A′(j,r)) = det(A′(j,r))/|(A′(j,r)tor|.
A(j,r)tf is dual to A′(2d− 2− j,d− r)tf so det(A(j,r)) = det(A′(2d− 2− j,d− r)) and

det(A′(j,r) = det(A(2d−2− j,d− r)).

On the other hand,

|C(r)tor|
2r−3∏

j=0

|A(j,r)tor|(−1)j
2d−1∏

j=2r+1

|A′(j,r)tor|(−1)j =

2d+1∏

j=1

|Hj(X,Z(r))tor|(−1)j

which is equal by duality to

2d+1∏

j=1

|Hj(X,Z(d− r))tor|(−1)j
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which is equal to

|C(d− r)tor|
2d−2r−3∏

j=0

|A(j,d− r)tor|(−1)j
2d−1∏

j=2d−2r+1

|A′(j,d− r)tor|(−1)j .

4. The Euler characteristic of the period map

Let K be the integral closure of Q in the function field of X. Then we can view X as a

scheme over S = Spec OK , and XC is canonically isomorphic to
∏

σX×S Spec C, where

the product is taken over all embeddings σ of K in C. Let κ(v) be the residue field of the
closed point v, and let Xv =X×S Spec κ(v)

Recall that A is the positive rational number which appears in the conjectured

functional equation As/2Γ(X,s)ζ(X,s) =±A(d−s)/2Γ(X,d− s)ζ(X,d− s) for ζ(X,s). Let

ωX/S be the relative canonical class of X over S.

Definition 4.1. Let A′
v = (ΔX .ΔX)v = (−1)dcd

X
Xv

(ΩXv/Ov
) ∈ CH0(Xκ(v)). Let

A′ = (ΔX .ΔX)S =
∏

vA
′
v.

(This definition is taken from [12]. We will not use it directly in what follows. What we

need is stated in Theorems 4.2 and 4.3.)
Here, the product is taken over all closed points v of S such that X is not smooth over

S at v. Note that the Chern class cd
X
Xv

(Ω) is equal to 1 if X is smooth over S at v.

Theorem 4.2. (Bloch–Kato–Saito). If d≤ 3,A′ =A. If strong resolution of singularities

holds for schemes of finite type over Spec Z, then A′ =A in general.

Proof. This is the main result [12, Theorem 6.2.3] of [12].

Let Ov =OK localized at v. Let Xv =X×OK
Ov.

Let λk denote the k -th derived exterior power.

Theorem 4.3. Consider the cone Cm,v of the map from RΓ(Xv,λ
mΩXv/Ov

) to

RΓ(Xv,RHom(λd−1−mΩXv/Ov
,ωXv/Ov

)) induced by Serre duality; its Euler characteristic

is equal to (A′)
(−1)m+1

v .

Proof. This is [18, Corollary 4.9].

Theorem 4.4. The Euler characteristic of the classical period map α from de Rham

to singular cohomology of XC with respect to the canonical integral structures is

(A′)d/2(2πi)χ(XC)(d−1)/2.

This theorem will follow from the following propositions.

Proposition 4.5. Let Hj be Hj
DR(XC,C) =

∏
σH

j
DR(Xσ.C) with its canonical

integral structure. Let Gj be Hj
DR(XC,C) with the integral structure given by∏

σ

∏j
k=0Ext2d−2−j+k

Xσ
(λd−1−kΩX/OK

,ωX/OK
). Then the Euler characteristic χI of the

identity map from H∗ to G∗ with respect to the given integral structures is (A′)d.
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Proof. Let Ω = ΩXC/C and ΩK = ΩX/OK
, By a spectral sequence argument,

Hj−k(XC,Λ
kΩ) is canonically isomorphic to Extj−k

XC
(Λd−1−kΩ,ωC). So Aj,k = Hj−k(X,

λkΩK) and Bj,k = Extj−k
X (λd−1−kΩK,ω) give two different integral structures on

Hj−k(XC,Λ
kΩ). By Serre duality, Aj,k is dual to B2d−2−j,d−1−k. Let (xi.j) be a basis for∐

kAj.k, and let (yi,j) be a basis for
∐

kBj,k.

Let dj,k be the determinant of the identity map of Hj−k(XC,Λ
kΩ) with respect to

these two integral structures. (This is independent of the choice of basis for the integral

structures, up to sign.) Then Theorem 4.3 asserts that
∏

j

(dj,k)
(−1)j−k

χ((Aj,k)tor)
−1χ((Bj,k)tor) = (A′)

if k is even and is equal to (A′)−1 if k is odd. By Serre duality, χ((Aj,k)tor) =

(χ((Bj,k)tor)
−1.

We conclude easily from this that
∏

k

∏
j(dj,k)

(−1)j (χ(λk(Ω))tor))
−2 = (A′)d, and the

product on the left is the Euler characteristic of the identity map.

Let QDR denote the de Rham cup product and QB denote the cup product in singular

cohomology. Let αj : Hj
DR(XC,C) → Hj

B(XC,C) be the classical period map, We know
that QDR and QB are compatible, that is, QB(α

j(a),αk(b)) = αj+k(QDR(a,b)).

Proposition 4.6. Let [vi,j ] be a basis of Hj
DR(XC,C). Let [ui,j ] be a basis of Hj

B(XC,C)

coming from a basis of Hj
B(XC,Z) modulo torsion. Let Ej be the matrix of αj with respect

to the bases [vi,j ] and [ui,j ]. Then

(
∏

j

(detEj)(−1)j )2 =
∏

j

det(QDR(vi,j,vk,2d−2−j))
(−1)j (2πi)χ(XC)(d−1).

Proof. Fix j. On the top-dimensional cohomology group H2d−2
DR (XC,C), α(1DR) =

(2πi)d−11B . Therefore, α(QDR(vi,j,vk,2d−2−j)) =QB(α(vi,j),α(vk,2d−2−j)) implies

(2πi)(d−1)Bjdet(QDR(vi,j,vk,2d−2−j)) = detQB(α(vi,j),α(vk,2d−2−j)) =

= det(Ej)det(E2d−2−j)det(QB(ui,j,uk,2d−2−j)) =±det(Ej)det(E2d−2−j).

Raising to the (−1)j power and taking products over j, we obtain the proposition.

Proposition 4.7. Let dj =
∏

k dj,k be the determinant of the identity map with respect

to the two given integral structures on Hj
DR(XC,C). Then

a) dj = det(QDR(xi,j,xk,2d−2−j)).

b)
∏

d
(−1)j

j =
∏

det((QDR(xi,j,xk,2d−2−j)
(−1)j ).

Proof. By the compatibility of cup product and Serre duality, det(QDR(xi,j,yk,2d−2−j))

is equal to 1. Then 4.7 a follows from the definition of dj , and of course implies 4.7 b.

Proof of Theorem 4.4. Recall that by definition and Serre duality χ(α) =∏
j(detE

j)(−1)jχ(H∗
DR(X)tor)

−1
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and χI =
∏

d
(−1)j

j χ(H∗
DR(X)tor)

−2. Substituting x for v in Proposition 4.6 and using

Proposition 4.5, we obtain

(A′)d(χ(H∗
DR(X)tor))

2 =
∏

j

det(QDR([xi,j ],[xk,2d−2−j ])
(−1)j .

Proposition 4.6 implies

(A′)d(χ(H∗
DR(X)tor)

2 = (2πi)−χ(XC)(d−1)(
∏

det(αj)(−1)j )−2

which implies

(2πi)χ(XC)(d−1)/2(A′)d/2 = det(α∗)χ((H∗
DR(X))tor)

(−1).

By Poincarè duality, χ(H∗
B(XC,Z)tor) = 1, so

det(α∗)χ((H∗
DR(X))tor)

(−1)χ((H∗
B(XC,Z)tor) = (2πi)χ(XC)(d−1)/2(A′)d/2

χ(α) = (2πi)χ(XC)(d−1)/2(A′)d/2,

which is Theorem 4.4.

Corollary 4.8. The Euler characteristic χr of the classical period map αr from

H∗
DR(XC,C(r)) to H∗

B(XC,C(r)) is (A′)d/2(2πi)χ(XC)((d−1)/2−r).

This follows from the definition of twisting by r.

Recall that Γr,j =
∏

p+q=j Γ
∗(r−p)h(p,q). Let Γr =

∏
Γ
(−1)j+1

r,j .

Corollary 4.9. The Euler characteristic χ(γr) of the enhanced period map γr is

Γr(A
′)d/2(2πi)χ(XC)((d−1)/2−r).

Proof. By the remarks at the beginning of §2.3, χ(γr) is equal to χ(αr) multiplied by
∏2d−2

j=0 Γ
(−1)j+!

r,j = Γr.

5. Serre’s functional equation and Γ-function identities

Let X0 be a smooth projective algebraic variety of dimension d−1 over the number field

K. Let j be a nonnegative integer, and let Lj(X0,s) be the L-function attached by Serre

in [19] to the j -th cohomology group of X0,
Let σ be an embedding of K into C, and let v be the place of K induced by σ. Let

Kv be the completion of K at v. Let Xv = X0×K C, where σ maps K into C, and let

Ω=ΩXv/C. Recall that Hodge theory gives us a decomposition Hj
DR(Xv) =

∐
Hp.q

v , where
the sum is taken over pairs (p.q) such that p+q = j and Hp.q

v =Hq(Xv,Ω
p). Let c be the

automorphism of Xv induced by complex conjugation acting on C/Kv. Then if j is even

and equal to 2n, c acts as an involution on Hn,n
v . Let hv(p,q) be the dimension of Hp,q

v .
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Then Hn,n
v =H

(n,+)
v ⊕H

(n,−)
v , where

H(n,+)
v = {x ∈Hn,n

v ,c(x) = (−1)nx}

H(n,−)
v = {x ∈Hn,n

v ,c(x) = (−1)(n+1)x}

Let hv(n,+) = dim H
(n,+)
v and hv(n,−) = dim H

(n,−)
v .

Let Bj
v be the rank ofHj(Xv,Z), and let (Bj

v)
+ be the rank of the subgroup ofHj(Xv,Z)

left fixed by c. Let (Bj
v)

− =Bj
v−(Bj

v)
+. Note that if j = 2n, (Bj

v)
+ is equal to Σhv(p,q)+

hv(n,+) if n is even and is equal to Σhv(p,q)+hv(n,−) if n is odd, where the sum is

taken over all pairs (p,q) where p < q and p+q = j. Let (Bj,r
v )− be (Bj

v)
− if r is even and

(Bj
v)

+ if r is odd.

Let ΓC(s) = (2π)−sΓ(s). Let ΓR(s) = π−s/2Γ(s/2).

Serre [19] gives the functional equation φj(s) = ±φ(j + 1 − s), where φ(s) =

Lj(s)A
s/2
j Γj(s), Aj is a certain positive integer, and Γj(s) is described as follows:

Γj(s) =
∏

vΓ
j
v(s), where Γj

v(s) =
∏

p+q=j(ΓC(s− inf(p,q))hv(p,q) if v is a complex place

of K,

Γj
v(s) = ΓR(s− n)hv(n,+)ΓR(s− n+ 1)hv(n,−)

∏
p<j−pΓC(s− p)hv(p,j−p), if v is a real

place of K.

We observe that it is an easy computation that Γj
v(s) = Γ2d−2−j

v (s+d− j−1) so that

with our earlier observation that at least in the smooth case Lj(s) = L2d−2−j(s+ d−
j−1) we obtain that Serre’s functional equation is equivalent to the functional equation

φj(s) =±φ2d−2−j(d−s).

Theorem 5.1. Let v be a real place of K.

If j is even, (Γj
v)

∗(r)/(Γ2d−2−j
v )∗(d − r) is equal up to sign and powers of 2 to∏

p(Γ
∗(r−p))hv(p,q)π−Bj

v(r−j/2)+(Bj,r
v )− . (The products run over 0≤ p≤Bj

v).

If j is odd, (Γj
v)

∗(r)/(Γ2d−2−j
v )∗(d − r) is equal up to sign and powers of 2 to∏

pΓ
∗(r−p)hv(p,q)π−Bj

v(r−(j+1)/2)

Proof. We consider the case when j is even. (The case when j is odd is similar but

simpler.) Let j = 2n. Fix v, and let q = j − p. First look at terms where p �= q. Let
p′ = d−1−p and q′ = d−1− q, so p′+ q′ = 2d−2− j. We have

∏
p<qΓ

∗
C(r−p)hv(p,q)

∏
p′<q′ Γ

∗
C(d− r−p′)hv(p′,q′)

=

∏
p<qΓ

∗
C(r−p)hv(p,q)

∏
p>qΓ

∗
C(1− r+p)hv(p,q)

since hv(p,q) = hv(p
′,q′) by Serre duality. By definition of ΓC, this is equal to

∏
p<q Γ

∗(r−p)hv(p,q)

∏
p>qΓ

∗(1− r+p)hv(p,q)

multiplied by

(2π)−(Σp<q(hv(p,q)(r−p))−Σp>q(hv(p,q)(1−r+p)))).
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This product is then equal to

±
∏

p �=n

Γ∗(r−p)hv(p,q)(2π)−(Σp<q(hv(p,q)((r−p)−(1−r+j−p))))

because of the relation Γ∗(r) = ±Γ∗(1− r)−1 for integral r which follows immediately
from the functional equation for the Gamma function. We then obtain:

±
∏

p �=n

Γ∗(r−p)hv(p,q)(2π)−(Bj
v−hv(n,n))(r−(j+1)/2) (5.1)

We now look at the terms involving n with v still fixed. We first observe that the

functional equation for the gamma function implies that

Γ∗(a/2)Γ∗((2− a)/2) equals ±π if a is an odd integer and equals ±1 if a is an even
integer.

We compute:

Γ∗
R((r−n))hv(n,+)Γ∗

R((r−n+1))hv(n,−)

multiplied by

Γ∗
R((d− r− (d−1−n))−hv(n,+)Γ∗

R(d+1− r− (d−1−n))−hv(n,−)

which we rewrite as

(Γ∗((r−n)/2)(Γ∗(1− r+n)/2)−1)hv(n,+) (5.2)

multiplied by

Γ∗((r−n+1)/2)(Γ∗((n+2− r)/2)−1)hv(n,−) (5.3)

multiplied by

π−(hv(n,+)(2r−2n−1)/2+hv(n,−)(2r−2n−1)/2). (5.4)

First, assume that r−n is odd. By the functional equation,

Γ∗((1− r+n)/2)−1 =±Γ∗(r−n+1)/2 (5.5)

Γ∗((n+2− r)/2)−1 =±π−1Γ∗((r−n)/2). (5.6)

Now, recall the duplication formula for the gamma function:

Γ(2s) = 22s−1Γ(s)Γ(s+1/2)/
√
π. (5.7)

Then equation (5.2) becomes (using equations (5.5) and (5.7))

(±2n−r+1Γ∗(r−n)
√
π)hv(n,+)

and equation (5.3) becomes

(±2n−rΓ∗(r−n)
√
π)−hv(n,−)

while equation (5.4) is

π−hv(n,n)(r−(j+1)/2). (5.8)

https://doi.org/10.1017/S1474748022000524 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000524


Special values of zeta-functions of regular schemes 511

So, up to sign and powers of 2, our product has become

Γ∗(r−n)hv(n,n)π(hv(n,n)(r−(j+1)/2)+hv(n,+)/2−hv(n,−)/2 (5.9)

Multiplying equation (5.1) by equation (5.9), we get
∏

p

Γ∗(r−p)hv(p,q)π−(Bj
v(r−(j+1/2)))+hv(n,+)/2−hv(n,−)/2) (5.10)

which equals
∏

p

Γ∗(r−p)hv(p,q)π−(Bj
v(r−j/2)+(Bj

v)
+

(5.11)

if n is even (so r odd) and equals
∏

p

Γ∗(r−p)hv(p,q)π−Bj
v(r−j/2)+(Bj

v)
−

(5.12)

if n is odd (so r even) since (Bj−hv(n,n)/2)+hv(n,+) is equal to (Bj
v)

+ if n is even and

(Bj
v)

− if n is odd.

The proof for r−n even is identical, except for switching hv(n,+) and hv(n,−).

Theorem 5.2. Let v be a complex place of K. Then (Γj
v)

∗(r)/(Γ2d−2−j
v )∗(d− r) is equal

up to sign and powers of 2 to (
∏

pΓ
∗(r−p))2h(p,q)π−Bj

v(2r−(j+1)).

Proof. Let q = j−p, p′ = d−1−p and q′ = d−1− q. Note that 0≤ p,q,p′,q′ ≤ d−1

We write (Γj)∗v(r)/(Γ
2d−2−j)∗v(d− r) =

∏
pΓ

∗
C(r− inf(p,q))hv(p,q)

∏
p′ ΓC(d− r− inf(p′,q′))hv(p′,q′)

which is equal to
∏

pΓ
∗(r− inf(p,q))(hv(p,q)

∏
p′ Γ∗(d− r− inf(p′,q′))hv(p′,q′)

(5.13)

multiplied by

(2π)−Σphv(p.q)(r−inf(p,q))−Σp′hv(p
′,q′)(d−r−inf(p′,q′)). (5.14)

Since hv(p
′,q′) = hv(p,q), the functional equation for the gamma function transforms

equation (5.13) into (up to sign)
∏

p

Γ∗(r− inf(p,q))hv(p,q)
∏

p

Γ∗(r−sup(p,q))hv(p,q), (5.15)

which in turn equals

(
∏

p

Γ∗(r−p)hv(p,q))2.

Now, equation (5.14) easily transforms into (π2r−j−1)−Σphv(p,q), which becomes

π−(Bj
v(2r−(j+1)).
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6. Compatibility of the conjecture with the functional equation

Starting with Serre’s conjectured functional equation for cohomological L-functions
described in the previous section, Bloch, Kato and T. Saito conclude that the following

functional equation holds for the zeta-function of X ;

Conjecture 6.1. Let φ(X,s) = ζ(X,s)As/2Γ(X,s). Then φ(X,s) =±φ(X,d−s)

Here, the constant A = A(X) is obtained by taking the alternating product of the

constants Aj which occur in the conjectured functional equation for Serre’s L-function

Lj and modifying it by terms coming from degenerate fibers. It is still a positive rational

number.
The generic fiber X0 of X is a projective algebraic variety smooth over a number

field K =H0(X0,OX0
). Let Γ(X,s) =

∏
j

∏
σΓ(X

j
v(σ),s)

(−1)j , where Γj
v was defined in the

previous section. If we rewrite our conjecture as ζ∗(X,r) = χ(X,r), then what we want
to show is that ζ∗(X,r)/ζ∗(X,d− r) = χ(X,r)/χ(X,d− r), up to sign and powers of 2,

where the left-hand side is computed by the functional equation.

Proposition 6.2. Conjecture 6.1 implies

ζ∗(X,r)

ζ∗(X,d− r)
=Ad/2−r

∏

j

(
∏

p+q=j

Γ∗(r−p)
h(p,q)

)
(−1)j

π−χ(XC)(r−(d−1)/2)+χ−(XC,Z(r)).

Proof. This is an immediate consequence of Theorems 5.1 and 5.2, remembering that

Bj =B2d−2−j .

We now wish to compute χ(X,r)/χ(X,d− r) and show that it agrees with the

expression in Proposition 6.2. We first recall that χ(X,r) = χA,C(X,r)χB(X,r) and that

χA,C(X,r)/χA,C(X,d− r) = 1, by Proposition 3.3.

We now have to look at χB(X,r)/χB(X,d− r).

Lemma 6.3. Let χi,k be the Euler characteristic of the identity map from the complex

vector space Hi(XC,Λ
kΩXC

) with the integral structure Hi(X,λkΩX) to the same vector

space with the integral structure RHom(Hd−1−i(X,λd−1−kΩX),ω). Then
∏

iχ
(−1)i

i,k =

(A′)(−1)k .

Proof. This follows immediately from Theorem 4.3.

Lemma 6.4. Let θj,r be the Euler characteristic of the identity map from the
complex vector space tM =

∐
0≤k<rH

j−k(XC,Λ
kΩXC

) with the integral structure∐
0≤k<rH

j−k(X,λkΩX) to the same vector space with the integral structure given by

RHom(Hd−1−j+k(X,λd−1−kΩX),ω).

Then
∏

j θ
(−1)j

j,r = (A′)r.

Proof. This follows immediately from Lemma 6.3.
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Lemma 6.5. Let ηj be the Euler characteristic of the identity map from Hj
B(XC,C)

+

(if r is odd) or Hj
B(XC,C)

− (if r is even) with the integral structure Hj
B(X,Z(r− 1))−

to the same vector space with the integral structure Hj
B(X,Z(r))+ or Hj

B(X,Z(r))−.

Then
∏

η
(−1)j

j = (2πi)χ
−(XC,Z(r))

Proof. This follows immediately from the definitions.

Let γ(j,r) denote the integral structure

0→Ker γ∗ →Hj
B(X,C(r))+ → t(j,r)C → Coker γ∗ → 0.

Let β(j,r) denote the integral structure

0→Ker β∗ → F0(j,r)C →Hj
B(X,C(r))− → Coker β∗ → 0.

Proposition 6.6. a) The integral structure β(j,r) is dual to the integral structure δ(2d−
2− j,d− r) given as follows:

0→Ker γ∗ → (H2d−2−j
B (X,Z(d−1− r))C)

− → t(2d−2− j,d− r)C → Coker γ∗ → 0,

where the singular cohomology group has its standard structure and t(2d-2-j, d-r) has the

integral structure dual to the standard one on F0(j,r).
b) det (β(j,r)) = det(δ(2d−2− j,d− r)).

Proof. Part a) follows immediately from the compatibility of Serre and Poincarè duality,

and then b) follows immediately.

Let

χ(γ(r)) =

2d−2∏

j=0

χ(γ(j,r))(−1)j , χ(β(r)) =

2d−2∏

j=0

χ(β(j,r))(−1)j ,

and

χ(ε(d− r)) =
2d−2∏

j=0

χ(ε(j,d− r))(−1)j .

Corollary 6.7. χ(β(r)) = χ(δ(d− r))

Proof. This follows from the preceding proposition and a consideration of torsion, exactly
as in Proposition 3.3.

Note that γ(2d− 2− j,d− r) is the integral structure δ(2d− 2− j,d− r) except that

the singular cohomology group now has the integral structure given by H2d−2−j
B (X,Z

(d−r)C)
+ and the tangent space has the standard integral structure rather than the one

coming from duality.

Proposition 6.8. χ(γ(d− r)) = (A′)d−r(2πi)−χ−(XC,Z(r))χ(δ(d− r))

Proof. This follows immediately from Lemmas 6.4 and 6.5 and the previous remark. Note

also that χ−(XC,Z(d−1−r)) =χ−(XC,Z(r)) because Poincarè duality is compatible with
complex conjugation.
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Proposition 6.9. One has

χ(γ(r))

χ(β(r))
= Γr(A

′)d/2(2πi)χ(XC)((d−1)/2−r).

Proof. This follows from Proposition 2.6 and Corollary 4.9.

Proposition 6.10. One has

χ(γ(d− r))

χ(γ(r))
= Γr(A

′)d/2−r(2πi)χ(XC)((d−1)/2−r)+χ−(XC,Z(r)).

Proof. This follows immediately from Propositions 6.8 and 6.9 and Corollary 6.7.

Theorem 6.11. One has

χB(X,d− r)

χB(X,r)
= Γr(A

′)d/2−r(2πi)χ(XC)(r−(d−1)/2)+χ−(XC,Z(r)).

Proof. Observe that χB(X,d− r)/χB(X,r) = χ(γ(d− r))/χ(γ(r)).

Proposition 6.2 and Theorem 6.11 immediately imply the compatibility of our

conjecture with the functional equation if we replace A by A′.

Theorem 6.12. If d≤ 2, Conjecture 3.1 is compatible with the functional equation.

Proof. This follows from Theorem 6.11 and the main theorem of [12].

7. The case of number rings

Let F be a number field with ring of integers OF , class number h, number of roots of
unity w and discriminant dF . Let X = Spec OF . We will explain how our conjecture for

X and r reduces to standard theorems if r = 0 or r = 1 and well-known conjectures if

r < 0 or r > 1.
We begin with r = 0.

We know that Hj
et(X,Z(1)) = 0 if j < 1, H1

et(X,Z(1)) = O∗
F , H

2
et(X,Z(1)) = Pic(X),

H3(X,Z(1)) = 0 (up to 2-torsion) and H0
et(X,Z(0)) = Z.

It immediately follows from the definitions that H0
W (X,Z(0)) = Z, H1

W (X,Z(0)) = 0,

and H3(X,Z(0)) = μ∨
F , the dual of the roots of unity in F.

We also have the exact sequence 0→ Pic(X)∨ →H2
W (X,Z(0))→Hom(O∗

F ,Z)→ 0.

We also have tj,0 = 0 for all j. It follows that A(j,0) is always equal to 0.
We also see that A′(j,0) = 0 unless j = 1, when A(1,0) reduces to (μF )

∨ in degree 2, so

χ(A′(1,0)) = w.

C(0) becomes 0→ C→ Cr1+r2 →Hom(O∗
F ,C)→ 0, with the integral structure on the

last term being H2
W (X,Z(2)) and the second map being the dual of the classical regulator.

So χ(C(0)) = hR, and χ(X,0) = hR/w. As is well known, ζ∗(X,0) =−hR/w.

We now consider the case when r = 1.
A(j,1) is easily seen to be zero for j <−1.

The complex part of C(1) is given by 0→O∗
F ⊗C→Cr1+r2 →C→ 0, with the last two

terms getting the standard bases and the first term a basis coming from O∗
F , so det(C(1)
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is the classical regulator R. The Euler characteristic of C(1)tor is

|H1
W (X,Z(1))tor|/|H2(X,Z(1))tor|= w/h.

It follows that the Euler characteristic of C(1) is hR/w.

Since tj,1 = 0 for j ≥ 0 and Hj
W (X,Z(1)) = 0 for j ≥ 5, A′(j,1) = 0 for j ≥ 3.

Finally, B(j.1) = 0 if j �= 0, and B(0,1) is given by

0→ Cr2 →OF ⊗C→ Cr1+r2 → 0. (7.1)

Note that we have the usual map θ mapping OF ⊗C to Cr1+2r2 by sending x⊗ 1 to

the collection of σ(x) as σ runs through the embeddings of F in C. The map from Cr2

to OF ⊗C is given by the natural inclusion of Cr2 in Cr1+2r2 multiplied by 2πi, followed
by the inverse of θ. Since the determinant of θ with respect to the usual bases is

√
dF ,

we see that the determinant of equation (7.1) is equal to (2πi)r2/
√
dF . Hence, the Euler

characteristic χ(X,1) is equal to hR(2πi)r2/w
√
dF which is equal to the usual formula

hR(2π)r22r1/w
√

|dF | for ζ∗(X,1) up to a power of 2.

Now, let r < 0.

The only nonzero groups Hk
W (X,Z(r)) occur when k = 2 or k = 3, so A(j,r) is equal to

zero for all j in the appropriate range, C(r) = 0, and A′(j,r) = 0 unless j = 0 or j = 1.

B(j,r) = 0 unless j = 0. B(0,r) reduces to the isomorphism Ker(b0,r)→H2
W (X,Z(r))+

so we give Ker(b0,r) the integral structure induced from H2
W (X,Z(r))+, and

χ(B(0,r)) = 1.
A′(0,r)C is given by Ker(b0,r) → H2

W (X,Z(r))C. H
2
W (X,Z(r))C is dual to H1

W (X,Z

(1− r))C which is canonically isomorphic to K1−2r(OF )C, and Ker(b0,r) is canonically

dual to Coker(c0,1−r), where c0,1−r is the Beilinson regulator map. We conclude that
det(A′(0,r)) is dual to the determinant D1−r of the Beilinson regulator map with respect

to the natural bases coming from singular cohomology and K-theory.

Then χ(X,r) is equal to D1−r|H2
W (X,Z(r))tor|/|H3

W (X,Z(r))|, which is equal to
D1−r|H2

W (X,Z(1− r))|/|H1
W (X,Z(1− r))tor| which in turn is equal to

D1−r|K−2r(OF )|
|K1−2r(OF )tor|

,

up to 2-torsion. This is essentially what was conjectured in [16] to be ζ∗(X,r).

Finally, let r > 1. By definition, since j has to be between 2r+1 and 2d−1, there is no
contribution from A′(j,r)
A(j,r)C is the complex Hj+1

W (X,Z(r))C → Coker(γj,r), which is only nonzero when

j = 0, in which case the map is the Beilinson regulator c0,r, Since j has to be either
0 or 1, the torsion Euler characteristic is |H2(X,Z(r))|/|H1(X,Z(r))tor which up to

2-torsion isK2r−2(OF )|/|K2r−1(OF )tor|. So letting Rr be the determinant of the Beilinson

regulator map, the Euler characteristic

χ(A,r) =
|K2r−2(OF )

|K2r−1(OF )tor|
Rr,

up to 2-torsion.
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Now, B(j,r)C obviously is zero if j �= 0. Let s(r) = r2 If r is even and s(r) = r1+ r2 if

r is odd. Then by the same arguments as in the case when r = 1 we have det(B(0,r)C) =

(2πi)rs(r)
√
dF .

The integral structure on tj,r is given by
∐

0≤k<rH
j−k(X,λk(Ω)) In the appendix,

we compute that λk(Ω) is equal to Ω[1− k]. So tj,r =
∐

k<rH
j−k(X,Ω[1− k]). Since Ω

only has cohomology in dimension 0, we see that tj,r = 0 unless j = 1, and the order of

H0(X,Ω) is dF so χtor(tj,r) = d−r
F and χ(B(j,r)) = (2πi)rs(r)d

(r−1/2)
F .

Putting everything together, we get that our conjecture says that up to 2-torsion
ζ(X,r) = χ(X,r), where

χ(X,r) =
|K2r−2(OF )|

|K2r−1(OF )tor|
(2πi)rs(r)d

r−1/2
F Rr

since) Hk−1(X,λkΩ) =Hk−1(X,Ω[1−k]) = dF , and Hj(X,λkΩ) = 0 if j �= k−1. This is

compatible with our conjecture for s= 1− r via the functional equation, which of course
here is a well-known theorem.

Appendix A. Derived Exterior Powers

Let A be an abelian category. Let SA denote the category of simplicial objects of A
and CA denote the category of homological chain complexes of objects of A ending in

degree zero. There are well-known functors N : SA→ CA and K : CA→ SA such that

NK is the identity and KN is naturally equivalent to the identity functor. N and K also
preserve homotopies. Let Λk denote k -th exterior power. Let X be a scheme and A be

the category of coherent locally free sheaves on X. If Q· is in SA with Qn a locally free

sheaf on X for all n, we define ΛkQ· to be Λk(Qn) in SA.

Proposition A.1. Let X be a regular scheme projective over Spec Z. Write X as a closed
subscheme of a projective space P = (Pn)Z such that I is the sheaf of ideals defining X.

Then the complex of locally free sheaves CX,P = I/I2 → ΩP/Z defines an element in

the derived category of locally free sheaves on X which is independent of the choice of

embedding of X into P.

Proof. If we have two different embeddings of X in P1 and P2, take the Segré embedding

of P1×P2 in P3 and compare successively the complexes defined by the embeddings into

P1 and P2 with the product embedding into P3. (For details, see [15].)

Definition A.2. λkΩX/Z =NΛkKCX,P .

We see easily that this is independent of the choice of embedding.

We begin by recalling the following fact [11, Exercise 5.16 (d))]:

Lemma A.3. Let (X,OX) be a ringed space, and let 0→ F ′ → F → F ′′ → 0 be an exact

sequence of locally free sheaves of OX-modules. Then there exists a finite filtration of ΛrF :

ΛrF =G0 ⊇G1 ⊇ ·· · ⊇Gr ⊇Gr+1 = 0

with quotients Gp/Gp+1 = ΛpF ′⊗Λr−pF ′′.
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Theorem A.4. Let (X,OX) be a scheme such that every coherent sheaf on X has a

finite resolution by locally free sheaves. Let 0→ F ′ → F → F ′′ → 0 be an exact sequence of

coherent sheaves on X. Let r be a positive integer, Then there exist objects in the derived
category G0,G1, . . . Gr+1 and maps from Gp to Gp+1 such that we have G0 = λr(F ),

Gr+1 = 0, and exact triangles Gp →Gp+1 → λp(F ′)⊗L λr−p(F ′′)→Gp[1].

Proof. This is an easy corollary of the definition of derived exterior power and the
previous lemma.

Theorem A.5. Let A be a ring and M an A-module. a) λ0M is canonically homotopic

to the complex consisting only of A in degree 0.
b) λ1M is canonically homotopic to the complex consisting only of M in degree 0.

c) If M has projective dimension r, then λkM is represented by a complex of length kr.

Proof. a) and b) are obvious, and c) follows immediately from a theorem of Dold and
Puppe [3].

Theorem A.6. Let X =Spec OF , and Ω=ΩOF /Z. Then λk(Ω) is isomorphic to Ω[1−k]

Proof. Let D be the inverse different of OF over Z. We use induction on k, applying
Theorem A4 to the exact sequence 0→OF →D→Ω→ 0, Since λk(OF ) = λk(D) = 0 for

k > 1, λ0Ω=OF , and λ1Ω=Ω, Theorem A4 reduces to the triangle λkΩ→ 0→ λk−1Ω→
λkΩ[1], so to the equality λkΩ= λk−1Ω[−1].

Appendix B. The relation between our conjecture and the second

Flach–Morin conjecture

Both these conjectures involve Euler characteristics constructed from Weil-étale cohomol-

ogy groups, singular cohomology groups, derived de Rham cohomology groups and maps

(after tensoring with the real or complex numbers) between them given by Beilinson
regulators, period isomorphisms and height pairings. In both papers, a naive Euler

characteristic is constructed and then modified by using values of the gamma-function

to give a formula which is compatible with a modified version of Serre’s functional
equation. We observe that it is not immediately apparent that the definition of Weil-

étale cohomology groups in both papers is the same, but this is easily seen to follow from

Lemma 3.7 and Proposition 3.4 of [FM1], taking into account Conjecture 3.2 of the same

paper. Flach and Morin need to assume this finite generation hypothesis in order even to
define Weil-étale cohomology, but this is harmless since the finite generation hypothesis

is necessary in both papers in order to state the conjectures.

There seems to be little doubt that the unmodified Euler characteristics in both papers
are the same, but this is less clear with regard to the modifications.

In our paper, the factorials modify the standard period map, so we get a modification

of Fontaine’s six-term sequence of cohomology groups and use this Euler characteristic
instead. This depends on the map from H+

B (M) to tM and so does not lend itself to

an explicit numerical formula. We only get a numerical result by computing the ratio

between the formula for a cohomology group and the one for its dual. Flach and Morin
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ignore the map from H+
B (M) to tM and give a correction factor which only depends

on Hodge numbers so does lead to a numerical formula. Both these modifications,

amazingly, are compatible with the functional equation. In the cases where one knows
more, that is, if X is the spectrum of a number ring or if we are looking at a curve

with r = 1 (the case which is related to the conjecture of Birch and Swinnerton-Dyer),

the two approaches agree. There are good, although wildly different, reasons for each
of the two approaches, and the reader should decide what he or she thinks is more

plausible.
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