ON A COMBINATORIAL PROBLEM III

P. Erdős

(received October 16, 1968)

A family of sets $\{A_{\alpha}\}$ is said by Miller [3] to have property B if there exists a set S which meets all the sets A_{α} and contains none of them. Property B has been extensively studied in several recent papers (see the references in [2] and the last chapter of P. Erdős and A. Hajnal, On chromatic number of graphs and set systems, Acta. Math. Acad. Sci. Hung. 17 (1966) 61-99). Hajnal and I define m(n) as the smallest integer for which there is a family of m(n) sets A_k , $|A_k| = n$, $1 \le k \le m(n)$, which do not have property B [1]. Trivially $m(n) \le {2n-1 \choose n}$ (take all subsets taken n at a time of a set of 2n-1 elements), m(2) = 3, m(3) = 7, m(4) is not known. It is known [2], [4] that for $n > n_0(6)$

(1)
$$2^{n}(1+\frac{4}{n})^{-1} \le m(n) < (1+\epsilon) e \log^{2} n^{2} 2^{n-2}$$

 $m_N(n)$ is the smallest integer for which there are $m_N(n)$ sets A_k , $|A_k| = n$, $1 \le k \le m_N(n)$ which are all subsets of a set S, |S| = N and which do not have property B. I conjectured in [2] that for $N < c_1 n$, $m_N(n) > (2 + c_2)^n$. In this note we prove this conjecture and get fairly good upper and lower bounds for $m_N(n)$. In fact we prove that if N = (c + o(1))n

(2)
$$\begin{cases} \lim_{n=\infty}^{\infty} m_{N}(n)^{1/n} = 2(c-2)^{\frac{1}{2}(c-2)}(c-1)^{1-c} \frac{1}{c^{\frac{1}{2}}}c & \text{for } c > 2 \text{ and} \\ \lim_{n=\infty}^{\infty} m_{N}(n)^{1/n} = 4 \text{ if } N = (2 + o(1))n. \end{cases}$$

Canad. Math. Bull. vol. 12, no. 4, 1969

THEOREM 1.

(3)
$$m_{2N-1}(n) \ge m_{2N}(n) \ge 2^{n-1} \prod_{i=0}^{n-1} (1 + \frac{i}{2N-2i})$$
.

Let |S|=2N and $|A_k|=n,1\leq k\leq m_{2N}(n)$ where $\{A_k\}$ is a family of subsets of S which does not have property B. Clearly S can be split in $\frac{1}{2}\binom{2N}{N}$ ways as the union of two disjoint sets $S_1^{(t)}$ and $S_2^{(t)}$, $1\leq t\leq \frac{1}{2}\binom{2N}{N}$ for every t, $|S_1^{(t)}|=|S_2^{(t)}|=N$. By assumption the family $\{A_k\}$, $1\leq k\leq m_{2N}(n)$ does not have property B. Thus for every t, $1\leq t\leq \frac{1}{2}\binom{2N}{N}$, at least one of the sets $S_1^{(t)}$, i=1 or 2, contains one of our $A_k^t s$. A fixed A_k can clearly be contained for only $\binom{2N-n}{N-n}$ values of t in one of the sets $S_i^{(t)}$, i=1 or 2 (i.e. there are $\binom{2N-n}{N-n}$ subsets of S having N elements which contains a given A_k). Thus clearly

$$m_{2N}(n) \ge \frac{1}{2} {2N \choose N} / {2N-n \choose N-n} = \frac{1}{2} \prod_{i=0}^{n-1} \frac{2N-i}{N-i} = 2^{n-1} \prod_{i=0}^{n-1} (1 + \frac{i}{2N-2i}).$$

Thus since $m_{k+1}(n) \le m_k(n)$ is obvious, Theorem 1 is proved.

THEOREM 2.

(4)
$$m_{2N+1}(n) \le m_{2N}(n) \le [N2^n \prod_{i=0}^{n-1} (1 - \frac{i}{2N-i})^{-1}]$$

= $N2^n \prod_{i=0}^{n-1} (1 + \frac{i}{2N-2i}) = f(N, n)$

The proof of Theorem 2 follows very closely the proof in [2]. Let |S|=2N. We shall construct our f(N,n) sets A_k , $1 \leq k \leq f(N,n)$, $A_k \subset S$, $|A_k|=n$, not having property B by induction. Suppose I have already chosen ℓ of the sets A_j , $1 \leq j \leq \ell < f(N,n)$ and suppose that there are u_ℓ pairs of subsets of $S\left\{K_i, K_i\right\}$, $1 \leq i \leq u_\ell$ so that no set A_i , $1 \leq j \leq \ell$ is contained either in K_i or in \overline{K}_i .

If u = 0 Theorem 2 is proved. Assume henceforth u > 0. We shall prove that we can find a set $A_{\ell+1}$ so that

(5)
$$u_{\ell+1} \leq u_{\ell} (1 - \prod_{i=0}^{n-1} (1 - \frac{i}{2N-i})/2^{n-1}).$$

For each i, $1 \le i \le u$, consider all subsets of n elements of K_i and K_i . For fixed i the number of these subsets is clearly

$$\binom{\left|K_{i}\right|}{n} + \binom{\left|\overline{K}_{i}\right|}{n} \stackrel{\cdot}{\geq} 2\binom{N}{n} \qquad \left(\left|K_{i}\right| + \left|\overline{K}_{i}\right| = \left|S\right| = 2N\right).$$

$$\frac{2u_{\ell}\binom{N}{n}}{\binom{2N}{n}} = 2u_{\ell} \prod_{i=0}^{n-1} (N-i) \left(\prod_{i=0}^{n-1} (2N-i) \right)^{-1} = \frac{u_{\ell}}{2^{n-1}} \prod_{i=0}^{n-1} (1 - \frac{i}{2N-i})$$

values of i, which proves (5).

Clearly $u_0 = 2^{2N-1}$ (since S has 2^{2N} subsets). Hence from (5)

(6)
$$u_{r} \leq 2^{2N-1} / (1 - \frac{i}{2N-i})^{r} / (1 - \frac{i}{2N-i})^{r}$$

Thus by (6) if r = f(N,n), $u_r < 1$ and our sets A_j , $1 \le j \le f(N,n)$, do not have property B, which completes the proof of Theorem 2.

(2) follows easily from Theorems 1 and 2 by Stirling's formula.

For large values of N instead of $m_N(n)$ it seems more appropriate to consider $m_N'(n)$ where $m_N'(n)$ is the smallest integer for which there is a family $\{A_k\}$ $1 \le k \le m_N'(n)$ not having property B and satisfying $A_k \subset S$, |S| = N and the further property that the set of A_k' s contained in any proper subset of S has property B. For n = 2, $m_{2N+1}'(n) = 2N+1$, and, for even $N, m_N'(n)$ is not defined; this is just a restatement of the fact that the only critical three chromatic graphs are the odd circuits.

It is easy to see that $m_{2n-1}(n) = m_{2n}(n) = {2n-1 \choose n}$. I can not compute $m_{2n+1}(n)$ and in fact do not know the value of $m_{9}(4)$.

It would be interesting to find an asymptotic formula for $m_N^{(n)}$ and $m_N^{(n)}$, but I have not been able to do so. The upper and lower bounds for $m_N^{(n)}$ given by Theorems 1 and 2 differ by 2N; I could not even decrease this to o(N).

I wish to thank the referee for some very useful remarks.

REFERENCES

- 1. P. Erdős and A. Hajnal, On a property of families of sets. Acta. Math. Acad. Sci. Hung. 12 (1961) 87-123 (see in particular problem 12 on p.179)
- 2. P. Erdos, On a combinatorial problem II. Acta. Math. Acad. Sci. Hung. 15 (1964) 445-447.
- 3. E.W. Miller, On a property of families of sets. Comp. Rend. Varsovie (1937) 31-38.
- 4. W. M. Schmidt, Ein Kombinatorisches Problem von P. Erdos und A. Hajnal. Acta. Math. Acad. Sci. Hung. 15 (1964) 373-374.

McGiII University